Home » 8 класс » Как построить параболу? Что такое парабола? Как решаются квадратные уравнения?
Урок: как построить параболу или квадратичную функцию?
ТЕОРЕТИЧЕСКАЯ ЧАСТЬ
Парабола — это график функции описанный формулой ax2+bx+c=0.
Чтобы построить параболу нужно следовать простому алгоритму действий:
1 ) Формула параболы y=ax2+bx+c,
если а>0 то ветви параболы направленны вверх,
а<0 то ветви параболы направлены вниз.
Свободный член c эта точке пересекается параболы с осью OY;
2 ) Вершина параболы, ее находят по формуле x=(-b)/2a, найденный x подставляем в уравнение параболы и находим y;
3) Нули функции или по другому точки пересечения параболы с осью OX они еще называются корнями уравнения. Чтобы найти корни мы уравнение приравниваем к 0 ax2+bx+c=0;
Виды уравнений:
a) Полное квадратное уравнение имеет вид ax2+bx+c=0 и решается по дискриминанту;
b) Неполное квадратное уравнение вида ax2+bx=0. Чтобы его решить нужно вынести х за скобки, потом каждый множитель приравнять к 0:
ax2+bx=0,
х(ax+b)=0,
х=0 и ax+b=0;
c)Неполное квадратное уравнение вида ax2+c=0. Чтобы его решить нужно неизвестные перенести в одну сторону, а известные в другую. x =±√(c/a);
Как решать квадратные уравнения посмотреть тут.
4) Найти несколько дополнительных точек для построения функции.
ПРАКТИЧЕСКАЯ ЧАСТЬ
И так теперь на примере разберем все по действиям:
Пример №1:
y=x2+4x+3
c=3 значит парабола пересекает OY в точке х=0 у=3. Ветви параболы смотрят вверх так как а=1 1>0.
a=1 b=4 c=3 x=(-b)/2a=(-4)/(2*1)=-2 y= (-2)2+4*(-2)+3=4-8+3=-1 вершина находится в точке (-2;-1)
Найдем корни уравнения x2+4x+3=0
По дискриминанту находим корни
a=1 b=4 c=3
D=b2-4ac=16-12=4
x=(-b±√(D))/2a
x1=(-4+2)/2=-1
x2=(-4-2)/2=-3
Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=-2
х -4 -3 -1 0
у 3 0 0 3
Подставляем вместо х в уравнение y=x2+4x+3 значения
y=(-4)2+4*(-4)+3=16-16+3=3
y=(-3)2+4*(-3)+3=9-12+3=0
y=(-1)2+4*(-1)+3=1-4+3=0
y=(0)2+4*(0)+3=0-0+3=3
Видно по значениям функции,что парабола симметрична относительно прямой х=-2
Пример №2:
y=-x2+4x
c=0 значит парабола пересекает OY в точке х=0 у=0. Ветви параболы смотрят вниз так как а=-1 -1<0.
a=-1 b=4 c=0 x=(-b)/2a=(-4)/(2*(-1))=2 y=-(2)2+4*2=-4+8=4 вершина находится в точке (2;4)
Найдем корни уравнения -x2+4x=0
Неполное квадратное уравнение вида ax2+bx=0. Чтобы его решить нужно вынести х за скобки, потом каждый множитель приравнять к 0.
х(-x+4)=0, х=0 и x=4.
Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=2
х 0 1 3 4
у 0 3 3 0
Подставляем вместо х в уравнение y=-x2+4x значения
y=02+4*0=0
y=-(1)2+4*1=-1+4=3
y=-(3)2+4*3=-9+13=3
y=-(4)2+4*4=-16+16=0
Видно по значениям функции,что парабола симметрична относительно прямой х=2
Пример №3
y=x2-4
c=4 значит парабола пересекает OY в точке х=0 у=4. Ветви параболы смотрят вверх так как а=1 1>0.
a=1 b=0 c=-4 x=(-b)/2a=0/(2*(1))=0 y=(0)2-4=-4 вершина находится в точке (0;-4)
Найдем корни уравнения x2-4=0
Неполное квадратное уравнение вида ax2 +c=0. Чтобы его решить нужно неизвестные перенести в одну сторону, а известные в другую. x =±√(c/a)
x2=4
x1=2
x2=-2
Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=0
х -2 -1 1 2
у 0 -3 -3 0
Подставляем вместо х в уравнение y= x2-4 значения
y=(-2)2-4=4-4=0
y=(-1)2-4=1-4=-3
y=12-4=1-4=-3
y=22-4=4-4=0
Видно по значениям функции,что парабола симметрична относительно прямой х=0
Подписывайтесь на канал на YOUTUBE, чтобы быть в курсе всех новинок и готовится с нами к экзаменам.
О квадратных уравнениях в правильном порядке
Время на прочтение
4 мин
Количество просмотров 38K
Как вам преподавали квадратные уравнения в школе? Это был 7-8 класс, примерно. Вероятнее всего, вам рассказали что есть формулы корней через дискриминант, что направление ветвей зависит от старшего коэффициента. Через пару занятий дали теорему Виета. Счастливчикам еще рассказали про метод переброски. И на этом решили отпустить.
Вы довольны такой базой? Вам не рассказали ни геометрический смысл, ни как это получить.
Спустя некоторое время обдумывания сей несправедливости, я решил написать эту статью и тем самым закрыть гештальт о фрагментарности знаний.
Вы не найдете здесь ничего нового по факту, но, возможно, это даст посмотреть на такое простое понятие с другой стороны.
Начнем с конца
Когда я перечислял темы, касающиеся квадратных уравнений, я делал это примерно в том же порядке, в котором изучают их в школе. Но такой порядок не оправдан с точки зрения обучения, и вот почему:
-
Дискриминант дается просто как данность (за редким исключением, когда показывают вывод этих формул через приведение к полному квадрату)
-
Мощнейшая по своей сути теорема Виета дается в конце и только как эвристический способ решения
Гораздо проще начать с теоремы Виета.
Рассмотрим квадратный трехчлен
В силу основной теоремы алгебры (примем её как данность, так как её действительно тяжело доказать), мы знаем, что у этого уравнения должно быть два корня. Допустим, что это некоторые числа . Тогда можно переписать изначальное уравнение как выражение его корней:
Оба эти уравнения эквиваленты, так как они оба зануляются в (первое по определению , второе по построению).
Раскрывая скобки, мы получим следующее:
Откуда приравняв соответствующие коэффициенты с имеющимися, получим знаменитую систему:
Мы только что доказали теорему Виета на случай квадратного трехчлена. Это потрясающий результат: мы начинаем получать некоторую информацию о корнях, которые, как мы предположили, существуют. И этот результат мы будем использовать далее.
Геометрия параболы
Вершина
Здесь можно было бы рассказать весь первый курс алгебры университета: о фокусах, директрисах, о конических сечениях, первой и второй производной…
Но раз мы ограничились школьной программой (7-8 класс, если быть точным), то и рассуждения у нас будут простые.
Самая, на мой субъективный взгляд, интересная точка параболы – это её вершина. Она уникальным образом задает положение параболе и дает понимание о том, как устроены корни.
Но формулу для нее мы не знаем, до первых понятий о производной нам еще 3 года в среднем. Будем выкручиваться.
Парабола – симметричная фигура. До того момента, как мы сдвинули ее относительно оси , ось служит для нее осью симметрии. Когда же мы начинаем ее сдвигать, становится видно, что она продолжает быть симметричной, но уже относительно оси, проходящей через вершину.
Тогда от вершины в обе стороны до корней равные расстояния, а это значит, что вершина параболы лежит ровно между корнями. Тогда координата вершины это среднее между ее корнями
Пока что мы не знаем наши корни. Но благодаря теореме Виета мы знаем, чему равна сумма корней!
Потрясающий результат, который нам пригодится далее.
Ещё немного про корни
Мы знаем, что корни, графически, это те точки, в которых кривая пересекает ось . Очень полезное знание, учитывая, что смотря на параболу, исключительно визуально, мы понимаем что у нас может быть 3 случая:
-
Корней нет, при этом
-
Либо значение в вершине больше нуля и старший коэффициент больше нуля
-
Либо значение в вершине меньше нуля и старший коэффициент меньше нуля
-
-
Корень один, но кратности 2 (не забываем основную теорему алгебры), и значение в вершине равно нулю
-
Корня два
Второй случай тривиален, до третьего мы еще дойдем. Интересно математически взглянуть на первый. Найдем значение квадратного трехчлена в вершине:
И теперь все же рассмотрим первый случай: парабола висит над осью ветвями вверх.
Домножим первое неравенство на . Учитывая, что , знак неравенства сменится на противоположный:
Это условие, при котором корней нет.
Рассмотрим вкратце противоположный случай: парабола висит под осью ветвями вниз.
Какая-то магия. Получается, что это условие инвариантно относительно положения параболы. Но тем оно лучше.
На данном этапе прошу заметить, что это только условие отсутствия действительных корней. Да, это похоже на дискриминант, но давайте представим, что вы этого не знаете.
Понятие дискриминанта
Мы уже многое поняли о корнях: в какой они связи с коэффициентами, когда они не существуют, каким образом они лежат относительно вершины. Все это безумно полезно, но это все до сих пор не способ найти значения алгебраически.
Давайте будем отталкиваться от того, что мы уже знаем: от вершины. Если бы мы каким-то образом знали расстояние между корнями, то могли бы однозначно найти и сами корни.
Таки что мешает нам это сделать? Но как настоящие математики, давайте находить квадрат расстояния между корнями. Не теряя общности, будем считать, что – больший корень. Тогда
Пока что выглядит не очень, но на что-то это очень сильно похоже. Не видите? Давайте выделим полный квадрат, но по сумме, а не по разности: добавим , но чтобы все осталось в точности так же, это же и вычтем.
Все еще не видите? Воспользуемся снова теоремой Виета:
Мы получили квадрат расстояния между корнями с учетом растяжения коэффициентом .
Так мы теперь можем найти корни! Вершина параболы да половину расстояния между корнями в обе стороны:
Или, немного преобразовав
Квадрат расстояния между корнями квадратного трехчлена и есть дискриминант.
В общем случае, дискриминант – более сложное понятие, связанное с кратными корнями. Но для квадратного уравнения в 7 классе этого достаточно.
Теперь, если рассуждать о дискриминанте как о расстоянии, становится логично и понятно, почему если он равен нулю, то корень всего один; а если отрицательный, то действительных корней вообще нет.
Заключение
Заметьте, что единственное, что мы предположили, что корня два и они существуют. Единственное, что приняли на веру, это основную теорему алгебры. До всего остального мы дошли исключительно умозрительными заключениями и простейшей алгеброй.
Как по мне, это именно то, как должны преподавать эту тему в школе.
Квадратичная функция и ее график
В этой статье мы поговорим о том, что такое квадратичная функция, научимся строить ее график и определять вид графика в зависимости от знака дискриминанта и знака старшего коэффициента.
Итак.
Функция вида , где 0″ title=”a<>0″/> называется квадратичной функцией.
В уравнении квадратичной функции:
a – старший коэффициент
b – второй коэффициент
с – свободный член.
Графиком квадратичной функции является квадратичная парабола, которая для функции имеет вид:
Обратите внимание на точки, обозначенные зелеными кружками – это, так называемые “базовые точки”. Чтобы найти координаты этих точек для функции , составим таблицу:
Внимание! Если в уравнении квадратичной функции старший коэффициент , то график квадратичной функции имеет ровно такую же форму, как график функции при любых значениях остальных коэффициентов.
График функции имеет вид:
Для нахождения координат базовых точек составим таблицу:
Обратите внимание, что график функции симметричен графику функции относительно оси ОХ.
Итак, мы заметили:
Если старший коэффициент a>0 , то ветви параболы напрaвлены вверх .
Если старший коэффициент a , то ветви параболы напрaвлены вниз .
Второй параметр для построения графика функции – значения х, в которых функция равна нулю, или нули функции. На графике нули функции – это точки пересечения графика функции с осью ОХ.
Поскольку ордината (у) любой точки, лежащей на оси ОХ равна нулю, чтобы найти координаты точек пересечения графика функции с осью ОХ, нужно решить уравнение .
В случае квадратичной функции нужно решить квадратное уравнение .
В процессе решения квадратного уравнения мы находим дискриминант: , который определяет число корней квадратного уравнения.
И здесь возможны три случая:
1. Если ,то уравнение не имеет решений, и, следовательно, квадратичная парабола не имеет точек пересечения с осью ОХ. Если 0″ title=”a>0″/>,то график функции выглядит как-то так:
2. Если ,то уравнение имеет одно решение, и, следовательно, квадратичная парабола имеет одну точку пересечения с осью ОХ. Если 0″ title=”a>0″/>,то график функции выглядит примерно так:
3 . Если 0″ title=”D>0″/>,то уравнение имеет два решения, и, следовательно, квадратичная парабола имеет две точки пересечения с осью ОХ:
,
Если 0″ title=”a>0″/>,то график функции выглядит примерно так:
Следовательно, зная направление ветвей параболы и знак дискриминанта, мы уже можем в общих чертах определить, как выглядит график нашей функции.
Следующий важный параметр графика квадратичной функции – координаты вершины параболы:
Прямая, проходящая через вершину параболы параллельно оси OY является осью симметрии параболы.
И еще один параметр, полезный при построении графика функции – точка пересечения параболы с осью OY.
Поскольку абсцисса любой точки, лежащей на оси OY равна нулю, чтобы найти точку пересечения параболы с осью OY, нужно в уравнение параболы вместо х подставить ноль: .
То есть точка пересечения параболы с осью OY имеет координаты (0;c).
Итак, основные параметры графика квадратичной функции показаны на рисунке:
Рассмотрим несколько способов построения квадратичной параболы. В зависимости от того, каким образом задана квадратичная функция, можно выбрать наиболее удобный.
1. Функция задана формулой .
Рассмотрим общий алгоритм построения графика квадратичной параболы на примере построения графика функции
1. Направление ветвей параболы.
Так как 0″ title=”a=2>0″/>,ветви параболы направлены вверх.
2. Найдем дискриминант квадратного трехчлена
0″ title=”D=b^2-4ac=9-4*2*(-5)=49>0″/>
Дискриминант квадратного трехчлена больше нуля, поэтому парабола имеет две точки пересечения с осью ОХ.
Для того, чтобы найти их координаты, решим уравнение:
,
3. Координаты вершины параболы:
4. Точка пересечения параболы с осью OY: (0;-5),и ей симметричная относительно оси симметрии параболы.
Нанесем эти точки на координатную плоскость, и соединим их плавной кривой:
Этот способ можно несколько упростить.
1. Найдем координаты вершины параболы.
2. Найдем координаты точек, стоящих справа и слева от вершины.
Воспользуемся результатами построения графика функции
Кррдинаты вершины параболы
Ближайшие к вершине точки, расположенные слева от вершины имеют абсциссы соответственно -1;-2;-3
Ближайшие к вершине точки, расположенные справа имеют абсциссы соответственно 0;1;2
Подставим значения х в уравнение функции, найдем ординаты этих точек и занесем их в таблицу:
Нанесем эти точки на координатную плоскость и соединим плавной линией:
2 . Уравнение квадратичной функции имеет вид – в этом уравнении – координаты вершины параболы
или в уравнении квадратичной функции , и второй коэффициент – четное число.
Построим для примера график функции .
Вспомним линейные преобразования графиков функций. Чтобы построить график функции , нужно
- сначала построить график функции ,
- затем одинаты всех точек графика умножить на 2,
- затем сдвинуть его вдоль оси ОХ на 1 единицу вправо,
- а затем вдоль оси OY на 4 единицы вверх:
Теперь рассмотрим построение графика функции . В уравнении этой функции , и второй коэффициент – четное число.
Выделим в уравнении функции полный квадрат:
Следовательно, координаты вершины параболы: . Старший коэффициент равен 1, поэтому построим по шаблону параболу с вершиной в точке (-2;1):
3 . Уравнение квадратичной функции имеет вид y=(x+a)(x+b)
Построим для примера график функции y=(x-2)(x+1)
1. Вид уравнения функции позволяет легко найти нули функции – точки пересечения графика функции с осью ОХ:
(х-2)(х+1)=0, отсюда
2. Координаты вершины параболы:
3. Точка пересечения с осью OY: с=ab=(-2)(1)=-2 и ей симметричная.
Нанесем эти точки на координатную плоскость и построим график:
График квадратичной функции.
Перед вами график квадратичной функции вида .
Кликните по чертежу.
Подвигайте движки.
Исследуйте зависимость
– ширины графика функции от значения коэффициента ,
– сдвига графика функции вдоль оси от значения ,
– сдвига графика функции вдоль оси от значения
– направления ветвей параболы от знака коэффициента
– координат вершины параболы от значений и :
И.В. Фельдман, репетитор по математике.
Квадратичная (Квадратная) функция и её графики с примерами решения и построения
Квадратичная функция — целая рациональная функция второй степени вида . Уравнение квадратичной функции содержит квадратный трёхчлен. Графиком квадратичной функции является парабола. Многие свойства графика квадратичной функции так или иначе связаны с вершиной параболы, которая во многом определяет положение и внешний вид графика.
Формула корней квадратного уравнения
В первой части курса были выведены следующие формулы для определения корней неполного и полного квадратных уравнений:
1) αx²=0; очевидно, оба корня уравнения равны нулю.
2) αx²+с=0; формула для корней будет:
3) αx² +bx=0; тогда x₁ =0; х₂ =
4) x² + +q=0; формула корней даёт:
или: .
5) Наконец, общая формула для корней полного квадратного уравнения вида αx²+bx+c=0 будет:
Последняя формула является наиболее общей; из неё как частные случаи получаются все остальные. Так, полагая в этой формуле α=l, получаем случай (4) (в этом случае b=p и c=q); полагая с=0, получаем случай (3); при b=0 будем иметь случай (2) и, наконец, первый случай получим, давая в общей формуле значения b=c=0.
Дискриминант
Рассмотрим различные случаи, которые могут встретиться при решении квадратного уравнения в зависимости от числового значения коэффициентов.
1. b² — 4αc>0. В этом случае выражение под корнем положительно. Квадратный корень из него имеет два значения, и, следовательно, уравнение имеет два различных вещественных корня:
и .
2. b² — 4αc=0. В этом случае второй член числителя равен нулю, и уравнение имеет два равных корня:
3. b² — 4αc Свойства корней квадратного уравнения (теорема Виета)
Возьмём формулу корней квадратного уравнения, у которого коэффициент при x² равен единице, т. е. уравнения вида x²+ +q=0:
Если сложим почленно эти равенства, то радикалы взаимно уничтожатся, и мы получим:
Если те же равенства почленно перемножим, то получим (произведение суммы двух чисел на их разность равно разности квадратов этих чисел):
Каково бы ни было подкоренное число, всегда
Следовательно:
Таким образом:
Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение этих корней равно свободному члену.
Теперь возьмём квадратное уравнение общего вида αx²+bx+c=0. Разделив все его члены на а, мы приведём это уравнение к только что рассмотренному виду:
следовательно, для неприведённого полного уравнения мы должны иметь:
и .
Следствия:
1) Пользуясь этими свойствами, мы легко можем составить квадратное уравнение, у которого корнями были бы данные числа.
Пусть, например, надо составить уравнение, у которого корни были бы числа 2 и 3. Тогда из равенства 2+3= — р и 2∙3 = q находим: р = — 5 и q=6; следовательно, уравнение будет: x²-5x+6=0.
Подобно этому найдём,что 3 и -7 будут корни уравнения x²- [3+(- 7)]x+3( -7) = 0, т. е. x²+4x-21=0; числа 3 и 0 будут корни уравнения x²— 3x=0.
2) При помощи тех же свойств мы можем, не решая квадратного уравнения, определить знаки его корней, если эти корни вещественные. Пусть, например, имеем уравнение x²+8x+12=0. Так как в этом примере выражение , т. е. 4² -12, есть число положительное, то оба корня вещественные. Обращая внимание на свободный член, видим, что он имеет знак +; значит, произведение корней должно быть положительное число, т. е. оба корня имеют одинаковые знаки. Эти знаки должны быть минусы, так как сумма корней отрицательна (она равна — 8). Уравнение x² +8x-12=0 имеет корни с разными знаками (потому что их произведение отрицательно), причём отрицательный корень имеет большую абсолютную величину (потому что их сумма отрицательна) и т. п.
Трёхчлен второй степени
Выражение αx²+bx+c, в котором х означает независимое переменное, а α, b и с — какие-нибудь данные, постоянные числа, называется квадратной функцией, или трёхчленом второй степени. Различие между таким трёхчленом и левой частью уравнения αx²+bx+c=0 состоит в том, что в уравнении буква х означает только те числа, которые удовлетворяют уравнению, тогда как в трёхчлене она означает какое угодно число. Значения х, обращающие трёхчлен в нуль, называются его корнями; значит, корни трёхчлена-это корни квадратного уравнения:
αx² +6x+c=0.
В частном случае при α=1 трёхчлен принимает вид: x²+ +q; при b=0 или при с=0 трёхчлен обращается в двучлен αx²+c или αx²+bx.
Разложение трёхчлена второй степени
Сначала возьмём трёхчлен x²+ +q, в котором коэффициент при x² есть 1. Решив приведённое уравнение x²+ +q=0, мы найдём корни его х₁ и х₂ . Как мы сейчас видели: х₁+х₂ =-p и х₁х₂ =q.
Таким образом:
Трёхчлен x² +q разлагается на два множителя, из которых первый равен разности между х и одним корнем трёхчлена, а второй равен разности между х и другим корнем трёхчлена.
Примеры:
Теперь возьмём трёхчлен αx²+bx+c, в котором коэффициент при x² есть какое угодно число. Этот трёхчлен можно представить так:
Выражение, стоящее внутри скобок, есть трёхчлен вида x²+ +q . Его корни х₁ и х₂ будут те же самые, что трёхчлена αx²+bx+c. Найдя их, мы можем, по доказанному, разложить этот трёхчлен так:
Следовательно: αx²+bx+c =α(x — х₁) (х — х₂).
Таким образом, разложение трёхчлена αx²+bx+c отличается от разложения трёхчлена x²+ +q только дополнительным множителем α.
Примеры:
1) Трёхчлен 2x² — 2х -12, корни которого 3 и — 2, можно разложить так: 2(x — 3)(x+2).
2) Трёхчлен 3x² + х +1, корни которого следующие:
разлагается так:
3) 6abx² — ( 3b³ +2α³)x+a²b² .
Корни этого трёхчлена следующие:
Поэтому:
4) Сократить дробь:
Разложим числитель и знаменатель на множители и затем, если можно, сократим дробь. Так как корни числителя 3 и —2, а корни знаменателя и — 2, то дробь представится так:
Следствие:
По данным корням можно составить квадратное уравнение. Так, уравнение, имеющее корни З и -2, будет:
(x-3)[x-( — 2)] =0, т. е. (х — 3)(x+2)=0,
что по раскрытии скобок даёт: x² — х — 6 = 0. Конечно, все члены этого уравнения можно умножить на произвольное число, не зависящее от х (например, на 2), отчего корни не изменятся.
Сократить следующие дроби (предварительно разложив числитель и знаменатель каждой дроби на множители):
Разложив на множители следующие трёхчлены, определить, для каких значений х эти трёхчлены будут давать положительные числа и для каких — отрицательные:
График квадратной функции
Графиком квадратичной функции является парабола.
График функции у=x²
Обратим внимание на следующие особенности функции y=x²;
а) При всяком значении аргумента х функция определена и получает только одно значение. Например, при x = — 10 значение функции будет (-10)² = 100, при x = 1000 значение функции будет 1000² = 1 000 000 и т. п.
б) Так как (—x)² =x² , то при двух значениях х, отличающихся только знаками, получаются два одинаковых положительных значения у; например, при х = — 2 и при x =+2 значение у будет одно и то же, именно 4. Отрицательных значений для у никогда не получается.
в) Если абсолютная величина х неограниченно увеличивается, то и у неограниченно увеличивается. Так, если для х будем давать ряд неограниченно возрастающих положительных значений: 1, 2, 3, 4,… или ряд неограниченно убывающих отрицательных значений: -1, -2, -3, -4, … ,то для у получим ряд неограниченно возрастающих значений: 1, 4, 9, 16, 25, … .
Заметив эти свойства, составим таблицу значений функции у= x²; например, такую:
x | … | -2 | -1,5 | -1 | -0,5 | 0 | 0,5 | 1 | 1,5 | 2 | … |
у | … | 4 | 2,25 | 1 | 0,25 | 0 | 0,25 | 1 | 2,25 | 4 | … |
Изобразим теперь эти значения на чертеже 16 в виде точек, абсциссы которых будут выписанные значения х, а ординаты — соответствующие значения у (на чертеже за единицу длины мы приняли отрезок O1); полученные точки соединим кривой. Кривая эта называется параболой. Рассмотрим некоторые её свойства:
а) Вся кривая расположена по одну сторону от оси х-ов, именно — по ту сторону, по какую лежат положительные значения ординат.
б) Парабола разделяется осью у-ов на две части (ветви). Точка О, в которой эти ветви сходятся, называется вершиной параболы. Эта точка есть единственная общая точка параболы и оси х-ов.
в) Обе ветви бесконечны, так как х и у могут увеличиваться беспредельно. Ветви поднимаются от оси х-ов неограниченно вверх, удаляясь в то же время неограниченно от оси у-ов вправо и влево.
г) Ось у-ов служит для параболы осью симметрии, так что если перегнуть чертёж по этой оси так, чтобы левая половина чертежа упала на правую, то обе ветви совместятся; например, точка с абсциссой — 2 и с ординатой 4 совместится с точкой, имеющей абсциссу +2 и ту же ординату 4.
Черт. 16
График функции у= x²
Предположим сначала, что а есть число положительное. Возьмём, например, такие две функции:
Составим таблицы значений этих функций, например такие:
x | -2 | -1 | 0 | 1 | 2 | … |
у | 6 | 0 | 6 | … |
x | -3 | -2 | -1 | 0 | 1 | 2 | … |
у | 3 | 0 | … |
Нанесём все эти значения на чертёж 17 и проведём кривые. Для сравнения мы поместили на том же чертеже (прерывистой линией) ещё график функции: 3) y=x² .
x | -2 | -1 | 0 | 1 | 2 | … |
y | 4 | 1 | 0 | 1 | 4 | … |
Из чертежа видно, что при одной и той же абсциссе ордината первой кривой в раза больше, а ордината второй кривой в 3 раза меньше, чем ордината третьей кривой. Эти кривые имеют общий характер: бесконечные ветви, ось симметрии и пр., только при α>1 ветви кривой более приподняты вверх, а при α Черт. 17.
Замечание:
Если зависимость между двумя переменными величинами у и х выражается равенством y=ax² , где a — какое-нибудь постоянное число, то можно сказать, что величина у пропорциональна квадрату величины х, так как с увеличением или уменьшением х в 2 раза, в 3 раза и т. д. величина у увеличивается или уменьшается в 4 раза, в 9 раз, в 16 раз и т. д.
Например, площадь круга равна πR² , где R есть радиус круга и π — постоянное число; поэтому можно сказать, что площадь круга пропорциональна квадрату его радиуса.
График функции y=ax²+b
Пусть мы имеем следующие три функции:
Очевидно, что при одном и том же значении аргумента х ордината второй функции больше, а ордината третьей функции меньше на 2 единицы, чем соответствующая ордината первой функции. Поэтому вторая и третья функции изобразятся на чертеже той же параболой, что и первая функция, только парабола эта должна быть поднята вверх (для второй функции) и опущена вниз (для третьей функции) на 2 единицы длины.
Вообще график функции y=ax²+b есть та же парабола, которая изображает функцию у=ax², только парабола эта должна быть поднята вверх, если b>0, опущена вниз, если b График трёхчлена второй степени
Сначала мы рассмотрим график такого трёхчлена, который может быть представлен в виде произведения a (x+m)² . Например, возьмём такие две функции:
и
Для сравнения изобразим на том же чертеже ещё параболу:
Предварительно составим таблицу частных значений этих трёх функций; например, такую:
x= | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
1 | 0 | 1 | 4 | 9 | 16 | |||||||
9 | 4 | 1 | 0 | 1 | 4 | |||||||
4 | 1 | 0 | 1 | 4 | 9 |
Нанеся все эти значения на чертёж, получим три графика, изображённые на чертеже 19.
Рассматривая этот чертёж, мы замечаем, что кривая 1 есть та же парабола 3, только перенесённая на 2 единицы влево, а кривая 2 есть та же парабола 3, но перенесённая на 2 единицы вправо.
Обобщая этот вывод, мы можем сказать, что график функции y=a(x+m)² есть парабола, изображающая функцию y=ax² , только парабола эта перенесена влево, если m>0, и в правд, если m 0, как в наших примерах, и вниз, если α Графический способ решения квадратного уравнения
Квадратное уравнение можно графически решить таким способом:
Черт. 20.
построив на миллиметровой бумаге параболу, изображающую трёхчлен, стоящий в левой части уравнения, находим точки пересечения этой параболы с осью х-ов. Абсциссы этих точек и будут корни уравнения, так как при этих абсциссах ординаты, изображающие соответствующие значения трёхчлена, равны нулю.
Примеры:
График левой части этого уравнения изображён кривой 3 (черт. 20). На нём мы видим, что парабола пересекается с осью х-ов в двух точках, абсциссы которых —1 и —5. Это и будут корни уравнения.
Это можно проверить, решив уравнение посредством общей формулы или путём подстановки.
Составив таблицу частных значений трёхчлена
x | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | … |
y | 8 | 2 | 0 | 2 | 8 | … |
мы построим параболу (черт. 21). Эта парабола не пересекается с осью х-ов, а только её касается в точке с абсциссой 2. Уравнение в этом случае имеет только один корень 2 (точнее, два равных корня).
Черт. 21.
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | … |
y | 14 | 8 | 4 | 2 | 2 | 4 | 8 | 14 | … |
Парабола (черт. 22) не пересекается и не касается оси х-ов; уравнение не имеет вещественных корней.
Укажем ещё следующий приём графического решения квадратного уравнения. Пусть требуется решить уравнение:
x² — 1,5х — 2=0.
Каждая часть этого уравнения, рассматриваемая отдельно, есть некоторая функция от х. Обозначим функцию, выражаемую левой частью уравнения, буквой y₁ , а функцию, выражаемую правой частью уравнения, буквой у₂ . Первая функция на чертеже 23 изобразится параболой, а вторая — прямой. Построив на одном и том же чертеже графики этих двух функций, мы найдём, что прямая и парабола пересекаются в двух точках, абсциссы которых приблизительно выражаются числами 2,35 и — 0,85. Это и будут приближённые значения корней данного уравнения, так как при каждой из этих абсцисс ординаты y₁, у₂ равны между собой, и, следовательно, x² =l,5x+2.
Если случится, что прямая с параболой не пересекается, то уравнение не имеет вещественных корней; если же прямая коснётся параболы, то уравнение имеет один корень, равный абсциссе точки касания.
Биквадратное уравнение
Уравнение четвёртой степени, например такое:
x⁴ — 13x² + 36=0,
в которое входят только чётные степени неизвестного, называется биквадратным. Оно приводится к квадратному, если заменим х² через у и, следовательно, x⁴ через у² ; тогда уравнение обратится в квадратное:
у² — 13y+36=0.
Решим его:
Но из равенства x²=y видно, что x=± √y. Подставляя сюда на место у найденные числа 9 и 4, получим следующие четыре решения данного уравнения:
x₁ = +√ 9 = 3;
x₂ = -√ 9 = -3;
x₃ = + √4 =2;
x₃ = — √4 = -2.
Составим формулы для решения биквадратного уравнения общего вида:
ax⁴ +bx² + c=0.
Положив x²=y, получим уравнение ay² + by + c=0, из которого находим:
Но так как x=± √y , то для биквадратного уравнения мы получим следующие четыре решения:
Отсюда видно, что если b² — 4ac 0, то могут быть три случая (мы полагаем a > 0):
1) все корни вещественные (как в приведённом выше численном примере), если и
2) все корни мнимые, если оба эти выражения дадут отрицательные числа, и 3) два корня вещественные и два мнимые, если , . Наконец, если b² — 4ac = 0 , то четыре корня попарно равны.
Уравнения, левая часть которых разлагается на множители, а правая есть нуль
Решение таких уравнений сводится к решению уравнений более низких степеней. Так, мы видели, что для решения неполного квадратного уравнения вида ax² + bx=0 достаточно его левую часть разложить на два множителя: x(ax + b) = 0 и затем, приняв во внимание, что произведение равно нулю только тогда, когда какой-нибудь сомножитель равен нулю, свести решение этого уравнения к решению двух уравнений первой степени: x=0 и ax + b=0.
Подобно этому можно решить неполное кубическое уравнение, не содержащее свободного члена; например, такое:
x³ + 3x² — 10x = 0.
Вынеся х за скобки, мы представим уравнение так:
x (x² +3x — 10) = 0,
из которых находим три решения:
Пусть некоторое уравнение приведено к такому виду:
x(x+4)(x²-5x+6)=0.
Тогда оно распадается на три уравнения:
x = 0; x + 4 = 0; x² — 5x + 6 = 0
Двучленное уравнение
Двучленным уравнением называется уравнение вида , или, что то же самое, вида . Обозначив абсолютную величину числа через q, мы можем двучленное уравнение записать или , или . При помощи вспомогательного неизвестного эти уравнения всегда можно упростить так, что свободный член у первого обратится в +1, а у второго в — 1. Действительно, положим, что , где есть арифметический корень m-й степени из q; тогда , и уравнения примут вид:
т.е. откуда
или
т.е. откуда
Итак, решение двучленных уравнений приводится к решению уравнений вида . Решение таких уравнений элементарными способами может быть выполнено только при некоторых частных значениях показателя m. Общий приём, употребляемый при этом, состоит в разложении левой части уравнения на множители, после чего уравнение приводится к виду, рассмотренному нами раньше.
Решение двучленных уравнений третьей степени
Эти уравнения следующие: х³ —1=0 и х³ + l=0.
мы можем предложенные уравнения записать так:
(х -1)(x² + х +1) = 0 и ( х +1 ) ( x² — х +1)=0.
Значит, первое из них имеет своими корнями корни уравнений: x-1=0 и x²+ x +1=0, а второе — корни уравнений: x+1=0 и x²- x +1=0.
Решив их, находим, что уравнение х³ — 1=0 имеет следующие три корня:
из которых один вещественный, а два мнимых; уравнение х³ + 1 = 0 имеет три корня:
из которых также один вещественный и два мнимых.
Различные значения корня
Решение двучленных уравнений имеет тесную связь с нахождением всех значений корня (радикала) из данного числа. В самом деле, найти , очевидно, всё равно, что решить уравнение , , и потому, сколько это уравнение имеет различных решений, столько имеет различных решений.
Основываясь на этом замечании, покажем, например, что корень кубичный из всякого вещественного числа (не равного нулю) имеет три различных значения.
Рассмотрим сначала случай положительного числа А. Пусть требуется найти , т. е., другими словами, требуется решить уравнение х³-А=0. Обозначив арифметическое значение буквой q, положим, что x=qy. Тогда уравнение х³ — А=0 можно представить так: q³y³ — А = 0. Но q³=A, поэтому q³y³ — A=A( y³ — 1), и уравнение примет вид: y³ — 1=0.
Мы видели, что это уравнение имеет три
корня:
Каждое из этих значений, удовлетворяя уравнению y³ = l, представляет собой кубичный корень из 1. Так как x=qy, то
Это и будут три значения ; одно из них вещественное (арифметическое), а два — мнимые. Все они получатся, если арифметическое значение умножим на каждое из трёх значений .
Например, кубичный корень из 8 имеет три следующих значения:
Если A Трёхчленное уравнение
Так называется уравнение вида:
(частный случай такого вида при n=2 есть биквадратное уравнение). Оно приводится к квадратному, если введём вспомогательное неизвестное . Тогда уравнение примет вид:
ay²+by+c=0,
откуда:
Следовательно:
Решив, если возможно, это двучленное уравнение, найдём все значения х.
Пример:
x⁶- 9x³ + 8=0.
y₁=8; y₂=1;
следовательно:
x³=8 и x³=1.
Решив эти двучленные уравнения третьей степени, получим шесть значений для х:
Системы уравнений второй степени
Степень уравнения с несколькими неизвестными: Чтобы определить степень уравнения, в которое входят несколько неизвестных, надо предварительно это уравнение упростить (раскрыть скобки, освободить от радикалов и знаменателей, которые содержат неизвестные, и сделать приведение подобных членов). Тогда степенью уравнения называется сумма показателей при неизвестных в том члене уравнения, в котором эта сумма наибольшая.
Например, три уравнения: x²+2xy—x+2=0, 3xy=4, 2x+y² — у=0 будут уравнениями второй степени с двумя неизвестными; уравнение 3x²y—y² + x+10 = 0 есть уравнение третьей степени (с двумя неизвестными) и т. п.
Заметим, что сумма показателей при неизвестных в каком-нибудь члене уравнения называется его измерением. Так, члены 2xy, 5x² , Зу² — второго измерения, члены 0,2x²y, 10xy² , xyz — третьего измерения и т. п. Член, не содержащий неизвестных, называется членом нулевого измерения.
Заметим ещё, что уравнение называется однородным, если все его члены — одного и того же измерения. Так, 3x² + xy — 2y²=0 есть однородное уравнение второй степени с двумя неизвестными.
Мы рассмотрим сейчас, как решаются некоторые простейшие системы уравнений второй степени с двумя неизвестными.
Общий вид полного уравнения второй степени с двумя неизвестными есть следующий:
ax² +bxy+cy² +dx+ey+j=0.
В нём первые три члена — второго измерения, следующие два члена — первого и последний (свободный) член — нулевого. Коэффициенты а, b, с, … могут быть числами положительными, отрицательными, а также равными нулю (конечно, три коэффициента а, b и с не предполагаются одновременно равными нулю, так как в противном случае уравнение было бы не второй, а первой степени).
Мы рассмотрим сейчас, как решаются простейшие системы двух уравнений второй степени с двумя неизвестными.
Системы двух уравнений, из которых одно первой степени, а другое—второй
Пусть дана система:
Всего удобнее такую систему решить способом подстановки следующим путём. Из уравнения первой степени определяем одно какое-нибудь неизвестное как функцию от другого неизвестного; например, определяем у как функцию от х:
y=2x — 1.
Тогда уравнение второй степени после подстановки даёт уравнение с одним неизвестным х:
x² — 4(2x — l)² + x +3(2x — 1) = 1;
x² — 4(4x² — 4x + l)+x+6x— 3=1;
x² — 16x² +16x — 4 + x + 6x — 3 — 1=0;
— 15 x² — 23x-8=0; 15x² — 23x + 8=0;
После этого из уравнения у=2х — 1 находим:
Таким образом, данная система имеет два решения:
Искусственные приёмы:
Указанный приём применим в тех случаях, когда одно уравнение первой степени; в некоторых случаях можно пользоваться искусственными приёмами, для которых нельзя указать общего правила. Приведём примеры.
Пример:
Первый способ. Так как даны сумма и произведение неизвестных, то х и у должны быть корнями квадратного уравнения:
z² — az + b =0.
Следовательно:
Второй способ. Возвысим первое уравнение в квадрат и вычтем из них учетверённое второе:
x²+ 2xy + y² = a²
т.е.
(x-y)² =a²— 4b, откуда
Теперь мы имеем систему:
Складывая и вычитая эти уравнения, получим:
Так как одно из данных уравнений мы возвышали в квадрат, то проверяем подстановкой, нет ли посторонних корней в числе найденных.
Таким образом находим, что данная система имеет два решения:
и
Второе решение отличается от первого только тем, что значение х в первом решении служит значением у во втором решении, и наоборот. Это можно было предвидеть, так как данные уравнения не изменяются от замены х на у, а у на х. Заметим, что такие уравнения называются симметричными.
Пример:
х — y= a, xy=b.
Первый способ. Представив уравнения в виде:
x +( —y)=а, x (-y)=-b,
замечаем, что х и —у это корни квадратного уравнения:
z² -az-b=0,
следовательно:
Второй способ. Возвысив первое уравнение в квадрат и сложив его с учетверённым вторым, получим:
(x + y)² = α² + 4b, откуда
Теперь имеем систему:
Пример:
x+y=cz, x² + y² = 6.
Возвысив первое уравнение в квадрат и вычтя из него второе, получим:
2xy= a² — b, откуда
Теперь вопрос приводится к решению системы:
x + y= a,
которую мы уже рассмотрели в первом примере.
Система двух уравнений, из которых каждое второй степени
Такая система в общем виде не разрешается элементарно, так как она приводится к полному уравнению четвёртой степени.
Рассмотрим некоторые частные виды уравнений, которые можно решить элементарным путём.
Пример:
x² +y² =α, ху=b.
Первый способ (способ подстановки). Из второго уравнения определяем одно неизвестное в зависимости от другого; например, . Подставим это значение в первое уравнение и освободимся от знаменателя; тогда получим биквадратное уравнение:
у⁴ — αy² + b² =0.
Решив его, найдём для у четыре значения. Подставив каждое из них в формулу, выведенную ранее для х, найдём четыре соответствующих значения для х.
Второй способ. Сложив первое уравнение с удвоенным вторым, получим:
x² +y² +2xy=α+2b, т. е. (x + y)² =a + 2b,
откуда:
откуда:
Таким образом, вопрос приводится к решению следующих четырёх систем первой степени:
Каждая из них решается весьма просто посредством алгебраического сложения уравнений.
Третий способ. Возвысив второе уравнение в квадрат, получим следующую систему:
x² + y² =α, x²y² =b².
Отсюда видно, что x² и y² — корни квадратного уравнения:
z² + az+b² =0.
Следовательно:
Пример:
x² — y² = a, xy=b.
Способом подстановки легко приведём эту систему к биквадратному уравнению. Вот ещё искусственный’приём решения этой системы.
Отсюда видно, что x² и — y² будут корнями уравнения:
z² — az — b² = 0.
Следовательно:
Замечание:
Во всех случаях, когда приходится возводить уравнения в степень, необходима проверка корней.
Графический способ решения систем уравнений второй степени
Начертив графики каждого из данных уравнений, находим величины координат точек пересечения этих графиков; это и будут корни уравнений.
Пример:
Составим таблицу частных значений х и у для первого уравнения:
x | … | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 20 | 12 | 6 | 2 | 0 | 0 | 2 | 6 | 12 | … |
и таблицу частных значений х и у для второго уравнения:
x | … | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | 15 | 5 | -1 | -3 | -1 | 5 | 15 | 29 | … |
Черт. 24
По этим значениям построим графики (эти графики будут параболы, черт. 24).
Графики пересекаются в двух точках, координаты которых приблизительно будут: х=0,3; y=1,3 и x=2,8; y=l,6.
Можно найти координаты точек пересечения точнее, если начертим в более крупном масштабе те части графиков, которые лежат около точек пересечения.
Квадратичная функция — основные понятия и определения
Функция — одно из важнейших математических понятий. Напомним, что функцией называют такую зависимость переменной у от переменной х, при которой каждому значению переменной х соответствует единственное значение переменной у.
Переменную х называют независимой переменной или аргументом. Переменную у называют зависимой переменной. Говорят также, что переменная у является функцией от переменной х. Значения зависимой переменной называют значениями функции.
Если зависимость переменной у от переменной х является функцией, то коротко это записывают так: y = f(x). (Читают: у равно / от х.) Символом / (х) обозначают значение функции, соответствующее значению аргумента, равному х.
Пусть, например, функция задается формулой Тогда можно записать, что Найдем значения функции для значений х, равных, например, 1, 2,5, —3, т. е. найдем /(1), /(2,5), /(-3):
Заметим, что в записи вида y = f(x) вместо f употребляют и другие буквы: , и т. п.
Все значения независимой переменной образуют область onределения функции. Все значения, которые принимает зависимая переменная, образуют область значений функции.
Если функция задана формулой и ее область определения не указана, то считают, что область определения функции состоит из всех значений аргумента, при которых формула имеет смысл. Например, областью определения функции является множество всех чисел; областью определения функции служит множество всех чисел, кроме — 3.
Область определения функции, описывающей реальный процесс, зависит от конкретных условий его протекания. Например, зависимость длины l железного стержня от температуры нагревания t выражается формулой где — начальная длина стержня, а — коэффициент линейного расширения. Указанная формула имеет смысл при любых значениях t. Однако областью определения функции l = f (t) является промежуток в несколько десятков градусов, для которого справедлив закон линейного расширения.
Напомним, что графиком функции называют множество всех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты — соответствующим значениям функции.
На рисунке 1 изображен график функции y = f(x), областью определения которой является промежуток [ — 3; 7]. С помощью графика можно найти, например, что f(— 3) = — 2, f(0) = 2,5, f(2) = 4, f(5) = 2. Наименьшее значение функции равно —2, а наибольшее равно 4; при этом любое число от —2 до 4 является значением данной функции. Таким образом, областью значений функции y = f(x) служит промежуток [-2; 4].
Мы изучили некоторые важные виды функций: линейную функцию, т. е. функцию, задаваемую формулой где k и b — некоторые числа; прямую пропорциональность — это частный случай линейной функции, она задается формулой обратную пропорциональность — функцию
Графиком функции служит прямая (рис. 2). Ее областью определения является множество всех чисел. Область значений этой функции при есть множество всех чисел, а при ее область значений состоит из одного числа b.
График функции — называется гиперболой. На рисунке 3 изображен график функции для Область определения этой функции есть множество всех чисел, кроме нуля. Это множество является и областью ее значений.
Функциями такого вида описываются многие реальные процессы и закономерности. Например, прямой пропорциональностью является зависимость массы тела m от его объема V при постоянной плотности зависимость длины окружности С от ее радиуса Обратной пропорциональностью является зависимость силы тока I на участке цепи от сопротивления проводника R при постоянном напряжении зависимость времени t, которое затрачивает равномерно движущееся тело на прохождение заданного пути s, от скорости движения
Мы рассматривали также функции, заданные формулами Их графики изображены на рисунке 4.
Рассмотрим еще одну функцию, а именно функцию, заданную формулой
Так как выражение |х| имеет смысл при любом х, то областью определения этой функции является множество всех чисел. По определению |х| = х, если если x
График рассматриваемой функции в промежутке
совпадает с графиком функции у = х, а в промежутке — с графиком функции у = -х. График функции изображен на рисунке 5. Он состоит из двух лучей, исходящих из начала координат и являющихся биссектрисами I и II координатных углов.
Свойства функции
На рисунке 9 изображен график зависимости температуры воздуха р (в °С) от времени суток t (в часах). Мы видим, что в 2 ч и в 8 ч температура равнялась нулю, от 0 до 2 ч и от 8 до 24 ч она была выше нуля, а от 2 до 8 ч — ниже нуля. Из графика ясно также, что в течение первых пяти часов температура понижалась, затем в промежутке от 5 до 14 ч она повышалась, а потом опять понижалась.
С помощью графика мы выяснили некоторые свойства функции p=f(t), где t — время суток в часах, а р — температура воздуха в градусах Цельсия.
Рассмотрим теперь свойства функции y = f (х), график которой изображен на рисунке 10. Выясним сначала, при каких значениях х функция обращается в нуль, принимает положительные и отрицательные значения.
Найдем абсциссы точек пересечения графика с осью х. Получим х = — 3 и х = 7. Значит, функция принимает значение, равное нулю, при х = — 3 и х = 7. Значения аргумента, при которых функция обращается в нуль, называют нулями функции, т. е. числа -3 и 7 — нули рассматриваемой функции.
Нули функции разбивают ее область определения — промежуток [- 5; 9] на три промежутка: [-5; -3), (-3; 7) и (7; 9]. Для значений х из промежутка (-3; 7) точки графика расположены выше оси х, а для значений х из промежутков [- 5; — 3) и (7; 9] — ниже оси х. Значит, в промежутке ( — 3; 7) функция принимает положительные значения, а в каждом из промежутков [-5; -3) и (7; 9] — отрицательные.
Выясним теперь, как изменяются (увеличиваются или уменьшаются) значения данной функции с изменением х от — 5 до 9.
Из графика видно, что с увеличением х от -5 до 3 значения у увеличиваются, а с увеличением х от 3 до 9 значения у уменьшаются. Говорят, что в промежутке [-5; 3] функция y = f(x) является возрастающей, а в промежутке [3; 9] эта функция является убывающей.
Определение:
Функция называется возрастающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует большее значение функции;
функция называется убывающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует меньшее значение функции.
Иными словами, функцию y = f (х) называют возрастающей в некотором промежутке, если для любых из этого промежутка, таких, что выполняется неравенство
функцию y = f(x) называют убывающей в некотором промежутке, если для любых из этого промежутка, таких, что выполняется неравенство
Если функция возрастает на всей области определения, то ее называют возрастающей функцией, а если убывает, то убывающей функцией. На рисунке 11 изображены графики возрастающей функции и убывающей функции.
Выясним, какими свойствами обладают некоторые изученные ранее функции.
Пример 1. Рассмотрим свойства функции где (рис. 12).
- Решив уравнение найдем, что Значит, у=0, при
- Выясним, при каких значениях х функция принимает положительные значения и при каких — отрицательные. Рассмотрим два случая:
Пусть Решив неравенство найдем, что Из неравенства получим, что значит, (см. рис. 12, а).
Пусть Тогда, решив неравенства и найдем, что (см. рис. 12, б).
3. При функция является возрастающей, а при — убывающей.
Докажем это. Пусть — произвольные значения аргумента, причем обозначим через соответствующие им значения функции:
Рассмотрим разность
Множитель положителен, так как Поэтому знак произведения определяется знаком коэффициента k.
Если Значит, при функция является возрастающей.
Если Значит, при функция является убывающей.
Пример:
Рассмотрим свойства функции где (рис. 13).
1.Так как дробь ни при каком значении х в нуль не обращается, то функция нулей не имеет.
2. Если , то дробь положительна при и отрицательна при
Если то дробь положительна при и отрицательна при
3. При функция является убывающей в каждом
из промежутков — возрастающей в каждом из этих промежутков (см. рис. 13, а, б).
Доказательство этого свойства проводится аналогично тому, как это было сделано для линейной функции.
Заметим, что, хотя функция убывает (или возрастает) в каждом из промежутков она не является убывающей (возрастающей) функцией на всей области определения.
Квадратный трехчлен
Квадратный трехчлен и его корни
Выражение является многочленом второй степени с одной переменной. Такие многочлены называют квадратными трехчленами.
Определение:
Квадратным трехчленом называется многочлен вида — переменная, а, b и с — некоторые числа, причем
Значение квадратного трехчлена зависит от значения х. Так, например:
Мы видим, что при х = -1 квадратный трехчлен обращается в нуль. Говорят, что число — 1 является корнем этого трехчлена.
Корнем квадратного трехчлена называется значение переменной, при котором значение этого трехчлена равно нулю.
Для того чтобы найти корни квадратного трехчлена , надо решить квадратное уравнение = 0.
Пример:
Найдем корни квадратного трехчлена ..
Значит, квадратный трехчлен имеет два корня:
Так как квадратный трехчлен имеет те же корни, что и квадратное уравнение = 0, то он может, как и квадратное уравнение, иметь два корня, один корень или не иметь корней. Это зависит от знака дискриминанта квадратного уравнения который называют также дискриминантом квадратного трехчлена. Если D > 0, то квадратный трехчлен имеет два корня; если D = 0, то квадратный трехчлен имеет один корень; если D
Преобразуем выражение в скобках. Для этого представим 12х в виде произведения а затем прибавим и вычтем Получим:
Рассмотрим задачу, при решении которой применяется выделение квадрата двучлена из квадратного трехчлена.
Пример:
Докажем, что из всех прямоугольников с периметром 20 см наибольшую площадь имеет квадрат.
Пусть одна сторона прямоугольника равна х см. Тогда другая сторона равна 10 — х см, а площадь прямоугольника равна
Раскрыв скобки в выражении х (10 — х), получим Выражение представляет собой квадратный трехчлен, в котором а = -1, b = 10, с = 0. Выделим квадрат двучлена:
Так как выражение при любом отрицательно, то сумма принимает наибольшее значение при x = 5. Значит, площадь будет наибольшей, когда одна из сторон прямоугольника равна 5 см. В этом случае вторая сторона также равна 5 см, т. е. прямоугольник является квадратом.
Разложение квадратного трехчлена на множители
Пусть требуется разложить на множители квадратный трехчлен Вынесем сначала за скобки множитель 3. Получим:
Для того чтобы разложить на множители трехчлен представим — 7х в виде суммы одночленов — 2х и — 5х и применим способ группировки:
При х = 2 и х = 5 произведение 3 (х — 2) (х — 5), а следовательно, и трехчлен обращаются в нуль. Значит, числа 2 и 5 являются его корнями.
Мы представили квадратный трехчлен в виде произведения числа 3, т. е. коэффициента при и двух линейных множителей. Первый из них представляет собой разность между переменной х и одним корнем трехчлена, а второй — разность между переменной х и другим корнем.
Такое разложение можно получить для любого квадратного трехчлена, имеющего корни. При этом считают, что если дискриминант квадратного трехчлена равен нулю, то этот трехчлен имеет два равных корня.
Теорема:
Если — корни квадратного трехчлена , то
Вынесем за скобки в многочлене множитель а. Получим:
Так как корни квадратного трехчлена являются также корнями квадратного уравнения = 0, то по теореме Виета
Заметим, что если квадратный трехчлен не имеет корней, то его нельзя разложить на множители, являющиеся многочленами первой степени.
Докажем это. Пусть трехчлен не имеет корней. Предположим, что его можно представить в виде произведения многочленов первой степени:
где — некоторые числа, причем
Произведение (kx+m) ( +q) обращается в нуль при
Следовательно, при этих значениях х обращается в нуль и трехчлен
, т. е. числа являются его корнями. Мы пришли к противоречию, так как по условию этот трехчлен корней не имеет.
Пример:
Разложим на множители квадратный трехчлен
Решив уравнение найдем корни трехчлена:
По теореме о разложении квадратного трехчлена на множители имеем:
Полученный результат можно записать иначе, умножив число 2 на двучлен Получим:
Пример:
Разложим на множители квадратный трехчлен
Решив уравнение найдем корни трехчлена:
Пример:
Сократим дробь
Разложим на множители квадратный трехчлен 10. Его корни равны Поэтому
Квадратичная функция и ее график
Функция ее график и свойства
Одной из важных функций, которую мы будем рассматривать в дальнейшем, является квадратичная функция.
Определение:
Квадратичной функцией называется функция, которую можно задать формулой вида у = , где х — независимая переменная, а, b и с — некоторые числа, причем
Примером квадратичной функции является зависимость пути от времени при равноускоренном движении. Если тело движется с ускорением и к началу отсчета времени t прошло путь имея в этот момент скорость то зависимость пройденного пути s (в метрах) от времени t (в секундах) выражается формулой
Если, например, а = 6, то формула примет вид:
Изучение квадратичной функции мы начнем с частного случая — функции
При а = 1 формула принимает вид С этой функцией мы уже встречались. Ее графиком является парабола.
Построим график функции Составим таблицу значений этой функции:
Построим точки, координаты которых указаны в таблице. Соединив их плавной линией, получим график функции (рис. 20, а).
При любом значение функции больше соответствующего значения функции в 2 раза. Если переместить каждую точку графика функции вверх так, чтобы расстояние от этой точки до оси х увеличилось в 2 раза, то она перейдет в точку графика функции при этом каждая точка этого графика может быть получена из некоторой точки графика функции . Иными словами, график функции можно получить из параболы растяжением от оси х в 2 раза (рис. 20, б).
Построим теперь график функции . Для этого составим таблицу ее значений:
Построив точки, координаты которых указаны в таблице, и соединив их плавной линией, получим график функции (рис. 21, а).
При любом значение функции меньше соответствующего значения функции в 2 раза. Если переместить каждую точку графика функции вниз так, чтобы расстояние от этой точки до оси х уменьшилось в 2 раза, то она
перейдет в точку графика функции причем каждая точка этого графика может быть получена из некоторой точки графика функции (рис. 21,6). Таким образом, график функции можно получить из параболы сжатием к оси х в 2 раза.
Вообще график функции можно получить из параболы растяжением от оси х в а раз, если а > 1, и сжатием к оси х в
Рассмотрим теперь функцию при а
Воспользовавшись этой таблицей, построим график функции (рис. 22, а).
Сравним графики функций (рис. 22, б).
При любом х значения этих функций являются противоположными числами. Значит, соответствующие точки графиков симметричны относительно оси х. Иными словами, график функции
может быть получен из графика функции с помощью симметрии относительно оси х.
Вообще графики функций (при ) симметричны относительно оси х.
График функции , где как и график функции , называют параболой.
Сформулируем свойства функции при а > 0.
1.Если х = 0, то у = 0. График функции проходит через начало координат.
2. Если , то у > 0. График функции расположен в верхней полуплоскости.
3. Противоположным значениям аргумента соответствуют равные значения функции. График функции симметричен относительно оси у.
4. Функция убывает в промежутке и возрастает в промежутке
5. Наименьшее значение, равное нулю, функция принимает при х = 0, наибольшего значения функция не имеет. Областью значений функции является промежуток
Докажем свойство 4. Пусть — два значения аргумента, причем — соответствующие им значения функции. Составим разность и преобразуем ее:
Так как то произведение имеет тот же знак, что и множитель Если числа принадлежат промежутку то этот множитель отрицателен. Если числа принадлежат промежутку то множитель положителен. В первом случае т. е. во втором случае Значит, в промежутке функция убывает, а в промежутке — возрастает.
Теперь сформулируем свойства функции при а 0.
Из перечисленных свойств следует, что при а > 0 ветви параболы направлены вверх, а при а 1, и с помощью сжатия к оси х в раз, если 0
График функции изображен на рисунке 23, а.
Чтобы получить таблицу значений функции для тех же значений аргумента, достаточно к найденным | значениям функции прибавить 3:
Построим точки, координаты которых указаны в таблице (2), и соединим их плавной линией. Получим график функции (рис. 23, б).
Легко понять, что каждой точке графика функции соответствует единственная точка графика функции и наоборот. Значит, если переместить каждую точку графика функции на 3 единицы вверх, то получим соответствующую точку графика функции Иначе говоря, каждую точку второго графика можно получить из некоторой точки первого графика р помощью параллельного переноса на 3 единицы вверх вдоль оси у.
График функции — парабола, полученная в результате сдвига вверх графика функции .
Вообще график функции является параболой, которую можно получить из графика функции с помощью параллельного переноса вдоль оси у на п единиц вверх, если n > 0, или на -n единиц вниз, если
Пример:
Рассмотрим теперь функцию и выясним, что представляет собой ее график.
Для этого в одной системе координат построим графики функций
Для построения графика функции воспользуемся таблицей (1). Составим теперь таблицу значений функции . При этом в качестве значений аргумента выберем те, которые на 5 больше соответствующих значений аргумента в таблице (1). Тогда соответствующие им значения функции будут те же, которые записаны во второй строке таблицы (1):
Построим график функции , отметив точки, координаты которых указаны в таблице (3) (рис. 24). Нетрудно заметить, что каждой точке графика функции
соответствует единственная точка графика функции И наоборот.
Значит, если переместить каждую точку графика функции на 5 единиц вправо, то получим соответствующую точку графика функции . Иначе говоря, каждую точку второго графика можно получить из некоторой точки первого графика с помощью параллельного переноса на 5 единиц вправо вдоль оси х.
График функции — парабола, полученная в результате сдвига вправо графика функции .
Вообще график функции является параболой, которую можно получить из графика функции с помощью параллельного переноса вдоль оси х на m единиц вправо, если m > 0, или на -m единиц влево, если то m
Вообще график функции является параболой, которую можно получить из графика функции с помощью двух параллельных переносов: сдвига вдоль оси х на то единиц вправо, если m > 0, или на -m единиц влево, если m 0, или на -n единиц вниз, если n 0, или на — n единиц вниз, если n 0, или на —m единиц влево, если m Построение графика квадратичной функции
Рассмотрим квадратичную функцию у = . Выделим из трехчлена квадрат двучлена:
Мы получили формулу вида
Значит, график функции есть парабола, которую можно получить из графика функции с помощью двух параллельных переносов — сдвига вдоль оси х и сдвига вдоль оси у. Отсюда следует, что график функции есть парабола, вершиной которой является точка Осью симметрии параболы служит прямая х = m, параллельная оси у. При а > 0 ветви параболы направлены вверх, при а
Приведем примеры построения графиков квадратичных функций.
Пример:
Построим график функции 0,5.
Графиком функции является парабола, ветви которой направлены вверх. Найдем координаты тип , вершины этой параболы:
Значит, вершиной параболы является точка ( — 3; —4). Составим таблицу значений функции:
Построив точки, координаты которых указаны в таблице, и соединив их плавной линией, получим график функции (рис. 27).
При составлении таблицы и построении графика учитывалось, что прямая х = — 3 является осью симметрии параболы. Поэтому мы брали точки с абсциссами — 4 и — 2, — 5 и — 1, — 6 и 0, симметричные относительно прямой х = — 3 (эти точки имеют одинаковые ординаты).
Пример:
Построим график функции 19.
Графиком этой функции является парабола, ветви которой направлены вниз. Найдем координаты ее вершины:
Вычислив координаты еще нескольких точек, получим таблицу:
Соединив плавной линией точки, координаты которых указаны в таблице, получим график функции (рис. 28).
Пример:
Построим график функции
Графиком функции является парабола, ветви которой направлены вверх. Найдем координаты ее вершины:
Вычислив координаты еще нескольких точек, получим таблицу:
График функции изображен на рисунке 29.
Решение неравенств второй степени с одной переменной
Неравенства вида — переменная, a, b и с — некоторые числа, причем называют неравенствами второй степени с одной переменной.
Решение неравенства второй степени с одной переменной можно рассматривать как нахождение промежутков, в которых соответствующая квадратичная функция принимает положительные или отрицательные значения.
Пример:
Решим неравенство
Рассмотрим функцию Графиком этой функции является-парабола, ветви которой направлены вверх.
Выясним, как расположена эта парабола относительно оси х. Для этого решим уравнение
Значит, парабола пересекает ось х в двух точках, абсциссы которых равны
Покажем схематически, как расположена парабола в координатной плоскости (рис. 31). Из рисунка видно, что функция принимает отрицательные значения, когда
Следовательно, множеством решений неравенства 2
Покажем схематически, как расположена парабола в координатной плоскости (рис. 32). Из рисунка видно, что данное неравенство верно, если х принадлежит промежутку или промежутку т. е. множеством решений неравенства
является объединение промежутков
Ответ можно записать так:
Пример:
Решим неравенство
Рассмотрим функцию Ее графиком является парабола, ветви которой направлены вниз.
Выясним, как расположен график относительно оси х. Решим для этого уравнение Получим, что х = 4. Уравнение имеет единственный корень. Значит, парабола касается оси х.
Изобразив схематически параболу (рис. 33), найдем, что функция принимает отрицательные значения при любом х, кроме 4.
Ответ можно записать так: х — любое число, не равное 4.
Пример:
Решим неравенство
График функции — парабола, ветви которой направлены вверх.
Чтобы выяснить, как расположена парабола относительно оси х, решим уравнение Находим, что D = -7
2) если трехчлен имеет корни, то отмечают их на оси х и через отмеченные точки проводят схематически параболу, ветви которой направлены вверх при а > 0 или вниз при а 0 или в нижней при а Решение неравенств методом интервалов
Областью определения этой функции является множество всех чисел. Нулями функции служат числа — 2, 3, 5. Они разбивают область определения функции на промежутки
Выражение (х + 2) (х — 3) (х — 5) представляет собой произведение трех множителей. Знак каждого из этих множителей в рассматриваемых промежутках указан в таблице:
Отсюда ясно, что:
Мы видим, что в каждом из промежутков функция сохраняет знак, а при переходе через точки — 2, 3 и 5 ее знак изменяется (рис. 35,6). Вообще, пусть функция задана формулой вида
где х — переменная, а не равные друг другу числа. Числа являются нулями функции. В каждом из промежутков, на которые область определения разбивается нулями функции, знак функции сохраняется, а при переходе через нуль ее знак изменяется.
Это свойство используется для решения неравенств вида
где не равные друг другу числа.
Пример:
Данное неравенство является неравенством вида (1), так как в левой части записано произведение где Для его решения удобно воспользоваться рассмотренным выше свойством чередования знаков функции.
Отметим на координатной прямой нули функции
Найдем знаки этой функции в каждом из промежутков Для этого достаточно знать, какой знак имеет функция в одном из этих промежутков, и, пользуясь свойством чередования знаков, определить знаки во всех остальных промежутках. При этом удобно начинать с крайнего справа промежутка так как в нем значение функции заведомо положительно. Это объясняется тем, что при значениях х, расположенных правее всех нулей функции, каждый из множителей положителен. Используя свойство чередования знаков, определим, двигаясь по координатной прямой справа налево, знаки данной функции в каждом из остальных промежутков (рис. 36, б).
Из рисунка видно, что множеством решений неравенства является объединение промежутков
Ответ:
Рассмотренный способ решения неравенств называют методом интервалов.
Рассмотрим теперь примеры решения неравенств, которые сводятся к неравенствам вида (1).
Пример:
Решим неравенство
Приведем данное неравенство к виду (1). Для этого в двучлене 0,5 — х вынесем за скобку множитель -1. Получим:
Мы получили неравенство вида (1), равносильное данному.
Отметим на координатной прямой нули функции f (х) = х (х — 0,5)(х + 4) (рис. 37, а). Покажем знаком «плюс», что в крайнем справа промежутке функция принимает положительное значение, а затем, двигаясь справа налево, укажем знак функции в каждом из промежутков (рис. 37, б). Получим, что множеством решений неравенства является объединение промежутков
Ответ:
Пример:
Решим неравенство
Приведем неравенство к виду (1). Для этого в первом двучлене вынесем за скобки множитель 5, а во втором —1, получим:
Разделив обе части неравенства на -5, будем иметь:
Отметим на координатной прямой нули функции f(x) и укажем знаки функции в образовавшихся промежутках (рис. 38). Мы видим, что множество решении неравенства состоит из чисел и чисел, заключенных между ними, т. е. представляет собой промежуток
Ответ:
Заметим, что данное неравенство можно решить иначе, воспользовавшись свойствами графика квадратичной функции.
Пример:
Решим неравенство
Так как знак дроби совпадает со знаком произведения (7—х)(х+2), то данное неравенство равносильно неравенству
Приведя неравенство к виду (1) и используя метод интервалов, найдем, что множеством решений этого неравенства, а значит, и данного неравенства является объединение промежутков
Ответ:
Квадратичная функция и её построение
Парабола
Если х и у рассматривать как координаты точки, то уравнение (1) определит некоторое геометрическое место точек. Исследуем вид этого геометрического места. Заметим, что наше исследование будет неполным, так как останутся вопросы, которые нами пока не будут выяснены. Чем дальше мы будем продвигаться в изучении математики, тем полнее будут проводиться исследования.
1) Так как при любом значении х всегда неотрицательно, то у, определяемое уравнением всегда неотрицательно. Значит, любая точка, принадлежащая изучаемому геометрическому месту, не будет лежать ниже оси Ох (рис. 18).
2) Так как и для —х и для х после возведения в квадрат получается одно и то же число, то точки, принадлежащие геометрическому месту и соответствующие значениям — х и х, имеют одну и ту же ординату и поэтому расположены симметрично относительно оси Оу (рис. 19).
3) Если х положительно, то, чем больше х, тем больше и . Поэтому по мере возрастания абсолютной величины абсциссы величина ординаты тоже возрастает. Следовательно точки геометрического места удаляются от начала координат вправо вверх и влево вверх.
Геометрическое место, определяемое уравнением называется параболой и имеет вид, изображенный на рис. 20. Эту кривую линию называют также графиком функции Точка (0, 0) принадлежит геометрическому месту, поэтому можно сказать, что парабола проходит через начало координат. Эту точку называют вершиной параболы. Часть параболы, расположенная в первой четверти, и часть параболы, расположенная во второй четверти, называются ее ветвями.
Теперь рассмотрим уравнение
Оно определяет геометрическое место точек. Сравнивая уравнения (1) и (2), замечаем, что при одном и том же х значения у отличаются только знаками, именно у, полученный из уравнения (2), всегда неположителен. Поэтому уравнение (2) тоже определяет параболу, вершина которой также находится в точке (0, 0), но ветви этой которой также находится в точке (0, 0), но ветви этой параболы идут от начала координат вниз вправо и вниз влево. График функции (2) изображен на рис. 21
Перейдем к рассмотрению уравнения
Сравним его с уравнением (1),
Если а положительно и больше единицы, то очевидно, что при одном и том же значении х величина у из уравнения (3) будет больше, чем величина у, взятая из уравнения (1). Отсюда можно заключить, что кривая, определяемая уравнением (3), отличается от параболы (1) только тем, что ординаты ее точек растянуты в а раз. Таким образом, кривая, определяемая уравнением (3), является более сжатой, чем парабола . Эту кривую тоже называют параболой.
Если то получим параболу более раскрытую, чем парабола . Для а отрицательного получаем аналогичные выводы, которые ясны из рис. 22.
Теперь покажем, что кривая, определяемая уравнением
является параболой, только ее расположение относительно координатных осей другое, чем в разобранных случаях. Предварительно рассмотрим параллельный перенос осей координат.
Параллельный перенос осей координат
Пусть на плоскости дана система координат хОу (рис. 23). Рассмотрим новую систему координат .Предположим, что новая ось параллельна старой оси Ох и новая ось параллельна старой оси Оу. Начало координат новой системы — точка . Масштаб и направление осей одинаковы в старой и новой системах координат.
Обозначим координаты нового начала относительно старой системы координат через х0 и у0, так что
Возьмем произвольную точку М на плоскости; пусть ее координаты в старой системе будут х и у, а в новой и . Тогда
и (на основании формулы (2) из § 1 гл. I)
Переход от старой системы координат к указанной новой называется параллельным переносом или параллельным сдвигом осей координат. Приходим к выводу:
При параллельном сдвиге осей координат старая координата точки равна новой координате той же точки плюс координата нового начала в старой системе.
Исследование функции
Функция, определенная уравнением
называется квадратичной функцией. Функция рассмотренная выше, является частным случаем квадратичной функции. Поставим перед собой цель—выяснить, как изменится уравнение (1), если перейти к новым координатам. Возьмем новые оси координат так, чтобы они были параллельны старым, т. е. ось будет параллельна оси Ох,
а ось — оси Оу. Масштаб и направление осей такие же, как и у старых. Пусть координаты нового начала в старой системе будут х0 и у0. Подставим в уравнение (5) вместо х и у их выражения через новые координаты: , . Получим
Разрешив это уравнение относительно , будем иметь
Координаты нового начала находятся в нашем распоряжении, поэтому их можно выбрать так, чтобы выполнялись условия
В этих уравнениях два неизвестных: х0 и у0. Найдем их:
Если взять новое начало в точке
то в уравнении (2) скобки
сделаются равными нулю, т. е. уравнение (2) примет вид
Полученное уравнение имеет вид, рассмотренный выше. Таким образом, уравнение относительно новой системы координат определяет ту же параболу, что и уравнение .Приходим к выводу:
Уравнение определяет параболу, вершина которой находится в точке и ветви которой направлены вверх, если а > 0, и вниз, если а 0, и вниз, если а
Переносим начало координат в точку (х0, у0), координаты которой пока неизвестны. Старые координаты я, у выражаются через новые , по формулам
Подставляя эти выражения в уравнение (4), получим:
Выберем координаты нового начала так, чтобы соблюдались равенства
Решая полученную систему уравнений, будем иметь:
Следовательно, перенося начало координат в точку , преобразуем уравнение (4) в новое уравнение, которое имеет вид
Следовательно, уравнение (4) определяет параболу, имеющу вершину в точке ; ветви параболы направлены вверх (рис. 24).
Приведем пример применения квадратичной функции в механике.
Задача:
Найти траекторию тела, брошенного под углом к горизонту. Угол бросания а, скорость бросания. Сопротивлением воздуха пренебрегаем.
Решение:
Выберем оси координат так: ось Оу—вертикальная прямая, проведенная в точке бросания , ось Ох— горизонтальная прямая, начало координат—точка бросания (рис. 25).
Если бы не действовала сила притяжения Земли, то тело, брошенное под углом к горизонту, по инерции двигалось бы по прямой ОМ. За t сек оно прошло бы расстояние и, стало быть, находилось бы в точке М. Но под действием силы притяжения Земли это тело, как свободно падающее, за t сек пройдет вниз путь следовательно, тело фактически будет в точке Р. Вычислим координаты точки Р:
Найдем уравнение, связывающее х с у. Для этого из уравнения (*) найдем t и подставим это выражение в уравнение (**):
Мы получили уравнение траектории тела. Как мы видим, это есть квадратичная функция рассмотренного вида, следовательно, тело, брошенное под углом к горизонту, движется в безвоздушном пространстве по параболе, расположенной вершиной вверх, поскольку коэффициент при отрицателен.
Какова наибольшая высота подъема тела над Землей? Чтобы ответить на этот вопрос, нужно найти вершину параболы. Как было выведено, вершина параболы имеет координаты
этому координаты вершины равны
Найдем теперь дальность полета тела, т. е. абсциссу точки падения. Для этого приравняем в уравнении (***) у нулю, получим уравнение
решая которое найдем два значения
первое из них дает точку бросания, а второе — искомую абсциссу точки падения.
Все эти рассуждения относятся к безвоздушному пространству; в воздухе и высота и дальность будут значительно меньше.
Решение заданий и задач по предметам:
Дополнительные лекции по высшей математике:
Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
График функции квадратного корня, преобразования графиков.
График функции квадратного корня: :
Квадратный корень как элементарная функция.
Квадратный корень – это элементарная функция и частный случай степенной функции при . Арифметический квадратный корень является гладким при , а нуле он непрерывен справа, но не дифференцируется.
Как функция комплексный переменный корень — двузначная функция, у которой листы сходятся в нуле.
Построение графика функции квадратного корня.
- Заполняем таблицу данных:
х
2. Наносим точки, которые мы получили на координатную плоскость.
3. Соединяем эти точки и получаем график функции квадратного корня:
Преобразования графика функции квадратного корня.
Определим, какие преобразования функции необходимо сделать для того, чтобы построить графики функций. Определим виды преобразований.
Перенос функции по оси OY на 4 ед. вверх.
Перенос функции по оси OX на 1 ед. вправо.
График приближается к оси OY в 3 раза и сжимается по оси OХ.
График отдаляется от оси OX в 2 раза и растягивается по оси OY.
График отдаляется от оси OY в 2 раза и растягивается по оси OХ.
Симметричное отображение графика относительно оси ОX.
Предыдущий график отдаляется от оси OX в 3 раза и растягивается по оси OY.
Симметричное отражение графика относительно оси OY, при этом верхняя часть графика I четверти остаётся без изменений, а находящаяся в II четверти график исчезает, симметрично отображаясь относительно оси OX.
Зачастую преобразования функций оказываются комбинированными.
Например, нужно построить график функции . Это график квадратного корня , который нужно перенести на одну единицу вниз по оси OY и на единицу вправо по оси ОХ и одновременно растянув в 3 раза его по оси OY.
Бывает непосредственно перед построением графика функции, нужны предварительные тождественные преобразования либо упрощения функций.
[spoiler title=”источники:”]
http://lfirmal.com/kvadratnaya-funkciya/
http://www.calc.ru/Grafik-Funktsii-Kvadratnogo-Kornya-Preobrazovaniya-Grafikov.html
[/spoiler]
© Юджин Бреннан
Парабола, математическая функция
В этом руководстве вы узнаете о математической функции, называемой параболой. Сначала мы рассмотрим определение параболы и то, как она соотносится с твердой формой, называемой конусом. Далее мы исследуем различные способы выражения уравнения параболы. Также будет рассмотрено, как вычислить максимумы и минимумы параболы и как найти пересечение с осями x и y. Наконец, мы узнаем, что такое квадратное уравнение и как его решить.
Определение параболы
« Географическое место – это кривая или другая фигура, образованная всеми точками, удовлетворяющими определенному уравнению».
Один из способов определения параболы состоит в том, что это геометрическое место точек, которые равноудалены как от линии, называемой директрисой, так и от точки, называемой фокусом. Таким образом, каждая точка P на параболе находится на таком же расстоянии от фокуса, как и от направляющей, как вы можете видеть на анимации ниже.
Заметим также, что когда x равно 0, расстояние от P до вершины равно расстоянию от вершины до директрисы. Таким образом, фокус и директриса равноудалены от вершины.
Парабола – это геометрическое место точек, равноудаленных (одинакового расстояния) от линии, называемой директрисой, и точки, называемой фокусом.
© Юджин Бреннан
Определение параболы
Парабола – это геометрическое место точек, равноудаленных от прямой, называемой директрисой, и точки, называемой фокусом.
Парабола – это коническое сечение
Другой способ определения параболы
Когда плоскость пересекает конус, мы получаем разные формы или конические сечения, где плоскость пересекает внешнюю поверхность конуса. Если плоскость параллельна низу конуса, мы просто получим круг. По мере того, как угол A на приведенной ниже анимации изменяется, он в конечном итоге становится равным B, а коническое сечение представляет собой параболу.
Парабола – это форма, образованная, когда плоскость пересекает конус, а угол пересечения с осью равен половине угла раскрытия конуса.
© Юджин Бреннан
Конические сечения.
Magister Mathematicae, CC SA 3.0 не перенесена через Wikimedia Commons
Уравнения парабол
Уравнение параболы можно выразить несколькими способами:
- Как квадратичная функция
- Форма вершины
- Форма фокуса
Мы рассмотрим их позже, но сначала давайте рассмотрим простейшую параболу.
Простейшая парабола y = x²
Простейшая парабола с вершиной в начале координат, точкой (0,0) на графике, имеет уравнение y = x².
Значение y – это просто значение x, умноженное на себя.
Икс | y = x² |
---|---|
1 |
1 |
2 |
4 |
3 |
9 |
4 |
16 |
5 |
25 |
График y = x² – простейшая парабола
Простейшая парабола y = x²
© Юджин Бреннан
Давайте дадим коэффициент xa!
Простейшая парабола y = x 2, но если мы зададим коэффициент xa, мы сможем сгенерировать бесконечное количество парабол с разной «шириной» в зависимости от значения коэффициента.
Итак, сделаем y = ɑx 2
На графике ниже ɑ имеет различные значения. Обратите внимание, что когда ɑ отрицательно, парабола «перевернута». Мы узнаем об этом больше позже. Помните, что форма y = ɑx 2 уравнения параболы – это когда ее вершина находится в начале координат.
Уменьшение ɑ приводит к «более широкой» параболе. Если мы увеличим ɑ, парабола станет уже.
Параболы с разными коэффициентами x²
© Юджин Бреннан
Поворачивая простейшую параболу на бок
Если мы повернем параболу y = x 2 набок, мы получим новую функцию y 2 = x или x = y 2. Это просто означает, что мы можем рассматривать y как независимую переменную, и возведение ее в квадрат дает нам соответствующее значение для x.
Так:
Когда y = 2, x = y 2 = 4
когда y = 3, x = y 2 = 9
когда y = 4, x = y 2 = 16
и так далее…
Парабола x = y²
© Юджин Бреннан
Как и в случае с вертикальной параболой, мы снова можем добавить коэффициент к y 2.
Параболы с разными коэффициентами y²
© Юджин Бреннан
Форма вершины параболы, параллельной оси Y
Один из способов выразить уравнение параболы – это координаты вершины. Уравнение зависит от того, параллельна ли ось параболы оси x или оси y, но в обоих случаях вершина расположена в координатах (h, k). В уравнениях ɑ является коэффициентом и может иметь любое значение.
Когда ось параллельна оси y:
у = ɑ (х – h) 2 + к
если ɑ = 1 и (h, k) – начало координат (0,0), мы получаем простую параболу, которую мы видели в начале урока:
у = 1 (х – 0) 2 + 0 = х 2
Вершинная форма уравнения параболы.
© Юджин Бреннан
Когда ось параллельна оси x:
х = ɑ (у – h) 2 + к
Обратите внимание, что это не дает нам никакой информации о расположении фокуса или директрисы.
Вершинная форма уравнения параболы.
© Юджин Бреннан
Уравнение параболы через координаты фокуса.
Другой способ выразить уравнение параболы – через координаты вершины (h, k) и фокуса.
Мы видели, что:
у = ɑ (х – h) 2 + к
Используя теорему Пифагора, мы можем доказать, что коэффициент ɑ = 1 / 4p, где p – расстояние от фокуса до вершины.
Когда ось симметрии параллельна оси y:
Подстановка ɑ = 1 / 4p дает нам:
y = ɑ (x – h) 2 + k = 1 / (4p) (x – h) 2 + k
Умножьте обе части уравнения на 4p:
4py = (x – h) 2 + 4pk
Переставить:
4p (y – k) = (x – h) 2
или
(х – з) 2 = 4р (у – к)
Так же:
Когда ось симметрии параллельна оси x:
Подобный вывод дает нам:
(y – k) 2 = 4p (x – h)
Уравнение параболы через фокус. p – расстояние от вершины до фокуса и от вершины до директрисы.
© Юджин Бреннан
Фокусная форма уравнения параболы. p – расстояние от вершины до фокуса и от вершины до директрисы.
© Юджин Бреннан
Пример:
Найдите фокус для простейшей параболы y = x 2
Ответ:
Поскольку парабола параллельна оси y, мы используем уравнение, о котором узнали выше
(х – з) 2 = 4р (у – к)
Сначала найдите вершину, точку, в которой парабола пересекает ось y (для этой простой параболы мы знаем, что вершина находится в точке x = 0)
Итак, установите x = 0, получив y = x 2 = 0 2 = 0
и поэтому вершина находится в точке (0,0)
Но вершина – это (h, k), поэтому h = 0 и k = 0
Подставляя значения h и k, уравнение (x – h) 2 = 4p (y – k) упрощается до
(х – 0) 2 = 4р (у – 0)
давая нам
х 2 = 4py
Теперь сравните это с нашим исходным уравнением для параболы y = x 2
Мы можем переписать это как x 2 = y, но коэффициент при y равен 1, поэтому 4p должно быть равно 1 и p = 1/4.
Из приведенного выше графика мы знаем, что координаты фокуса (h, k + p), поэтому замена значений, которые мы разработали для h, k и p, дает нам координаты вершины как
(0, 0 + 1/4) или (0, 1/4)
Квадратичная функция – это парабола
Рассмотрим функцию y = ɑx 2 + bx + c
Это называется квадратичной функцией из-за квадрата переменной x.
Это еще один способ выразить уравнение параболы.
Как определить, в каком направлении открывается парабола
Независимо от того, какая форма уравнения используется для описания параболы, коэффициент x 2 определяет, будет ли парабола «открываться» или «открываться вниз». Открытие означает, что парабола будет иметь минимум, а значение y будет увеличиваться по обе стороны от минимума. Открытие вниз означает, что у него будет максимум, а значение y уменьшается по обе стороны от максимума.
- Если ɑ положительно, парабола откроется.
- Если ɑ отрицательно, парабола откроется.
Парабола открывается вверх или открывается вниз
Знак коэффициента при x² определяет, раскрывается ли парабола вверх или вниз.
© Юджин Бреннан
Как найти вершину параболы
Из простого исчисления мы можем вывести, что максимальное или минимальное значение параболы встречается при x = -b / 2ɑ
Подставляем x в уравнение y = ɑx 2 + bx + c, чтобы получить соответствующее значение y
Итак, y = ɑx 2 + bx + c
= ɑ (-b / 2ɑ) 2 + b (-b / 2ɑ) + c
= ɑ (b 2 / 4ɑ 2) – b 2 / 2ɑ + c
Собираем б 2 термины и переставляем
= b 2 (1 / 4ɑ – 1 / 2ɑ) + c
= – b 2 / 4ɑ + c
= c -b 2 / 4a
Итак, наконец, min происходит в (-b / 2ɑ, c -b 2 / 4ɑ)
Пример:
Найдите вершину уравнения y = 5x 2 – 10x + 7
- Коэффициент a положительный, поэтому парабола раскрывается и вершина является минимумом
- ɑ = 5, b = -10 и c = 7, поэтому минимальное значение x происходит при x = -b / 2ɑ = – (-10) / (2 (5)) = 1
- Значение y min находится при c – b 2 / 4a. Подстановка на a, b и c дает нам y = 7 – (-10) 2 / (4 (5)) = 7 – 100/20 = 7 – 5 = 2
Таким образом, вершина находится в точке (1,2)
Как найти X-пересечения параболы
Квадратичная функция y = ɑx 2 + bx + c – это уравнение параболы.
Если мы установим квадратичную функцию равной нулю, мы получим квадратное уравнение
т.е. ɑx 2 + bx + c = 0 .
Графически приравнивание функции к нулю означает установку такого условия функции, при котором значение y равно 0, другими словами, когда парабола пересекает ось x.
Решения квадратного уравнения позволяют найти эти две точки. Если нет решений с действительными числами, т.е. решения являются мнимыми числами, парабола не пересекает ось x.
Решения или корни квадратного уравнения задаются уравнением:
х = -b ± √ (b 2 -4ac) / 2ɑ
Поиск корней квадратного уравнения
Корни квадратного уравнения дают пересечение с осью x параболы.
© Юджин Бреннан
A и B – пересечения с осью x параболы y = ax² + bx + c и корней квадратного уравнения ax² + bx + c = 0
© Юджин Бреннан
Пример 1: найти точки пересечения параболы с осью x y = 3x 2 + 7x + 2
Решение
- у = ɑx 2 + bx + c
- В нашем примере y = 3x 2 + 7x + 2
- Определите коэффициенты и константу c
- Итак, ɑ = 3, b = 7 и c = 2
- Корни квадратного уравнения 3x 2 + 7x + 2 = 0 находятся в точке x = -b ± √ (b 2 – 4ɑc) / 2ɑ
- Заменить ɑ, b и c
- Первый корень находится в точке х = -7 + √ (7 2 -4 (3) (2)) / (2 (3) = -1/3
- Второй корень при -7 – √ (7 2 -4 (3) (2)) / (2 (3) = -2
- Таким образом, пересечения оси x происходят в точках (-2, 0) и (-1/3, 0).
Пример 1: найти точки пересечения параболы по оси x y = 3×2 + 7x + 2
© Юджин Бреннан
Пример 2: Найдите точки пересечения с осью X параболы с вершиной, расположенной в (4, 6), и фокусом в (4, 3)
Решение
- Уравнение параболы в форме вершины фокуса: (x – h) 2 = 4p (y – k)
- Вершина находится в точке (h, k), что дает нам h = 4, k = 6
- Фокус находится в точке (h, k + p). В этом примере фокус находится в (4, 3), поэтому k + p = 3. Но k = 6, поэтому p = 3 – 6 = -3
- Подставьте значения в уравнение (x – h) 2 = 4p (y – k), поэтому (x – 4) 2 = 4 (-3) (y – 6)
- Упростим получение (x – 4) 2 = -12 (y – 6)
- Расширьте из уравнения дает х 2 – 8х + 16 = -12y + 72
- Переставить 12y = -x 2 + 8x + 56
- Даем y = -1 / 12x 2 + 2 / 3x + 14/3
- Коэффициенты: a = -1/12, b = 2/3, c = 14/3.
- Корни при -2/3 & plusmn; √ ((2/3) 2 – 4 (-1/12) (14/3)) / (2 (-1/12)
- Это дает нам x = -4,49 приблизительно и x = 12,49 приблизительно.
- Таким образом, пересечения оси x происходят в точках (-4,49, 0) и (12,49, 0).
Пример 2: Найдите точки пересечения по оси x параболы с вершиной в (4, 6) и сфокусируйтесь в (4, 3)
© Юджин Бреннан
Как найти точки пересечения параболы по оси Y
Чтобы найти точку пересечения оси Y (пересечение оси Y) параболы, мы устанавливаем x равным 0 и вычисляем значение y.
A – точка пересечения параболы y = ax² + bx + c
© Юджин Бреннан
Пример 3: найти точку пересечения параболы y = 6x 2 + 4x + 7
Решение:
у = 6х 2 + 4х + 7
Установите x на 0, давая
у = 6 (0) 2 + 4 (0) + 7 = 7
Перехват происходит в (0, 7)
Пример 3. Найдите точку пересечения параболы по оси Y = 6x² + 4x + 7.
© Юджин Бреннан
Сводка уравнений параболы
Тип уравнения | Ось параллельно оси Y | Ось параллельно оси X |
---|---|---|
Квадратичная функция |
y = ɑx² + bx + c |
x = ɑy² + by + c |
Форма вершины |
y = ɑ (x – h) ² + k |
x = ɑ (y – h) ² + k |
Форма фокуса |
(x – h) ² = 4p (y – k) |
(y – k) ² = 4p (x – h) |
Парабола с вершиной в начале координат |
x² = 4py |
y² = 4 пикселя |
Корни параболы параллельны оси y |
x = -b ± √ (b² -4ɑc) / 2ɑ |
|
Вершина встречается в |
(-b / 2ɑ, c -b2 / 4ɑ) |
Как парабола используется в реальном мире
Парабола не ограничивается математикой. Форма параболы появляется в природе, и мы используем ее в науке и технике из-за ее свойств.
- Когда вы пинаете мяч в воздух или вылетает снаряд, траектория является параболой.
- Отражатели автомобильных фар или фонарей имеют параболическую форму.
- Зеркало в телескопе-отражателе параболическое.
- Спутниковые антенны имеют форму параболы, как и радиолокационные антенны.
Для радарных тарелок, спутниковых тарелок и радиотелескопов одно из свойств параболы заключается в том, что луч электромагнитного излучения, параллельный ее оси, будет отражаться в сторону фокуса. И наоборот, в случае фары или фонарика свет, исходящий от фокуса, будет отражаться от отражателя и распространяться наружу параллельным лучом.
Радиолокационные антенны и радиотелескопы имеют параболическую форму.
Wikiimages, изображение из общественного достояния через Pixabay.com
Вода из фонтана (который можно рассматривать как поток частиц) следует по параболической траектории.
GuidoB, CC by SA 3.0 Не перенесено через Wikimedia Commons
Благодарности
Вся графика была создана с использованием GeoGebra Classic.
© 2019 Юджин Бреннан
Прежде чем перейти к разбору квадратичной функции рекомендуем вспомнить, что называют
функцией в математике.
Если вы прочно закрепите общие знания о функции (способы задания, понятие графика)
дальнейшее изучение других
видов функций будет даваться значительно легче.
Что называют квадратичной функцией
Запомните!
Квадратичная функция — это функция вида
y = ax2 + bx + c,
где a,
b и с — заданные числа.
Другими словами можно сказать, что если в функции старшая (то есть самая большая) степень,
в которой стоит «x» — это «2»,
то перед нами квадратичная функция.
Рассмотрим примеры квадратичных функций и определим, чему в них равны коэффициенты «a»,
«b» и «с».
Квадратичная функция | Коэффициенты |
---|---|
y = 2x2 − 7x + 9 |
|
y = 3x2 − 1 |
|
y = −3x2 + 2x |
|
Как построить график квадратичной функции
Запомните!
График квадратичной функции называют параболой.
Парабола выглядит следующим образом.
Также парабола может быть перевернутой.
Существует четкий алгоритм действий при построении графика квадратичной функции.
Рекомендуем при построении параболы всегда следовать этому порядку действий, тогда вы сможете избежать ошибок при построении.
Чтобы было проще понять этот алгоритм, сразу разберем его на примере.
Построим график квадратичной функции «y = x2 −7x + 10».
- Направление ветвей параболы
Запомните!
Если «a > 0», то ветви направлены вверх.
Если «a < 0», то ветви направлены вниз.
В нашей функции «a = 1», это означает, что ветви параболы направлены вверх.
- Координаты вершины параболы
Запомните!
Чтобы найти «x0»
(координата вершины по оси «Ox»)
нужно использовать формулу:Найдем «x0» для нашей функции «y = x2 −7x + 10».
Теперь нам нужно найти «y0»
(координату вершины по оси «Oy»).
Для этого нужно подставить найденное значение «x0» в исходную функцию.
Вспомнить, как найти значение функции можно в уроке
«Как решать задачи на функцию» в подразделе
«Как получить значение функции».y0(3,5) =
(3,5)2 − 7 ·3,5 + 10 = 12,25 − 24,5 + 10 =−12,25 + 10 = −2,25
Выпишем полученные координаты вершины параболы.
(·) A (3,5; −2,25) — вершина параболы.
Отметим вершину параболы на системе координат.
Проведем через отмеченную точку ось симметрии, так как парабола — это симметричный график
относительно оси «Oy». - Нули функции
Для начала давайте разберемся, что называют нулями функции.
Запомните!
Нули функции — это точки пересечения графика функции с осью «Ox»
(осью абсцисс).Наглядно нули функции на графике выглядят так:
Свое название нули функции получили из-за того, что у этих точек координата
по оси «Oy» равна нулю.Теперь давайте разберемся, как до построения графика функции рассчитать координаты точек нулей функции.
Запомните!
Чтобы найти координаты точек нулей функции, нужно в исходную функцию подставить вместо
«y = 0».Подставим в заданную функцию «y = x2 −7x + 10»
вместо «y = 0» и решим полученное
квадратное уравнение
относительно
«x» .0 = x2 −7x + 10
x2 −7x + 10 = 0x1;2 =
7 ±
√49 − 4 · 1 · 102 · 1 x1;2 =
x1;2 =
x1 = x2 =
x1 = x2 =
x1 = 5 x2 = 2
Мы получили два корня в уравнении, значит, у нас две точки пересечения
с осью «Ox».
Назовем эти точки и выпишем их координаты.- (·) B (5; 0)
- (·) C (2; 0)
Отметим полученные точки («нули функции») на системе координат.
- Дополнительные точки для построения графика
Возьмем четыре произвольные числовые значения для «x».
Целесообразно брать целые числовые значения на оси «Ox»,
которые наиболее близки к оси
симметрии. Числа запишем в таблицу в порядке возрастания.x 1 3 4 6 y Для каждого выбранного значения «x»
рассчитаем «y».- y(1) = 12 − 7 · 1 + 10 = 1 − 7 + 10 =
4 -
y(3) = 32 − 7 · 3 + 10 = 9 − 21 + 10 =
−2 -
y(4) = 42 − 7 · 4 + 10 = 16 − 28 + 10 =
−2 -
y(6) = 62 − 7 · 6 + 10 = 36 − 42 + 10 =
4
Запишем полученные результаты в таблицу.
x 1 3 4 6 y 4 −2 −2 4 Отметим полученные точки графика на системе координат (зеленые точки).
Теперь мы готовы построить график.
На забудьте после построения подписать график функции. - y(1) = 12 − 7 · 1 + 10 = 1 − 7 + 10 =
Краткий пример построения параболы
Рассмотрим другой пример построения графика квадратичной функции.
Только теперь запишем алгоритм построения коротко без подробностей.
Пусть требуется построить график функции
«y = −3x2 − 6x − 4».
- Направление ветвей параболы
- Координаты вершины параболы
x0 =
x0 = == −1
y0(−1) = (−3) · (−1)2 − 6 · (−1) − 4 =
−3 · 1 + 6 − 4 = −1(·) A (−1; −1)
— вершина параболы.
- Нули функции
Точки пересечения с осью «Ox» (y = 0).
0 = −3x2 − 6x − 4
−3x2 − 6x − 4 = 0 |·(−1)
3x2 + 6x + 4 = 0
x1;2 =
−6 ±
√62 − 4 · 3 · 42 · 1 x1;2 =
x1;2 =
Ответ: нет действительных корней.Так как корней нет, значит, график функции не пересекает ось
«Ox». - Вспомогательные точки для: «x = −3»;
«x = −2»;
«x = 0»;
«x = 1». Подставим в исходную функцию
«y = −3x2 − 6x − 4».- y(−3) = −3 · (−3)2 − 6 · (−3) − 4
= −3 · 9 + 18 − 4 = −27 + 14 = −13 -
y(−2) = −3 · (−2)2 − 6 · (−2) − 4
= −3 · 4 + 12 − 4 = −12 + 12 − 4 = −4 -
y(0) = −3 · 02 − 6 · 0 − 4
= −4 -
y(1) = −3 · 12 − 6 · 1 − 4
= −3 −6 − 4 = −13
x −3 −2 0 1 y −13 −4 −4 −13 - y(−3) = −3 · (−3)2 − 6 · (−3) − 4
«a = −3» — ветви параболы направлены вниз.
Отметим вспомогательные точки. Отмечаем на системе координат только те точки, которые
не выходят за масштаб нашей системы координат, то есть точки
«(−2; −4)» и «(0; −4)».
Построим и подпишем график функции.
Ваши комментарии
Важно!
Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи
«ВКонтакте».
Оставить комментарий: