Калькулятор онлайн.
Решение показательных уравнений.
Этот математический калькулятор онлайн поможет вам решить показательное уравнение.
Программа для решения показательного уравнения не просто даёт ответ задачи, она приводит подробное
решение с пояснениями, т.е. отображает процесс получения результата.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и
экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре.
А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее
сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным
решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень
образования в области решаемых задач повышается.
Вы можете посмотреть теорию о показательной функции и
общие методы решения показательных уравнений.
Примеры подробного решения >>
Введите показательное уравнение
Наши игры, головоломки, эмуляторы:
Немного теории.
Показательная функция, её свойства и график
Напомним основные свойства степени. Пусть а > 0, b > 0, n, m – любые действительные числа. Тогда
1) an am = an+m
2) ( frac{a^n}{a^m} = a^{n-m} )
3) (an)m = anm
4) (ab)n = an bn
5) ( left( frac{a}{b} right)^n = frac{a^n}{b^n} )
6) an > 0
7) an > 1, если a > 1, n > 0
8) an < am, если a > 1, n < m
9) an > am, если 0< a < 1, n < m
В практике часто используются функции вида y = ax, где a – заданное положительное число, x – переменная.
Такие функции называют показательными. Это название объясняется тем, что аргументом показательной функции является
показатель степени, а основанием степени — заданное число.
Определение. Показательной функцией называется функция вида y = ax, где а — заданное число, a > 0, ( a neq 1)
Показательная функция обладает следующими свойствами
1) Область определения показательной функции — множество всех действительных чисел.
Это свойство следует из того, что степень ax где a > 0, определена для всех действительных чисел x.
2) Множество значений показательной функции — множество всех положительных чисел.
Чтобы убедиться в этом, нужно показать, что уравнение ax = b, где а > 0, ( a neq 1), не имеет корней,
если ( b leqslant 0), и имеет корень при любом b > 0.
3) Показательная функция у = ax является возрастающей на множестве всех действительных чисел, если a > 1, и
убывающей, если 0 < a < 1.
Это следует из свойств степени (8) и (9)
Построим графики показательных функций у = ax при a > 0 и при 0 < a < 1.
Использовав рассмотренные свойства отметим, что график функции у = ax при a > 0 проходит через точку (0; 1) и
расположен выше оси Oх.
Если х < 0 и |х| увеличивается, то график быстро приближается к оси Oх (но не пересекает её).
Таким образом, ось Ох является горизонтальной асимптотой графика функции у = ax при a > 0.
Если х > 0 и |х| увеличивается, то график быстро поднимается вверх.
График функции у = ax при 0 < a < 1 также проходит через точку (0; 1) и расположен выше оси Ох.
Если х > 0 и увеличивается, то график быстро приближается к оси Ох (не пересекая её). Таким образом, ось Ох является
горизонтальной асимптотой графика.
Если х < 0 и |х| увеличивается, то график быстро поднимается вверх.
Показательные уравнения
Рассмотрим несколько примеров показательных уравнений, т.е. уравнений, в которых неизвестное содержится в показателе степени.
Решение показательных уравнений часто сводится к решению уравнения ax = ab где а > 0, ( a neq 1),
х — неизвестное. Это уравнение решается с помощью свойства степени: степени с одинаковым основанием а > 0, ( a neq 1) равны
тогда и только тогда, когда равны их показатели.
Решить уравнение 23x • 3x = 576
Так как 23x = (23)x = 8x, 576 = 242, то уравнение можно записать в виде
8x • 3x = 242, или в виде 24x = 242, откуда х = 2.
Ответ х = 2
Решить уравнение 3х + 1 – 2 • 3x – 2 = 25
Вынося в левой части за скобки общий множитель 3х – 2, получаем 3х – 2(33 – 2) = 25,
3х – 2 • 25 = 25,
откуда 3х – 2 = 1, x – 2 = 0, x = 2
Ответ х = 2
Решить уравнение 3х = 7х
Так как ( 7^x neq 0 ) , то уравнение можно записать в виде ( frac{3^x}{7^x} = 1 ), откуда ( left( frac{3}{7} right) ^x = 1 ), х = 0
Ответ х = 0
Решить уравнение 9х – 4 • 3х – 45 = 0
Заменой 3х = t данное уравнение сводится к квадратному уравнению t2 – 4t – 45 = 0. Решая это уравнение,
находим его корни: t1 = 9, t2 = -5, откуда 3х = 9, 3х = -5.
Уравнение 3х = 9 имеет корень х = 2, а уравнение 3х = -5 не имеет корней, так как показательная функция не
может принимать отрицательные значения.
Ответ х = 2
Решить уравнение 3 • 2х + 1 + 2 • 5x – 2 = 5х + 2х – 2
Запишем уравнение в виде
3 • 2х + 1 – 2x – 2 = 5х – 2 • 5х – 2, откуда
2х – 2 (3 • 23 – 1) = 5х – 2( 5 2 – 2 )
2х – 2 • 23 = 5х – 2• 23
( left( frac{2}{5} right) ^{x-2} = 1 )
x – 2 = 0
Ответ х = 2
Решить уравнение 3|х – 1| = 3|х + 3|
Так как 3 > 0, ( 3 neq 1), то исходное уравнение равносильно уравнению |x-1| = |x+3|
Возводя это уравнение в квадрат, получаем его следствие (х – 1)2 = (х + 3)2, откуда
х2 – 2х + 1 = х2 + 6х + 9, 8x = -8, х = -1
Проверка показывает, что х = -1 — корень исходного уравнения.
Ответ х = -1
Иррациональные уравнения
Что такое иррациональные уравнения и как их решать
Уравнения, в которых переменная содержится под знаком радикала или под знаком возведения в дробную
степень, называются иррациональными. Когда мы имеет дело с дробной степенью, то мы лишаем себя
многих математических действий для решения уравнения, поэтому иррациональные уравнения решаются
по-особенному.
Иррациональные уравнения, как правило, решают при помощи возведения обеих частей уравнения в одинаковую
степень. При этом возведение обеих частей уравнения в одну и ту же нечетную степень – это равносильное
преобразование уравнения, а в четную – неравносильное. Такая разница получается из-за таких особенностей
возведения в степень, таких как если возвести в чётную степень, то отрицательные значения
“теряются”.
Смыслом возведения в степень обоих частей иррационального уравнения является желание избавиться от
“иррациональности”. Таким образом нам нужно возвести обе части иррационального уравнения в такую
степень, чтобы все дробные степени обоих частей уравнения превратилась в целые. После чего можно искать
решение данного уравнения, которое будет совпадать с решениями иррационального уравнения, с тем
отличием, что в случае возведения в чётную степень теряется знак и конечные решения потребуют проверки и
не все подойдут.
Таким образом, основная трудность связана с возведением обеих частей уравнения в одну и ту же четную
степень – из-за неравносильности преобразования могут появиться посторонние корни. Поэтому обязательна
проверка всех найденных корней.
Проверить найденные корни чаще всего забывают те, кто решает иррациональное уравнение. Также не всегда
понятно в какую именно степень нужно возводить иррациональное уравнение, чтобы избавиться от
иррациональности и решить его. Наш интеллектуальный калькулятор как раз создан для того, чтобы решать
иррациональное уравнение и автоматом проверить все корни, что избавит от забывчивости.
Также читайте нашу статью “Калькулятор рациональных
уравнений онлайн”
Бесплатный онлайн калькулятор иррациональных уравнений
Наш бесплатный решатель позволит решить иррациональное уравнение онлайн любой сложности за считанные
секунды. Все,
что вам необходимо
сделать – это просто ввести свои данные в калькуляторе. Так же вы можете посмотреть
видео
инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то
вы
можете задать их в нашей группе ВКонтакте: pocketteacher.
Вступайте
в нашу группу, мы всегда рады помочь вам.
Решение уравнений онлайн
Если вы это читаете, значит вас интересует вопрос решения уравнений.
Да, наши калькуляторы могут решить все уравнения, которые встречаются в школьном курсе и не только. Но нужно понимать, что большинство уравнений имеют несколько способов решения, а калькулятор выдает лишь только какое-то одно.
Бесспорно все способы решения хороши по-своему, но каждому методу отводится свое место в программе обучения.
Поэтому не стоит злоупотреблять калькуляторами, если ваш школьный учитель или личный репетитор требует решить уравнение одним способом, а вы предоставляете ему альтернативное решение.
Да, это может быть похвально, но опытный педагог сразу поймет, что решение уравнения не ваше.
Калькулятор решения уравнений
Калькулятор уравнений незаменимый помощник. Именно помощник, а не решатель проблем. Всегда старайтесь своими силами решать уравнения, а калькулятор используйте в качестве проверки вашего ответа.
Для грамотного учителя не столько важен конечный ответ, сколько сам ход решения уравнения.
Как вы могли заметить, при решении некоторых уравнений, например, квадратных, калькулятор может выполнить три разных способа решения. Это разложение уравнения на множители, выделение полного квадрата или найти корни уравнения через дискриминант.
Попытайтесь сначала самостоятельно решить заданное уравнение, вспомните чему вас учили на уроке.
Даже если вы ошибетесь в числах, то ничего страшного, ученик имеет право на ошибку, главное правильно мыслить.
С нашим калькулятором уравнений вы с легкостью исправите допущенную в вычислениях ошибку.
Решение уравнений
Данный онлайн-калькулятор предназначен для нахождения корней функции.
- Для решения уравнений вида
ax2+bx+c=0
можно воспользоваться сервисом Дискриминант онлайн. В решении приводятся подробное нахождение дискриминанта, а также корней функции. Результаты оформляются в формате Word. - Для нахождения корней уравнения методами дихотомии, Ньютона и других используйте сервис Решение нелинейных уравнений.
- Для уравнений высших степеней используйте следующий сервис. Например,
x3-3x2+4=0
записываем как x^3-3x^2+4=0.
Примечание: число “пи” (π) записывается как pi; корень квадратный как sqrt, например, sqrt(3)
Более подробно о нахождении корней функции.
Для нахождения нулей функции также можно использовать графический метод, при котором строится график и уже по нему определяется примерное значение x0. Также применим и метод подбора, когда задается определенный диапазон [a;b] поиска корней функции с некоторым шагом Δh. Например в MS Excel для функции ln(x)+x2
с шагом Δh=0.2:
A | B | C | |
1 | x | f(x) | Условия |
2 | 0 | =ln(A2)+A2^2 | =Если(B2=0;”корень найден”;”продолжить”) |
3 | =A2+0,2 | =ln(A3)+A3^2 | =Если(B3=0;”корень найден”;Если((B2<0)*(B3>0)+(B2>0)*(B3<0);”корень найден”;”продолжить”)) |
Пример №1. Красная лента в 4 раза длиннее желтой ленты, а длина желтой ленты короче длины красной на 39 см. Найдите длину каждой ленты.
Решение. Эта задача на составление системы уравнений. Длину красной ленты обозначим за x. Длину желтой ленты обозначим как y.
По условию красная лента в 4 раза длиннее желтой ленты: 4y=x, а длина желтой ленты короче длины красной на 39 см: y=x-39
Имеем систему из двух уравнений:
4y=x
y=x-39
Решаем ее.
1) выразим x=y+39 и подставим в первое уравнение
4y=y+39 или 3y=39
Откуда y=13
x=4*13=52
Ответ: x=52, y=13
Задать свои вопросы или оставить замечания можно внизу страницы в разделе Disqus.
Можно также оставить заявку на помощь в решении своих задач у наших проверенных партнеров (здесь или здесь).
Обычные уравнения по-шагам
Примеры
- Линейные уравнения
-
-5*(3*x - 2)/7 + 4 = 7*x - 4 /9*(x - 3)
-
36/(x + 2) = 20/(x - 2)
-
(x - 14)/(x - 15) = 14/13
-
x^2 - x + 9 = (x + 2)^2
- Квадратные уравнения
-
x^2 - x + 5/3 = 0
-
10/(x - 4) + 4/(x - 10) = 2
- Тригонометрические уравнения
-
sin(2*x/5 + pi/3) = -1/2
-
cos(x) - sin(x) = 1
- уравнения с модулем
-
|x + 1| + |x^2 - 7| = 20
- Логарифмические уравнения
-
log(x^2 - 5) - log(x) = 7
- Показательные уравнения
-
7^(2*x + 1) + 4*7^(x - 1) = 347
- Уравнения с корнями
-
sqrt(x - 1) = x
-
(x - 1)^(1/3) = 4*x
- Кубические и высших степеней уравнения
-
x^3 + 5*x^2 = x - 1
-
x^4 - x^3 + 5*x^2 = 0
- уравнения с численным решением
-
(x - 1)^(1/3) = x^2/tan(x)
-
x - 1 = sin(x)
- Выразить x через y в уравнении
-
x-3y=7
-
2x+y=5
- Решить уравнение с параметром
-
(a^2-1)*x^2 = (8 + 9*a)*x + 1
- Решить уравнение с модулем
-
|x + 1| + |x – 5| = 20
- Решить квадратное уравнение
-
x^2 + 7*x + 12 = 0
- Решить уравнение с дробью
-
sqrt((1 - x) / (1 + x)) = 5
Указанные выше примеры содержат также:
- модуль или абсолютное значение: absolute(x) или |x|
-
квадратные корни sqrt(x),
кубические корни cbrt(x) -
тригонометрические функции:
синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x) - показательные функции и экспоненты exp(x)
-
обратные тригонометрические функции:
арксинус asin(x), арккосинус acos(x), арктангенс atan(x),
арккотангенс acot(x) -
натуральные логарифмы ln(x),
десятичные логарифмы log(x) -
гиперболические функции:
гиперболический синус sh(x), гиперболический косинус ch(x),
гиперболический тангенс и котангенс tanh(x), ctanh(x) -
обратные гиперболические функции:
гиперболический арксинус asinh(x), гиперболический арккосинус acosh(x),
гиперболический арктангенс atanh(x), гиперболический арккотангенс acoth(x) -
другие тригонометрические и гиперболические функции:
секанс sec(x), косеканс csc(x), арксеканс asec(x),
арккосеканс acsc(x), гиперболический секанс sech(x),
гиперболический косеканс csch(x), гиперболический арксеканс asech(x),
гиперболический арккосеканс acsch(x) -
функции округления:
в меньшую сторону floor(x), в большую сторону ceiling(x) -
знак числа:
sign(x) -
для теории вероятности:
функция ошибок erf(x) (интеграл вероятности),
функция Лапласа laplace(x) -
Факториал от x:
x! или factorial(x) - Гамма-функция gamma(x)
- Функция Ламберта LambertW(x)
-
Тригонометрические интегралы: Si(x),
Ci(x),
Shi(x),
Chi(x)
Правила ввода
Можно делать следующие операции
- 2*x
- – умножение
- 3/x
- – деление
- x^2
- – возведение в квадрат
- x^3
- – возведение в куб
- x^5
- – возведение в степень
- x + 7
- – сложение
- x – 6
- – вычитание
- Действительные числа
- вводить в виде 7.5, не 7,5
Постоянные
- pi
- – число Пи
- e
- – основание натурального логарифма
- i
- – комплексное число
- oo
- – символ бесконечности