Как найти корни приведенного квадратного уравнения

Квадра́тное уравне́ние — алгебраическое уравнение второй степени с общим видом

{displaystyle ax^{2}+bx+c=0,;aneq 0,}

в котором x — неизвестное, а коэффициенты a, b и c — вещественные или комплексные числа.

Корень уравнения ax^{2}+bx+c=0 — это значение неизвестного x, обращающее квадратный трёхчлен {displaystyle ax^{2}+bx+c} в ноль, а квадратное уравнение в верное числовое равенство. Также это значение называется корнем самого многочлена {displaystyle ax^{2}+bx+c.}

Элементы квадратного уравнения имеют собственные названия[1]:

Приведённым называют квадратное уравнение, в котором старший коэффициент равен единице[1]. Такое уравнение может быть получено делением всего выражения на старший коэффициент a:

{displaystyle x^{2}+px+q=0,quad p={dfrac {b}{a}},quad q={dfrac {c}{a}}.}

Полным называют такое квадратное уравнение, все коэффициенты которого отличны от нуля.

Неполным называется такое квадратное уравнение, в котором хотя бы один из коэффициентов, кроме старшего (либо второй коэффициент, либо свободный член), равен нулю.

Квадратное уравнение является разрешимым в радикалах, то есть его корни могут быть выражены через коэффициенты в общем виде.

Исторические сведения о квадратных уравнениях[править | править код]

Древний Вавилон[править | править код]

Уже во втором тысячелетии до нашей эры вавилоняне знали, как решать квадратные уравнения[1]. Решение их в Древнем Вавилоне было тесно связано с практическими задачами, в основном такими, как измерение площади земельных участков, земельные работы, связанные с военными нуждами; наличие этих познаний также обусловлено развитием математики и астрономии вообще. Были известны способы решения как полных, так и неполных квадратных уравнений. Приведём примеры квадратных уравнений, решавшихся в Древнем Вавилоне, используя современную алгебраическую запись:

x^{2}+x={frac {3}{4}}; x^{2}-x=14{frac {1}{2}}.

Правила решения квадратных уравнений во многом аналогичны современным, однако в вавилонских текстах не зафиксированы рассуждения, путём которых эти правила были получены.

Индия[править | править код]

Задачи, решаемые с помощью квадратных уравнений, встречаются в трактате по астрономии «Ариабхаттиам», написанным индийским астрономом и математиком Ариабхатой в 499 году нашей эры. Один из первых известных выводов формулы корней квадратного уравнения принадлежит индийскому учёному Брахмагупте (около 598 г.)[1]; Брахмагупта изложил универсальное правило решения квадратного уравнения, приведённого к каноническому виду: {displaystyle ax^{2}+bx=c;} притом предполагалось, что в нём все коэффициенты, кроме a, могут быть отрицательными. Сформулированное учёным правило по своему существу совпадает с современным.

Корни квадратного уравнения на множестве действительных чисел[править | править код]

I способ. Общая формула для вычисления корней с помощью дискриминанта[править | править код]

Дискриминантом квадратного уравнения {displaystyle ax^{2}+bx+c=0} называется величина {displaystyle {mathcal {D}}=b^{2}-4ac}.

Условие {displaystyle {mathcal {D}}>0} {displaystyle {mathcal {D}}=0} {displaystyle {mathcal {D}}<0}
Количество корней Два корня Один корень кратности 2
(другими словами, два равных корня)
Действительных корней нет
Формула {displaystyle x_{1,2}={frac {-bpm {sqrt {mathcal {D}}}}{2a}}}       (1) {displaystyle x=-{frac {b}{2a}}}

Данный метод универсальный, однако не единственный.

II способ. Корни квадратного уравнения при чётном коэффициенте b[править | править код]

Для уравнений вида ax^{2}+2kx+c=0, то есть при чётном b, где

k={frac {1}{2}}b,

вместо формулы (1) для нахождения корней существует возможность использования более простых выражений[1].

Примечание: данные ниже формулы можно получить, подставив в стандартные формулы выражение b = 2k, через несложные преобразования.

Дискриминант Корни
неприведённое приведённое D > 0 неприведённое приведённое
удобнее вычислять значение

четверти дискриминанта:

{frac {D}{4}}=k^{2}-ac

Все необходимые свойства при этом сохраняются.

{frac {D}{4}}=k^{2}-c. x_{1,2}={frac {-kpm {sqrt {k^{2}-ac}}}{a}}. x_{1,2}=-kpm {sqrt {k^{2}-c}}
D = 0 x={frac {-k}{a}} x=-k

III способ. Решение неполных квадратных уравнений[править | править код]

К решению неполных квадратных уравнений практикуется особый подход. Рассматриваются три возможных ситуации.

IV способ. Использование частных соотношений коэффициентов[править | править код]

Существуют частные случаи квадратных уравнений, в которых коэффициенты находятся в соотношениях между собой, позволяющих решать их гораздо проще.

Корни квадратного уравнения, в котором сумма старшего коэффициента и свободного члена равна второму коэффициенту[править | править код]

Если в квадратном уравнении ax^{2}+bx+c=0 сумма первого коэффициента и свободного члена равна второму коэффициенту: a+c=b, то его корнями являются -1 и число, противоположное отношению свободного члена к старшему коэффициенту (-{frac {c}{a}}).

Доказательство

Способ 1. Сначала выясним, действительно ли такое уравнение имеет два корня (в том числе, два совпадающих):

{displaystyle {mathcal {D}}=b^{2}-4ac=(a+c)^{2}-4ac=a^{2}+2ac+c^{2}-4ac=a^{2}-2ac+c^{2}=(a-c)^{2}}.

Да, это так, ведь при любых действительных значениях коэффициентов (a-c)^{2}geqslant 0, а значит и дискриминант неотрицателен. Таким образом, если anot =c, то уравнение имеет два корня, если же a=c, то оно имеет только один корень.
Найдём эти корни:

{displaystyle x_{1,2}={frac {-bpm {sqrt {mathcal {D}}}}{2a}}={frac {-(a+c)pm {sqrt {(a-c)^{2}}}}{2a}}={frac {-a-cpm |a-c|}{2a}}={frac {-a-cpm amp c}{2a}}}.
x_{1}={frac {-a-c-a+c}{2a}}={frac {-2a}{2a}}=-1;
x_{2}={frac {-a-c+a-c}{2a}}={frac {-2c}{2a}}=-{frac {c}{a}}.

В частности, если a=c, то корень будет один: -1.

Способ 2.

Геометрическая интерпретация: парабола, заданная аналитически указанной формулой, пересекает ось x в двух точках, абсциссами которых и являются корни, хотя бы один из которых равен -1

Используем геометрическую модель корней квадратного уравнения: их мы будем рассматривать как точки пересечения параболы y=ax^{2}+bx+c с осью абсцисс. Всякая парабола вне зависимости от задающего её выражения является фигурой, симметричной относительно прямой x=-{frac {b}{2a}}. Это означает, что отрезок всякой перпендикулярной к ней прямой, отсекаемый на ней параболой, делится осью симметрии пополам. Сказанное, в частности, верно и для оси абсцисс. Таким образом, для всякой параболы справедливо одно из следующих равенств: -{frac {b}{2a}}+rho (x_{1};-{frac {b}{2a}})=x_{2} (если x_{1}<x_{2}) или -{frac {b}{2a}}-rho (-{frac {b}{2a}};x_{1})=x_{2} (если верно неравенство противоположного смысла). Используя тождество rho (a;b)=|a-b|, выражающее геометрический смысл модуля, а также принимая, что x_{1}=-1 (это можно доказать, подставив равенство в квадратный трёхчлен: acdot (-1)^{2}+bcdot (-1)+c=(a+c)-b=0, поэтому -1 – корень такого уравнения) , приходим к следующему равенству: -{frac {b}{2a}}pm |-{frac {b}{2a}}-(-1)|=x_{2}. Если учитывать, что разность в том случае, когда мы прибавляем модуль, всегда положительна, а в том, когда отнимаем – отрицательна, что говорит о тождественности этих случаев, и, к тому же, помня о равенстве b-a=c, раскрываем модуль: x_{2}=-{frac {b}{2a}}-{frac {b}{2a}}+1=-{frac {2b-2a}{2a}}=-{frac {b-a}{a}}=-{frac {c}{a}}. Во втором случае,совершив аналогичные преобразования, придём к тому же результату, ч.т.д.

Отсюда следует, что перед решением какого-либо квадратного уравнения целесообразна проверка возможности применения к нему этой теоремы: сравнить сумму старшего коэффициента и свободного члена со вторым коэффициентом.

Корни квадратного уравнения, сумма всех коэффициентов которого равна нулю[править | править код]

Если в квадратном уравнении сумма всех его коэффициентов равна нулю (a+b+c=0), то корнями такого уравнения являются 1 и отношение свободного члена к старшему коэффициенту ({frac {c}{a}}).

Доказательство

Способ 1. Прежде всего заметим, что из равенства a+b+c=0 следует, что b=-(a+c)
Установим количество корней:

{displaystyle {mathcal {D}}=b^{2}-4ac=(-(a+c))^{2}-4ac=a^{2}+2ac+c^{2}-4ac=a^{2}-2ac+c^{2}=(a-c)^{2}.}

При любых значениях коэффициентов уравнение имеет хотя бы один корень: действительно, ведь при любых значениях коэффициентов (a-c)^{2}geqslant 0, а значит и дискриминант неотрицателен. Обратите внимание, что если anot =c, то уравнение имеет два корня, если же a=c, то только один.
Найдём эти корни:

{displaystyle x_{1,2}={frac {-bpm {sqrt {mathcal {D}}}}{2a}}={frac {a+cpm {sqrt {(a-c)^{2}}}}{2a}}={frac {a+cpm |a-c|}{2a}}={frac {a+cpm amp c}{2a}};}
x_{1}={frac {a+c+a-c}{2a}}={frac {2a}{2a}}=1;
x_{2}={frac {a+c-a+c}{2a}}={frac {2c}{2a}}={frac {c}{a}},

что и требовалось доказать.

В частности, если a=c, то уравнение имеет только один корень, которым является число 1.

Способ 2. Пользуясь данным выше определением корня квадратного уравнения, обнаруживаем путём подстановки, что число 1 является таковым в рассматриваемом случае: acdot 1^{2}+bcdot 1+c=0 – верное равенство, следовательно, единица – корень такого вида квадратных уравнений. Далее, по теореме Виета находим второй корень: согласно этой теореме, произведение корней уравнения равно числу, равному отношению свободного члена к старшему коэффициенту – x_{1}x_{2}={frac {c}{a}}Rightarrow x_{2}={frac {c}{ax_{1}}}={frac {c}{acdot 1}}={frac {c}{a}}, ч.т.д.

Отсюда следует, что перед решением уравнения стандартными методами целесообразна проверка применимости к нему этой теоремы, а именно сложение всех коэффициентов данного уравнения и установление, не равна ли нулю эта сумма.

V способ. Разложение квадратного трёхчлена на линейные множители[править | править код]

Если трёхчлен вида {displaystyle ax^{2}+bx+c~(anot =0)} удастся каким-либо образом представить в качестве произведения линейных множителей (kx+m)(lx+n)=0, то можно найти корни уравнения ax^{2}+bx+c=0 — ими будут -{frac {m}{k}} и -{frac {n}{l}}, действительно, ведь {displaystyle (kx+m)(lx+n)=0Longleftrightarrow {biggl [}{begin{array}{lcl}kx+m=0,\lx+n=0,end{array}}} а решив указанные линейные уравнения, получим вышеописанное. Квадратный трёхчлен не всегда раскладывается на линейные множители с действительными коэффициентами: это возможно, если соответствующее ему уравнение имеет действительные корни.

Рассматриваются некоторые частные случаи.

Использование формулы квадрата суммы (разности)[править | править код]

Если квадратный трёхчлен имеет вид (ax)^{2}+2abx+b^{2}, то применив к нему названную формулу, можно разложить его на линейные множители и, значит, найти корни:

{displaystyle (ax)^{2}+2abx+b^{2}=(ax+b)^{2},}
{displaystyle (ax+b)^{2}=0,}
x=-{frac {b}{a}}.

Выделение полного квадрата суммы (разности)[править | править код]

Также названную формулу применяют, пользуясь методом, получившим названия «выделение полного квадрата суммы (разности)». Применительно к приведённому квадратному уравнению с введёнными ранее обозначениями, это означает следующее:

  1. прибавляют и отнимают одно и то же число:
    x^{2}+px+({frac {p}{2}})^{2}-({frac {p}{2}})^{2}+q=0;.
  2. применяют формулу к полученному выражению, переносят вычитаемое и свободный член в правую часть:
    {displaystyle (x^{2}+2{frac {p}{2}}x+({frac {p}{2}})^{2})+(-({frac {p}{2}})^{2}+q)=0,}
    (x+{frac {p}{2}})^{2}={frac {p^{2}}{4}}-q;
  3. извлекают из левой и правой частей уравнения квадратный корень и выражают переменную:
    {displaystyle x+{frac {p}{2}}=pm {sqrt {{frac {p^{2}}{4}}-q}},}
    x_{1,2}=-{frac {p}{2}}pm {sqrt {{frac {p^{2}}{4}}-q}}.

Примечание: данная формула совпадает с предлагаемой в разделе «Корни приведённого квадратного уравнения», которую, в свою очередь, можно получить из общей формулы (1) путём подстановки равенства a = 1. Этот факт не просто совпадение: описанным методом, произведя, правда, некоторые дополнительные рассуждения, можно вывести и общую формулу, а также доказать свойства дискриминанта.

VI способ. Использование прямой и обратной теоремы Виета[править | править код]

Прямая теорема Виета (см. ниже) и обратная ей теорема позволяют решать приведённые квадратные уравнения устно, не прибегая к вычислениям по формуле (1).

Согласно обратной теореме, всякая пара чисел (число) x_{1},x_{2}, будучи решением системы уравнений

{displaystyle {begin{cases}x_{1}+x_{2}=-p,\x_{1}x_{2}=q,end{cases}}}
являются корнями уравнения x^{2}+px+q=0.

Подобрать устно числа, удовлетворяющие этим уравнениям, поможет прямая теорема. С её помощью можно определить знаки корней, не зная сами корни. Для этого следует руководствоваться правилом:

1) если свободный член отрицателен, то корни имеют различный знак, и наибольший по модулю из корней — знак, противоположный знаку второго коэффициента уравнения;
2) если свободный член положителен, то оба корня обладают одинаковым знаком, и это — знак, противоположный знаку второго коэффициента.

VII способ. Метод «переброски»[править | править код]

По своей сущности метод «переброски» является просто модификацией теоремы Виета.

Метод «переброски» — это сведение уравнения, которое нельзя привести так, чтобы все коэффициенты остались целыми, к приведённому уравнению с целыми коэффициентами:

1) умножаем обе части на старший коэффициент:
{displaystyle ax^{2}+bx+c=0quad mid ;cdot a,}
{displaystyle (ax)^{2}+b(ax)+ac=0;}
2) заменяем {displaystyle y=axcolon }
{displaystyle y^{2}+by+ac=0.}

Далее решаем уравнение относительно y по методу, описанному выше, и находим x = y/a.

Как можно заметить, в методе «переброски» старший коэффициент как раз «перебрасывается» к свободному члену.

Графическое решение квадратного уравнения[править | править код]

Квадратное уравнение.gif

Графиком квадратичной функции является парабола. Решениями (корнями) квадратного уравнения называют абсциссы точек пересечения параболы с осью абсцисс. Если парабола, описываемая квадратичной функцией, не пересекается с осью абсцисс, уравнение не имеет вещественных корней. Если парабола пересекается с осью абсцисс в одной точке (в вершине параболы), уравнение имеет один вещественный корень (также говорят, что уравнение имеет два совпадающих корня). Если парабола пересекает ось абсцисс в двух точках, уравнение имеет два вещественных корня (см. изображение справа.)

Если коэффициент a положительный, ветви параболы направлены вверх и наоборот. Если коэффициент b положительный (при положительном a, при отрицательном наоборот), то вершина параболы лежит в левой полуплоскости и наоборот.

Графический способ решения квадратных уравнений[править | править код]

Помимо универсального способа, описанного выше, существует так называемый графический способ. В общем виде этот способ решения рационального уравнения вида f(x)=g(x) заключается в следующем: в одной системе координат строят графики функций y=f(x) и y=g(x) и находят абсциссы общих точек этих графиков; найденные числа и будут корнями уравнения.

Есть всего пять основных способов графического решения квадратных уравнений.

Приём I[править | править код]

Для решения квадратного уравнения ax^{2}+bx+c=0 строится график функции y=ax^{2}+bx+c
и отыскиваются абсциссы точек пересечения такого графика с осью x.

Приём II[править | править код]

Для решения того же уравнения этим приёмом уравнение преобразуют к виду ax^{2}=-bx-c
и строят в одной системе координат графики квадратичной функции y=ax^{2} и линейной функции y=-bx-c, затем находят абсциссу точек их пересечения.

Приём III[править | править код]

Данный приём подразумевает преобразование исходного уравнения к виду a(x+l)^{2}+m=0, используя метод выделения полного квадрата суммы (разности) и затем в a(x+l)^{2}=-m. После этого строятся график функции y=a(x+l)^{2} (им является график функции y=ax^{2}, смещённый на |l| единиц масштаба вправо или влево в зависимости от знака) и прямую y=-m, параллельную оси абсцисс. Корнями уравнения будут абсциссы точек пересечения параболы и прямой.

Приём IV[править | править код]

Квадратное уравнение преобразуют к виду ax^{2}+c=-bx, строят график функции y=ax^{2}+c (им является график функции y=ax^{2}, смещённый на c единиц масштаба вверх, если этот коэффициент положителен, либо вниз, если он отрицателен), и y=-bx, находят абсциссы их общих точек.

Приём V[править | править код]

Квадратное уравнение преобразуют к особому виду:

{displaystyle {dfrac {ax^{2}}{x}}+{dfrac {bx}{x}}+{dfrac {c}{x}}={dfrac {0}{x}};}
{displaystyle ax+b+{dfrac {c}{x}}=0;}

затем

{displaystyle ax+b=-{dfrac {c}{x}}.}

Совершив преобразования, строят графики линейной функции y=ax+b и обратной пропорциональности y=-{frac {c}{x}}; (cnot =0), отыскивают абсциссы точек пересечения этих графиков. Этот приём имеет границу применимости: если c=0, то приём не используется.

Решение квадратных уравнений с помощью циркуля и линейки[править | править код]

Описанные выше приёмы графического решения имеют существенные недостатки: они достаточно трудоёмки, при этом точность построения кривых — парабол и гипербол — низка. Указанные проблемы не присущи предлагаемому ниже методу, предполагающему относительно более точные построения циркулем и линейкой.

Чтобы произвести такое решение, нужно выполнить нижеследующую последовательность действий.

  1. Построить в системе координат Oxy окружность с центром в точке {displaystyle Sleft(-{dfrac {b}{2a}};{dfrac {a+c}{2a}}right)}, пересекающую ось Oy в точке {displaystyle Cleft(0;,1right)}.
  2. Далее возможны три случая:

Доказательство

Иллюстрация к доказательству.

Рассматриваемый способ предполагает построение окружности, пересекающей ось ординат в точках (точке), абсциссы которых являются корнями (или корнем) решаемого уравнения. Как нужно строить такую окружность? Предположим, что она уже построена. Окружность определяется однозначно заданием трёх своих точек. Пусть в случае, если корня два, это будут точки A(x_{1};0),B(x_{2};0),C(0;1), где x_{1},x_{2}, естественно, действительные корни квадратного уравнения (подчёркиваем: если они имеются). Найдём координаты центра такой окружности. Для этого докажем, что эта окружность проходит через точку D(0;{frac {c}{a}}). Действительно, согласно теореме о секущих, в принятых обозначениях выполняется равенство OAcdot OB=OCcdot OD (см рисунок). Преобразовывая это выражение, получаем величину отрезка OD, которой и определяется искомая ордината точки D: {displaystyle OD={dfrac {OAcdot OB}{OC}}={frac {x_{1}x_{2}}{1}}={frac {c}{a}}} (в последнем преобразовании использована теорема Виета (см. ниже в одноимённом разделе)). Если же корень один, то есть ось абсцисс будет касательной к такой окружности, и окружность пересекает ось y в точке с ординатой 1, то она обязательно пересечёт её и в точке с указанной выше ординатой (в частности, если 1=c/a, это могут быть совпадающие точки), что доказывается аналогично с использованием уже теоремы о секущей и касательной, являющаяся частным случаем теоремы о секущих. В первом случае ({displaystyle {dfrac {c}{a}}not =1}), определяющими будут точка касания, точка оси y с ординатой 1, и её же точка с ординатой {displaystyle {dfrac {c}{a}}}. Если c/a и 1 – совпадающие точки, а корня два, определяющими будут эта точка и точки пересечения с осью абсцисс. В случае, когда (1=c/a) и корень один, указанных сведений достаточно для доказательства, так как такая окружность может быть только одна – её центром будет вершина квадрата, образуемого отрезками касательных и перпендикулярами, а радиус – стороне этого квадрата, составляющей 1. Пускай S – центр окружности, имеющей с осью абсцисс две общие точки. Найдём его координаты: для этого опустим от этой точки перпендикуляры к координатным осям. Концы этих перпендикуляров будут серединами отрезков AB и CD – ведь треугольники ASB и CSD равнобедренные, так как в них AS=BS=CS=DS как радиусы одной окружности, следовательно, высоты в них, проведённые к основаниям, также являются и медианами. Найдём координаты середин названных отрезков. Так как парабола симметрична относительно прямой {displaystyle x=-{dfrac {b}{2a}}}, то точка этой прямой с такой же абсциссой будет являться серединой отрезка AB. Следовательно, абсцисса точки S равна этому числу. В случае же, если уравнение имеет один корень, то ось x является касательной по отношению к окружности,поэтому, согласно её свойству, её радиус перпендикулярен оси, следовательно, и в этом случае указанное число – абсцисса центра. Её ординату найдём так: {displaystyle {dfrac {CD}{2}}={dfrac {OC+(OC+CD)}{2}}={dfrac {OC+OD}{2}}={dfrac {1+{dfrac {c}{a}}}{2}}={dfrac {a+c}{2a}}}. В третьем из возможных случаев, когда ca=1 (и, значит, a=c), то {displaystyle {dfrac {c}{a}}=1={dfrac {2a}{2a}}={dfrac {a+c}{2a}}}.

Итак, нами найдены необходимые для построения данные. Действительно, если мы построим окружность с центром в точке {displaystyle S(-{dfrac {b}{2a}};{dfrac {c+a}{2a}})}, проходящую через точку C(0;1), то она, в случаях, когда уравнение имеет действительные корни, пересечёт ось x в точках, абсциссы которых есть эти корни. Причём, если длина радиуса больше длины перпендикуляра к оси Ox, то уравнение имеет два корня (предположив обратное, мы бы получили противоречие с доказанным выше), если длины равны, то один (по той же причине), если же длина радиуса меньше длины перпендикуляра, то окружность не имеет общих точек с осью x, следовательно, и действительных корней у уравнения нет (доказывается тоже от противного: если корни есть, то окружность, проходящая через A, B, C совпадает с данной, и поэтому пересекает ось, однако она не должна пересекать ось абсцисс по условию, значит, предположение неверно).

Корни квадратного уравнения на множестве комплексных чисел[править | править код]

Уравнение с действительными коэффициентами[править | править код]

Квадратное уравнение с вещественными коэффициентами a,~b,~c всегда имеет с учётом кратности два комплексных корня, о чём гласит основная теорема алгебры. При этом, в случае неотрицательного дискриминанта корни будут вещественными, а в случае отрицательного — комплексно-сопряжёнными:

Уравнение с комплексными коэффициентами[править | править код]

В комплексном случае квадратное уравнение решается по той же формуле (1) и указанным выше её вариантам, но различимыми являются только два случая: нулевого дискриминанта (один двукратный корень) и ненулевого (два корня единичной кратности).

Корни приведённого квадратного уравнения[править | править код]

Квадратное уравнение вида x^{2}+px+q=0, в котором старший коэффициент a равен единице, называют приведённым. В этом случае формула для корней (1) упрощается до

x_{1,2}=-{frac {p}{2}}pm {sqrt {left({frac {p}{2}}right)^{2}-q}}.

Мнемонические правила:

  • Из «Радионяни»:

«Минус» напишем сначала,
Рядом с ним p пополам,
«Плюс-минус» знак радикала,
С детства знакомого нам.
Ну, а под корнем, приятель,
Сводится всё к пустяку:
p пополам и в квадрате
Минус прекрасное[2] q.

  • Из «Радионяни» (второй вариант):

p, со знаком взяв обратным,
На два мы его разделим,
И от корня аккуратно
Знаком «минус-плюс» отделим.
А под корнем очень кстати
Половина p в квадрате
Минус q — и вот решенья,
То есть корни уравненья.

  • Из «Радионяни» (третий вариант на мотив Подмосковных вечеров):

Чтобы x найти к половине p,

Взятой с минусом не забудь,
Радикал приставь с плюсом минусом,
Аккуратно, не как-нибудь.
А под ним квадрат половины p,

Ты, убавь на q и конец,
Будет формула приведенная,
Рассуждений твоих венец.
Будет формула приведенная,
Рассуждений твоих венец.

Теорема Виета [3][править | править код]

Формулировка для приведённого квадратного уравнения[править | править код]

Сумма корней приведённого квадратного уравнения x^{2}+px+q=0 (вещественных или комплексных) равна второму коэффициенту p, взятому с противоположным знаком, а произведение этих корней — свободному члену q:

x_{1}+x_{2}=-p,quad x_{1}x_{2}=q.

С его помощью приведённые уравнения можно решать устно:

Для неприведённого квадратного уравнения[править | править код]

В общем случае, то есть для неприведённого квадратного уравнения {displaystyle ax^{2}+bx+c=0colon }

{displaystyle {begin{cases}x_{1}+x_{2}=-b/a,\x_{1}x_{2}=c/a.end{cases}}}

На практике (следуя методу «переброски») для вычисления корней применяется модификация теорема Виета:

{displaystyle {begin{cases}x_{1}+x_{2}=-b/a&mid cdot a,\x_{1}x_{2}=c/a&mid cdot a^{2};end{cases}}}
{displaystyle {begin{cases}(ax_{1})+(ax_{2})=-b,\(ax_{1})(ax_{2})=ac,end{cases}}}

по которой можно устно находить ax1, ax2, а оттуда — сами корни:

Но у некоторых неприведённых уравнений корни можно устно угадать даже по стандартной теореме Виета:

Разложение квадратного трёхчлена на множители и теоремы, следующие из этого[править | править код]

Если известны оба корня квадратного трёхчлена, его можно разложить по формуле

{displaystyle ax^{2}+bx+c=a(x-x_{1})(x-x_{2})} (2)

Доказательство[править | править код]

Для доказательства этого утверждения воспользуемся теоремой Виета. Согласно этой теореме, корни x_{1} и x_{2} квадратного уравнения ax^{2}+bx+c=0 образуют соотношения с его коэффициентами: {displaystyle x_{1}+x_{2}=-{frac {b}{a}}, x_{1}x_{2}={frac {c}{a}}}. Подставим эти соотношения в квадратный трёхчлен:

{displaystyle {begin{alignedat}{2}ax^{2}+bx+c&=a(x^{2}+{frac {b}{a}}x+{frac {c}{a}})=a(x^{2}-(x_{1}+x_{2})x+x_{1}x_{2})=\&=a(x^{2}-x_{1}x-x_{2}x+x_{1}x_{2})=a(x(x-x_{1})-x_{2}(x-x_{1}))\&=a(x-x_{1})(x-x_{2}).end{alignedat}}}

В случае нулевого дискриминанта это соотношение становится одним из вариантов формулы квадрата суммы или разности.

Из формулы (2) имеются два важных следствия:

Следствие 1[править | править код]

Если квадратный трёхчлен раскладывается на линейные множители с вещественными коэффициентами, то он имеет вещественные корни.

Доказательство[править | править код]

Пусть ax^{2}+bx+c=(kx+m)(nx+l). Тогда, переписав это разложение, получим:

(kx+m)(nx+l)=k(x+{frac {m}{k}})n(x+{frac {l}{n}})=kn(x-(-{frac {m}{k}}))(x-(-{frac {l}{n}})).

Сопоставив полученное выражение с формулой (2), находим, что корнями такого трёхчлена являются -{frac {m}{k}} и -{frac {l}{n}}. Так как коэффициенты вещественны, то и числа, противоположные их отношениям также являются элементами множества mathbb {R} .

Следствие 2[править | править код]

Если квадратный трёхчлен не имеет вещественных корней, то он не раскладывается на линейные множители с вещественными коэффициентами.

Доказательство[править | править код]

Действительно, если мы предположим противное (что такой трёхчлен раскладывается на линейные множители), то, согласно следствию 1, он имеет корни в множестве mathbb {R} , что противоречит условию, а потому наше предположение неверно, и такой трёхчлен не раскладывается на линейные множители.

Для квадратичной функции:
f (x) = x2x − 2 = (x + 1)(x − 2) действительной переменной x, x — координаты точки, где график пересекает ось абсцисс, x = −1 и x = 2, являются решениями квадратного уравнения: x2x − 2 = 0.

Уравнения, сводящиеся к квадратным[править | править код]

Алгебраические[править | править код]

Уравнение вида acdot f^{2}(x)+bcdot f(x)+c=0 является уравнением, сводящимся к квадратному.

В общем случае оно решается методом введения новой переменной, то есть заменой {displaystyle f(x)=t,~tin {mathcal {E}}(f),} где {mathcal {E}} — множество значений функции f, c последующим решением квадратного уравнения acdot t^{2}+bcdot t+c=0.

Также при решении можно обойтись без замены, решив совокупность двух уравнений:

f(x)={frac {-b-{sqrt {b^{2}-4cdot acdot c}}}{2a}} и
f(x)={frac {-b+{sqrt {b^{2}-4cdot acdot c}}}{2a}}

К примеру, если f(x)=x^{2}, то уравнение принимает вид:

{displaystyle ax^{4}+bx^{2}+c=0.}

Такое уравнение 4-й степени называется биквадратным[4][1].

С помощью замены

y=x+{dfrac {k}{x}}

к квадратному уравнению сводится уравнение

ax^{4}+bx^{3}+cx^{2}+kbx+k^{2}a=0,

известное как возвратное или обобщённо-симметрическое уравнение[1].

Дифференциальные[править | править код]

Линейное однородное дифференциальное уравнение с постоянными коэффициентами второго порядка

y''+py'+qy=0

подстановкой y=e^{kx} сводится к характеристическому квадратному уравнению:

k^{2}+pk+q=0

Если решения этого уравнения k_{1} и k_{2} не равны друг другу, то общее решение имеет вид:

y=Ae^{k_{1}x}+Be^{k_{2}x}, где A и B — произвольные постоянные.

Для комплексных корней k_{1,2}=k_{r}pm k_{i}i можно переписать общее решение, используя формулу Эйлера:

{displaystyle y=e^{k_{r}x}left(Acos {k_{i}x}+Bsin {k_{i}x}right)=Ce^{k_{r}x}cos(k_{i}x+varphi ),}

где A, B, C, φ — любые постоянные. Если решения характеристического уравнения совпадают k_{1}=k_{2}=k, общее решение записывается в виде:

y=Axe^{kx}+Be^{kx}

Уравнения такого типа часто встречаются в самых разнообразных задачах математики и физики, например, в теории колебаний или теории цепей переменного тока.

Примечания[править | править код]

Литература[править | править код]

  • Квадратное уравнение; Квадратный трёхчлен // Энциклопедический словарь юного математика / Сост. А. П. Савин. — М.: Педагогика, 1985. — С. 133-136. — 352 с.

Ссылки[править | править код]

  • Weisstein, Eric W. Quadratic Equation (англ.) на сайте Wolfram MathWorld.
  • Вывод формулы корней полного квадратного уравнения. Решение приведённых квадратных уравнений и уравнений с чётным вторым коэффициентом Архивная копия от 28 января 2016 на Wayback Machine / Фестиваль педагогических идей «Открытый урок».
  • Математические методы
  • Если b = 0, то квадратное уравнение принимает вид ax 2 + 0x+c=0 и оно равносильно ax 2 + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax 2 + bx + 0 = 0, иначе его можно написать как ax 2 + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax 2 = 0.

Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Решение неполных квадратных уравнений

Как мы уже знаем, есть три вида неполных квадратных уравнений:

  • ax 2 = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax 2 + c = 0, при b = 0;
  • ax 2 + bx = 0, при c = 0.

Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.

Как решить уравнение ax 2 = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax 2 = 0.

Уравнение ax 2 = 0 равносильно x 2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x 2 = 0 является нуль, так как 0 2 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax 2 = 0 имеет единственный корень x = 0.

Пример 1. Решить −6x 2 = 0.

  1. Замечаем, что данному уравнению равносильно x 2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

Как решить уравнение ax 2 + с = 0

Обратим внимание на неполные квадратные уравнения вида ax 2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax 2 + c = 0:

  • перенесем c в правую часть: ax 2 = – c,
  • разделим обе части на a: x 2 = – c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а 2 = – c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а 0, то корни уравнения x 2 = – c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а) 2 = – c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а) 2 = – c/а. Ура, больше у этого уравнения нет корней.

Неполное квадратное уравнение ax 2 + c = 0 равносильно уравнению х 2 = -c/a, которое:

  • не имеет корней при — c/а 0.
В двух словах

Пример 1. Найти решение уравнения 8x 2 + 5 = 0.

    Перенесем свободный член в правую часть:

Разделим обе части на 8:

  • В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
  • Ответ: уравнение 8x 2 + 5 = 0 не имеет корней.

    Как решить уравнение ax 2 + bx = 0

    Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

    Неполное квадратное уравнение ax 2 + bx = 0 можно решить методом разложения на множители. Как разложить квадратное уравнение:

    Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

    Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

    Таким образом, неполное квадратное уравнение ax 2 + bx = 0 имеет два корня:

    Пример 1. Решить уравнение 0,5x 2 + 0,125x = 0

  • Это уравнение равносильно х = 0 и 0,5x + 0,125 = 0.
  • Решить линейное уравнение:

    0,5x = 0,125,
    х = 0,125/0,5

  • Значит корни исходного уравнения — 0 и 0,25.
  • Ответ: х = 0 и х = 0,25.

    Как разложить квадратное уравнение

    С помощью теоремы Виета можно получить формулу разложения квадратного трехчлена на множители. Выглядит она так:

    Формула разложения квадратного трехчлена

    Если x1 и x2 — корни квадратного трехчлена ax 2 + bx + c, то справедливо равенство ax 2 + bx + c = a (x − x1) (x − x2).

    Дискриминант: формула корней квадратного уравнения

    Чтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:

    где D = b 2 − 4ac — дискриминант квадратного уравнения.

    Эта запись означает:

    Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться.

    Алгоритм решения квадратных уравнений по формулам корней

    Теперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни.

    В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

    Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:

    • вычислить его значение дискриминанта по формуле D = b 2 −4ac;
    • если дискриминант отрицательный, зафиксировать, что действительных корней нет;
    • если дискриминант равен нулю, вычислить единственный корень уравнения по формуле х = −b/2a;
    • если дискриминант положительный, найти два действительных корня квадратного уравнения по формуле корней

    Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться!

    Примеры решения квадратных уравнений

    Как решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике.

    Пример 1. Решить уравнение −4x 2 + 28x — 49 = 0.

    1. Найдем дискриминант: D = 28 2 — 4(-4)(-49) = 784 — 784 = 0
    2. Так как дискриминант равен нулю, значит это квадратное уравнение имеет единственный корень
    3. Найдем корень

    Ответ: единственный корень 3,5.

    Пример 2. Решить уравнение 54 — 6x 2 = 0.

      Произведем равносильные преобразования. Умножим обе части на −1

    Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 3 и — 3.

    Пример 3. Решить уравнение x 2 — х = 0.

      Преобразуем уравнение так, чтобы появились множители

    Ответ: два корня 0 и 1.

    Пример 4. Решить уравнение x 2 — 10 = 39.

      Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 7 и −7.

    Пример 5. Решить уравнение 3x 2 — 4x+94 = 0.

      Найдем дискриминант по формуле

    D = (-4) 2 — 4 * 3 * 94 = 16 — 1128 = −1112

  • Дискриминант отрицательный, поэтому корней нет.
  • Ответ: корней нет.

    В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся.

    Формула корней для четных вторых коэффициентов

    Рассмотрим частный случай. Формула решения корней квадратного уравнения , где D = b 2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула.

    Например, нам нужно решить квадратное уравнение ax 2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n) 2 – 4ac = 4n 2 — 4ac = 4(n 2 – ac) и подставим в формулу корней:

    2 + 2nx + c = 0″ height=”705″ src=”https://user84060.clients-cdnnow.ru/uploads/5fc11a460e2f8354381151.png” width=”588″>

    Для удобства вычислений обозначим выражение n 2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:

    где D1 = n 2 – ac.

    Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.

    Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:

    • вычислить D1= n 2 – ac;
    • если D1 0, значит можно найти два действительных корня по формуле

    Формула Виета

    Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

    Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

    Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

    Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

    Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

    Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

    Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:

    Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
    2 + 4x + 3 = 0″ height=”215″ src=”https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE” width=”393″>

    Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
    2 + 4x + 3 = 0″ height=”52″ src=”https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG” width=”125″>

    Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
    2 + 4x + 3 = 0″ height=”52″ src=”https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo” width=”112″>

    Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

    Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она:

    Обратная теорема Виета

    Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x 2 + bx + c = 0.

    Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение.

    Пример 1. Решить при помощи теоремы Виета: x 2 − 6x + 8 = 0.

      Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.

    2 − 6x + 8 = 0″ height=”59″ src=”https://user84060.clients-cdnnow.ru/uploads/5fc101ce2e346034751939.png” width=”117″>

    Когда у нас есть эти два равенства, можно подобрать подходящие корни, которые будут удовлетворять обоим равенствам системы.

    Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

    Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам:

    Значит числа 4 и 2 — корни уравнения x 2 − 6x + 8 = 0. p>

    Упрощаем вид квадратных уравнений

    Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.

    Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x 2 — 4 x — 6 = 0, чем 1100x 2 — 400x — 600 = 0.

    Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x 2 — 400x — 600 = 0, просто разделив обе части на 100.

    Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

    Покажем, как это работает на примере 12x 2 – 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x 2 — 7x + 8 = 0. Вот так просто.

    А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения

    умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x 2 + 4x — 18 = 0.

    Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x 2 – 3x + 7 = 0 перейти к решению 2x 2 + 3x — 7 = 0.

    Связь между корнями и коэффициентами

    Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:

    Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.

    Например, можно применить формулы из теоремы Виета:

    Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x 2 – 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3.

    Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:

    Решение квадратных уравнений: формула корней, примеры

    В продолжение темы «Решение уравнений» материал данной статьи познакомит вас с квадратными уравнениями.

    Рассмотрим все подробно: суть и запись квадратного уравнения, зададим сопутствующие термины, разберем схему решения неполных и полных уравнений, познакомимся с формулой корней и дискриминантом, установим связи между корнями и коэффициентами, ну и конечно приведем наглядное решение практических примеров.

    Квадратное уравнение, его виды

    Квадратное уравнение – это уравнение, записанное как a · x 2 + b · x + c = 0 , где x – переменная, a , b и c – некоторые числа, при этом a не есть нуль.

    Зачастую квадратные уравнения также носят название уравнений второй степени, поскольку по сути квадратное уравнение есть алгебраическое уравнение второй степени.

    Приведем пример для иллюстрации заданного определения: 9 · x 2 + 16 · x + 2 = 0 ; 7 , 5 · x 2 + 3 , 1 · x + 0 , 11 = 0 и т.п. – это квадратные уравнения.

    Числа a , b и c – это коэффициенты квадратного уравнения a · x 2 + b · x + c = 0 , при этом коэффициент a носит название первого, или старшего, или коэффициента при x 2 , b – второго коэффициента, или коэффициента при x , а c называют свободным членом.

    К примеру, в квадратном уравнении 6 · x 2 − 2 · x − 11 = 0 старший коэффициент равен 6 , второй коэффициент есть − 2 , а свободный член равен − 11 . Обратим внимание на тот факт, что, когда коэффициенты b и/или c являются отрицательными, то используется краткая форма записи вида 6 · x 2 − 2 · x − 11 = 0 , а не 6 · x 2 + ( − 2 ) · x + ( − 11 ) = 0 .

    Уточним также такой аспект: если коэффициенты a и/или b равны 1 или − 1 , то явного участия в записи квадратного уравнения они могут не принимать, что объясняется особенностями записи указанных числовых коэффициентов. К примеру, в квадратном уравнении y 2 − y + 7 = 0 старший коэффициент равен 1 , а второй коэффициент есть − 1 .

    Приведенные и неприведенные квадратные уравнения

    По значению первого коэффициента квадратные уравнения подразделяют на приведенные и неприведенные.

    Приведенное квадратное уравнение – это квадратное уравнение, где старший коэффициент равен 1 . При иных значениях старшего коэффициента квадратное уравнение является неприведенным.

    Приведем примеры: квадратные уравнения x 2 − 4 · x + 3 = 0 , x 2 − x − 4 5 = 0 являются приведенными, в каждом из которых старший коэффициент равен 1 .

    9 · x 2 − x − 2 = 0 – неприведенное квадратное уравнение, где первый коэффициент отличен от 1 .

    Любое неприведенное квадратное уравнение возможно преобразовать в приведенное уравнение, если разделить обе его части на первый коэффициент (равносильное преобразование). Преобразованное уравнение будет иметь такие же корни, как и заданное неприведенное уравнение или так же не иметь корней вовсе.

    Рассмотрение конкретного примера позволит нам наглядно продемонстрировать выполнение перехода от неприведенного квадратного уравнения к приведенному.

    Задано уравнение 6 · x 2 + 18 · x − 7 = 0 . Необходимо преобразовать исходное уравнение в приведенную форму.

    Решение

    Cогласно указанной выше схеме разделим обе части исходного уравнения на старший коэффициент 6 . Тогда получим: ( 6 · x 2 + 18 · x − 7 ) : 3 = 0 : 3 , и это то же самое, что: ( 6 · x 2 ) : 3 + ( 18 · x ) : 3 − 7 : 3 = 0 и далее: ( 6 : 6 ) · x 2 + ( 18 : 6 ) · x − 7 : 6 = 0 . Отсюда: x 2 + 3 · x – 1 1 6 = 0 . Таким образом, получено уравнение, равносильное заданному.

    Ответ: x 2 + 3 · x – 1 1 6 = 0 .

    Полные и неполные квадратные уравнения

    Обратимся к определению квадратного уравнения. В нем мы уточнили, что a ≠ 0 . Подобное условие необходимо, чтобы уравнение a · x 2 + b · x + c = 0 было именно квадратным, поскольку при a = 0 оно по сути преобразуется в линейное уравнение b · x + c = 0 .

    В случае же, когда коэффициенты b и c равны нулю (что возможно, как по отдельности, так и совместно), квадратное уравнение носит название неполного.

    Неполное квадратное уравнение – такое квадратное уравнение a · x 2 + b · x + c = 0 , где хотя бы один из коэффициентов b и c (или оба) равен нулю.

    Полное квадратное уравнение – квадратное уравнение, в котором все числовые коэффициенты не равны нулю.

    Порассуждаем, почему типам квадратных уравнений даны именно такие названия.

    При b = 0 квадратное уравнение примет вид a · x 2 + 0 · x + c = 0 , что то же самое, что a · x 2 + c = 0 . При c = 0 квадратное уравнение записано как a · x 2 + b · x + 0 = 0 , что равносильно a · x 2 + b · x = 0 . При b = 0 и c = 0 уравнение примет вид a · x 2 = 0 . Уравнения, которые мы получили, отличны от полного квадратного уравнения тем, что в их левых частях не содержится либо слагаемого с переменной x , либо свободного члена, либо обоих сразу. Собственно, этот факт и задал название такому типу уравнений – неполное.

    Например, x 2 + 3 · x + 4 = 0 и − 7 · x 2 − 2 · x + 1 , 3 = 0 – это полные квадратные уравнения; x 2 = 0 , − 5 · x 2 = 0 ; 11 · x 2 + 2 = 0 , − x 2 − 6 · x = 0 – неполные квадратные уравнения.

    Решение неполных квадратных уравнений

    Заданное выше определение дает возможность выделить следующие виды неполных квадратных уравнений:

    • a · x 2 = 0 , такому уравнению соответствуют коэффициенты b = 0 и c = 0 ;
    • a · x 2 + c = 0 при b = 0 ;
    • a · x 2 + b · x = 0 при c = 0 .

    Рассмотрим последовательно решение каждого вида неполного квадратного уравнения.

    Решение уравнения a·x 2 =0

    Как уже было указано выше, такому уравнению отвечают коэффициенты b и c , равные нулю. Уравнение a · x 2 = 0 возможно преобразовать в равносильное ему уравнение x 2 = 0 , которое мы получим, поделив обе части исходного уравнения на число a , не равное нулю. Очевидный факт, что корень уравнения x 2 = 0 это нуль, поскольку 0 2 = 0 . Иных корней это уравнение не имеет, что объяснимо свойствами степени: для любого числа p , не равного нулю, верно неравенство p 2 > 0 , из чего следует, что при p ≠ 0 равенство p 2 = 0 никогда не будет достигнуто.

    Таким образом, для неполного квадратного уравнение a · x 2 = 0 существует единственный корень x = 0 .

    Для примера решим неполное квадратное уравнение − 3 · x 2 = 0 . Ему равносильно уравнение x 2 = 0 , его единственным корнем является x = 0 , тогда и исходное уравнение имеет единственный корень – нуль.

    Кратко решение оформляется так:

    − 3 · x 2 = 0 , x 2 = 0 , x = 0 .

    Решение уравнения a · x 2 + c = 0

    На очереди – решение неполных квадратных уравнений, где b = 0 , c ≠ 0 , то есть уравнений вида a · x 2 + c = 0 . Преобразуем это уравнение, перенеся слагаемое из одной части уравнения в другую, сменив знак на противоположный и разделив обе части уравнения на число, не равное нулю:

    • переносим c в правую часть, что дает уравнение a · x 2 = − c ;
    • делим обе части уравнения на a , получаем в итоге x = – c a .

    Наши преобразования являются равносильными, соответственно полученное уравнение также равносильно исходному, и этот факт дает возможность делать вывод о корнях уравнения. От того, каковы значения a и c зависит значение выражения – c a : оно может иметь знак минус (допустим, если a = 1 и c = 2 , тогда – c a = – 2 1 = – 2 ) или знак плюс (например, если a = − 2 и c = 6 , то – c a = – 6 – 2 = 3 ); оно не равно нулю, поскольку c ≠ 0 . Подробнее остановимся на ситуациях, когда – c a 0 и – c a > 0 .

    В случае, когда – c a 0 , уравнение x 2 = – c a не будет иметь корней. Утверждая это, мы опираемся на то, что квадратом любого числа является число неотрицательное. Из сказанного следует, что при – c a 0 ни для какого числа p равенство p 2 = – c a не может быть верным.

    Все иначе, когда – c a > 0 : вспомним о квадратном корне, и станет очевидно, что корнем уравнения x 2 = – c a будет число – c a , поскольку – c a 2 = – c a . Нетрудно понять, что число – – c a – также корень уравнения x 2 = – c a : действительно, – – c a 2 = – c a .

    Прочих корней уравнение не будет иметь. Мы можем это продемонстрировать, используя метод от противного. Для начала зададим обозначения найденных выше корней как x 1 и − x 1 . Выскажем предположение, что уравнение x 2 = – c a имеет также корень x 2 , который отличается от корней x 1 и − x 1 . Мы знаем, что, подставив в уравнение вместо x его корни, преобразуем уравнение в справедливое числовое равенство.

    Для x 1 и − x 1 запишем: x 1 2 = – c a , а для x 2 – x 2 2 = – c a . Опираясь на свойства числовых равенств, почленно вычтем одно верное равенство из другого, что даст нам: x 1 2 − x 2 2 = 0 . Используем свойства действий с числами, чтобы переписать последнее равенство как ( x 1 − x 2 ) · ( x 1 + x 2 ) = 0 . Известно, что произведение двух чисел есть нуль тогда и только тогда, когда хотя бы одно из чисел является нулем. Из сказанного следует, что x 1 − x 2 = 0 и/или x 1 + x 2 = 0 , что то же самое, x 2 = x 1 и/или x 2 = − x 1 . Возникло очевидное противоречие, ведь вначале было условлено, что корень уравнения x 2 отличается от x 1 и − x 1 . Так, мы доказали, что уравнение не имеет иных корней, кроме x = – c a и x = – – c a .

    Резюмируем все рассуждения выше.

    Неполное квадратное уравнение a · x 2 + c = 0 равносильно уравнению x 2 = – c a , которое:

    • не будет иметь корней при – c a 0 ;
    • будет иметь два корня x = – c a и x = – – c a при – c a > 0 .

    Приведем примеры решения уравнений a · x 2 + c = 0 .

    Задано квадратное уравнение 9 · x 2 + 7 = 0 . Необходимо найти его решение.

    Решение

    Перенесем свободный член в правую часть уравнения, тогда уравнение примет вид 9 · x 2 = − 7 .
    Разделим обе части полученного уравнения на 9 , придем к x 2 = – 7 9 . В правой части мы видим число со знаком минус, что означает: у заданного уравнения нет корней. Тогда и исходное неполное квадратное уравнение 9 · x 2 + 7 = 0 не будет иметь корней.

    Ответ: уравнение 9 · x 2 + 7 = 0 не имеет корней.

    Необходимо решить уравнение − x 2 + 36 = 0 .

    Решение

    Перенесем 36 в правую часть: − x 2 = − 36 .
    Разделим обе части на − 1 , получим x 2 = 36 . В правой части – положительное число, отсюда можно сделать вывод, что x = 36 или x = – 36 .
    Извлечем корень и запишем окончательный итог: неполное квадратное уравнение − x 2 + 36 = 0 имеет два корня x = 6 или x = − 6 .

    Ответ: x = 6 или x = − 6 .

    Решение уравнения a·x 2 +b·x=0

    Разберем третий вид неполных квадратных уравнений, когда c = 0 . Чтобы найти решение неполного квадратного уравнения a · x 2 + b · x = 0 , воспользуемся методом разложения на множители. Разложим на множители многочлен, который находится в левой части уравнения, вынеся за скобки общий множитель x . Этот шаг даст возможность преобразовать исходное неполное квадратное уравнение в равносильное ему x · ( a · x + b ) = 0 . А это уравнение, в свою очередь, равносильно совокупности уравнений x = 0 и a · x + b = 0 . Уравнение a · x + b = 0 линейное, и корень его: x = − b a .

    Таким образом, неполное квадратное уравнение a · x 2 + b · x = 0 будет иметь два корня x = 0 и x = − b a .

    Закрепим материал примером.

    Необходимо найти решение уравнения 2 3 · x 2 – 2 2 7 · x = 0 .

    Решение

    Вынесем x за скобки и получим уравнение x · 2 3 · x – 2 2 7 = 0 . Это уравнение равносильно уравнениям x = 0 и 2 3 · x – 2 2 7 = 0 . Теперь следует решить полученное линейное уравнение: 2 3 · x = 2 2 7 , x = 2 2 7 2 3 .

    Далее осуществим деление смешанного числа на обыкновенную дробь и определяем, что x = 3 3 7 . Таким образом, корни исходного уравнения это: x = 0 и x = 3 3 7 .

    Кратко решение уравнения запишем так:

    2 3 · x 2 – 2 2 7 · x = 0 x · 2 3 · x – 2 2 7 = 0

    x = 0 или 2 3 · x – 2 2 7 = 0

    x = 0 или x = 3 3 7

    Ответ: x = 0 , x = 3 3 7 .

    Дискриминант, формула корней квадратного уравнения

    Для нахождения решения квадратных уравнений существует формула корней:

    x = – b ± D 2 · a , где D = b 2 − 4 · a · c – так называемый дискриминант квадратного уравнения.

    Запись x = – b ± D 2 · a по сути означает, что x 1 = – b + D 2 · a , x 2 = – b – D 2 · a .

    Нелишним будет понимать, как была выведена указанная формула и каким образом ее применять.

    Вывод формулы корней квадратного уравнения

    Пускай перед нами стоит задача решить квадратное уравнение a · x 2 + b · x + c = 0 . Осуществим ряд равносильных преобразований:

    • разделим обе части уравнения на число a, отличное от нуля, получим приведенное квадратное уравнение: x 2 + b a · x + c a = 0 ;
    • выделим полный квадрат в левой части получившегося уравнения:
      x 2 + b a · x + c a = x 2 + 2 · b 2 · a · x + b 2 · a 2 – b 2 · a 2 + c a = = x + b 2 · a 2 – b 2 · a 2 + c a
      После этого уравнения примет вид: x + b 2 · a 2 – b 2 · a 2 + c a = 0 ;
    • теперь возможно сделать перенос двух последних слагаемых в правую часть, сменив знак на противоположный, после чего получаем: x + b 2 · a 2 = b 2 · a 2 – c a ;
    • наконец, преобразуем выражение, записанное в правой части последнего равенства:
      b 2 · a 2 – c a = b 2 4 · a 2 – c a = b 2 4 · a 2 – 4 · a · c 4 · a 2 = b 2 – 4 · a · c 4 · a 2 .

    Таким образом, мы пришли к уравнению x + b 2 · a 2 = b 2 – 4 · a · c 4 · a 2 , равносильному исходному уравнению a · x 2 + b · x + c = 0 .

    Решение подобных уравнений мы разбирали в предыдущих пунктах (решение неполных квадратных уравнений). Уже полученный опыт дает возможность сделать вывод касательно корней уравнения x + b 2 · a 2 = b 2 – 4 · a · c 4 · a 2 :

    • при b 2 – 4 · a · c 4 · a 2 0 уравнение не имеет действительных решений;
    • при b 2 – 4 · a · c 4 · a 2 = 0 уравнение имеет вид x + b 2 · a 2 = 0 , тогда x + b 2 · a = 0 .

    Отсюда очевиден единственный корень x = – b 2 · a ;

    • при b 2 – 4 · a · c 4 · a 2 > 0 верным будет: x + b 2 · a = b 2 – 4 · a · c 4 · a 2 или x = b 2 · a – b 2 – 4 · a · c 4 · a 2 , что то же самое, что x + – b 2 · a = b 2 – 4 · a · c 4 · a 2 или x = – b 2 · a – b 2 – 4 · a · c 4 · a 2 , т.е. уравнение имеет два корня.

    Возможно сделать вывод, что наличие или отсутствие корней уравнения x + b 2 · a 2 = b 2 – 4 · a · c 4 · a 2 (а значит и исходного уравнения) зависит от знака выражения b 2 – 4 · a · c 4 · a 2 , записанного в правой части. А знак этого выражения задается знаком числителя, (знаменатель 4 · a 2 всегда будет положителен), то есть, знаком выражения b 2 − 4 · a · c . Этому выражению b 2 − 4 · a · c дано название – дискриминант квадратного уравнения и определена в качестве его обозначения буква D . Здесь можно записать суть дискриминанта – по его значению и знаку делают вывод, будет ли квадратное уравнение иметь действительные корни, и, если будет, то каково количество корней – один или два.

    Вернемся к уравнению x + b 2 · a 2 = b 2 – 4 · a · c 4 · a 2 . Перепишем его, используя обозначение дискриминанта: x + b 2 · a 2 = D 4 · a 2 .

    Вновь сформулируем выводы:

    • при D 0 уравнение не имеет действительных корней;
    • при D = 0 уравнение имеет единственный корень x = – b 2 · a ;
    • при D > 0 уравнение имеет два корня: x = – b 2 · a + D 4 · a 2 или x = – b 2 · a – D 4 · a 2 . Эти корни на основе свойства радикалов возможно записать в виде: x = – b 2 · a + D 2 · a или – b 2 · a – D 2 · a . А, когда раскроем модули и приведем дроби к общему знаменателю, получим: x = – b + D 2 · a , x = – b – D 2 · a .

    Так, результатом наших рассуждений стало выведение формулы корней квадратного уравнения:

    x = – b + D 2 · a , x = – b – D 2 · a , дискриминант D вычисляется по формуле D = b 2 − 4 · a · c .

    Данные формулы дают возможность при дискриминанте больше нуля определить оба действительных корня. Когда дискриминант равен нулю, применение обеих формул даст один и тот же корень, как единственное решение квадратного уравнения. В случае, когда дискриминант отрицателен, попытавшись использовать формулу корня квадратного уравнения, мы столкнемся с необходимостью извлечь квадратный корень из отрицательного числа, что выведет нас за рамки действительных чисел. При отрицательном дискриминанте у квадратного уравнения не будет действительных корней, но возможна пара комплексно сопряженных корней, определяемых теми же полученными нами формулами корней.

    Алгоритм решения квадратных уравнений по формулам корней

    Решить квадратное уравнение возможно, сразу задействуя формулу корней, но в основном так поступают при необходимости найти комплексные корни.

    В основной же массе случаев обычно подразумевается поиск не комплексных, а действительных корней квадратного уравнения. Тогда оптимально перед тем, как использовать формулы корней квадратного уравнения, сначала определить дискриминант и удостовериться, что он не является отрицательным (в ином случае сделаем вывод, что у уравнения нет действительных корней), а после приступить к вычислению значения корней.

    Рассуждения выше дают возможность сформулировать алгоритм решения квадратного уравнения.

    Чтобы решить квадратное уравнение a · x 2 + b · x + c = 0 , необходимо:

    • по формуле D = b 2 − 4 · a · c найти значение дискриминанта;
    • при D 0 сделать вывод об отсутствии у квадратного уравнения действительных корней;
    • при D = 0 найти единственный корень уравнения по формуле x = – b 2 · a ;
    • при D > 0 определить два действительных корня квадратного уравнения по формуле x = – b ± D 2 · a .

    Отметим, что, когда дискриминант есть нуль, можно использовать формулу x = – b ± D 2 · a , она даст тот же результат, что и формула x = – b 2 · a .

    Примеры решения квадратных уравнений

    Приведем решение примеров при различных значениях дискриминанта.

    Необходимо найти корни уравнения x 2 + 2 · x − 6 = 0 .

    Решение

    Запишем числовые коэффициенты квадратного уравнения: a = 1 , b = 2 и c = − 6 . Далее действуем по алгоритму, т.е. приступим к вычислению дискриминанта, для чего подставим коэффициенты a , b и c в формулу дискриминанта: D = b 2 − 4 · a · c = 2 2 − 4 · 1 · ( − 6 ) = 4 + 24 = 28 .

    Итак, мы получили D > 0 , а это означает, что исходное уравнение будет иметь два действительных корня.
    Для их нахождения используем формулу корня x = – b ± D 2 · a и, подставив соответствующие значения, получим: x = – 2 ± 28 2 · 1 . Упростим полученное выражение, вынеся множитель за знак корня с последующим сокращением дроби:

    x = – 2 + 2 · 7 2 или x = – 2 – 2 · 7 2

    x = – 1 + 7 или x = – 1 – 7

    Ответ: x = – 1 + 7 ​​​​​​, x = – 1 – 7 .

    Необходимо решить квадратное уравнение − 4 · x 2 + 28 · x − 49 = 0 .

    Решение

    Определим дискриминант: D = 28 2 − 4 · ( − 4 ) · ( − 49 ) = 784 − 784 = 0 . При таком значении дискриминанта исходное уравнение будет иметь лишь один корень, определяемый по формуле x = – b 2 · a .

    x = – 28 2 · ( – 4 ) x = 3 , 5

    Ответ: x = 3 , 5 .

    Необходимо решить уравнение 5 · y 2 + 6 · y + 2 = 0

    Решение

    Числовые коэффициенты этого уравнения будут: a = 5 , b = 6 и c = 2 . Используем эти значения для нахождения дискриминанта: D = b 2 − 4 · a · c = 6 2 − 4 · 5 · 2 = 36 − 40 = − 4 . Вычисленный дискриминант отрицателен, таким образом, исходное квадратное уравнение не имеет действительных корней.

    В случае, когда стоит задача указать комплексные корни, применим формулу корней, выполняя действия с комплексными числами:

    x = – 6 + 2 · i 10 или x = – 6 – 2 · i 10 ,

    x = – 3 5 + 1 5 · i или x = – 3 5 – 1 5 · i .

    Ответ: действительные корни отсутствуют; комплексные корни следующие: – 3 5 + 1 5 · i , – 3 5 – 1 5 · i .

    В школьной программе стандартно нет требования искать комплексные корни, поэтому, если в ходе решения дискриминант определен как отрицательный, сразу записывается ответ, что действительных корней нет.

    Формула корней для четных вторых коэффициентов

    Формула корней x = – b ± D 2 · a ( D = b 2 − 4 · a · c ) дает возможность получить еще одну формулу, более компактную, позволяющую находить решения квадратных уравнений с четным коэффициентом при x (либо с коэффициентом вида 2 · n , к примеру, 2 · 3 или 14 · ln 5 = 2 · 7 · ln 5 ). Покажем, как выводится эта формула.

    Пусть перед нами стоит задача найти решение квадратного уравнения a · x 2 + 2 · n · x + c = 0 . Действуем по алгоритму: определяем дискриминант D = ( 2 · n ) 2 − 4 · a · c = 4 · n 2 − 4 · a · c = 4 · ( n 2 − a · c ) , а затем используем формулу корней:

    x = – 2 · n ± D 2 · a , x = – 2 · n ± 4 · n 2 – a · c 2 · a , x = – 2 · n ± 2 n 2 – a · c 2 · a , x = – n ± n 2 – a · c a .

    Пусть выражение n 2 − a · c будет обозначено как D 1 (иногда его обозначают D ‘ ). Тогда формула корней рассматриваемого квадратного уравнения со вторым коэффициентом 2 · n примет вид:

    x = – n ± D 1 a , где D 1 = n 2 − a · c .

    Легко увидеть, что что D = 4 · D 1 , или D 1 = D 4 . Иначе говоря, D 1 – это четверть дискриминанта. Очевидно, что знак D 1 такой же, как знак D , а значит знак D 1 также может служить индикатором наличия или отсутствия корней квадратного уравнения.

    Таким образом, чтобы найти решение квадратного уравнения со вторым коэффициентом 2 · n , необходимо:

    • найти D 1 = n 2 − a · c ;
    • при D 1 0 сделать вывод, что действительных корней нет;
    • при D 1 = 0 определить единственный корень уравнения по формуле x = – n a ;
    • при D 1 > 0 определить два действительных корня по формуле x = – n ± D 1 a .

    Необходимо решить квадратное уравнение 5 · x 2 − 6 · x − 32 = 0 .

    Решение

    Второй коэффициент заданного уравнения можем представить как 2 · ( − 3 ) . Тогда перепишем заданное квадратное уравнение как 5 · x 2 + 2 · ( − 3 ) · x − 32 = 0 , где a = 5 , n = − 3 и c = − 32 .

    Вычислим четвертую часть дискриминанта: D 1 = n 2 − a · c = ( − 3 ) 2 − 5 · ( − 32 ) = 9 + 160 = 169 . Полученное значение положительно, это означает, что уравнение имеет два действительных корня. Определим их по соответствующей формуле корней:

    x = – n ± D 1 a , x = – – 3 ± 169 5 , x = 3 ± 13 5 ,

    x = 3 + 13 5 или x = 3 – 13 5

    x = 3 1 5 или x = – 2

    Возможно было бы произвести вычисления и по обычной формуле корней квадратного уравнения, но в таком случае решение было бы более громоздким.

    Ответ: x = 3 1 5 или x = – 2 .

    Упрощение вида квадратных уравнений

    Иногда существует возможность оптимизировать вид исходного уравнения, что позволит упростить процесс вычисления корней.

    К примеру, квадратное уравнение 12 · x 2 − 4 · x − 7 = 0 явно удобнее для решения, чем 1200 · x 2 − 400 · x − 700 = 0 .

    Чаще упрощение вида квадратного уравнения производится действиями умножения или деления его обеих частей на некое число. К примеру, выше мы показали упрощенную запись уравнения 1200 · x 2 − 400 · x − 700 = 0 , полученную делением обеих его частей на 100 .

    Такое преобразование возможно, когда коэффициенты квадратного уравнения не являются взаимно простыми числами. Тогда обычно осуществляют деление обеих частей уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

    Как пример используем квадратное уравнение 12 · x 2 − 42 · x + 48 = 0 . Определим НОД абсолютных величин его коэффициентов: НОД ( 12 , 42 , 48 ) = НОД(НОД ( 12 , 42 ) , 48 ) = НОД ( 6 , 48 ) = 6 . Произведем деление обеих частей исходного квадратного уравнения на 6 и получим равносильное ему квадратное уравнение 2 · x 2 − 7 · x + 8 = 0 .

    Умножением обеих частей квадратного уравнения обычно избавляются от дробных коэффициентов. При этом умножают на наименьшее общее кратное знаменателей его коэффициентов. К примеру, если каждую часть квадратного уравнения 1 6 · x 2 + 2 3 · x – 3 = 0 перемножить с НОК ( 6 , 3 , 1 ) = 6 , то оно станет записано в более простом виде x 2 + 4 · x − 18 = 0 .

    Напоследок отметим, что почти всегда избавляются от минуса при первом коэффициенте квадратного уравнения, изменяя знаки каждого члена уравнения, что достигается путем умножения (или деления) обеих частей на − 1 . К примеру, от квадратного уравнения − 2 · x 2 − 3 · x + 7 = 0 можно перейти к упрощенной его версии 2 · x 2 + 3 · x − 7 = 0 .

    Связь между корнями и коэффициентами

    Уже известная нам формула корней квадратных уравнений x = – b ± D 2 · a выражает корни уравнения через его числовые коэффициенты. Опираясь на данную формулу, мы имеем возможность задать другие зависимости между корнями и коэффициентами.

    Самыми известными и применимыми являются формулы теоремы Виета:

    x 1 + x 2 = – b a и x 2 = c a .

    В частности, для приведенного квадратного уравнения сумма корней есть второй коэффициент с противоположным знаком, а произведение корней равно свободному члену. К примеру, по виду квадратного уравнения 3 · x 2 − 7 · x + 22 = 0 возможно сразу определить, что сумма его корней равна 7 3 , а произведение корней – 22 3 .

    Также можно найти ряд прочих связей между корнями и коэффициентами квадратного уравнения. Например, сумма квадратов корней квадратного уравнения может быть выражена через коэффициенты:

    x 1 2 + x 2 2 = ( x 1 + x 2 ) 2 – 2 · x 1 · x 2 = – b a 2 – 2 · c a = b 2 a 2 – 2 · c a = b 2 – 2 · a · c a 2 .

    [spoiler title=”источники:”]

    http://skysmart.ru/articles/mathematic/kak-reshat-kvadratnye-uravneniya

    http://zaochnik.com/spravochnik/matematika/systems/reshenie-kvadratnyh-uravnenij/

    [/spoiler]

    Квадратные уравнения

    • Приведённое квадратное уравнение
    • Решение квадратных уравнений

    Квадратное уравнение или уравнение второй степени с одним неизвестным — это уравнение, которое после преобразований может быть приведено к следующему виду:

    ax2 + bx + c = 0  — квадратное уравнение,

    где  x  — это неизвестное, а  ab  и  c  — коэффициенты уравнения. В квадратных уравнениях  a  называется первым коэффициентом  (a ≠ 0),  b  называется вторым коэффициентом, а  c  называется известным или свободным членом.

    Уравнение:

    ax2 + bx + c = 0

    называется полным квадратным уравнением. Если один из коэффициентов  b  или  c  равен нулю, или нулю равны оба эти коэффициента, то уравнение представляют в виде неполного квадратного уравнения.

    Приведённое квадратное уравнение

    Полное квадратное уравнение можно привести к более удобному виду, разделив все его члены на  a,  то есть на первый коэффициент:

    x2 b  x c  = 0.
    a a

    Затем можно избавиться от дробных коэффициентов, обозначив их буквами  p  и  q:

    если   b  = p,  а  c  = q,
    a a

    то получится   x2 + px + q = 0.

    Уравнение  x2 + px + q = 0  называется приведённым квадратным уравнением. Следовательно, любое квадратное уравнение, в котором первый коэффициент равен 1, можно назвать приведённым.

    Например, уравнение:

    x2 + 10x – 5 = 0

    является приведённым, а уравнение:

    -3x2 + 9x – 12 = 0

    можно заменить приведённым уравнением, разделив все его члены на  -3:

    x2 – 3x + 4 = 0.

    Решение квадратных уравнений

    Чтобы решить квадратное уравнение, надо привести его к одному из следующих видов:

    ax2 + bx + c = 0;

    ax2 + 2kx + c = 0;

    x2 + px + q = 0.

    Для каждого вида уравнения есть своя формула нахождения корней:

    Вид уравнения Формула корней
    ax2 + bx + c = 0
    ax2 + 2kx + c = 0
    x2 + px + q = 0
    или
    если коэффициент  p  нечётный

    Обратите внимание на уравнение:

    ax2 + 2kx + c = 0

    это преобразованное уравнение  ax2 + bx + c = 0,  в котором коэффициент  b  — четный, что позволяет его заменить на вид  2k.  Поэтому формулу нахождения корней для этого уравнения можно упростить, подставив в неё  2k  вместо  b:

    Пример 1. Решить уравнение:

    3x2 + 7x + 2 = 0.

    Так как в уравнении второй коэффициент не является чётным числом, а первый коэффициент не равен единице, то искать корни будем по самой первой формуле, называемой общей формулой нахождения корней квадратного уравнения. Сначала определим, чему равны коэффициенты:

    a = 3,  b = 7,  c = 2.

    Теперь, для нахождения корней уравнения, просто подставим значения коэффициентов в формулу:

    x1 -2  = – 1 ,   x2 -12  = -2
    6 3 6

    Пример 2:

    x2 – 4x – 60 = 0.

    Определим, чему равны коэффициенты:

    a = 1,  b = -4,  c = -60.

    Так как в уравнении второй коэффициент — чётное число, то будем использовать формулу для квадратных уравнений с чётным вторым коэффициентом:

    x1 = 2 + 8 = 10,   x2 = 2 – 8 = -6

    Ответ:  10,  -6.

    Пример 3.

    y2 + 11y = y – 25.

    Приведём уравнение к общему виду:

    y2 + 11y = y – 25;

    y2 + 11yy + 25 = 0;

    y2 + 10y + 25 = 0.

    Определим, чему равны коэффициенты:

    a = 1,  p = 10,  q = 25.

    Так как первый коэффициент равен  1,  то будем искать корни по формуле для приведённых уравнений с чётным вторым коэффициентом:

    Ответ:  -5.

    Пример 4.

    x2 – 7x + 6 = 0.

    Определим, чему равны коэффициенты:

    a = 1,  p = -7,  q = 6.

    Так как первый коэффициент равен  1,  то будем искать корни по формуле для приведённых уравнений с нечётным вторым коэффициентом:

    x1 = (7 + 5) : 2 = 6,

    x2 = (7 – 5) : 2 = 1.

    Ответ:  6,  1.

    В продолжение темы «Решение уравнений» материал данной статьи познакомит вас с квадратными уравнениями.

    Рассмотрим все подробно: суть и запись квадратного уравнения, зададим сопутствующие термины, разберем схему решения неполных и полных уравнений, познакомимся с формулой корней и дискриминантом, установим связи между корнями и коэффициентами, ну и конечно приведем наглядное решение практических примеров.

    Квадратное уравнение, его виды

    Определение 1

    Квадратное уравнение – это уравнение, записанное как a·x2+b·x+c=0, где x – переменная, a, b и c – некоторые числа, при этом a не есть нуль.

    Зачастую квадратные уравнения также носят название уравнений второй степени, поскольку по сути квадратное уравнение есть алгебраическое уравнение второй степени.

    Приведем пример для иллюстрации заданного определения: 9·x2+16·x+2=0;  7,5·x2+3,1·x+0,11=0 и т.п. – это квадратные уравнения.

    Определение 2

    Числа a, b и c – это коэффициенты квадратного уравнения a·x2+b·x+c=0, при этом коэффициент a носит название первого, или старшего, или коэффициента при x2, b – второго коэффициента, или коэффициента при x, а c называют свободным членом.

    К примеру, в квадратном уравнении 6·x2−2·x−11=0 старший коэффициент равен 6, второй коэффициент есть −2, а свободный член равен −11. Обратим внимание на тот факт, что, когда коэффициенты b и/или c являются отрицательными, то используется краткая форма записи вида 6·x2−2·x−11=0, а не 6·x2+(−2)·x+(−11)=0.

    Уточним также такой аспект: если коэффициенты a и/или b равны 1 или −1, то явного участия в записи квадратного уравнения они могут не принимать, что объясняется особенностями записи указанных числовых коэффициентов. К примеру, в квадратном уравнении y2−y+7=0 старший коэффициент равен 1, а второй коэффициент есть −1.

    Приведенные и неприведенные квадратные уравнения

    По значению первого коэффициента квадратные уравнения подразделяют на приведенные и неприведенные.

    Определение 3

    Приведенное квадратное уравнение – это квадратное уравнение, где старший коэффициент равен 1. При иных значениях старшего коэффициента квадратное уравнение является неприведенным.

    Приведем примеры: квадратные уравнения x2−4·x+3=0, x2−x−45=0 являются приведенными, в каждом из которых старший коэффициент равен 1.

    9·x2−x−2=0 – неприведенное квадратное уравнение, где первый коэффициент отличен от 1.

    Любое неприведенное квадратное уравнение возможно преобразовать в приведенное уравнение, если разделить обе его части на первый коэффициент (равносильное преобразование). Преобразованное уравнение будет иметь такие же корни, как и заданное неприведенное уравнение или так же не иметь корней вовсе.

    Рассмотрение конкретного примера позволит нам наглядно продемонстрировать выполнение перехода от неприведенного квадратного уравнения к приведенному.

    Пример 1

    Задано уравнение 6·x2+18·x−7=0. Необходимо преобразовать  исходное уравнение в приведенную форму.

    Решение

    Cогласно указанной выше схеме разделим обе части исходного уравнения на старший коэффициент 6. Тогда получим: (6·x2+18·x−7):3=0:3, и это то же самое, что: (6·x2):3+(18·x):3−7:3=0 и далее: (6:6)·x2+(18:6)·x−7:6=0. Отсюда: x2+3·x-116=0. Таким образом, получено уравнение, равносильное заданному.

    Ответ: x2+3·x-116=0.

    Полные и неполные квадратные уравнения

    Обратимся к определению квадратного уравнения. В нем мы уточнили, что a≠0. Подобное условие необходимо, чтобы уравнение a·x2+b·x+c=0 было именно квадратным, поскольку при a=0 оно по сути преобразуется в линейное уравнение b·x+c=0.

    В случае же, когда коэффициенты b и c равны нулю (что возможно, как по отдельности, так и совместно), квадратное уравнение носит название неполного.

    Определение 4

    Неполное квадратное уравнение – такое квадратное уравнение a·x2+b·x+c=0, где хотя бы один из коэффициентов b и c (или оба) равен нулю.

    Полное квадратное уравнение – квадратное уравнение, в котором все числовые коэффициенты не равны нулю.

    Порассуждаем, почему типам квадратных уравнений даны именно такие названия.

    При b=0 квадратное уравнение примет вид a·x2+0·x+c=0, что то же самое, что a·x2+c=0. При c=0 квадратное уравнение записано как a·x2+b·x+0=0, что равносильно a·x2+b·x=0. При b=0 и c=0 уравнение примет вид a·x2=0. Уравнения, которые мы получили, отличны от полного квадратного уравнения тем, что в их левых частях не содержится либо слагаемого с переменной x, либо свободного члена, либо обоих сразу. Собственно, этот факт и задал название такому типу уравнений – неполное.

    Например, x2+3·x+4=0 и −7·x2−2·x+1,3=0 – это полные квадратные уравнения; x2=0, −5·x2=0; 11·x2+2=0, −x2−6·x=0 – неполные квадратные уравнения.

    Решение неполных квадратных уравнений

    Заданное выше определение дает возможность выделить следующие виды неполных квадратных уравнений:

    • a·x2=0, такому уравнению соответствуют коэффициенты b=0 и c=0;
    • a·x2+c=0 при b=0;
    • a·x2+b·x=0 при c=0.

    Рассмотрим последовательно решение каждого вида неполного квадратного уравнения.

    Решение уравнения a·x2=0

    Как уже было указано выше, такому уравнению отвечают коэффициенты b и c, равные нулю. Уравнение a·x2=0 возможно преобразовать в равносильное ему уравнение x2=0, которое мы получим, поделив обе части исходного уравнения на число a, не равное нулю. Очевидный факт, что корень уравнения x2=0 это нуль, поскольку 02=0. Иных корней это уравнение не имеет, что объяснимо свойствами степени: для любого числа p, не равного нулю, верно неравенство p2>0, из чего следует, что при p≠0 равенство p2=0 никогда не будет достигнуто.

    Определение 5

    Таким образом, для неполного квадратного уравнение a·x2=0 существует единственный корень x=0.

    Пример 2

    Для примера решим неполное квадратное уравнение −3·x2=0. Ему равносильно уравнение x2=0, его единственным корнем является x=0, тогда и исходное уравнение имеет единственный корень – нуль.

    Кратко решение оформляется так:

    −3·x2=0,x2=0,x=0.

    Решение уравнения a·x2+c=0

    На очереди – решение неполных квадратных уравнений, где b=0, c≠0, то есть уравнений вида a·x2+c=0. Преобразуем это уравнение, перенеся слагаемое из одной части уравнения в другую, сменив знак на противоположный и разделив обе части уравнения на число, не равное нулю:

    • переносим c в правую часть, что дает уравнение a·x2=−c;
    • делим обе части уравнения на a, получаем в итоге x=-ca.

    Наши преобразования являются равносильными, соответственно полученное уравнение также равносильно исходному, и этот факт дает возможность делать вывод о корнях уравнения. От того, каковы значения a и c зависит значение выражения  -ca: оно может иметь знак  минус (допустим, если a=1 и c=2, тогда -ca=-21=-2 ) или знак плюс (например, если a=−2 и c=6, то -ca=-6-2=3 ); оно не равно нулю, поскольку c≠0. Подробнее остановимся на ситуациях, когда  -ca<0 и -ca>0.

    В случае, когда -ca<0,  уравнение x2=-ca не будет иметь корней. Утверждая это, мы опираемся на то, что квадратом любого числа является число неотрицательное. Из сказанного следует, что при -ca<0  ни для какого числа p равенство p2=-ca  не может быть верным.

    Все иначе, когда -ca>0: вспомним о квадратном корне, и станет очевидно, что корнем уравнения x2=-ca будет число -ca, поскольку -ca2=-ca. Нетрудно понять, что число –ca – также корень уравнения x2=-ca: действительно, –ca2=-ca.

    Прочих корней уравнение не будет иметь. Мы можем это продемонстрировать, используя метод от противного. Для начала зададим обозначения найденных выше корней как x1 и −x1. Выскажем предположение, что уравнение  x2=-ca имеет также корень x2, который отличается от корней x1 и −x1. Мы знаем, что, подставив в уравнение вместо x его корни, преобразуем уравнение в справедливое числовое равенство.

    Для x1 и −x1 запишем: x12=-ca , а для x2 – x22=-ca  . Опираясь на свойства числовых равенств, почленно вычтем одно верное равенство из другого, что даст нам: x12−x22=0. Используем свойства действий с числами, чтобы переписать последнее равенство как (x1−x2)·(x1+x2)=0. Известно, что произведение двух чисел есть нуль тогда и только тогда, когда хотя бы одно из чисел является нулем. Из сказанного следует, что x1−x2=0 и/или x1+x2=0, что то же самое, x2=x1 и/или x2=−x1. Возникло очевидное противоречие, ведь  вначале было условлено, что корень уравнения x2 отличается от x1 и −x1. Так, мы доказали, что уравнение  не имеет иных корней, кроме x=-ca и x=–ca.

    Резюмируем все рассуждения выше.

    Определение 6

    Неполное квадратное уравнение a·x2+c=0 равносильно уравнению  x2=-ca, которое:

    • не будет иметь корней при -ca<0;
    • будет иметь два корня x=-ca и x=–ca  при -ca>0.

    Приведем примеры решения уравнений a·x2+c=0.

    Пример 3

    Задано квадратное уравнение 9·x2+7=0. Необходимо найти его решение.

    Решение

    Перенесем  свободный член в правую часть уравнения, тогда уравнение примет вид 9·x2=−7.
    Разделим обе части полученного уравнения на 9, придем к x2=-79. В правой части мы видим число со знаком минус, что означает: у заданного уравнения нет корней. Тогда и исходное неполное квадратное уравнение 9·x2+7=0 не будет иметь корней.

    Ответ: уравнение 9·x2+7=0 не имеет корней.

    Пример 4

    Необходимо решить уравнение −x2+36=0.

    Решение

    Перенесем 36 в правую часть: −x2=−36.
    Разделим обе части на −1, получим x2=36. В правой части – положительное число, отсюда можно сделать вывод, что x=36 или x=-36.
    Извлечем корень и запишем окончательный итог: неполное квадратное уравнение −x2+36=0 имеет два корня x=6 или x=−6.

    Ответ: x=6 или x=−6.

    Решение уравнения a·x2+b·x=0

    Разберем третий вид неполных квадратных уравнений, когда c=0. Чтобы найти решение неполного квадратного уравнения a·x2+b·x=0, воспользуемся методом разложения на множители. Разложим на множители многочлен, который находится в левой части уравнения, вынеся за скобки общий множитель x. Этот шаг даст возможность преобразовать исходное неполное квадратное уравнение в равносильное ему x·(a·x+b)=0. А это уравнение, в свою очередь,  равносильно совокупности уравнений x=0 и a·x+b=0. Уравнение a·x+b=0 линейное, и корень его: x=−ba.

    Определение 7

    Таким образом, неполное квадратное уравнение a·x2+b·x=0 будет иметь  два корня x=0 и x=−ba.

    Закрепим материал примером.

    Пример 5

    Необходимо найти решение уравнения 23·x2-227·x=0.

    Решение

    Вынесем x за скобки и получим уравнение x·23·x-227=0. Это уравнение равносильно уравнениям x=0 и 23·x-227=0. Теперь следует решить полученное линейное уравнение: 23·x=227, x=22723.

    Далее осуществим деление смешанного числа на обыкновенную дробь и определяем, что x=337. Таким образом, корни исходного уравнения это: x=0 и x=337.

    Кратко решение уравнения запишем так:

    23·x2-227·x=0x·23·x-227=0

    x=0 или 23·x-227=0

    x=0 или x=337

    Ответ: x=0, x=337.

    Дискриминант, формула корней квадратного уравнения

    Для нахождения решения квадратных уравнений существует формула корней:

    Определение 8

    x=-b±D2·a, где D=b2−4·a·c – так называемый дискриминант квадратного уравнения.

    Запись x=-b±D2·a по сути означает, что x1=-b+D2·a, x2=-b-D2·a.

    Нелишним будет понимать, как была выведена указанная формула и каким образом ее применять.

    Вывод формулы корней квадратного уравнения

    Пускай перед нами стоит задача решить квадратное уравнение a·x2+b·x+c=0. Осуществим ряд равносильных преобразований:

    • разделим обе части уравнения на число a, отличное от нуля, получим приведенное квадратное уравнение: x2+ba·x+ca=0;
    • выделим полный квадрат в левой  части получившегося уравнения:
      x2+ba·x+ca=x2+2·b2·a·x+b2·a2-b2·a2+ca==x+b2·a2-b2·a2+ca
      После этого уравнения примет вид: x+b2·a2-b2·a2+ca=0;
    • теперь возможно сделать перенос двух последних слагаемых в правую часть, сменив знак на противоположный, после чего получаем: x+b2·a2=b2·a2-ca;
    • наконец, преобразуем выражение, записанное в правой части последнего равенства:
      b2·a2-ca=b24·a2-ca=b24·a2-4·a·c4·a2=b2-4·a·c4·a2.

    Таким образом, мы пришли к уравнению x+b2·a2=b2-4·a·c4·a2, равносильному исходному уравнению a·x2+b·x+c=0.

    Решение подобных уравнений мы разбирали в предыдущих пунктах (решение неполных квадратных уравнений). Уже полученный опыт дает возможность сделать вывод касательно корней уравнения x+b2·a2=b2-4·a·c4·a2:

    • при b2-4·a·c4·a2<0 уравнение не имеет действительных решений;
    • при b2-4·a·c4·a2=0 уравнение имеет вид x+b2·a2=0, тогда x+b2·a=0.

    Отсюда очевиден единственный корень x=-b2·a;

    • при b2-4·a·c4·a2>0 верным будет: x+b2·a=b2-4·a·c4·a2 или x=b2·a-b2-4·a·c4·a2, что то же самое, что x+-b2·a=b2-4·a·c4·a2 или x=-b2·a-b2-4·a·c4·a2,  т.е. уравнение имеет два корня.

    Возможно сделать вывод, что наличие или отсутствие корней уравнения x+b2·a2=b2-4·a·c4·a2 (а значит и исходного уравнения) зависит от знака выражения b2-4·a·c4·a2, записанного в правой части. А знак этого выражения задается знаком числителя, (знаменатель 4·a2 всегда будет положителен), то есть, знаком выражения b2−4·a·c. Этому выражению b2−4·a·c дано название – дискриминант квадратного уравнения и определена в качестве его обозначения буква D. Здесь можно записать суть дискриминанта – по его значению и знаку делают вывод, будет ли квадратное уравнение иметь действительные корни, и, если будет, то каково количество корней – один или два.

    Вернемся к уравнению x+b2·a2=b2-4·a·c4·a2. Перепишем его, используя обозначение дискриминанта:  x+b2·a2=D4·a2.

    Вновь сформулируем выводы:

    Определение 9
    • при D<0 уравнение не имеет действительных корней;
    • при D=0 уравнение имеет единственный корень x=-b2·a;
    • при D>0 уравнение имеет два корня: x=-b2·a+D4·a2 или x=-b2·a-D4·a2. Эти корни на основе свойства радикалов возможно записать в виде: x=-b2·a+D2·a или -b2·a-D2·a. А, когда раскроем модули и приведем дроби к общему знаменателю, получим: x=-b+D2·a, x=-b-D2·a.

    Так, результатом наших рассуждений стало выведение формулы корней квадратного уравнения:

    x=-b+D2·a, x=-b-D2·a, дискриминант D вычисляется по формуле D=b2−4·a·c.

    Данные формулы дают возможность при дискриминанте больше нуля определить оба действительных корня. Когда дискриминант равен нулю, применение обеих формул даст один и тот же корень, как единственное решение квадратного уравнения. В случае, когда дискриминант отрицателен, попытавшись использовать формулу корня квадратного уравнения, мы столкнемся с необходимостью извлечь квадратный корень из отрицательного числа, что выведет нас за рамки действительных чисел. При отрицательном дискриминанте у квадратного уравнения не будет действительных корней, но возможна пара комплексно сопряженных корней, определяемых теми же полученными нами формулами корней.

    Алгоритм решения квадратных уравнений по формулам корней

    Решить квадратное уравнение возможно, сразу задействуя формулу корней, но в основном так поступают при необходимости найти комплексные корни.

    В основной же массе случаев обычно подразумевается поиск не комплексных, а действительных корней квадратного уравнения. Тогда оптимально перед тем, как использовать формулы корней квадратного уравнения, сначала определить дискриминант и удостовериться, что он не является отрицательным (в ином случае сделаем вывод, что у уравнения нет действительных корней), а после приступить к вычислению значения корней.

    Рассуждения выше дают возможность сформулировать  алгоритм решения квадратного уравнения.

    Определение 10

    Чтобы решить квадратное уравнение a·x2+b·x+c=0, необходимо:

    • по формуле D=b2−4·a·c найти значение дискриминанта;
    • при D<0 сделать вывод об отсутствии у квадратного уравнения действительных корней;
    • при D=0 найти единственный корень уравнения по формуле x=-b2·a;
    • при D>0 определить два действительных корня квадратного уравнения по формуле x=-b±D2·a.

    Отметим, что, когда дискриминант есть нуль, можно использовать формулу x=-b±D2·a, она даст тот же результат, что и формула x=-b2·a.

    Рассмотрим примеры.

    Примеры решения квадратных уравнений

    Приведем решение примеров при различных значениях дискриминанта.

    Пример 6

    Необходимо найти корни уравнения x2+2·x−6=0.

    Решение

    Запишем числовые коэффициенты квадратного уравнения: a=1, b=2 и c=−6. Далее действуем по алгоритму, т.е. приступим к вычислению дискриминанта, для чего подставим коэффициенты a, b и c в формулу дискриминанта: D=b2−4·a·c=22−4·1·(−6)=4+24=28.

    Итак, мы получили D>0, а это означает, что исходное уравнение будет иметь два действительных корня.
    Для их нахождения используем формулу корня x=-b±D2·a и, подставив соответствующие значения, получим: x=-2±282·1. Упростим полученное выражение, вынеся множитель за знак корня с последующим сокращением дроби:

    x=-2±2·72

    x=-2+2·72 или x=-2-2·72

    x=-1+7 или x=-1-7

    Ответ: x=-1+7​​​​​​, x=-1-7.

    Пример 7

    Необходимо решить квадратное уравнение −4·x2+28·x−49=0.

    Решение 

    Определим дискриминант: D=282−4·(−4)·(−49)=784−784=0. При таком значении дискриминанта исходное уравнение будет иметь лишь один корень, определяемый по формуле x=-b2·a.

    Тогда:

    x=-282·(-4)x=3,5

    Ответ: x=3,5.

    Пример 8

    Необходимо решить уравнение 5·y2+6·y+2=0

    Решение

    Числовые коэффициенты этого уравнения будут: a=5, b=6 и c=2. Используем эти значения для нахождения дискриминанта: D=b2−4·a·c=62−4·5·2=36−40=−4. Вычисленный дискриминант отрицателен, таким образом, исходное квадратное уравнение не имеет действительных корней.

    В случае, когда стоит задача указать комплексные корни, применим формулу корней, выполняя действия с комплексными числами:

    x=-6±-42·5,

    x=-6+2·i10 или x=-6-2·i10,

    x=-35+15·i  или x=-35-15·i.

    Ответ: действительные корни отсутствуют; комплексные корни следующие: -35+15·i, -35-15·i.

    В школьной программе стандартно нет требования искать комплексные корни, поэтому, если в ходе решения дискриминант определен как отрицательный, сразу записывается ответ, что действительных корней нет.

    Формула корней для четных вторых коэффициентов

    Формула корней x=-b±D2·a (D=b2−4·a·c) дает возможность получить еще одну формулу, более компактную, позволяющую находить решения квадратных уравнений с четным коэффициентом при x (либо с коэффициентом вида 2·n, к примеру, 2 · 3 или 14·ln5=2·7·ln5). Покажем, как выводится эта формула.

    Пусть перед нами стоит задача найти решение квадратного уравнения a·x2+2·n·x+c=0. Действуем по алгоритму: определяем дискриминантD=(2·n)2−4·a·c=4·n2−4·a·c=4·(n2−a·c), а затем используем формулу корней:

    x=-2·n±D2·a,x=-2·n±4·n2-a·c2·a,x=-2·n±2n2-a·c2·a,x=-n±n2-a·ca.

    Пусть выражение n2−a·c будет обозначено как D1 (иногда его обозначают D’). Тогда формула корней рассматриваемого квадратного уравнения со вторым коэффициентом 2·n примет вид:

     x=-n±D1a, где D1=n2−a·c.

    Легко увидеть, что что D=4·D1, или D1=D4. Иначе говоря, D1 – это четверть дискриминанта. Очевидно, что знак D1 такой же, как знак D, а значит знак D1 также может служить индикатором наличия или отсутствия корней квадратного уравнения.

    Определение 11

    Таким образом, чтобы найти решение квадратного уравнения со вторым коэффициентом  2 · n , необходимо: 

    • найти D1=n2−a·c;
    • при D1<0 сделать вывод, что действительных корней нет;
    • при D1=0 определить единственный корень уравнения по формуле x=-na;
    • при D1>0 определить два действительных корня по формуле x=-n±D1a.
    Пример 9

    Необходимо решить квадратное уравнение 5·x2−6·x−32=0.

    Решение

    Второй коэффициент заданного уравнения можем представить как 2·(−3). Тогда перепишем заданное квадратное уравнение как 5·x2+2·(−3)·x−32=0, где a=5, n=−3 и c=−32.

    Вычислим четвертую часть дискриминанта: D1=n2−a·c=(−3)2−5·(−32)=9+160=169. Полученное значение положительно, это означает, что уравнение имеет два действительных корня. Определим их по соответствующей формуле корней:

    x=-n±D1a,x=–3±1695,x=3±135,

    x=3+135 или x=3-135

    x=315 или x=-2

    Возможно было бы произвести вычисления и по обычной формуле корней квадратного уравнения, но в таком случае решение было бы более громоздким.

    Ответ: x=315 или x=-2.

    Упрощение вида квадратных уравнений

    Иногда существует возможность оптимизировать вид исходного уравнения, что позволит упростить процесс вычисления корней.

    К примеру, квадратное уравнение 12·x2−4·x−7=0 явно удобнее для решения, чем 1200·x2−400·x−700=0.

    Чаще упрощение вида квадратного уравнения производится действиями умножения или деления его обеих частей на некое число. К примеру, выше мы показали упрощенную запись уравнения 1200·x2−400·x−700=0, полученную делением обеих его частей на 100.

    Такое преобразование возможно, когда коэффициенты квадратного уравнения не являются взаимно простыми числами. Тогда обычно осуществляют деление обеих частей уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

    Как пример используем квадратное уравнение 12·x2−42·x+48=0. Определим НОД абсолютных величин его коэффициентов: НОД(12, 42, 48)=НОД(НОД(12, 42), 48)=НОД(6, 48)=6. Произведем деление обеих частей исходного квадратного уравнения на 6 и получим равносильное ему квадратное уравнение 2·x2−7·x+8=0.

    Умножением обеих частей квадратного уравнения обычно избавляются от дробных коэффициентов. При этом умножают на наименьшее общее кратное знаменателей его коэффициентов. К примеру, если каждую часть квадратного уравнения 16·x2+23·x-3=0 перемножить с НОК(6, 3, 1)=6, то оно станет записано в более простом виде x2+4·x−18=0.

    Напоследок отметим, что почти всегда избавляются от минуса при первом коэффициенте квадратного уравнения, изменяя знаки каждого члена уравнения, что достигается путем умножения (или деления) обеих частей на −1. К примеру, от квадратного уравнения −2·x2−3·x+7=0 можно перейти к упрощенной его версии 2·x2+3·x−7=0.

    Связь между корнями и коэффициентами

    Уже известная нам формула корней квадратных уравнений x=-b±D2·a выражает корни уравнения через его числовые коэффициенты. Опираясь на данную формулу, мы имеем возможность задать другие зависимости между корнями и коэффициентами.

    Самыми известными и применимыми являются формулы теоремы Виета:

    x1+x2=-ba и x2=ca.

    В частности, для приведенного квадратного уравнения сумма корней есть второй коэффициент с противоположным знаком, а произведение корней равно свободному члену. К примеру, по виду квадратного уравнения 3·x2−7·x+22=0 возможно сразу определить, что сумма его корней равна 73, а произведение корней – 223.

    Также можно найти ряд прочих связей между корнями и коэффициентами квадратного уравнения. Например, сумма квадратов корней квадратного уравнения может быть выражена через коэффициенты:

    x12+x22=(x1+x2)2-2·x1·x2=-ba2-2·ca=b2a2-2·ca=b2-2·a·ca2.

             Теорема Виета в квадратных уравнениях — штука простая и очень-очень важная. Позволяет делать массу полезных вещей буквально в уме. Имеет смысл познакомиться и освоить, правда? Тем более это совсем просто. Сомневаетесь? Напрасно.) Сами увидите. Читаем дальше.

    Что такое приведённое квадратное уравнение? Складываем и перемножаем корни…

            Знакомство наше начнём с безобидного уравнения:

            

            Обычное квадратное уравнение, ничего выдающегося. Коэффициенты a, b и c здесь следующие:

            a = 1; b = -4; c = 3

            Решаем тоже как обычно, безо всяких фокусов, через дискриминант и получаем два корня:

            

            Уравнение как уравнение – и что с того? Ничего, сейчас интересно будет!)

            Первым делом я возьму корни нашего уравнения и… сложу их.) Зачем? Так надо!

            Итак:

            

            Теперь проделаю ещё одну бесполезную (казалось бы!) штуку. Перемножу корни:

            

            Ну сложил, ну перемножил — и что? Спокойствие и терпение!

            Выпишем ещё разок само уравнение, а прямо под ним напишем сумму и произведение корней:

            

            И посмотрим на нашу запись. Внимательно посмотрим… Ничего не бросается в глаза? Ведь многие важные открытия в математике совершались на основе хорошей наблюдательности, между прочим! Не видите…

            А вот так?)

            

            Да! Сумма корней нашего квадратного уравнения равна коэффициенту b. Но, обратите внимание, не просто b, а с противоположным знаком! В уравнении коэффициент при икс (а это и есть буковка b) равен минус четыре. Сумма же корней даёт плюс четыре. То есть, b.

            А произведение корней даёт нам свободный член! Т.е. буковку c. Даёт со своим знаком! Как была в уравнении тройка (с=3), так в произведении корней тройкой же и осталась.)

            Теперь я немного изменю уравнение. Поменяю в нём свободный член с тройки на четвёрку. Вот такое уравнение теперь решим:

            

            Решаем точно так же, через дискриминант (здесь он равен нулю), и получаем единственное решение x=2.

            Но мы с вами люди уже достаточно взрослые и понимаем, что это не один корень, а два одинаковых:

            x1,2 = 2

            Поэтому снова сосчитаем сумму и произведение корней:

            

            И опять в сумме мы получили b (-b=+4), а в произведении с (c=+4)!

            А вот это уже крайне важно! Оказывается, такая забавная штука будет получаться всегда для любого квадратного уравнения! Если оно имеет корни, разумеется.) Правда, уравнения не какого попало, а такого, где квадрат икса чистый (т.е. коэффициент a=1). В математике такие квадратные уравнения имеют своё особое название — приведённые квадратные уравнения.

            Запоминаем:

            Квадратное уравнение, в котором коэффициент при х2 равен единице (а=1), называется приведённым квадратным уравнением. Весьма важная штука!    

            Как оно выглядит в общем виде? Очень просто. Подставим в общий вид квадратного уравнения

            

            единичку вместо а и получим общий вид приведённого квадратного уравнения:

            

            В некоторых учебниках коэффициенты b и с переобозначают другими буквами (чаще всего p и q) и получают вот такой общий вид

            

            Но суть та же самая. Как говорится, хоть горшком назови… Лично я предпочитаю использовать традиционные буквы b и с. Для универсальности.)

            Ну и что из этого? – спросите вы. Чем приведённые квадратные уравнения так выделяются на фоне остальных квадратных, неприведённых? А дело вот в чём.

    Что такое теорема Виета?

            Итак, мы выяснили, что в приведённом квадратном уравнении (любом!) сумма коэффициентов равна b, а произведение равно с. Всегда. Ясное дело, если дискриминант неотрицательный и корни у уравнения имеются.

            Математически эта фишка записывается вот так:

            

            Этот любопытный факт — и есть теорема Виета! Собственной персоной.

            А словами она звучит вот как:

            Теорема Виета:

            Если ПРИВЕДЁННОЕ квадратное уравнение имеет корни, то их сумма равна коэффициенту при икс, взятому с противоположным знаком (b), а их произведение равно свободному члену (c).

            Вот и всё, никаких премудростей.)

            Хотите строгое доказательство? Пожалуйста! Флаг вам в руки!) Распишите общую формулу корней квадратного уравнения для a=1, составьте сумму и произведение корней в общем виде. Т.е. через буквы. И упростите. Попробуйте! Весьма полезно и познавательно, между прочим.)

            Верна также и обратная теорема:

            Если числа х1 и х2 таковы, что их сумма равна –b, а произведение равно c, то эти числа являются корнями приведённого квадратного уравнения x2 + bx + c = 0.

            А по секрету скажу вам, что, на самом деле, именно обратной теоремой вы и пользуетесь, так умело подбирая в уме корни уравнения по сумме и произведению! Об этом подборе как раз дальше будет.)

    Зачем нужна теорема Виета?

            Полезная вещь первая — подбираем корни в уме!

            Теорема Виета (обратная форма) позволяет искать корни многих квадратных уравнений гораздо быстрее и проще, чем традиционным путём через дискриминант. В буквальном смысле устно!

            Вернёмся к нашему уравнению:

            

            Теперь, вооружившись глубокими познаниями, прямо по теореме Виета, записываем системку для наших искомых корней:

            

            Вопрос на сообразительность: какие же такие два числа в сумме дают четвёрку, а в произведении — тройку? Немного подумав головой, можно довольно быстро догадаться, что это чиселки 1 и 3.

            Значит, можно смело записать:

            x1 = 1

            x2 = 3

            Вот и всё. Это и будут корни нашего уравнения. Оба подходят.) Здорово, правда? И не нужно считать никаких дискриминантов, возиться с общей формулой корней. В которой, между прочим, можно и ошибок наляпать… Сразу, в уме, получен верный ответ!

            Возможно, кто-то уже приготовил мне вопрос. Очень грамотный вопрос, кстати. А всегда ли в случае приведённого квадратного уравнения можно вот так красиво и легко подобрать корни?

            К сожалению, нет. Далеко не всегда. Например, я снова изменю в исходном уравнении свободный член, только вместо четвёрки напишу двойку. Вот такое уравнение пусть будет:

            

            Уравнение приведённое, коэффициент а равен единичке, вроде бы, всё нормально. Пишем теорему Виета:

            

            И снова пробуем подобрать иксы так, чтобы оба равенства сработали!

            Гм… Что-то не подбирается, правда? Какие бы целые числа вы бы ни подбирали, ничего не выйдет.

            Тут выход только один — решать через дискриминант. Ибо дискриминант — штука универсальная. Спасает всегда — и в приведённых уравнениях, и в обычных. Попробуйте. И вы убедитесь, что корни этого уравнения получаются иррациональными. Естественно, такие корни подобрать в уме несколько затруднительно, да…

            Догадываюсь, что вы сейчас спросите: Зачем же нам тогда городить огород, пробовать подобрать корни, если дискриминант всё равно надёжнее и с ним-то уж точно всё решится?

            Да, надёжнее, но… Не всё так просто, как кажется!

            Дело всё в том, что квадратные уравнения изучаются в 8-м классе, где народ тренируется на простых (иногда — совсем примитивных) задачках. И… привыкает к простоте.) Затем, в старших классах и особенно в институте, при изучении высшей математики, квадратные уравнения представляются как нечто само собой разумеющееся. Но при этом в коэффициентах зачастую возникают такие большие числа, что работать с ними большинство учеников… просто не готовы!

            Попадётся вам, к примеру, такая задачка:

            Из пункта А в пункт В, расстояние между которыми 75 км, одновременно выехали автомобилист и велосипедист. Известно, что в час автомобилист проезжает на 82 км больше, чем велосипедист. Определите скорость велосипедиста, если известно, что он прибыл в пункт B на 3 часа 25 минут позже автомобилиста. Ответ дайте в км/ч.

            Это не моя разыгравшаяся фантазия, а вполне реальная задачка из ЕГЭ, между прочим.)

            Кто в курсе, как решать текстовые задачи на движение, тот без труда составит вот такое уравнение:

            

            Классическое дробно-рациональное уравнение. Здесь х — скорость велосипедиста. Немного повозившись с ним (избавившись от дробей и упростив всё до упора), получим вот такое квадратное уравнение:

            

            Если начать решать это уравнение по-рабочекрестьянски, то получим, что дискриминант у него равен аж 13924! И… что? Как нам из такого здоровенного числа корень извлекать? Без калькулятора! Слабо? То-то…

            Зато через теорему Виета это злое уравнение решается практически устно! Не верите? Что ж, смотрите сами…

            Записываем сумму и произведение корней:

            

            Осталось лишь догадаться, какие же числа дают в сумме минус 82, а в произведении минус 1800. Совсем чуточку подумав, довольно быстро получим, что:

            

            Минус сто, ясное дело, нас не интересует (скорость не бывает отрицательной), а вот 18 км/ч — вполне себе правдоподобная велосипедная скорость.)

            Вот и все дела.) И без долгих и утомительных вычислений, связанных с извлечением корня из пятизначного числа! Здорово, правда?

            Посему, первые практические советы:    

            1. Если перед вами квадратное уравнение приведённого вида, то первым делом пробуем найти корни подбором. По теореме, ОБРАТНОЙ теореме Виета. В подавляющем большинстве заданий это срабатывает.

            2. Не боимся уравнений с большими коэффициентами! Самое главное — не бросаемся считать дискриминант! Как правило, корни таких уравнений также довольно легко ищутся подбором.

            Может, конечно, и не повезти, но зачем же такой шанс упускать, правда?)

            Но есть у меня для вас хорошая новость.) Составители большинства заданий — люди гуманные.) И стараются составить уравнение так, чтобы корни являлись целыми числами и их легко можно было бы подобрать. Пробуем делать это!

            Переходим к следующей полезной вещи.

            Полезная вещь вторая — проверяем корни!

            Теорему Виета можно применять не только для подбора корней, но и для проверки корней, найденных другим способом (через дискриминант, например). Решили уравнение – проверьте сумму и произведение корней! Всё срослось — значит, верно. Нет — значит, где-то накосячили. Ищите ошибку.)

            Например, такое уравнение:

            

            Дело нехитрое. Решаем себе через дискриминант, всё чин-чином, получаем корни:

            x1 = -7

            x2 = -3

            Не бросаемся сразу же радостно писать ответ! Знаете поговорку доверяй, но проверяй?) Вот и не ленимся. Первым делом сложим наши корни:

            

            Получили -10. Обратите внимание, не десять, а минус десять! Коэффициент b с противоположным знаком. Так уж теорема Виета устроена.)

            Последняя (и окончательная) проверка — перемножим корни. Должен получиться свободный член:

            

            Вот теперь всё хорошо.)

            Более того, с этой благородной целью (проверка корней) теорему Виета можно применять и для неприведённых квадратных уравнений. Для любых. Да-да, я не шучу! Но эту фишку я оставлю на конец урока. На десерт.)

            И что, думаете, только для подбора и проверки корней теорема Виета и нужна? Вовсе нет!

            Полезная вещь третья — когда корни считать… не надо!

            Вы спросите, а разве можно обойтись и вовсе без вычисления корней? Можно! Ещё как!)

            Дискриминант — штука, безусловно, удобная, простая и понятная. С ним, как правило, всё легко и предсказуемо. Но… Может получиться какой-нибудь дурацкий дискриминант: 17 там, скажем, или 20. Что неизбежно приводит к появлению иррациональных корней, да…) А уж если в задании надо ещё что-то делать с корнями, то выражения с радикалами, даже для опытного ученика, могут перерасти в большую проблему. А для неопытного — вообще превратиться в полный ахтунг.

            Но теорема Виета иногда способна на настоящие чудеса!

            Например, такое задание:

            Дано квадратное уравнение:

            

            Найдите сумму квадратов корней, не находя самих корней.

            Если сейчас начать решать это задание “в лоб” — считать дискриминант и искать корни уравнения по общей формуле, то получим вот таких двух красавцев:

            

            Нам нужна сумма их квадратов. И что нам теперь с такими лохматыми числами делать?! Возводить в квадрат, складывать… Нет, возвести и сложить можно, конечно, но… не каждый ученик дорешает до конца это задание без ошибок!

            Не отчаиваемся и читаем ещё раз условие. Обратите внимание, нам вообще НЕ сказано “решать уравнение”, НЕ сказано “находить корни”. Более того, нам прямым текстом говорится: “Найти сумму квадратов корней, не находя самих корней.

            Что делать? Как выкручиваться без поиска корней?

            Посмотрим ещё раз на уравнение. Приведённое, между прочим.) Раз так, то, стало быть, для него справедлива теорема Виета!

            Можно смело записать:

            

            Вот так. Сумма корней — тройка, а произведение — единичка. Мы не знаем, чему равны сами эти корни, но у нас это и не спрашивают. Нас просят найти только сумму их квадратов.)

            А вот теперь ключевой вопрос: А можно ли как-то расписать нужную нам сумму квадратов корней через сумму и произведение корней?

            Да, можно! Кто на “ты” с формулами сокращённого умножения (а именно — с формулой квадрата суммы), тот, скорее всего, даже не заметит проблем.

            Пишем:

            

            Как я додумался до этого равенства? Очень просто. Вспомнил, что в формуле квадрата суммы сидят сумма квадратов и удвоенное произведение:

            

            И выразил нужную величину (сумму квадратов) через остальные — сумму (т.е. квадрат суммы) и произведение (удвоенное).

            Вот и всё, практически. Осталось лишь подставить тройку вместо суммы и единицу вместо произведения корней, да и посчитать, что получится:

            

            Ответ: 7  

            И все дела.) И корни не понадобились! Вообще.) Мощная штука — теорема Виета! Ну и формулы сокращённого умножения, само собой.)

            Этот приём — выражение какой-то сложной конструкции через сумму и произведение корней — очень популярен в заданиях на теорему Виета! Я уж молчу про более серьёзные задания. Например, задачи с параметрами, там этот финт ушами используется на полную катушку.)

            Запоминаем:

            В серьёзных заданиях на сумму и произведение корней пользуемся формулами сокращённого умножения и алгеброй 7-го класса! Здорово помогает.)

            Как работать с неприведёнными уравнениями?

            Как известно, самое сладкое — в конце трапезы. Обещанный десерт.)

            Во всех примерах этого урока мы работали лишь с приведёнными квадратными уравнениями. Такими, у которых коэффициент при квадрате икса — единичка. А если уравнение не является приведённым? Т.е. а≠1? Что тогда? Про теорему Виета можно забыть?

            Нет, забывать мы не будем. Мы поступим мудро и красиво. Раз уравнение не является приведённым, то мы его… сделаем! Как? Очень просто! Берём квадратное уравнение в общем виде:

            

            и… делим обе части на “а”! Очищаем квадрат икса от коэффициента. Можно ли так делать? Конечно! Мы ведь с вами уже в курсе, что a никогда не бывает равно нулю (а≠0). Иначе уравнение будет не квадратным, а линейным. Вот и делим смело. Это совершенно безопасно. Естественно, все остальные слагаемые тоже придётся поделить на а, от этого никак не отвертишься.

            Получим:

            

            Вот и всё. Уравнение стало приведённым. Коэффициенты, правда, дробными стали, но тут уж ничего не поделать, да…) В этом новом уравнении в роли нового b выступает дробь b/a, а в роли нового свободного члена — дробь c/a. Можно записывать теорему Виета:

            

            Вот так. Такая модифицированная запись теоремы Виета — более общая. Для любых квадратных уравнений годится — как приведённых (а=1), так и обычных (а≠1). С той лишь разницей, что при а=1 знаменатели исчезают — и теорема обретает свой привычный вид.

            Имеет смысл запомнить эту общую форму записи: и для банальной проверки корней пригодится, и, опять же, для более солидных заданий на квадратные уравнения.

            Например, надо решить уравнение:

            

            Решаем, получаем корни:

            

            Предположим, вам захотелось проверить, правильно ли вы нашли ваши иксы. Для этого, знамо дело, их надо подставить в исходное уравнение и посчитать результат. Но корни — дробные. Подставлять да считать долго и муторно…

            Как проверить корни быстро и с минимумом вычислений? Не проблема! Записываем обобщённую теорему Виета для а=6:

            

            И работаем. Складываем корни:

            

            Так, по сумме всё проходит. Осталось перемножить:

            

            И тут полный порядок! Значит, всё правильно.)

            Очередной практический совет:

            Найденные корни стараемся проверять! По сумме и произведению. Это здорово уменьшает количество ошибок при решении квадратных уравнений. Если уравнение не является приведённым, то для проверки пользуемся соответствующей модифицированной теоремой Виета.

            Итак, мы с вами выяснили, что теорема Виета — штука простая. И очень полезная. И это не только трафаретное решение квадратных уравнений! В ВУЗе, при работе со всякими там пределами, интегралами, дифференциальными уравнениями и прочими прелестями высшей математики, вы ещё не раз вспомните добрым словом знаменитого французского математика с его теоремой.)

            Ну что, порешаем?

            1. Найдите подбором корни уравнений:

            

            Ответы (в беспорядке):

            

            2. Сумма катетов прямоугольного треугольника равна 23 см, а гипотенуза равна 17 см. Найдите больший катет треугольника.

            3. Разность корней уравнения 2х2 — 5х + с = 0  равна 1,5. Найдите с.

            4. Дано уравнение: x2 — 6x + 4 = 0. Не решая уравнения, найдите сумму кубов его корней.

            5. Известно, что х1 и х2 — корни уравнения х2-18х+11 = 0.

            Найдите значение выражения:

            

            Ответы (в беспорядке):

            144; 15; -1; 1

            Всё сошлось? Рад за вас! Значит, отныне теорема Виета — не ваша очередная головная боль, а новый надёжный друг и помощник при решении уравнений (и не только квадратных, между прочим!).

            Задания 4 и 5 не идут? Корни иррациональные получаются? Это специально.) Да и не нужны они вам… Да, есть там одна загвоздочка. Но алгебра седьмого класса и действия с дробями вам помогут! И этот урок, само собой. И всё получится.)

    Добавить комментарий