Задание 12 Профильного ЕГЭ по математике – это решение уравнений. Чаще всего, конечно, это тригонометрические уравнения. Но встречаются и другие типы – показательные, логарифмические, комбинированные.
Сейчас задание 12 Профильного ЕГЭ на решение уравнения состоят из двух пунктов: собственно решения и отбора корней на определенном отрезке.
Что нужно знать, чтобы справиться с этой задачей на ЕГЭ? Вот необходимые темы для повторения.
Задачи из сборников Ященко, 2021 год
Квадратные уравнения
Показательные уравнения
Логарифмические уравнения
Модуль числа
Уравнения с модулем
Тригонометрический круг
Формулы тригонометрии
Формулы приведения
Простейшие тригонометрические уравнения 1
Простейшие тригонометрические уравнения 2
Тригонометрические уравнения
Что необходимо помнить при решении уравнений?
1) Помним про область допустимых значений уравнения! Если в уравнении есть дроби, корни, логарифмы или арксинусы с арккосинусами — сразу записываем ОДЗ. А найдя корни, проверяем, входят они в эту область или нет. Есть в уравнении есть — помним, что он существует, только если
2) Стараемся записывать решение в виде цепочки равносильных переходов.
3) Если есть возможность сделать замену переменной — делаем замену переменной! Уравнение сразу станет проще.
4) Если еще не выучили формулы тригонометрии — пора это сделать! Много формул не нужно. Самое главное — тригонометрический круг, формулы синусов и косинусов двойных углов, синусов и косинусов суммы (разности), понижения степени. Формулы приведения не надо зубрить наизусть! Надо знать, как они получаются.
5) Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.
Например, вы нашли серию решений , где — целое, а найти надо корни на отрезке На указанном промежутке лежит точка . От нее и будем отсчитывать. Получим:
6) Получив ответ, проверьте его правильность. Просто подставьте найденные решения в исходное уравнение!
Давайте потренируемся.
а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие промежутку
Упростим левую часть по формуле приведения.
Вынесем за скобки. Произведение двух (или нескольких) множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.
б) Отметим на тригонометрическом круге найденные серии решений и отрезок
Видим, что указанному отрезку принадлежат решения
Ответ:
Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.
Например, вы нашли серию решений , где — целое, а найти надо корни на отрезке На указанном промежутке лежит точка От нее и отсчитываем.
Получим:
2. а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие отрезку
Это уравнение — комбинированное. Кроме тригонометрии, применяем свойства степеней.
а)
Степени равны, их основания равны. Значит, равны и показатели.
Это ответ в пункте (а).
б) Отберем корни, принадлежащие отрезку
Отметим на тригонометрическом круге отрезок и найденные серии решений.
Видим, что указанному отрезку принадлежат точки и из серии
Точки серии не входят в указанный отрезок.
А из серии в указанный отрезок входит точка
Ответ в пункте (б):
3. а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие отрезку
а)
Применим формулу косинуса двойного угла:
Перенесем всё в левую часть уравнения и разложим по формуле разности квадратов.
Обратите внимание: мы отметили серии решений на тригонометрическом круге. Это помогло нам увидеть, как их записать одной формулой.
б) Для разнообразия отберем корни на отрезке с помощью двойного неравенства.
Сначала серия
Теперь серия
Ответ: .
Какой способ отбора корней лучше — с помощью тригонометрического круга или с помощью двойного неравенства? У каждого из них есть «плюсы» и «минусы».
Пользуясь тригонометрическим кругом, вы не ошибетесь. Вы видите и интервал, и сами серии решений. Это наглядный способ.
Зато, если интервал больше, чем один круг, удобнее отбирать корни с помощью двойного неравенства. Например, надо найти корни из серии на отрезке Это больше 10 кругов! Конечно, в таком случае лучше решить двойное неравенство.
4. а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие отрезку
Самое сложное здесь — область допустимых значений (ОДЗ). Условие заметно сразу. А условие появляется, поскольку в уравнении есть
ОДЗ:
Уравнение равносильно системе:
Отберем решения с помощью тригонометрического круга. Нам нужны те серии решений, для которых , то есть те, что соответствуют точкам справа от оси .
Ответ в пункте а)
б) Отметим на тригонометрическом круге найденные серии решений и отрезок
Как обычно, ориентируемся на начало круга. Видим, что указанному промежутку принадлежат точки
и
5. а) Решите уравнение
б) Найдите корни, принадлежащие отрезку
Выражение под корнем должно быть неотрицательно, а произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.
Это значит, что уравнение равносильно системе:
Решим эту систему с помощью тригонометрического круга. Отметим на нем углы, для которых или . Заметим, что среди них находятся и углы, для которых
Числа серии не могут быть корнями исходного уравнения, т.к. для этих чисел не выполнено условие . Остальные серии решений нас устраивают.
Тогда в ответ в пункте (а) войдут серии решений:
б) Отберем корни, принадлежащие отрезку любым способом — с помощью тригонометрического круга или с помощью двойного неравенства.
На отрезке нам подходит корень .
На отрезке нам подходят корни .
На отрезке — корни
Ответ в пункте б):
Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Задание №12. Уравнения u0026#8212; профильный ЕГЭ по математике» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.
Публикация обновлена:
08.05.2023
Отбор корней в тригонометрическом уравнение
В этой статье и постараюсь объяснить 2 способа отбора корней в тригонометрическом уравнение: с помощью неравенств и с помощью тригонометрической окружности. Перейдем сразу к наглядному примеру и походу дела будем разбираться.
а) Решить уравнение sqrt(2)cos^2x=sin(Pi/2+x)
б) Найдите все корни этого уравнения, принадлежащие промежутку [-7Pi/2; -2Pi]
Решим пункт а.
Воспользуемся формулой приведения для синуса sin(Pi/2+x) = cos(x)
sqrt(2)cos^2x – cosx = 0
cosx(sqrt(2)cosx – 1) = 0
x1 = Pi/2 + Pin, n ∈ Z
sqrt(2)cosx – 1 = 0
x2 = arccos(sqrt(2)/2) + 2Pin, n ∈ Z
x3 = -arccos(sqrt(2)/2) + 2Pin, n ∈ Z
x2 = Pi/4 + 2Pin, n ∈ Z
x3 = -Pi/4 + 2Pin, n ∈ Z
Решим пункт б.
1) Отбор корней с помощью неравенств
Здесь все делается просто, полученные корни подставляем в заданный нам промежуток [-7Pi/2; -2Pi], находим целые значения для n.
-7Pi/2 меньше или равно Pi/2 + Pin меньше или равно -2Pi
Сразу делим все на Pi
-7/2 меньше или равно 1/2 + n меньше или равно -2
-7/2 – 1/2 меньше или равно n меньше или равно -2 – 1/2
-4 меньше или равно n меньше или равно -5/2
Целые n в этом промежутку это -4 и -3. Значит корни принадлежащие этому промежутку буду Pi/2 + Pi(-4) = -7Pi/2, Pi/2 + Pi(-3) = -5Pi/2
Аналогично делаем еще два неравенства
-7Pi/2 меньше или равно Pi/4 + 2Pin меньше или равно -2Pi
-15/8 меньше или равно n меньше или равно -9/8
Целых n в этом промежутке нет
-7Pi/2 меньше или равно -Pi/4 + 2Pin меньше или равно -2Pi
-13/8 меньше или равно n меньше или равно -7/8
Одно целое n в этом промежутку это -1. Значит отобранный корень на этом промежутку -Pi/4 + 2Pi*(-1) = -9Pi/4.
Значит ответ в пункте б: -7Pi/2, -5Pi/2, -9Pi/4
2) Отбор корней с помощью тригонометрической окружности
Чтобы пользоваться этим способом надо понимать как работает эта окружность. Постараюсь простым языком объяснить как это понимаю я. Думаю в школах на уроках алгебры эта тема объяснялась много раз умными словами учителя, в учебниках сложные формулировки. Лично я понимаю это как окружность, которую можно обходить бесконечное число раз, объясняется это тем, что функции синус и косинус периодичны.
Обойдем раз против часовой стрелки
Обойдем 2 раза против часовой стрелки
Обойдем 1 раз по часовой стрелки (значения будут отрицательные)
Вернемся к нашем вопросу, нам надо отобрать корни на промежутке [-7Pi/2; -2Pi]
Чтобы попасть к числам -7Pi/2 и -2Pi надо обойти окружность против часовой стрелки два раза. Для того, чтобы найти корни уравнения на этом промежутке надо прикидывать и подставлять.
Рассмотри x = Pi/2 + Pin. Какой приблизительно должен быть n, чтобы значение x было где-то в этом промежутке? Подставляем, допустим -2, получаем Pi/2 – 2Pi = -3Pi/2, очевидно это не входит в наш промежуток, значит берем меньше -3, Pi/2 – 3Pi = -5Pi/2, это подходит, попробуем еще -4, Pi/2 – 4Pi = -7Pi/2, также подходит.
Рассуждая аналогично для Pi/4 + 2Pin и -Pi/4 + 2Pin, находим еще один корень -9Pi/4.
Сравнение двух методов.
Первый способ (с помощью неравенств) гораздо надежнее и намного проще для пониманию, но если действительно серьезно разобраться с тригонометрической окружностью и со вторым методом отбора, то отбор корней будет гораздо быстрее, можно сэкономить около 15 минут на экзамене.
Способы отбора корней в тригонометрических уравнениях
Класс: 10
Автор проекта:
Шелкова Полина,
Класс: 10
Руководитель:
Злобова Людмила Викторовна,
учитель математики
ВВЕДЕНИЕ
Слово «тригонометрия» греческое, оно переводится как «измерение треугольников» (τρίγονον – «тригон» – треугольник и μετρειν – «метрео» – измеряю).
Тригонометрия, как и всякая другая наука, выросла из практической деятельности человека. Потребности развивающегося мореплавания, для которого требовалось умение правильно определять курс корабля в открытом море по положению небесных светил, оказали большое влияние на развитие астрономии и тесно связанной с ней тригонометрией. Предполагают, что основополагающее значение для развития тригонометрии в эпоху ее зарождения, имели работы древнегреческого астронома Гиппарха Никейского (180-125 лет до н. э.) (прил. №3). Систематическое использование полной окружности в 360° установилось в основном благодаря Гиппарху и его таблице хорд (прил. №2). Т.е. таблицы, которые выражают длину хорды для различных центральных углов в круге постоянного радиуса, что является аналогом современных таблиц тригонометрических функций. Впрочем, до нас не дошли оригинальные таблицы Гиппарха, как и почти все, что им написано. И мы, можем составить себе о них представление главным образом по сочинению «Великое построение» или «Альмагесту» знаменитого астронома Клавдия Птолемея, жившего в середине II века н.э.
Несмотря на то, что в работах ученых древности нет «тригонометрии» в строгом смысле этого слова, но по существу они, пользуясь известными им средствами элементарной геометрии, решали те задачи, которыми занимается тригонометрия. Например, задачи на решение треугольников (определение всех сторон и углов треугольника по трем его известным элементам), теоремы Евклида и Архимеда представленные в геометрическом виде, эквивалентны специфическим тригонометрическим формулам. Главным достижением средневековой Индии стала замена хорд синусами. Это позволило вводить различные функции, связанные со сторонами и углами прямоугольного треугольника. Таким образом, в Индии было положено начало тригонометрии, как учению о тригонометрических величинах.
Учёные стран Ближнего и Среднего Востока с VIII века развили тригонометрию своих предшественников. Уже в середине IX века среднеазиатский учёный аль-Хорезми написал сочинение «Об индийском счёте». После того, как трактаты мусульманских ученых были переведены на латынь, многие идеи греческих, индийских и мусульманских математиков стали достоянием европейской, а затем и мировой науки. В дальнейшем потребности географии, геодезии, военного дела, способствовали развитию тригонометрии. Особенно усиленно шло ее развитие в средневековое время. Большая заслуга в формировании тригонометрии как отдельной науки принадлежит азербайджанскому ученому Насир ад-Дину ат-Туси (1201-1274), написавшему «Трактат о полном четырехстороннике». Творения ученых этого периода привели к выделению тригонометрии как нового самостоятельного раздела науки. Однако в их трудах еще не была введена необходимая символика. Современный вид тригонометрия получила в трудах Леонарда Эйлера (1707-1783). На основании трудов Эйлера были составлены учебники тригонометрии, излагавшие ее в строгой научной последовательности (прил. №4). Тригонометрические вычисления применяются во многих областях человеческой деятельности: в геометрии, в физике, в астрономии, в архитектуре, в геодезии, инженерном деле, в акустике, в электронике и т.д.
I РАЗДЕЛ (теоретический)
Тема проекта и её актуальность: почему я выбрала тему «Способы отбора корней в тригонометрических уравнениях»?
- Расширить и углубить свои знания, полученные в курсе геометрии 8-9 класса.
- Тригонометрические уравнения рассматриваются в курсе алгебры и начал математического анализа 10-11 класса.
- Тригонометрические уравнения включены в КИМы ЕГЭ по математике.
Решение тригонометрических уравнений и отбор корней, принадлежащих заданному промежутку – это одна из сложнейших тем математики, которая выносится на Единый Государственный Экзамен. По результатам анкетирования многие учащиеся затрудняются или вообще не умеют решать тригонометрические уравнения и особенно затрудняются в отборе корней, принадлежащих промежутку. Немаловажно также знать, тригонометрические формулы, табличные значения тригонометрических функций для решения целого ряда заданий Единого Государственного Экзамена по математике.
Цель проекта: изучить способы отбора корней в тригонометрических уравнениях и выбрать для себя наиболее рациональные подходы для качественной подготовки к ЕГЭ.
Задачи:
- познакомиться с историческими сведениями о возникновении тригонометрии, как науки;
- изучить соответствующую литературу;
- научиться решать тригонометрические уравнения;
- найти теоретический материал и изучить методы отбора корней в тригонометрических уравнениях;
- научиться отбирать корни в тригонометрических уравнениях, принадлежащим заданному промежутку;
- подготовиться к ЕГЭ по математике.
Приёмы отбора корней тригонометрического уравнения на заданном промежутке.
При решении тригонометрических уравнений предлагается провести отбор корней из множества значений неизвестного. В тригонометрическом уравнении отбор корней можно осуществлять следующими способами: арифметическим, алгебраическим, геометрическим и функционально-графическим.
Арифметический способ отбора корней состоит в непосредственной подстановке полученных корней в уравнение, учитывая имеющиеся ограничения, при переборе значений целочисленного параметра.
Алгебраический способ предполагает составление неравенств, соответствующих дополнительным условиям, и их решение относительно целочисленного параметра.
Геометрический способ предполагает использование при отборе корней двух вариантов: тригонометрической окружности или числовой прямой. Тригонометрическая окружность более удобна, когда речь идет об отборе корней на промежутке или в случае, когда значение обратных тригонометрических функций, входящих в решения, не являются табличными. В остальных случаях предпочтительнее модель числовой прямой. Числовую прямую удобно использовать при отборе корней на промежутке, длина которого не превосходит 2 или требуется найти наибольший отрицательный или наименьший положительный корень уравнения.
Функционально-графический способ предполагает отбор корней осуществлять с использование графиков тригонометрических функций. Чтобы использовать данный способ отбора корней, требуется умение схематичного построения графиков тригонометрических функций.
II РАЗДЕЛ (практический)
Покажу практически три наиболее эффективных и рациональных, с моей точки зрения, метода отбора корней на примере решения следующего тригонометрического уравнения:
sinx−cos2x=0; [применили формулу двойного угла: cos2x = cos 2 x−sin 2 x]
sinx−(cos 2 x−sin 2 x)=0;
sinx−(1−sin 2 x−sin 2 x)=0;
Введем новую переменную: sinx = t, -1 ≤ t ≤1, получим
Вернемся к замене:
б) Рассмотрим три способа отбора корней, попадающих в отрезок .
1 способ: обратимся к единичной окружности. Отметим на ней дугу, соответствующую указанному отрезку, т.е. выполним отбор корней арифметическим способом и с помощью тригонометрической окружности:
2 способ: указанный отрезок соответствует неравенству: Подставим в него полученные корни:
3 способ: разместим корни уравнения на числовой прямой. Сначала отметим корни, подставив вместо n, и нуль (0), а потом добавим к каждому корню периоды.
Нам останется только выбрать корни, которые попали в нужный нам отрезок.
ЗАКЛЮЧЕНИЕ
При работе над моим проектом я изучила методы решения тригонометрических уравнений и способы отбора корней тригонометрических уравнений. Выяснила для себя положительные и отрицательные моменты. При апробации этих подходов в отборе корней тригонометрического уравнения, понимаешь, что каждый из этих способов удобен по-своему в том или ином случае. Например, алгебраический способ (решение неравенством) наиболее эффективен, когда промежуток для отбора корней достаточно большой, в тоже время он дает практически стопроцентное нахождение целочисленного параметра для вычисления корней, а применение арифметического способа приводит к громоздким вычислениям. При отборе корней уравнения, удовлетворяющих дополнительным условиям, т.е. когда корни уравнения принадлежат заданному промежутку, мне проще и нагляднее получить корни с помощью тригонометрической окружности, а проверить себя можно арифметическим способом. Замечу, что при решении тригонометрических уравнений трудности, связанные с отбором корней, возрастают, если в уравнении приходится учитывать ОДЗ. Как показывает практика и анкетирование моих одноклассников, из четырёх возможных методов отбора корней тригонометрического уравнения по дополнительным условиям, наиболее предпочтительным является отбор корней по окружности. Анкетирование проходили 12 респондентов, изучающих тригонометрию (прил. №5). Большинство из них отвечали, что этот раздел математики достаточно сложный: большой объем информации, очень много формул, табличных значений, которые нужно знать и уметь применять на практике. Еще как одна из проблем – небольшое количество времени, отведенное на изучение этого сложного раздела математики. И я разделяю их мнение. При такой сложности, многие считают, что тригонометрия важный раздел математики, который находит применение в других науках и практической деятельности человека.
СПИСОК ЛИТЕРАТУРЫ
- Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. 10 класс: учеб для общеобразоват. организаций: базовый и углубленный уровни/ [С.М.Никольский, М.К.Потапов, Н.Н.Решетников и др.]-3 -е изд.- М.: Просвещение, 2016.
- Алгебра и начала математического анализа: Учеб для 10-11 кл.общеобразоват. организаций / А.Н.Колмогоров, А.М.Абрамов, Ю.П.Дудницин и др. под редакцией А.Н.Колмогорова – М. Просвещение, 2017.
- С.В Кравцев и др. Методы решения задач по алгебре: от простых до самых сложных – М: Издательство: «Экзамен», 2005.
- Корянов А.Г., Прокофьев А.А. – Тригонометрические уравнения: методы решения и отбор корней. – М.: Математика ЕГЭ, 2012.
РЕШЕНИЕ ПРОСТЕЙШИХ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ
Простейшими тригонометрическими уравнениями называют уравнения
Чтобы рассуждения по нахождению корней этих уравнений были более наглядными, воспользуемся графиками соответствующих функций.
19.1. Уравнение cos x = a
Объяснение и обоснование
- Корни уравненияcosx=a.
При |a| > 1 уравнение не имеет корней, поскольку |cos x| ≤ 1 для любого x (прямая y = a на рисунке из пункта 1 таблицы 1 при a > 1 или при a 1 уравнение не имеет корней, поскольку |sin x| ≤ 1 для любого x (прямая y = a на рисунке 1 при a > 1 или при a n arcsin a + 2πn, n ∈ Z (3)
2.Частые случаи решения уравнения sin x = a.
Полезно помнить специальные записи корней уравнения при a = 0, a = -1, a = 1, которые можно легко получить, используя как ориентир единичную окружность (рис 2).
Учитывая, что синус равен ординате соответствующей точки единичной окружности, получаем, что sin x = 0 тогда и только тогда, когда соответствующей точкой единичной окружности является точка C или тока D. Тогда
Аналогично sin x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка A, следовательно,
Также sin x = -1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка B, таким образом,
Примеры решения задач
Замечание. Ответ к задаче 1 часто записывают в виде:
19.3. Уравнения tg x = a и ctg x = a
Объяснение и обоснование
1.Корни уравнений tg x = a и ctg x = a
Рассмотрим уравнение tg x = a. На промежутке функция y = tg x возрастает (от -∞ до +∞). Но возрастающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение tg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арктангенса равен: x1 = arctg a и для этого корня tg x = a.
Функция y = tg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n ∈ Z). Получаем следующую формулу корней уравнения tg x = a:
При a=0 arctg 0 = 0, таким образом, уравнение tg x = 0 имеет корни x = πn (n ∈ Z).
Рассмотрим уравнение ctg x = a. На промежутке (0; π) функция y = ctg x убывает (от +∞ до -∞). Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение ctg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арккотангенса равен: x1=arсctg a.
Функция y = ctg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n ∈ Z). Получаем следующую формулу корней уравнения ctg x = a:
таким образом, уравнение ctg x = 0 имеет корни
Примеры решения задач
Вопросы для контроля
- Какие уравнения называют простейшими тригонометрическими?
- Запишите формулы решения простейших тригонометрических уравнений. В каких случаях нельзя найти корни простейшего тригонометрического уравнения по этим формулам?
- Выведите формулы решения простейших тригонометрических уравнений.
- Обоснуйте формулы решения простейших тригонометрических уравнений для частных случаев.
Упражнения
Решите уравнение (1-11)
Найдите корни уравнения на заданном промежутке (12-13)
[spoiler title=”источники:”]
http://urok.1sept.ru/articles/687140
http://ya-znau.ru/znaniya/zn/280
[/spoiler]
Отбор корней в тригонометрическом уравнение
В этой статье и постараюсь объяснить 2 способа отбора корней в тригонометрическом уравнение: с помощью неравенств и с помощью тригонометрической окружности. Перейдем сразу к наглядному примеру и походу дела будем разбираться.
а) Решить уравнение sqrt(2)cos^2x=sin(Pi/2+x)
б) Найдите все корни этого уравнения, принадлежащие промежутку [-7Pi/2; -2Pi]
Решим пункт а.
Воспользуемся формулой приведения для синуса sin(Pi/2+x) = cos(x)
sqrt(2)cos^2x — cosx = 0
cosx(sqrt(2)cosx — 1) = 0
x1 = Pi/2 + Pin, n ∈ Z
sqrt(2)cosx — 1 = 0
x2 = arccos(sqrt(2)/2) + 2Pin, n ∈ Z
x3 = -arccos(sqrt(2)/2) + 2Pin, n ∈ Z
x2 = Pi/4 + 2Pin, n ∈ Z
x3 = -Pi/4 + 2Pin, n ∈ Z
Решим пункт б.
1) Отбор корней с помощью неравенств
Здесь все делается просто, полученные корни подставляем в заданный нам промежуток [-7Pi/2; -2Pi], находим целые значения для n.
-7Pi/2 меньше или равно Pi/2 + Pin меньше или равно -2Pi
Сразу делим все на Pi
-7/2 меньше или равно 1/2 + n меньше или равно -2
-7/2 — 1/2 меньше или равно n меньше или равно -2 — 1/2
-4 меньше или равно n меньше или равно -5/2
Целые n в этом промежутку это -4 и -3. Значит корни принадлежащие этому промежутку буду Pi/2 + Pi(-4) = -7Pi/2, Pi/2 + Pi(-3) = -5Pi/2
Аналогично делаем еще два неравенства
-7Pi/2 меньше или равно Pi/4 + 2Pin меньше или равно -2Pi
-15/8 меньше или равно n меньше или равно -9/8
Целых n в этом промежутке нет
-7Pi/2 меньше или равно -Pi/4 + 2Pin меньше или равно -2Pi
-13/8 меньше или равно n меньше или равно -7/8
Одно целое n в этом промежутку это -1. Значит отобранный корень на этом промежутку -Pi/4 + 2Pi*(-1) = -9Pi/4.
Значит ответ в пункте б: -7Pi/2, -5Pi/2, -9Pi/4
2) Отбор корней с помощью тригонометрической окружности
Чтобы пользоваться этим способом надо понимать как работает эта окружность. Постараюсь простым языком объяснить как это понимаю я. Думаю в школах на уроках алгебры эта тема объяснялась много раз умными словами учителя, в учебниках сложные формулировки. Лично я понимаю это как окружность, которую можно обходить бесконечное число раз, объясняется это тем, что функции синус и косинус периодичны.
Обойдем раз против часовой стрелки
Обойдем 2 раза против часовой стрелки
Обойдем 1 раз по часовой стрелки (значения будут отрицательные)
Вернемся к нашем вопросу, нам надо отобрать корни на промежутке [-7Pi/2; -2Pi]
Чтобы попасть к числам -7Pi/2 и -2Pi надо обойти окружность против часовой стрелки два раза. Для того, чтобы найти корни уравнения на этом промежутке надо прикидывать и подставлять.
Рассмотри x = Pi/2 + Pin. Какой приблизительно должен быть n, чтобы значение x было где-то в этом промежутке? Подставляем, допустим -2, получаем Pi/2 — 2Pi = -3Pi/2, очевидно это не входит в наш промежуток, значит берем меньше -3, Pi/2 — 3Pi = -5Pi/2, это подходит, попробуем еще -4, Pi/2 — 4Pi = -7Pi/2, также подходит.
Рассуждая аналогично для Pi/4 + 2Pin и -Pi/4 + 2Pin, находим еще один корень -9Pi/4.
Сравнение двух методов.
Первый способ (с помощью неравенств) гораздо надежнее и намного проще для пониманию, но если действительно серьезно разобраться с тригонометрической окружностью и со вторым методом отбора, то отбор корней будет гораздо быстрее, можно сэкономить около 15 минут на экзамене.
Решение тригонометрических уравнений на промежутке
Разделы: Математика
Цель урока:
а) закрепить умения решать простейшие тригонометрические уравнения;
б) научить выбирать корни тригонометрических уравнений из заданного промежутка
Ход урока.
1. Актуализация знаний.
а)Проверка домашнего задания: классу дано опережающее домашнее задание – решить уравнение и найти способ выбора корней из данного промежутка.
1)cos x = -0,5, где хI [- ]. Ответ: .
2) sin x = , где хI [0;2?]. Ответ: ; .
3)cos 2x = —, где хI [0;]. Ответ:
Ученики записывают решение на доске кто-то с помощью графика, кто-то методом подбора.
В это время класс работает устно.
Найдите значение выражения:
а) tg – sin + cos + sin . Ответ: 1.
б) 2arccos 0 + 3 arccos 1. Ответ: ?
в) arcsin + arcsin . Ответ: .
г) 5 arctg (-) – arccos (-). Ответ:– .
– Проверим домашнее задание, откройте свои тетради с домашними работами.
Некоторые из вас нашли решение методом подбора, а некоторые с помощью графика.
2. Вывод о способах решения данных заданий и постановка проблемы, т. е. сообщение темы и цели урока.
– а) С помощью подбора решать сложно, если задан большой промежуток.
– б) Графический способ не даёт точных результатов, требует проверку, и занимает много времени.
– Поэтому должен быть ещё как минимум один способ, наиболее универсальный -попробуем его найти. Итак, чем мы будем заниматься сегодня на уроке? (Учиться выбирать корни тригонометрического уравнения на заданном промежутке.)
– Пример 1. (Ученик выходит к доске)
cos x = -0,5, где хI [- ].
Вопрос: Отчего зависит ответ на данное задание? (От общего решения уравнения. Запишем решение в общем виде). Решение записывается на доске
х = + 2?k, где k R.
– Запишем это решение в виде совокупности:
– Как вы считаете, при какой записи решения удобно выбирать корни на промежутке? (из второй записи). Но это ведь опять способ подбора. Что нам необходимо знать, чтобы получить верный ответ? (Надо знать значения k).
(Составим математическую модель для нахождения k).
1 уровень: № 295 (а,б), № 317 (а,б)
2 уровень: № 307 (в), № 308 (б), № 326(б), № 327(б).
Как решать задание 13
О чем задача?
Задачи на решение тригонометрических уравнений, более сложных, чем в задании 5. В большинстве задач требуется не только решить уравнение, но и отобрать корни, принадлежащие определенному отрезку.
Как решать?
Шаг 1. Найдите область определения
Шаг 2. Приведите уравнение к виду простейших тригонометрических уравнений
Для того чтобы привести уравнение к виду простейших тригонометрических уравнений, применяйте следующие стандартные приемы:
Мы свели исходное уравнение к совокупности простейших тригонометрических уравнений [ cos x = − 1 , cos x = − 1 2 . left[begin cos x = -1 <,>\cos x = -frac<1> <2><.>endright. [ cos x = − 1 , cos x = − 2 1 .
Шаг 3. Решите простейшие тригонометрические уравнения
О решении простейших тригонометрических уравнений читайте в отдельной статье .
Убедитесь, что найденные вами корни принадлежат области определения уравнения.
Остается решить уравнение cos x = − 1 2 cos x =-frac<1> <2>cos x = − 2 1 .
Шаг 4. Выберите корни, принадлежащие отрезку, данному в условии
Корни, принадлежащие данному в условии отрезку, можно найти либо методом перебора, либо путем решения неравенства относительно k k k .
Найдем подходящие корни методом перебора. Для этого рассмотрим две серии корней по отдельности.
источники:
http://urok.1sept.ru/articles/419940
http://lampa.io/p/%D0%BA%D0%B0%D0%BA-%D1%80%D0%B5%D1%88%D0%B0%D1%82%D1%8C-%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B5-13-000000009d385cbc7312b1ad6da2a9ec
Слайд 1
Методы отбора корней в тригонометрических уравнениях на заданном промежутке
Слайд 2
Баллы за задание №12 (С-1) 2015 2018 2020 2021 1 балл 90,7% 73, 7% 92,2% 100% 2 балла 69,4% 51,1% 83,5% 100%
Слайд 5
Обязательный минимум знаний sin x = a , -1 a 1 ( a 1) x = arcsin a + 2 n, n Z x = – arcsin a + 2 n, n Z sin x = 1 x = /2 + 2 k, k Z sin x = – 1 x = – /2 + 2 k, k Z sin x = 0 x = k, k Z y x y x x y
Слайд 6
Обязательный минимум знаний cos x = a , -1 a 1 ( a 1) x = arccos a + 2 n, n Z arccos (- a) = – arccos a cos x = 1 x = 2 k, k Z cos x = – 1 x = + 2 k, k Z cos x = 0 x = /2 + k, k Z y x y x y x
Слайд 7
Обязательный минимум знаний tg x = a , a R x = arctg a + n, n Z arctg (- a) = – arctg a ctg x = a , a R x = arcctg a + n, n Z arctg (- a) = – arctg a
Слайд 8
Рекомендации по решению тригонометрических уравнений Свести уравнение к простейшему Некоторые методы решения тригонометрических уравнений Применение тригонометрических формул Использование формул сокращённого умножения Разложение на множители Сведение к квадратному уравнению относительно sin x, cos x, tg x Введением вспомогательного аргумента Делением обеих частей однородного уравнения первой степени ( asin x +bcosx = 0 ) на cos x Делением обеих частей однородного уравнения второй степени (a sin 2 x +bsin x cos x+ c cos 2 x =0) на cos 2 x
Слайд 9
Различные способы отбора корней cos 2x = ½, x [- /2; 3 /2] 2x = ± arccos ½ + 2 n, n Z 2x = ± /3 + 2 n, n Z x = ± /6 + n, n Z Отберём корни с помощью тригонометрической окружности Ответ : – /6; /6; 5 /6; 7 /6 Найти корни уравнения, принадлежащие данному промежутку (с помощью тригонометрической окружности)
Слайд 10
Различные способы отбора корней Найти корни уравнения, принадлежащие данному промежутку (арифметический, метод перебора) sin 3x = √3/2, x [- /2; /2] 3x = ( – 1) k /3 + k, k Z x = ( – 1) k /9 + k/3, k Z Отберём корни с помощью перебора значений k: k = 0, x = /9 – принадлежит промежутку k = 1, x = – /9 + /3 = 2 /9 – принадлежит промежутку k = 2, x = /9 + 2 /3 = 7 /9 – не принадлежит промежутку k = – 1, x = – /9 – /3 = – 4 /9 – принадлежит промежутку k = – 2, x = /9 – 2 /3 = – 5 /9 – не принадлежит промежутку Ответ: -4 /9; /9; 2 /9
Слайд 11
Различные способы отбора корней tg 3x = – 1 , x (- /2; ) 3x = – /4 + n, n Z x = – /12 + n/3, n Z Отберём корни с помощью неравенства: Ответ: – 5 /12; – /12; /4; 7 /12; 11 /12 – /2 < – /12 + n/3 < , – 1/2 < – 1/12 + n/3 < 1, – 1/2 + 1/12 < n/3 < 1+ 1/12, – 5/12 < n/3 < 13/12, – 5/4 < n < 13/4, n Z, n = – 1; 0; 1; 2; 3 Найти корни уравнения, принадлежащие данному промежутку ( с помощью неравенства) n = – 1, x = – /12 – /3 = – 5 /12 n = 0, x = – /12 n = 1, x = – /12 + /3 = /4 n = 2, x = – /12 + 2 /3 = 7 /12 n = 3, x = – /12 + = 11 /12
Слайд 12
Различные способы отбора корней Найти корни уравнения, принадлежащие данному промежутку ( с помощью графика) cos x = – √2/2, x [ – 4; 5 /4] x = arccos (– √2/2) + 2 n, n Z x = 3 /4 + 2 n, n Z Отберём корни с помощью графика: Ответ: 5 /4; 3 /4 x = – /2 – /4 = – 3 /4; x = – – /4 = – 5 /4
Слайд 13
1. Решить уравнение 7 2cosx = 49 sin2x и указать его корни на отрезке [ ; 5 /2] 7 2cosx = 49 sin2x, 7 2cosx = 7 2sin2x, 2cos x = 2sin 2x, cos x – 2 sinx cosx = 0, cos x (1 – 2sinx) = 0, cos x = 0 , x = /2 + k, k Z или 1 – 2sinx = 0, sin x = ½, x = /6 + 2 k, k Z x = 5 /6 + 2 k, k Z Решим уравнение: Проведём отбор корней с помощью тригонометрической окружности: Ответ: а) /2 + k, k Z, x1 = /6 + 2 k, k Z; x2 = 5 /6 + 2 k, k Z б) 3 /2; 5 /2; 13 /6 x = 2 + /6 = 13 /6
Слайд 14
4cos 2 x + 8 cos (x – 3 /2) +1 = 0 4cos 2 x + 8 cos (3 /2 – x) +1 = 0, 4cos 2 x – 8 sin x +1 = 0, 4 – 4sin 2 x – 8 sin x +1 = 0, 4sin 2 x + 8sin x – 5 = 0, D/4 = 16 + 20 = 36, sin x = – 2,5 или sin x = ½ x1= /6 + 2 k, k Z x2 = 5 /6 + 2 k, k Z 2. Решить уравнение 4cos 2 x + 8 cos (x – 3 /2) +1 = 0 Найти его корни на отрезке [3 ; 9 2]
Слайд 15
Проведем отбор корней на отрезке [3 ; 9 2] (с помощью графиков) x = 4 + /6 = 25 /6 Ответ: а) x1 = /6 + 2 k, k Z x2 = 5 /6 + 2 k, k Z б) 25 /6 sin x = ½ Построим графики функций y = sin x и y = ½
Слайд 16
3. Решить уравнение 4 – cos 2 2x = 3 sin 2 2x + 2 sin 4x Найти его корни на отрезке [0; 1] 4 – cos 2 2x = 3 sin 2 2x + 2 sin 4x 4 (sin 2 2x + cos 2 2x ) – cos 2 2x = 3 sin 2 2x + 4 sin 2x cos 2x, sin 2 2x + 3 cos 2 2x – 4 sin 2x cos 2x = 0 Если cos 2 2x = 0, то sin 2 2x = 0, что невозможно, поэтому cos 2 2x 0 и обе части уравнения можно разделить на cos 2 2x. tg 2 2x + 3 – 4 tg 2x = 0, tg 2 2x – 4 tg 2x + 3= 0, tg 2x = 1, 2x = /4 + n, n Z x = /8 + n/2, n Z или tg 2x = 3, 2x = arctg 3 + k, k Z x = ½ arctg 3 + k/2, k Z
Слайд 17
Проведём отбор корней на отрезке [0; 1] 4 – cos 2 2x = 3 sin 2 2x + 2 sin 4x x = /8 + n/2, n Z или x = ½ arctg 3 + k/2, k Z Так как 0 < arctg 3< /2, 0 < ½ arctg 3< /4, то ½ arctg 3 является решением Так как 0 < /8 < /4 < 1,значит /8 также является решением Другие решения не попадут в промежуток [0; 1], так как они получаются из чисел ½ arctg 3 и /8 прибавлением чисел, кратных /2. Ответ: а) /8 + n/2, n Z ; ½ arctg 3 + k/2, k Z б) /8; ½ arctg 3
Слайд 18
4. Решить уравнение log 5 (cos x – sin 2x + 25) = 2 Найти его корни на отрезке [2 ; 7 /2] log 5 (cos x – sin 2x + 25) = 2 cos x – sin 2x + 25 > 0, cos x – sin 2x + 25 = 25, 25 > 0, cos x – 2sin x cos x = 0, cos x (1 – 2sin x) = 0, cos x = 0, x = /2 + n, n Z или 1 – 2sinx = 0, sin x = 1/2 x = /6 + 2 k, k Z x = 5 /6 + 2 k, k Z Решим уравнение:
Слайд 19
1) x = /2 + n, n Z 2 /2 + n 7 /2, n Z 2 1/2 + n 7/2, n Z 2 – ½ n 7/2 – ½, n Z 1,5 n 3, n Z n = 2; 3 x = /2 + 2 = 5 /2 x = /2 + 3 = 7 /2 x = 2 + /6 = 13 /6 x = 3 – /6 = 17 /6 Проведём отбор корней на отрезке [2 ; 7 /2]: Проведём отбор корней на отрезке 2) sin x = 1/2 Ответ: а) /2 + n, n Z; x1 = /6 + 2 k, k Z x2 = 5 /6 + 2 k, k Z б) 13 /6 ; 5 /2; 7 /2; 17 /6
Слайд 20
5. Решить уравнение 1/sin 2 x + 1/sin x = 2 Найти его корни на отрезке [-5 /2; -3 /2] 1/sin 2 x + 1/sin x = 2 x k Замена 1/sin x = t, t 2 + t = 2, t 2 + t – 2 = 0, t 1 = – 2, t 2 = 1 Решим уравнение: 1/sin x = – 2, sin x = – ½, x = – /6 + 2 n, n Z или x = – 5 /6 + 2 n, n Z 1/sin x = 1, sin x = 1, x = /2 + 2 n, n Z
Слайд 21
1) x = – /6 + 2 n, n Z -5 /2 – /6 + 2 n -3 /2, n Z -5/2 -1/6 + 2n -3/2, n Z -5/2 +1/6 2n -3/2 + 1/6, n Z – 7/3 2n -4/3, n Z -7/6 n -2/3, n Z n = -1 x = – /6 – 2 = -13 /6 Рассмотрим остальные серии корней и проведём отбор корней на отрезке алгебраическим методом [-5 /2; -3 /2] Продолжим отбор корней на отрезке Ответ: а) /2 + 2 n, n Z ; x1 = – /6 + 2 k, k Z x2 = – 5 /6 + 2 k, k Z б) -13 /6 ; -3 /2 2) x = /2 + 2 n, n Z -5 /2 /2 + 2 n -3 /2, n Z -5/2 1/2 + 2n -3/2, n Z -5/2 – 1/2 2n -3/2 – 1/2, n Z – 3 2n -2, n Z -1,5 n -1, n Z n = -1 x = /2 – 2 = -3 /2
Слайд 22
6. Решить уравнение |sin x|/sin x + 2 = 2cos x Найти его корни на отрезке [-1; 8] Решим уравнение |sin x|/sin x + 2 = 2cos x 1)Если sin x >0, то |sin x| =sin x Уравнение примет вид: 2 cos x=3, cos x =1,5 – не имеет корней 2) Если sin x <0, то |sin x| =-sin x и уравнение примет вид 2cos x=1, cos x = 1/2, x = ±π/3 +2πk, k Z Учитывая, что sin x < 0, то остаётся одна серия ответа x = – π/3 +2πk, k Z Произведём отбор корней на отрезке [-1; 8] k=0, x= – π/3 , – π < -3, – π/3 < -1, -π/3 не принадлежит данному отрезку k=1, x = – π/3 +2π = 5 π/3<8, 5 π/3 [-1; 8] k=2, x= – π/3 + 4π = 11 π/3 > 8, 11 π/3 не принадлежит данному отрезку. Ответ: а) – π/3 +2πk, k Z б) 5 π/3
Слайд 23
7. Решить уравнение 4sin 3 x=3cos(x- π/2) Найти его корни на промежутке [7 /2; 9 /2) Решим уравнение 4sin 3 x = 3cos(x- π/2) 4sin 3 x = 3cos(π/2-х), 4sin 3 x – 3cos(π/2-х) = 0, 4sin 3 x – 3sin x = 0, sin x (4sin 2 x – 3) = 0, sin x= 0 x= n, n Z или 4sin 2 x – 3=0, sin x=√3/2; sin x =-√3/2 sin x=√3/2, x1= /3 + 2 k, k Z, x2=4 /3 + 2 k, k Z. sin x =-√3/2, x1=- /3 + 2 k, k Z, x2= -4 /3 + 2 k, k Z.
Слайд 24
Объединим решения ( см. рисунок) Уравнение можно решить короче, зная формулу sin 3x = 3sinx – 4sin 3 x : 4sin 3 x – 3sin x =0, 3sin x – 4sin 3 x =0, s in 3x = 0, х = m/3, m Z или х = m/3, m Z
Слайд 25
Проведём отбор корней на промежутке [7 /2; 9 /2) х= m/3, m Z. 7 /2 ≤ m/3 < 9 /2, 21/2 ≤ m<27/2, m Z, 10,5 ≤ m < 13,5, m Z, m =10; 11; 12, x= 10 /3, x= 11 /3, x= 12 /3 Ответ : а) m/3, m Z; б) 10 /3; 11 /3; 12 /3
Слайд 26
8. Решить уравнение √1-sin 2 x= sin x Найти его корни на промежутке [5 /2; 4 ] Решим уравнение √1-sin 2 x= sin x. sin x ≥ 0, 1- sin 2 x = sin 2 x; sin x ≥ 0, sin x≥0, 2sin 2 x = 1; sin x =√2/2; sin x = – √2/2; sin x =√2/2 sin x =√2/2 x=(-1) k /4 + k, k Z
Слайд 27
Проведём отбор корней на отрезке [5 /2; 4 ] x=(-1) k /4 + k, k Z sin x =√2/2 у =sin x и у=√2/2 5 /2 + /4 = 11 /4 Ответ: а) (-1) k /4 + k, k Z ; б) 11 /4
Слайд 28
9. Решить уравнение (sin2x + 2 sin 2 x)/√-cos x =0 Найти его корни на промежутке [-5 ; -7 /2] Решим уравнение (sin2x + 2 sin 2 x)/√-cos x =0. 1) cos x <0 , /2 +2 n
Слайд 29
Отберём корни на заданном отрезке Отберём корни на заданном отрезке [-5 ; -7 /2] x= +2 n, n Z ; -5 ≤ +2 n ≤ -7 /2, -5-1 ≤ 2n ≤ -7/2-1, -3≤ n ≤ -9/4, n Z n = -3, x= -6 = -5 x= 3 /4 + 2 n, n Z -5 ≤ 3 /4 + 2 n ≤ -7 /2 -23/8 ≤ n ≤ -17/8, нет такого целого n. Ответ: а) +2 n, n Z ; 3 /4 + 2 n, n Z ; б) -5 .
Слайд 30
10. Решить уравнение 2sin2x =4cos x –sinx+1 Найти его корни на промежутке [ /2; 3 /2 ] Решим уравнение 2sin2x = 4cos x – sinx+1 2sin2x = 4cos x – sinx+1, 4 sinx∙cos x – 4cos x + sin x -1 = 0, 4cos x(sin x – 1) + (sin x – 1) = 0, (sin x – 1)(4cos x +1)=0, sin x – 1= 0, sin x = 1, x = /2+2 n, n Z или 4cos x +1= 0, cos x = -0,25 x = ± ( -arccos (0,25)) + 2 n, n Z Запишем корни этого уравнения иначе x = – arccos(0,25) + 2 n, x = -( – arccos(0,25)) + 2 n, n Z
Слайд 31
Отберём корни с помощью окружности x = /2+2 n, n Z, х = /2; x = -arccos(0,25)+2 n, х=-( -arccos(0,25)) +2 n, n Z, x = – arccos(0,25), x = + arccos(0,25) Ответ: а) /2+2 n, -arccos(0,25)+2 n, -( -arccos(0,25)) +2 n, n Z; б) /2; -arccos(0,25); +arccos(0,25)
Пример:
а) реши уравнение
sinx=cos2x
.
б) Найди все корни этого уравнения, принадлежащие отрезку
2π;7π2
.
a) Уравнение прежде всего иррациональное, поэтому решается возведением обеих частей в квадрат. С учётом области определения получаем:
sinx=cos2x;sinx≥0,cos2x≥0.
Стоит заметить, что рассматривать оба неравенства в системе нам не нужно, так как мы будем решать уравнение. Поэтому можно оставить только одно — более простое неравенство:
sinx=cos2x;(1)sinx≥0.
Решим уравнение системы ((1)). Прежде всего избавимся от двойного угла в уравнении:
sinx=cos2x;sinx−cos2x=0;sinx−(cos2x−sin2x)=0;sinx−(1−sin2x−sin2x)=0;sinx−(1−2sin2x)=0;2sin2x+sinx−1=0;sinx=−1,sinx=12.
(sin x= -1) исключаем, так как это значение не входит в область определения, а решения второго уравнения обозначим на тригонометрической окружности.
Рис. (1). Решения уравнения на единичной окружности
Эти решения можно записать в виде:
x=π6+2πn,n∈ℤ,x=5π6+2πm,m∈ℤ.
б) Рассмотрим три способа отбора корней, попадающих в отрезок
2π;7π2
.
(1) способ:
вернёмся к единичной окружности. Отметим на ней дугу, соответствующую указанному промежутку, подпишем начало и конец, отметим точки окружности, представляющие серии решений и принадлежащие дуге, укажем их значения, принадлежащие промежутку.
2π+π6=13π6,2π+5π6=17π6.
Рис. (2). Отбор корней с помощью единичной окружности
Обрати внимание!
Нельзя отмечать и подписывать посторонние точки на окружности!
(2) способ:
указанный отрезок соответствует неравенству
2π≤x≤7π2
. Подставим в него полученные корни:
2π≤π6+2πn≤7π2,n∈ℤ:π;2≤16+2n≤72,n∈ℤ−16;2−16≤2n≤72−16,n∈ℤ;116≤2n≤206,n∈ℤ:2;1112≤n≤2012,n∈ℤ;1112≤n≤1812,n∈ℤ;n=1;π6+2π⋅1=13π6 | 2π≤5π6+2πm≤7π2,m∈ℤ:π;2≤56+2m≤72,m∈ℤ−56;2−56≤2m≤72−56,m∈ℤ;76≤2m≤166,m∈ℤ:2;712≤m≤1612,m∈ℤ;712≤m≤1412,m∈ℤ;m=1;5π6+2π⋅1=17π6 |
Обрати внимание!
Обязательно выдели целые части дробей для оценки значений (n) и (m)!
(3) способ:
разместим корни уравнения на числовой прямой. Сначала отметим корни, подставив вместо (n) и (m) (0), а потом добавим к каждому корню периоды. На числовой прямой должен быть выделен заданный отрезок, обозначены его концы, отмечены все последовательные значения серий корней, начиная с точек, расположенных левее промежутка, и заканчивая точками, расположенными правее промежутка.
Рис. (3). Отбор корней с помощью координатной прямой
Нам останется только выбрать корни, которые попали в нужный нам отрезок.
Ответ: а)
π6+2πn,n∈ℤ;5π6+2πm,m∈ℤ
; б)
13π6,17π6.
Рекомендуем при решении тригонометрических уравнений использовать несколько разных способов отбора. Это поможет тебе убедиться в правильности отбора корней и выработать навык выбора наиболее удобного способа.
Источники:
Рис. 1. Решения уравнения на единичной окружности. © ЯКласс.
Рис. 2. Отбор корней с помощью единичной окружности. © ЯКласс.
Рис. 3. Отбор корней с помощью координатной прямой. © ЯКласс.