РЕШЕНИЕ ПРОСТЕЙШИХ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ
Простейшими тригонометрическими уравнениями называют уравнения
Чтобы рассуждения по нахождению корней этих уравнений были более наглядными, воспользуемся графиками соответствующих функций.
19.1. Уравнение cos x = a
Объяснение и обоснование
- Корни уравненияcosx=a.
При |a| > 1 уравнение не имеет корней, поскольку |cos x| ≤ 1 для любого x (прямая y = a на рисунке из пункта 1 таблицы 1 при a > 1 или при a 1 уравнение не имеет корней, поскольку |sin x| ≤ 1 для любого x (прямая y = a на рисунке 1 при a > 1 или при a n arcsin a + 2πn, n ∈ Z (3)
2.Частые случаи решения уравнения sin x = a.
Полезно помнить специальные записи корней уравнения при a = 0, a = -1, a = 1, которые можно легко получить, используя как ориентир единичную окружность (рис 2).
Учитывая, что синус равен ординате соответствующей точки единичной окружности, получаем, что sin x = 0 тогда и только тогда, когда соответствующей точкой единичной окружности является точка C или тока D. Тогда
Аналогично sin x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка A, следовательно,
Также sin x = -1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка B, таким образом,
Примеры решения задач
Замечание. Ответ к задаче 1 часто записывают в виде:
19.3. Уравнения tg x = a и ctg x = a
Объяснение и обоснование
1.Корни уравнений tg x = a и ctg x = a
Рассмотрим уравнение tg x = a. На промежутке функция y = tg x возрастает (от -∞ до +∞). Но возрастающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение tg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арктангенса равен: x1 = arctg a и для этого корня tg x = a.
Функция y = tg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n ∈ Z). Получаем следующую формулу корней уравнения tg x = a:
При a=0 arctg 0 = 0, таким образом, уравнение tg x = 0 имеет корни x = πn (n ∈ Z).
Рассмотрим уравнение ctg x = a. На промежутке (0; π) функция y = ctg x убывает (от +∞ до -∞). Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение ctg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арккотангенса равен: x1=arсctg a.
Функция y = ctg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n ∈ Z). Получаем следующую формулу корней уравнения ctg x = a:
таким образом, уравнение ctg x = 0 имеет корни
Примеры решения задач
Вопросы для контроля
- Какие уравнения называют простейшими тригонометрическими?
- Запишите формулы решения простейших тригонометрических уравнений. В каких случаях нельзя найти корни простейшего тригонометрического уравнения по этим формулам?
- Выведите формулы решения простейших тригонометрических уравнений.
- Обоснуйте формулы решения простейших тригонометрических уравнений для частных случаев.
Упражнения
Решите уравнение (1-11)
Найдите корни уравнения на заданном промежутке (12-13)
Способы отбора корней в тригонометрических уравнениях
Класс: 10
Автор проекта:
Шелкова Полина,
Класс: 10
Руководитель:
Злобова Людмила Викторовна,
учитель математики
ВВЕДЕНИЕ
Слово «тригонометрия» греческое, оно переводится как «измерение треугольников» (τρίγονον – «тригон» – треугольник и μετρειν – «метрео» – измеряю).
Тригонометрия, как и всякая другая наука, выросла из практической деятельности человека. Потребности развивающегося мореплавания, для которого требовалось умение правильно определять курс корабля в открытом море по положению небесных светил, оказали большое влияние на развитие астрономии и тесно связанной с ней тригонометрией. Предполагают, что основополагающее значение для развития тригонометрии в эпоху ее зарождения, имели работы древнегреческого астронома Гиппарха Никейского (180-125 лет до н. э.) (прил. №3). Систематическое использование полной окружности в 360° установилось в основном благодаря Гиппарху и его таблице хорд (прил. №2). Т.е. таблицы, которые выражают длину хорды для различных центральных углов в круге постоянного радиуса, что является аналогом современных таблиц тригонометрических функций. Впрочем, до нас не дошли оригинальные таблицы Гиппарха, как и почти все, что им написано. И мы, можем составить себе о них представление главным образом по сочинению «Великое построение» или «Альмагесту» знаменитого астронома Клавдия Птолемея, жившего в середине II века н.э.
Несмотря на то, что в работах ученых древности нет «тригонометрии» в строгом смысле этого слова, но по существу они, пользуясь известными им средствами элементарной геометрии, решали те задачи, которыми занимается тригонометрия. Например, задачи на решение треугольников (определение всех сторон и углов треугольника по трем его известным элементам), теоремы Евклида и Архимеда представленные в геометрическом виде, эквивалентны специфическим тригонометрическим формулам. Главным достижением средневековой Индии стала замена хорд синусами. Это позволило вводить различные функции, связанные со сторонами и углами прямоугольного треугольника. Таким образом, в Индии было положено начало тригонометрии, как учению о тригонометрических величинах.
Учёные стран Ближнего и Среднего Востока с VIII века развили тригонометрию своих предшественников. Уже в середине IX века среднеазиатский учёный аль-Хорезми написал сочинение «Об индийском счёте». После того, как трактаты мусульманских ученых были переведены на латынь, многие идеи греческих, индийских и мусульманских математиков стали достоянием европейской, а затем и мировой науки. В дальнейшем потребности географии, геодезии, военного дела, способствовали развитию тригонометрии. Особенно усиленно шло ее развитие в средневековое время. Большая заслуга в формировании тригонометрии как отдельной науки принадлежит азербайджанскому ученому Насир ад-Дину ат-Туси (1201-1274), написавшему «Трактат о полном четырехстороннике». Творения ученых этого периода привели к выделению тригонометрии как нового самостоятельного раздела науки. Однако в их трудах еще не была введена необходимая символика. Современный вид тригонометрия получила в трудах Леонарда Эйлера (1707-1783). На основании трудов Эйлера были составлены учебники тригонометрии, излагавшие ее в строгой научной последовательности (прил. №4). Тригонометрические вычисления применяются во многих областях человеческой деятельности: в геометрии, в физике, в астрономии, в архитектуре, в геодезии, инженерном деле, в акустике, в электронике и т.д.
I РАЗДЕЛ (теоретический)
Тема проекта и её актуальность: почему я выбрала тему «Способы отбора корней в тригонометрических уравнениях»?
- Расширить и углубить свои знания, полученные в курсе геометрии 8-9 класса.
- Тригонометрические уравнения рассматриваются в курсе алгебры и начал математического анализа 10-11 класса.
- Тригонометрические уравнения включены в КИМы ЕГЭ по математике.
Решение тригонометрических уравнений и отбор корней, принадлежащих заданному промежутку – это одна из сложнейших тем математики, которая выносится на Единый Государственный Экзамен. По результатам анкетирования многие учащиеся затрудняются или вообще не умеют решать тригонометрические уравнения и особенно затрудняются в отборе корней, принадлежащих промежутку. Немаловажно также знать, тригонометрические формулы, табличные значения тригонометрических функций для решения целого ряда заданий Единого Государственного Экзамена по математике.
Цель проекта: изучить способы отбора корней в тригонометрических уравнениях и выбрать для себя наиболее рациональные подходы для качественной подготовки к ЕГЭ.
Задачи:
- познакомиться с историческими сведениями о возникновении тригонометрии, как науки;
- изучить соответствующую литературу;
- научиться решать тригонометрические уравнения;
- найти теоретический материал и изучить методы отбора корней в тригонометрических уравнениях;
- научиться отбирать корни в тригонометрических уравнениях, принадлежащим заданному промежутку;
- подготовиться к ЕГЭ по математике.
Приёмы отбора корней тригонометрического уравнения на заданном промежутке.
При решении тригонометрических уравнений предлагается провести отбор корней из множества значений неизвестного. В тригонометрическом уравнении отбор корней можно осуществлять следующими способами: арифметическим, алгебраическим, геометрическим и функционально-графическим.
Арифметический способ отбора корней состоит в непосредственной подстановке полученных корней в уравнение, учитывая имеющиеся ограничения, при переборе значений целочисленного параметра.
Алгебраический способ предполагает составление неравенств, соответствующих дополнительным условиям, и их решение относительно целочисленного параметра.
Геометрический способ предполагает использование при отборе корней двух вариантов: тригонометрической окружности или числовой прямой. Тригонометрическая окружность более удобна, когда речь идет об отборе корней на промежутке или в случае, когда значение обратных тригонометрических функций, входящих в решения, не являются табличными. В остальных случаях предпочтительнее модель числовой прямой. Числовую прямую удобно использовать при отборе корней на промежутке, длина которого не превосходит 2 или требуется найти наибольший отрицательный или наименьший положительный корень уравнения.
Функционально-графический способ предполагает отбор корней осуществлять с использование графиков тригонометрических функций. Чтобы использовать данный способ отбора корней, требуется умение схематичного построения графиков тригонометрических функций.
II РАЗДЕЛ (практический)
Покажу практически три наиболее эффективных и рациональных, с моей точки зрения, метода отбора корней на примере решения следующего тригонометрического уравнения:
sinx−cos2x=0; [применили формулу двойного угла: cos2x = cos 2 x−sin 2 x]
sinx−(cos 2 x−sin 2 x)=0;
sinx−(1−sin 2 x−sin 2 x)=0;
Введем новую переменную: sinx = t, -1 ≤ t ≤1, получим
Вернемся к замене:
б) Рассмотрим три способа отбора корней, попадающих в отрезок .
1 способ: обратимся к единичной окружности. Отметим на ней дугу, соответствующую указанному отрезку, т.е. выполним отбор корней арифметическим способом и с помощью тригонометрической окружности:
2 способ: указанный отрезок соответствует неравенству: Подставим в него полученные корни:
3 способ: разместим корни уравнения на числовой прямой. Сначала отметим корни, подставив вместо n, и нуль (0), а потом добавим к каждому корню периоды.
Нам останется только выбрать корни, которые попали в нужный нам отрезок.
ЗАКЛЮЧЕНИЕ
При работе над моим проектом я изучила методы решения тригонометрических уравнений и способы отбора корней тригонометрических уравнений. Выяснила для себя положительные и отрицательные моменты. При апробации этих подходов в отборе корней тригонометрического уравнения, понимаешь, что каждый из этих способов удобен по-своему в том или ином случае. Например, алгебраический способ (решение неравенством) наиболее эффективен, когда промежуток для отбора корней достаточно большой, в тоже время он дает практически стопроцентное нахождение целочисленного параметра для вычисления корней, а применение арифметического способа приводит к громоздким вычислениям. При отборе корней уравнения, удовлетворяющих дополнительным условиям, т.е. когда корни уравнения принадлежат заданному промежутку, мне проще и нагляднее получить корни с помощью тригонометрической окружности, а проверить себя можно арифметическим способом. Замечу, что при решении тригонометрических уравнений трудности, связанные с отбором корней, возрастают, если в уравнении приходится учитывать ОДЗ. Как показывает практика и анкетирование моих одноклассников, из четырёх возможных методов отбора корней тригонометрического уравнения по дополнительным условиям, наиболее предпочтительным является отбор корней по окружности. Анкетирование проходили 12 респондентов, изучающих тригонометрию (прил. №5). Большинство из них отвечали, что этот раздел математики достаточно сложный: большой объем информации, очень много формул, табличных значений, которые нужно знать и уметь применять на практике. Еще как одна из проблем – небольшое количество времени, отведенное на изучение этого сложного раздела математики. И я разделяю их мнение. При такой сложности, многие считают, что тригонометрия важный раздел математики, который находит применение в других науках и практической деятельности человека.
СПИСОК ЛИТЕРАТУРЫ
- Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. 10 класс: учеб для общеобразоват. организаций: базовый и углубленный уровни/ [С.М.Никольский, М.К.Потапов, Н.Н.Решетников и др.]-3 -е изд.- М.: Просвещение, 2016.
- Алгебра и начала математического анализа: Учеб для 10-11 кл.общеобразоват. организаций / А.Н.Колмогоров, А.М.Абрамов, Ю.П.Дудницин и др. под редакцией А.Н.Колмогорова – М. Просвещение, 2017.
- С.В Кравцев и др. Методы решения задач по алгебре: от простых до самых сложных – М: Издательство: «Экзамен», 2005.
- Корянов А.Г., Прокофьев А.А. – Тригонометрические уравнения: методы решения и отбор корней. – М.: Математика ЕГЭ, 2012.
Отбор корней в тригонометрическом уравнение
В этой статье и постараюсь объяснить 2 способа отбора корней в тригонометрическом уравнение: с помощью неравенств и с помощью тригонометрической окружности. Перейдем сразу к наглядному примеру и походу дела будем разбираться.
а) Решить уравнение sqrt(2)cos^2x=sin(Pi/2+x)
б) Найдите все корни этого уравнения, принадлежащие промежутку [-7Pi/2; -2Pi]
Решим пункт а.
Воспользуемся формулой приведения для синуса sin(Pi/2+x) = cos(x)
sqrt(2)cos^2x – cosx = 0
cosx(sqrt(2)cosx – 1) = 0
x1 = Pi/2 + Pin, n ∈ Z
sqrt(2)cosx – 1 = 0
x2 = arccos(sqrt(2)/2) + 2Pin, n ∈ Z
x3 = -arccos(sqrt(2)/2) + 2Pin, n ∈ Z
x2 = Pi/4 + 2Pin, n ∈ Z
x3 = -Pi/4 + 2Pin, n ∈ Z
Решим пункт б.
1) Отбор корней с помощью неравенств
Здесь все делается просто, полученные корни подставляем в заданный нам промежуток [-7Pi/2; -2Pi], находим целые значения для n.
-7Pi/2 меньше или равно Pi/2 + Pin меньше или равно -2Pi
Сразу делим все на Pi
-7/2 меньше или равно 1/2 + n меньше или равно -2
-7/2 – 1/2 меньше или равно n меньше или равно -2 – 1/2
-4 меньше или равно n меньше или равно -5/2
Целые n в этом промежутку это -4 и -3. Значит корни принадлежащие этому промежутку буду Pi/2 + Pi(-4) = -7Pi/2, Pi/2 + Pi(-3) = -5Pi/2
Аналогично делаем еще два неравенства
-7Pi/2 меньше или равно Pi/4 + 2Pin меньше или равно -2Pi
-15/8 меньше или равно n меньше или равно -9/8
Целых n в этом промежутке нет
-7Pi/2 меньше или равно -Pi/4 + 2Pin меньше или равно -2Pi
-13/8 меньше или равно n меньше или равно -7/8
Одно целое n в этом промежутку это -1. Значит отобранный корень на этом промежутку -Pi/4 + 2Pi*(-1) = -9Pi/4.
Значит ответ в пункте б: -7Pi/2, -5Pi/2, -9Pi/4
2) Отбор корней с помощью тригонометрической окружности
Чтобы пользоваться этим способом надо понимать как работает эта окружность. Постараюсь простым языком объяснить как это понимаю я. Думаю в школах на уроках алгебры эта тема объяснялась много раз умными словами учителя, в учебниках сложные формулировки. Лично я понимаю это как окружность, которую можно обходить бесконечное число раз, объясняется это тем, что функции синус и косинус периодичны.
Обойдем раз против часовой стрелки
Обойдем 2 раза против часовой стрелки
Обойдем 1 раз по часовой стрелки (значения будут отрицательные)
Вернемся к нашем вопросу, нам надо отобрать корни на промежутке [-7Pi/2; -2Pi]
Чтобы попасть к числам -7Pi/2 и -2Pi надо обойти окружность против часовой стрелки два раза. Для того, чтобы найти корни уравнения на этом промежутке надо прикидывать и подставлять.
Рассмотри x = Pi/2 + Pin. Какой приблизительно должен быть n, чтобы значение x было где-то в этом промежутке? Подставляем, допустим -2, получаем Pi/2 – 2Pi = -3Pi/2, очевидно это не входит в наш промежуток, значит берем меньше -3, Pi/2 – 3Pi = -5Pi/2, это подходит, попробуем еще -4, Pi/2 – 4Pi = -7Pi/2, также подходит.
Рассуждая аналогично для Pi/4 + 2Pin и -Pi/4 + 2Pin, находим еще один корень -9Pi/4.
Сравнение двух методов.
Первый способ (с помощью неравенств) гораздо надежнее и намного проще для пониманию, но если действительно серьезно разобраться с тригонометрической окружностью и со вторым методом отбора, то отбор корней будет гораздо быстрее, можно сэкономить около 15 минут на экзамене.
[spoiler title=”источники:”]
http://urok.1sept.ru/articles/687140
http://reshimvse.com/article.php?id=100
[/spoiler]
Чтобы успешно решать тригонометрические уравнения удобно пользоваться методом сведения к ранее решенным задачам. Давайте разберемся, в чем суть этого метода?
В любой предлагаемой задаче вам необходимо увидеть уже решенную ранее задачу, а затем с помощью последовательных равносильных преобразований попытаться свести данную вам задачу к более простой.
Так, при решении тригонометрических уравнений обычно составляют некоторую конечную последовательность равносильных уравнений, последним звеном которой является уравнение с очевидным решением. Только важно помнить, что если навыки решения простейших тригонометрических уравнений не сформированы, то решение более сложных уравнений будет затруднено и малоэффективно.
Кроме того, решая тригонометрические уравнения, никогда не стоит забывать о возможности существования нескольких способов решения.
Пример 1. Найти количество корней уравнения cos x = -1/2 на промежутке [0; 2π].
Решение:
I способ. Изобразим графики функций y = cos x и y = -1/2 и найдем количество их общих точек на промежутке [0; 2π] (рис. 1).
Так как графики функций имеют две общие точки на промежутке [0; 2π], то уравнение содержит два корня на данном промежутке.
II способ. С помощью тригонометрического круга (рис. 2) выясним количество точек, принадлежащих промежутку [0; 2π], в которых cos x = -1/2. По рисунку видно, что уравнение имеет два корня.
III способ. Воспользовавшись формулой корней тригонометрического уравнения, решим уравнение cos x = -1/2.
cos x = -1/2;
x = ± arccos (-1/2) + 2πk, k – целое число (k € Z);
x = ± (π – arccos 1/2) + 2πk, k – целое число (k € Z);
x = ± (π – π/3) + 2πk, k – целое число (k € Z);
x = ± 2π/3 + 2πk, k – целое число (k € Z).
Промежутку [0; 2π] принадлежат корни 2π/3 и -2π/3 + 2π, k – целое число. Таким образом, уравнение имеет два корня на заданном промежутке.
Ответ: 2.
В дальнейшем тригонометрические уравнения будут решаться одним из предложенных способов, что во многих случаях не исключает применения и остальных способов.
Пример 2. Найти количество решений уравнения tg (x + π/4) = 1 на промежутке [-2π; 2π].
Решение:
Воспользовавшись формулой корней тригонометрического уравнения, получим:
x + π/4 = arctg 1 + πk, k – целое число (k € Z);
x + π/4 = π/4 + πk, k – целое число (k € Z);
x = πk, k – целое число (k € Z);
Промежутку [-2π; 2π] принадлежат числа -2π; -π; 0; π; 2π. Итак, уравнение имеет пять корней на заданном промежутке.
Ответ: 5.
Пример 3. Найти количество корней уравнения cos2 x + sin x · cos x = 1 на промежутке [-π; π].
Решение:
Так как 1 = sin2 x + cos2 x (основное тригонометрическое тождество), то исходное уравнение принимает вид:
cos2 x + sin x · cos x = sin2 x + cos2 x;
sin2 x – sin x · cos x = 0;
sin x(sin x – cos x) = 0. Произведение равно нулю, а значит хотя бы один из множителей должен быть равен нулю, поэтому:
sin x = 0 или sin x – cos x = 0.
Так как значение переменной, при которых cos x = 0, не являются корнями второго уравнения (синус и косинус одного и того же числа не могут одновременно быть равными нулю), то разделим обе части второго уравнения на cos x:
sin x = 0 или sin x / cos x – 1 = 0.
Во втором уравнении воспользуемся тем, что tg x = sin x / cos x, тогда:
sin x = 0 или tg x = 1. С помощью формул имеем:
x = πk или x = π/4 + πk, k – целое число (k € Z).
Из первой серии корней промежутку [-π; π] принадлежат числа -π; 0; π. Из второй серии: (π/4 – π) и π/4.
Таким образом, пять корней исходного уравнения принадлежат промежутку [-π; π].
Ответ: 5.
Пример 4. Найти сумму корней уравнения tg2 x + сtg2 x + 3tg x + 3сtgx + 4 = 0 на промежутке [-π; 1,1π].
Решение:
Перепишем уравнение в следующем виде:
tg2 x + сtg2 x + 3(tg x + сtgx) + 4 = 0 и сделаем замену.
Пусть tg x + сtgx = a. Обе части равенства возведем в квадрат:
(tg x + сtg x)2 = a2. Раскроем скобки:
tg2 x + 2tg x · сtgx + сtg2 x = a2.
Так как tg x · сtgx = 1, то tg2 x + 2 + сtg2 x = a2, а значит
tg2 x + сtg2 x = a2 – 2.
Теперь исходное уравнение имеет вид:
a2 – 2 + 3a + 4 = 0;
a2 + 3a + 2 = 0. С помощью теоремы Виета получаем, что a = -1 или a = -2.
Сделаем обратную замену, имеем:
tg x + сtgx = -1 или tg x + сtgx = -2. Решим полученные уравнения.
tg x + 1/tgx = -1 или tg x + 1/tgx = -2.
По свойству двух взаимно обратных чисел определяем, что первое уравнение не имеет корней, а из второго уравнения имеем:
tg x = -1, т.е. x = -π/4 + πk, k – целое число (k € Z).
Промежутку [-π; 1,1π] принадлежат корни: -π/4; -π/4 + π. Их сумма:
-π/4 + (-π/4 + π) = -π/2 + π = π/2.
Ответ: π/2.
Пример 5. Найти среднее арифметическое корней уравнения sin 3x + sin x = sin 2x на промежутке [-π; 0,5π].
Решение:
Воспользуемся формулой sin α + sin β = 2sin ((α + β)/2) · cos ((α – β)/2), тогда
sin 3x + sin x = 2sin ((3x + x)/2) · cos ((3x – x)/2) = 2sin 2x · cos x и уравнение принимает вид
2sin 2x · cos x = sin 2x;
2sin 2x · cos x – sin 2x = 0. Вынесем общий множитель sin 2x за скобки
sin 2x(2cos x – 1) = 0. Решим полученное уравнение:
sin 2x = 0 или 2cos x – 1 = 0;
sin 2x = 0 или cos x = 1/2;
2x = πk или x = ±π/3 + 2πk, k – целое число (k € Z).
Таким образом, имеем корни
x = πk/2, x = π/3 + 2πk, x = -π/3 + 2πk, k – целое число (k € Z).
Промежутку [-π; 0,5π] принадлежат корни -π; -π/2; 0; π/2 (из первой серии корней); π/3 (из второй серии); -π/3 (из третьей серии). Их среднее арифметическое равно:
(-π – π/2 + 0 + π/2 + π/3 – π/3)/6 = -π/6.
Ответ: -π/6.
Пример 6. Найти количество корней уравнения sin x + cos x = 0 на промежутке [-1,25π; 2π].
Решение:
Данное уравнение является однородным уравнением первой степени. Разделим обе его части на cosx (значение переменной, при которых cos x = 0, не являются корнями данного уравнения, так как синус и косинус одного и того же числа не могут одновременно быть равными нулю). Исходное уравнение имеет вид:
tg x + 1 = 0;
tg x = -1;
x = -π/4 + πk, k – целое число (k € Z).
Промежутку [-1,25π; 2π] принадлежат корни -π/4; (-π/4 + π); и (-π/4 + 2π).
Таким образом, заданному промежутку принадлежат три корня уравнения.
Ответ: 3.
Научитесь делать самое главное – четко представлять план решения задачи, и тогда любое тригонометрическое уравнение будет вам по плечу.
Остались вопросы? Не знаете, как решать тригонометрические уравнения?
Чтобы получить помощь репетитора – зарегистрируйтесь.
© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.
Слайд 1
Методы отбора корней в тригонометрических уравнениях на заданном промежутке
Слайд 2
Баллы за задание №12 (С-1) 2015 2018 2020 2021 1 балл 90,7% 73, 7% 92,2% 100% 2 балла 69,4% 51,1% 83,5% 100%
Слайд 5
Обязательный минимум знаний sin x = a , -1 a 1 ( a 1) x = arcsin a + 2 n, n Z x = – arcsin a + 2 n, n Z sin x = 1 x = /2 + 2 k, k Z sin x = – 1 x = – /2 + 2 k, k Z sin x = 0 x = k, k Z y x y x x y
Слайд 6
Обязательный минимум знаний cos x = a , -1 a 1 ( a 1) x = arccos a + 2 n, n Z arccos (- a) = – arccos a cos x = 1 x = 2 k, k Z cos x = – 1 x = + 2 k, k Z cos x = 0 x = /2 + k, k Z y x y x y x
Слайд 7
Обязательный минимум знаний tg x = a , a R x = arctg a + n, n Z arctg (- a) = – arctg a ctg x = a , a R x = arcctg a + n, n Z arctg (- a) = – arctg a
Слайд 8
Рекомендации по решению тригонометрических уравнений Свести уравнение к простейшему Некоторые методы решения тригонометрических уравнений Применение тригонометрических формул Использование формул сокращённого умножения Разложение на множители Сведение к квадратному уравнению относительно sin x, cos x, tg x Введением вспомогательного аргумента Делением обеих частей однородного уравнения первой степени ( asin x +bcosx = 0 ) на cos x Делением обеих частей однородного уравнения второй степени (a sin 2 x +bsin x cos x+ c cos 2 x =0) на cos 2 x
Слайд 9
Различные способы отбора корней cos 2x = ½, x [- /2; 3 /2] 2x = ± arccos ½ + 2 n, n Z 2x = ± /3 + 2 n, n Z x = ± /6 + n, n Z Отберём корни с помощью тригонометрической окружности Ответ : – /6; /6; 5 /6; 7 /6 Найти корни уравнения, принадлежащие данному промежутку (с помощью тригонометрической окружности)
Слайд 10
Различные способы отбора корней Найти корни уравнения, принадлежащие данному промежутку (арифметический, метод перебора) sin 3x = √3/2, x [- /2; /2] 3x = ( – 1) k /3 + k, k Z x = ( – 1) k /9 + k/3, k Z Отберём корни с помощью перебора значений k: k = 0, x = /9 – принадлежит промежутку k = 1, x = – /9 + /3 = 2 /9 – принадлежит промежутку k = 2, x = /9 + 2 /3 = 7 /9 – не принадлежит промежутку k = – 1, x = – /9 – /3 = – 4 /9 – принадлежит промежутку k = – 2, x = /9 – 2 /3 = – 5 /9 – не принадлежит промежутку Ответ: -4 /9; /9; 2 /9
Слайд 11
Различные способы отбора корней tg 3x = – 1 , x (- /2; ) 3x = – /4 + n, n Z x = – /12 + n/3, n Z Отберём корни с помощью неравенства: Ответ: – 5 /12; – /12; /4; 7 /12; 11 /12 – /2 < – /12 + n/3 < , – 1/2 < – 1/12 + n/3 < 1, – 1/2 + 1/12 < n/3 < 1+ 1/12, – 5/12 < n/3 < 13/12, – 5/4 < n < 13/4, n Z, n = – 1; 0; 1; 2; 3 Найти корни уравнения, принадлежащие данному промежутку ( с помощью неравенства) n = – 1, x = – /12 – /3 = – 5 /12 n = 0, x = – /12 n = 1, x = – /12 + /3 = /4 n = 2, x = – /12 + 2 /3 = 7 /12 n = 3, x = – /12 + = 11 /12
Слайд 12
Различные способы отбора корней Найти корни уравнения, принадлежащие данному промежутку ( с помощью графика) cos x = – √2/2, x [ – 4; 5 /4] x = arccos (– √2/2) + 2 n, n Z x = 3 /4 + 2 n, n Z Отберём корни с помощью графика: Ответ: 5 /4; 3 /4 x = – /2 – /4 = – 3 /4; x = – – /4 = – 5 /4
Слайд 13
1. Решить уравнение 7 2cosx = 49 sin2x и указать его корни на отрезке [ ; 5 /2] 7 2cosx = 49 sin2x, 7 2cosx = 7 2sin2x, 2cos x = 2sin 2x, cos x – 2 sinx cosx = 0, cos x (1 – 2sinx) = 0, cos x = 0 , x = /2 + k, k Z или 1 – 2sinx = 0, sin x = ½, x = /6 + 2 k, k Z x = 5 /6 + 2 k, k Z Решим уравнение: Проведём отбор корней с помощью тригонометрической окружности: Ответ: а) /2 + k, k Z, x1 = /6 + 2 k, k Z; x2 = 5 /6 + 2 k, k Z б) 3 /2; 5 /2; 13 /6 x = 2 + /6 = 13 /6
Слайд 14
4cos 2 x + 8 cos (x – 3 /2) +1 = 0 4cos 2 x + 8 cos (3 /2 – x) +1 = 0, 4cos 2 x – 8 sin x +1 = 0, 4 – 4sin 2 x – 8 sin x +1 = 0, 4sin 2 x + 8sin x – 5 = 0, D/4 = 16 + 20 = 36, sin x = – 2,5 или sin x = ½ x1= /6 + 2 k, k Z x2 = 5 /6 + 2 k, k Z 2. Решить уравнение 4cos 2 x + 8 cos (x – 3 /2) +1 = 0 Найти его корни на отрезке [3 ; 9 2]
Слайд 15
Проведем отбор корней на отрезке [3 ; 9 2] (с помощью графиков) x = 4 + /6 = 25 /6 Ответ: а) x1 = /6 + 2 k, k Z x2 = 5 /6 + 2 k, k Z б) 25 /6 sin x = ½ Построим графики функций y = sin x и y = ½
Слайд 16
3. Решить уравнение 4 – cos 2 2x = 3 sin 2 2x + 2 sin 4x Найти его корни на отрезке [0; 1] 4 – cos 2 2x = 3 sin 2 2x + 2 sin 4x 4 (sin 2 2x + cos 2 2x ) – cos 2 2x = 3 sin 2 2x + 4 sin 2x cos 2x, sin 2 2x + 3 cos 2 2x – 4 sin 2x cos 2x = 0 Если cos 2 2x = 0, то sin 2 2x = 0, что невозможно, поэтому cos 2 2x 0 и обе части уравнения можно разделить на cos 2 2x. tg 2 2x + 3 – 4 tg 2x = 0, tg 2 2x – 4 tg 2x + 3= 0, tg 2x = 1, 2x = /4 + n, n Z x = /8 + n/2, n Z или tg 2x = 3, 2x = arctg 3 + k, k Z x = ½ arctg 3 + k/2, k Z
Слайд 17
Проведём отбор корней на отрезке [0; 1] 4 – cos 2 2x = 3 sin 2 2x + 2 sin 4x x = /8 + n/2, n Z или x = ½ arctg 3 + k/2, k Z Так как 0 < arctg 3< /2, 0 < ½ arctg 3< /4, то ½ arctg 3 является решением Так как 0 < /8 < /4 < 1,значит /8 также является решением Другие решения не попадут в промежуток [0; 1], так как они получаются из чисел ½ arctg 3 и /8 прибавлением чисел, кратных /2. Ответ: а) /8 + n/2, n Z ; ½ arctg 3 + k/2, k Z б) /8; ½ arctg 3
Слайд 18
4. Решить уравнение log 5 (cos x – sin 2x + 25) = 2 Найти его корни на отрезке [2 ; 7 /2] log 5 (cos x – sin 2x + 25) = 2 cos x – sin 2x + 25 > 0, cos x – sin 2x + 25 = 25, 25 > 0, cos x – 2sin x cos x = 0, cos x (1 – 2sin x) = 0, cos x = 0, x = /2 + n, n Z или 1 – 2sinx = 0, sin x = 1/2 x = /6 + 2 k, k Z x = 5 /6 + 2 k, k Z Решим уравнение:
Слайд 19
1) x = /2 + n, n Z 2 /2 + n 7 /2, n Z 2 1/2 + n 7/2, n Z 2 – ½ n 7/2 – ½, n Z 1,5 n 3, n Z n = 2; 3 x = /2 + 2 = 5 /2 x = /2 + 3 = 7 /2 x = 2 + /6 = 13 /6 x = 3 – /6 = 17 /6 Проведём отбор корней на отрезке [2 ; 7 /2]: Проведём отбор корней на отрезке 2) sin x = 1/2 Ответ: а) /2 + n, n Z; x1 = /6 + 2 k, k Z x2 = 5 /6 + 2 k, k Z б) 13 /6 ; 5 /2; 7 /2; 17 /6
Слайд 20
5. Решить уравнение 1/sin 2 x + 1/sin x = 2 Найти его корни на отрезке [-5 /2; -3 /2] 1/sin 2 x + 1/sin x = 2 x k Замена 1/sin x = t, t 2 + t = 2, t 2 + t – 2 = 0, t 1 = – 2, t 2 = 1 Решим уравнение: 1/sin x = – 2, sin x = – ½, x = – /6 + 2 n, n Z или x = – 5 /6 + 2 n, n Z 1/sin x = 1, sin x = 1, x = /2 + 2 n, n Z
Слайд 21
1) x = – /6 + 2 n, n Z -5 /2 – /6 + 2 n -3 /2, n Z -5/2 -1/6 + 2n -3/2, n Z -5/2 +1/6 2n -3/2 + 1/6, n Z – 7/3 2n -4/3, n Z -7/6 n -2/3, n Z n = -1 x = – /6 – 2 = -13 /6 Рассмотрим остальные серии корней и проведём отбор корней на отрезке алгебраическим методом [-5 /2; -3 /2] Продолжим отбор корней на отрезке Ответ: а) /2 + 2 n, n Z ; x1 = – /6 + 2 k, k Z x2 = – 5 /6 + 2 k, k Z б) -13 /6 ; -3 /2 2) x = /2 + 2 n, n Z -5 /2 /2 + 2 n -3 /2, n Z -5/2 1/2 + 2n -3/2, n Z -5/2 – 1/2 2n -3/2 – 1/2, n Z – 3 2n -2, n Z -1,5 n -1, n Z n = -1 x = /2 – 2 = -3 /2
Слайд 22
6. Решить уравнение |sin x|/sin x + 2 = 2cos x Найти его корни на отрезке [-1; 8] Решим уравнение |sin x|/sin x + 2 = 2cos x 1)Если sin x >0, то |sin x| =sin x Уравнение примет вид: 2 cos x=3, cos x =1,5 – не имеет корней 2) Если sin x <0, то |sin x| =-sin x и уравнение примет вид 2cos x=1, cos x = 1/2, x = ±π/3 +2πk, k Z Учитывая, что sin x < 0, то остаётся одна серия ответа x = – π/3 +2πk, k Z Произведём отбор корней на отрезке [-1; 8] k=0, x= – π/3 , – π < -3, – π/3 < -1, -π/3 не принадлежит данному отрезку k=1, x = – π/3 +2π = 5 π/3<8, 5 π/3 [-1; 8] k=2, x= – π/3 + 4π = 11 π/3 > 8, 11 π/3 не принадлежит данному отрезку. Ответ: а) – π/3 +2πk, k Z б) 5 π/3
Слайд 23
7. Решить уравнение 4sin 3 x=3cos(x- π/2) Найти его корни на промежутке [7 /2; 9 /2) Решим уравнение 4sin 3 x = 3cos(x- π/2) 4sin 3 x = 3cos(π/2-х), 4sin 3 x – 3cos(π/2-х) = 0, 4sin 3 x – 3sin x = 0, sin x (4sin 2 x – 3) = 0, sin x= 0 x= n, n Z или 4sin 2 x – 3=0, sin x=√3/2; sin x =-√3/2 sin x=√3/2, x1= /3 + 2 k, k Z, x2=4 /3 + 2 k, k Z. sin x =-√3/2, x1=- /3 + 2 k, k Z, x2= -4 /3 + 2 k, k Z.
Слайд 24
Объединим решения ( см. рисунок) Уравнение можно решить короче, зная формулу sin 3x = 3sinx – 4sin 3 x : 4sin 3 x – 3sin x =0, 3sin x – 4sin 3 x =0, s in 3x = 0, х = m/3, m Z или х = m/3, m Z
Слайд 25
Проведём отбор корней на промежутке [7 /2; 9 /2) х= m/3, m Z. 7 /2 ≤ m/3 < 9 /2, 21/2 ≤ m<27/2, m Z, 10,5 ≤ m < 13,5, m Z, m =10; 11; 12, x= 10 /3, x= 11 /3, x= 12 /3 Ответ : а) m/3, m Z; б) 10 /3; 11 /3; 12 /3
Слайд 26
8. Решить уравнение √1-sin 2 x= sin x Найти его корни на промежутке [5 /2; 4 ] Решим уравнение √1-sin 2 x= sin x. sin x ≥ 0, 1- sin 2 x = sin 2 x; sin x ≥ 0, sin x≥0, 2sin 2 x = 1; sin x =√2/2; sin x = – √2/2; sin x =√2/2 sin x =√2/2 x=(-1) k /4 + k, k Z
Слайд 27
Проведём отбор корней на отрезке [5 /2; 4 ] x=(-1) k /4 + k, k Z sin x =√2/2 у =sin x и у=√2/2 5 /2 + /4 = 11 /4 Ответ: а) (-1) k /4 + k, k Z ; б) 11 /4
Слайд 28
9. Решить уравнение (sin2x + 2 sin 2 x)/√-cos x =0 Найти его корни на промежутке [-5 ; -7 /2] Решим уравнение (sin2x + 2 sin 2 x)/√-cos x =0. 1) cos x <0 , /2 +2 n
Слайд 29
Отберём корни на заданном отрезке Отберём корни на заданном отрезке [-5 ; -7 /2] x= +2 n, n Z ; -5 ≤ +2 n ≤ -7 /2, -5-1 ≤ 2n ≤ -7/2-1, -3≤ n ≤ -9/4, n Z n = -3, x= -6 = -5 x= 3 /4 + 2 n, n Z -5 ≤ 3 /4 + 2 n ≤ -7 /2 -23/8 ≤ n ≤ -17/8, нет такого целого n. Ответ: а) +2 n, n Z ; 3 /4 + 2 n, n Z ; б) -5 .
Слайд 30
10. Решить уравнение 2sin2x =4cos x –sinx+1 Найти его корни на промежутке [ /2; 3 /2 ] Решим уравнение 2sin2x = 4cos x – sinx+1 2sin2x = 4cos x – sinx+1, 4 sinx∙cos x – 4cos x + sin x -1 = 0, 4cos x(sin x – 1) + (sin x – 1) = 0, (sin x – 1)(4cos x +1)=0, sin x – 1= 0, sin x = 1, x = /2+2 n, n Z или 4cos x +1= 0, cos x = -0,25 x = ± ( -arccos (0,25)) + 2 n, n Z Запишем корни этого уравнения иначе x = – arccos(0,25) + 2 n, x = -( – arccos(0,25)) + 2 n, n Z
Слайд 31
Отберём корни с помощью окружности x = /2+2 n, n Z, х = /2; x = -arccos(0,25)+2 n, х=-( -arccos(0,25)) +2 n, n Z, x = – arccos(0,25), x = + arccos(0,25) Ответ: а) /2+2 n, -arccos(0,25)+2 n, -( -arccos(0,25)) +2 n, n Z; б) /2; -arccos(0,25); +arccos(0,25)
В этой статье и постараюсь объяснить 2 способа отбора корней в тригонометрическом уравнение: с помощью неравенств и с помощью тригонометрической окружности. Перейдем сразу к наглядному примеру и походу дела будем разбираться.
а) Решить уравнение sqrt(2)cos^2x=sin(Pi/2+x)
б) Найдите все корни этого уравнения, принадлежащие промежутку [-7Pi/2; -2Pi]
Решим пункт а.
Воспользуемся формулой приведения для синуса sin(Pi/2+x) = cos(x)
sqrt(2)cos^2x = cosx
sqrt(2)cos^2x – cosx = 0
cosx(sqrt(2)cosx – 1) = 0
cosx = 0
x1 = Pi/2 + Pin, n ∈ Z
sqrt(2)cosx – 1 = 0
cosx = 1/sqrt(2)
cosx = sqrt(2)/2
x2 = arccos(sqrt(2)/2) + 2Pin, n ∈ Z
x3 = -arccos(sqrt(2)/2) + 2Pin, n ∈ Z
x2 = Pi/4 + 2Pin, n ∈ Z
x3 = -Pi/4 + 2Pin, n ∈ Z
Решим пункт б.
1) Отбор корней с помощью неравенств
Здесь все делается просто, полученные корни подставляем в заданный нам промежуток [-7Pi/2; -2Pi], находим целые значения для n.
-7Pi/2 меньше или равно Pi/2 + Pin меньше или равно -2Pi
Сразу делим все на Pi
-7/2 меньше или равно 1/2 + n меньше или равно -2
-7/2 – 1/2 меньше или равно n меньше или равно -2 – 1/2
-4 меньше или равно n меньше или равно -5/2
Целые n в этом промежутку это -4 и -3. Значит корни принадлежащие этому промежутку буду Pi/2 + Pi(-4) = -7Pi/2, Pi/2 + Pi(-3) = -5Pi/2
Аналогично делаем еще два неравенства
-7Pi/2 меньше или равно Pi/4 + 2Pin меньше или равно -2Pi
-15/8 меньше или равно n меньше или равно -9/8
Целых n в этом промежутке нет
-7Pi/2 меньше или равно -Pi/4 + 2Pin меньше или равно -2Pi
-13/8 меньше или равно n меньше или равно -7/8
Одно целое n в этом промежутку это -1. Значит отобранный корень на этом промежутку -Pi/4 + 2Pi*(-1) = -9Pi/4.
Значит ответ в пункте б: -7Pi/2, -5Pi/2, -9Pi/4
2) Отбор корней с помощью тригонометрической окружности
Чтобы пользоваться этим способом надо понимать как работает эта окружность. Постараюсь простым языком объяснить как это понимаю я. Думаю в школах на уроках алгебры эта тема объяснялась много раз умными словами учителя, в учебниках сложные формулировки. Лично я понимаю это как окружность, которую можно обходить бесконечное число раз, объясняется это тем, что функции синус и косинус периодичны.
Обойдем раз против часовой стрелки
Обойдем 2 раза против часовой стрелки
Обойдем 1 раз по часовой стрелки (значения будут отрицательные)
Вернемся к нашем вопросу, нам надо отобрать корни на промежутке [-7Pi/2; -2Pi]
Чтобы попасть к числам -7Pi/2 и -2Pi надо обойти окружность против часовой стрелки два раза. Для того, чтобы найти корни уравнения на этом промежутке надо прикидывать и подставлять.
Рассмотри x = Pi/2 + Pin. Какой приблизительно должен быть n, чтобы значение x было где-то в этом промежутке? Подставляем, допустим -2, получаем Pi/2 – 2Pi = -3Pi/2, очевидно это не входит в наш промежуток, значит берем меньше -3, Pi/2 – 3Pi = -5Pi/2, это подходит, попробуем еще -4, Pi/2 – 4Pi = -7Pi/2, также подходит.
Рассуждая аналогично для Pi/4 + 2Pin и -Pi/4 + 2Pin, находим еще один корень -9Pi/4.
Сравнение двух методов.
Первый способ (с помощью неравенств) гораздо надежнее и намного проще для пониманию, но если действительно серьезно разобраться с тригонометрической окружностью и со вторым методом отбора, то отбор корней будет гораздо быстрее, можно сэкономить около 15 минут на экзамене.
Просмотры: 157957 |
Статью добавил: slava191 |
Категория: математика
Пример:
а) реши уравнение
sinx=cos2x
.
б) Найди все корни этого уравнения, принадлежащие отрезку
2π;7π2
.
a) Уравнение прежде всего иррациональное, поэтому решается возведением обеих частей в квадрат. С учётом области определения получаем:
sinx=cos2x;sinx≥0,cos2x≥0.
Стоит заметить, что рассматривать оба неравенства в системе нам не нужно, так как мы будем решать уравнение. Поэтому можно оставить только одно — более простое неравенство:
sinx=cos2x;(1)sinx≥0.
Решим уравнение системы ((1)). Прежде всего избавимся от двойного угла в уравнении:
sinx=cos2x;sinx−cos2x=0;sinx−(cos2x−sin2x)=0;sinx−(1−sin2x−sin2x)=0;sinx−(1−2sin2x)=0;2sin2x+sinx−1=0;sinx=−1,sinx=12.
(sin x= -1) исключаем, так как это значение не входит в область определения, а решения второго уравнения обозначим на тригонометрической окружности.
Рис. (1). Решения уравнения на единичной окружности
Эти решения можно записать в виде:
x=π6+2πn,n∈ℤ,x=5π6+2πm,m∈ℤ.
б) Рассмотрим три способа отбора корней, попадающих в отрезок
2π;7π2
.
(1) способ:
вернёмся к единичной окружности. Отметим на ней дугу, соответствующую указанному промежутку, подпишем начало и конец, отметим точки окружности, представляющие серии решений и принадлежащие дуге, укажем их значения, принадлежащие промежутку.
2π+π6=13π6,2π+5π6=17π6.
Рис. (2). Отбор корней с помощью единичной окружности
Обрати внимание!
Нельзя отмечать и подписывать посторонние точки на окружности!
(2) способ:
указанный отрезок соответствует неравенству
2π≤x≤7π2
. Подставим в него полученные корни:
2π≤π6+2πn≤7π2,n∈ℤ:π;2≤16+2n≤72,n∈ℤ−16;2−16≤2n≤72−16,n∈ℤ;116≤2n≤206,n∈ℤ:2;1112≤n≤2012,n∈ℤ;1112≤n≤1812,n∈ℤ;n=1;π6+2π⋅1=13π6 | 2π≤5π6+2πm≤7π2,m∈ℤ:π;2≤56+2m≤72,m∈ℤ−56;2−56≤2m≤72−56,m∈ℤ;76≤2m≤166,m∈ℤ:2;712≤m≤1612,m∈ℤ;712≤m≤1412,m∈ℤ;m=1;5π6+2π⋅1=17π6 |
Обрати внимание!
Обязательно выдели целые части дробей для оценки значений (n) и (m)!
(3) способ:
разместим корни уравнения на числовой прямой. Сначала отметим корни, подставив вместо (n) и (m) (0), а потом добавим к каждому корню периоды. На числовой прямой должен быть выделен заданный отрезок, обозначены его концы, отмечены все последовательные значения серий корней, начиная с точек, расположенных левее промежутка, и заканчивая точками, расположенными правее промежутка.
Рис. (3). Отбор корней с помощью координатной прямой
Нам останется только выбрать корни, которые попали в нужный нам отрезок.
Ответ: а)
π6+2πn,n∈ℤ;5π6+2πm,m∈ℤ
; б)
13π6,17π6.
Рекомендуем при решении тригонометрических уравнений использовать несколько разных способов отбора. Это поможет тебе убедиться в правильности отбора корней и выработать навык выбора наиболее удобного способа.
Источники:
Рис. 1. Решения уравнения на единичной окружности. © ЯКласс.
Рис. 2. Отбор корней с помощью единичной окружности. © ЯКласс.
Рис. 3. Отбор корней с помощью координатной прямой. © ЯКласс.