Как найти корни уравнения с помощью графика

Решение уравнений с помощью графиков

Решение линейных уравнений

Как ты уже знаешь, графиком линейного уравнения является прямая линия, отсюда и название данного вида.

Линейные уравнения достаточно легко решать алгебраическим путем – все неизвестные переносим в одну сторону уравнения, все, что нам известно – в другую и вуаля! Мы нашли корень.

Сейчас же я покажу тебе, как это сделать графическим способом.

Итак, у тебя есть уравнение: ( displaystyle 2{x} -10=2)

Как его решить?

Вариант 1, и самый распространенный – перенести неизвестные в одну сторону, а известные в другую, получаем:

( displaystyle 2x=2+10)

( displaystyle 2x=12)

Обычно дальше мы делим правую часть на левую, и получаем искомый корень, но мы с тобой попробуем построить левую и правую части как две различные функции в одной системе координат.

Иными словами, у нас будет:

( displaystyle {{y}_{1}}=2x)

( displaystyle {{y}_{2}}=12)

А теперь строим. Что у тебя получилось?

Как ты думаешь, что является корнем нашего уравнения? Правильно, координата ( displaystyle x) точки пересечения графиков:

Наш ответ: ( displaystyle x=6)

Вот и вся премудрость графического решения. Как ты с легкостью можешь проверить, корнем нашего уравнения является число ( displaystyle 6)!

Вариант 1. Напрямую

Просто строим параболу по данному уравнению: ( displaystyle {{x}^{2}}+2{x} -8=0)

Чтобы сделать это быстро, дам тебе одну маленькую подсказку: удобно начать построение с определения вершины параболы. Определить координаты вершины параболы помогут следующие формулы:

( displaystyle x=-frac{b}{2a})

( displaystyle y=-frac{{{b}^{2}}-4ac}{4a})

Ты скажешь «Стоп! Формула для ( displaystyle y) очень похожа на формулу нахождения дискриминанта» да, так оно и есть, и это является огромным минусом «прямого» построения параболы, чтобы найти ее корни.

Тем не менее, давай досчитаем до конца, а потом я покажу, как это сделать намного (намного!) проще!

Посчитал? Какие координаты вершины параболы у тебя получились? Давай разбираться вместе:

( displaystyle x=frac{-2}{2}=-1)

( displaystyle y=-frac{{{2}^{2}}-4cdot left( -8 right)}{4}=-frac{4+32}{4}=-9)

Точно такой же ответ? Молодец!

И вот мы знаем уже координаты вершины, а для построения параболы нам нужно еще … точек. Как ты думаешь, сколько минимум точек нам необходимо? Правильно, ( displaystyle 3).

Ты знаешь, что парабола симметрична относительно своей вершины, например:

Соответственно, нам необходимо еще две точки по левой или правой ветви параболы, а в дальнейшем мы эти точки симметрично отразим на противоположную сторону:

Возвращаемся к нашей параболе.

Для нашего случая точка ( displaystyle Aleft( -1;-9 right)). Нам необходимо еще две точки, соответственно, ( displaystyle x) можно взять положительные, а можно взять отрицательные? Какие точки тебе удобней?

Мне удобней работать с положительными, поэтому я рассчитаю при ( displaystyle x=0) и ( displaystyle x=2).

При ( displaystyle x=0):

( displaystyle y={{0}^{2}}+0-8=-8)

При ( displaystyle x=2):

( displaystyle y={{2}^{2}}+2cdot 2-8=0)

Теперь у нас есть три точки, и мы спокойно можем построить нашу параболу, отразив две последние точки относительно ее вершины:

Как ты думаешь, что является решением уравнения?

Правильно, точки, в которых ( displaystyle y=0), то есть ( displaystyle x=2) и ( displaystyle x=-4). Потому что ( displaystyle {{x}^{2}}+2{x} -8=0).

И если мы говорим, что ( displaystyle y={{x}^{2}}+2{x} -8), то значит, что ( displaystyle y) тоже должен быть равен ( displaystyle 0), или ( displaystyle y={{x}^{2}}+2{x} -8=0).

Просто? Это мы закончили с тобой решение уравнения сложным графическим способом, то ли еще будет!

Конечно, ты можешь проверить наш ответ алгебраическим путем – посчитаешь корни через теорему Виета или Дискриминант.

Что у тебя получилось? То же самое?

Вот видишь! Теперь посмотрим совсем простое графическое решение, уверена, оно тебе очень понравится!

Решение смешанных неравенств

Теперь перейдем к более сложным неравенствам!

Как тебе такое:

( displaystyle 4x<{{x}^{3}})?

Жуть, правда? Честно говоря, я понятия не имею, как решить такое алгебраически… Но, оно и не надо. Графически ничего сложного в этом нет! Глаза боятся, а руки делают!

Первое, с чего мы начнем, – это с построения двух графиков:

( displaystyle {{y}_{1}}=4x)

( displaystyle {{y}_{2}}={{x}^{3}})

Я не буду расписывать для каждого таблицу – уверена, ты отлично справишься с этим самостоятельно (еще бы, столько прорешать примеров!).

Расписал? Теперь строй два графика.

Сравним наши рисунки?

У тебя так же? Отлично!

Теперь расставим точки пересечения и цветом определим, какой график у нас по идее должен быть больше, то есть ( displaystyle {{y}_{2}}={{x}^{3}}).

Смотри, что получилось в итоге:

А теперь просто смотрим, в каком месте у нас выделенный график находится выше, чем график ( displaystyle {{y}_{1}}=4x)? Смело бери карандаш и закрашивай данную область! Она и будет решением нашего сложного неравенства!

На каких промежутках по оси ( displaystyle Ox) у нас ( displaystyle {{y}_{2}}={{x}^{3}}) находится выше, чем ( displaystyle {{y}_{1}}=4x)? Верно, ( displaystyle xin left( -2;0 right)cup left( 2;+infty right)).

Это и есть ответ!

Ну вот, теперь тебе по плечу и любое уравнение, и любая система, и уж тем более любое неравенство!

Подведём итоги наших знаний о графиках функций.

Нами были изучены методы построения таких функций, как:

(y =b) (график — прямая, параллельная оси (x));

(y = kx) (график — прямая, которая проходит через начало координат);

(y = kx + m) (график — прямая);

y=x2

 (график — парабола).

При необходимости мы сможем преобразовать аналитическую модель на графическую. Допустим, аналитическую модель 

y=x2

трансформировать в графическую модель в виде параболы, расположенной в прямоугольной системе координат.

Этот приём полезен при решении уравнений. Продемонстрируем это на примерах.

Пример:

решить уравнение

x2=2x+8

.

Рассмотрим две функции:

y=x2

, (y = 2x + 8) — выполним построение графиков этих функций в одной системе координат, чтобы найти их точки пересечения.

график 2_1.png

Парабола 

y=x2

 и прямая (y = 2x + 8) пересекаются в точках (A (- 2; 4)) и (B (4; 16)).

Корни уравнения

x2=2x+8

 — значения (x), при которых выражения

x2

 и (2x + 16) принимают одинаковые значения. Это первые координаты точек (A) и (B)  пересечения графиков:

x1=−2;x2=4

.

Алгоритм графического решения уравнений

1. Преобразовать уравнение так, чтобы в левой и правой части стояли известные функции.

b.png   y.png 

x.png

2. В одной системе координат начертить графики этих функций.

3. Определить точки пересечения полученных графиков.

4. Взять из них значения абсцисс.

001.png  002.png

003.png

Что значит решить уравнение графически

Для того чтобы решить уравнение графически,надо преобразовать уравнение так (если оно уже не представлено в преобразованном виде), чтобы слева и справа от знака равенства стояли выражения, для которых легко можно нарисовать графики функций. Например, дано такое уравнение:
x² – 2x – 1 = 0

Если мы еще не изучали решение квадратных уравнений алгебраическим способом, то можем попробовать сделать это либо разложением на множители, либо графически. Чтобы решить подобное уравнение графически, представим его в таком виде:
x² = 2x + 1

Из такого представления уравнения следует, что требуется найти такие значения x, при которых левая часть будет равна правой.

Как известно, графиком функции y = x² является парабола, а y = 2x + 1 — прямая. Координата x точек координатной плоскости, лежащих как на первом графике, так и на втором (то есть точек пересечения графиков) как раз и являются теми значениями x, при которых левая часть уравнения будет равна правой. Другими словами, координаты x точек пересечения графиков являются корнями уравнения.

Графики могут пересекаться в нескольких точках, в одной точке, вообще не пересекаться. Отсюда следует, что уравнение может иметь несколько корней, или один корень, или вообще их не иметь.

Здравствуйте. В данной статье я попытаюсь показать вам возможные способы решения квадратных уравнений с помощью графиков.

Допустим, надо решить уравнение х2 ‒ 2х ‒ 3 = 0. На этом примере мы рассмотрим варианты решения квадратного уравнения графически.

1) Можно представить наше уравнение в виде х2 = 2х + 3. Далее построим в одной системе координат графики функций у = хи у = 2х + 3. График у = х2 представлен на рисунке 1, а оба графика на рисунке 2. 

undefinedРисунок 1                                undefined Рисунок 2

Графики пересекаются в двух точках, наше уравнение имеет решение х = – 1 и х = 3.

2) А ведь можно представить уравнение и по – другому, например х2 ‒ 2х = 3 и построить в одной системе координат графики функций  у = х2 ‒ 2х и у =3. Вы их можете увидеть на рисунках 3 и 4. На рисунке 3 изображен график у = х2 ‒ 2х, а на рисунке 4 оба графика у = х2 ‒ 2х и у =3.

undefinedРисунок 3                                         undefinedРисунок 4

Как мы видим, эти два графика так же пересекаются в двух точках, где х = -1 и х = 3. Значит ответ: – 1; 3.

3) Есть и другой вариант представления этого уравнения х2 ‒ 3 = 2х. И снова строим графики функций у = х2 ‒ 3 и у = 2х в одной системе координат. Первый у = х2 ‒ 3 на рисунке 5 и оба графика на рисунке 6.

undefinedРисунок 5                                 undefinedРисунок 6

Они также пересекаются в двух точках, в которых х = -1 , х = 3.

Ответ: – 1; 3.

4) Можно построить параболу у = х2 ‒ 2х ‒ 3.

Вершина параболы  х0 = – b/2а = 2/2=1, у0 = 12 ‒ 2·1 ‒ 3 = 1 – 2 – 3 = ‒ 4. Это точка (1; ‒ 4). Тогда наша парабола симметрична относительно прямой х =1. Если взять две точки симметричные относительно прямой х = 1 например: х = – 2 и х = 4, то мы получим две точки через которые проходят ветви графика.

Если х = -2, то у =(- 2)2 ‒ 2( -2) ‒ 3 = 4 + 4 – 3 = 5.

Аналогично х =4, у = 42 ‒ 2 · 4 ‒ 3= 16 – 8 – 3 = 5. Полученные точки ( -2; 5); (1; 4) и (4; 5) отмечаем в на плоскости и проводим параболу рисунок 7.

undefinedРисунок 7

Парабола пересекает ось абсцисс в точках – 1 и 3. Это и есть корни уравнения х2 ‒ 2х ‒ 3 = 0.

Ответ: – 1 и 3.

5) А можно выделить квадрат двучлена:

х2 ‒ 2х ‒ 3= 0

2 ‒ 2х + 1) ‒1 ‒ 3= 0

(х -1)2 – 4 = 0

(х – 1)2 = 4

Затем построить в одной системе координат графики функций у = (х – 1)2 и у = 4. Первый график у = (х – 1)2 на рисунке 8, а оба графика у = (х – 1)2 и у = 4 на рисунке 9.

undefinedРисунок 8                                     undefinedРисунок 9

Они также пересекаются в двух точках, в которых х = -1 , х = 3.

Ответ: – 1; 3.

6) Так как х = 0 не является корнем уравнения х2 ‒ 2х ‒ 3 = 0 (иначе выполнялось бы равенство 02 – 2· 0 –3 = 0), то можно все члены уравнения разделить на х. В результате мы получим уравнение х – 2 – 3/х = 0. Перенесем 3/х вправо и получаем уравнение х – 2 = 3/х Тогда можно построить в одной системе координат графики функций у = 3/х и у = х – 2.

На рисунке 10 изображен график функции у = 3/х, а на рисунке 11 оба графика функций у = 3/х и у = х – 2.

undefinedРисунок 10                           undefinedРисунок 11

Они также пересекаются в двух точках, в которых х = -1 , х = 3.

Ответ: – 1; 3.

Если вы были внимательны, то обратили внимание, что каким бы образом вы не представили бы уравнение в виде двух функций, у вас всегда будет один и тот же ответ (разуметься, что вы не допустите ошибок при переносе выражений из одной части уравнения в другую и при построении графиков). Поэтому, решая графически уравнение, выбирайте способ представления функций графики которых вам легче построить. И еще одно замечание если корни уравнения не целые числа, то ответ получится не точным.

Репетитор Валентина Галиневская.

© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

Остались вопросы?

Задайте свой вопрос и получите ответ от профессионального преподавателя.

Тема: Решение уравнений графическим способом

Содержание модуля (краткое изложение модуля):

Решим графическим способом уравнение:

x2 = −3x

Решить уравнение – значит найти такие значения x, при которых выполняется равенство x2 = −3x
Построим в одной системе координат два графика:
график функции y = x2 и график функции y = −3x.
Для каждого графика составим таблицы значений
y = x2 – на рисунке синий график

x 0 1 2 3 −1 −2 −3
y 0 1 4 9 1 4 9

y = −3x – на рисунке красный график

x 0 1 2 3 −1 −2 −3
y 0 −3 −6 −9 3 6 9

Заметим, что графики пересекаются в двух точках: точке с координатами (0 ; 0) и в точке с координатами (–3 ; 9). Это значит, что при x = 0 и при x = –3 функции y = x2 и y = −3x имеют одинаковые значения.
Таким образом получаем, что при x = 0 и при x = –3 выполняется равенство x2 = −3x.
Значит значения x = 0 и x = –3 являются корнями уравнения x2 = −3x.
Корни, найденные графическим способом – приближённые. Чтобы доказать точность значений корней, надо каждый из них подставить в решаемое уравнение и проверить: выполняется ли полученное равенство.
Подставим в уравнение x2 = −3x значение x = 0.

02 = −3•0

0 = 0 – верное равенство, значит x = 0 – точный корень уравнения x2 = −3x.
Подставим в уравнение x2 = −3x значение x = –3.

(−3)2 = −3•(−3)

9 = 9 – верное равенство, значит x = −3 – точный корень уравнения x2 = −3x.
Подведём итог.
Чтобы решить уравнение f1(x) = f2(x) графическим способом, необходимо:
1) Построить в одной системе координат графики функций y = f1(x) и y = f2(x). Абсциссы точек пересечения – это приближённые корни уравнения f1(x) = f2(x).
2) Необходимо подставить каждый приближённый корень в уравнение f1(x) = f2(x). Те корни, при которых получается верное равенство будут являться точными корнями уравнения f1(x) = f2(x).

Алгебра. 8 класс: учеб. для общеобразоват. организаций / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. – 6-е изд. – М.: Просвещение, 2017.

Добавить комментарий