Как найти кос числа

Определение косинуса угла

Косинусом угла в прямоугольном треугольнике называют отношение прилежащего катета к гипотенузе.

Для простоты запоминания можно дать такое определение: косинус угла — это отношение ближнего от рассматриваемого угла катета к гипотенузе.

1.png

В случае с рисунком, описанным выше: cos⁡α=bccosalpha=frac{b}{c}

Задача 1

Гипотенуза прямоугольного треугольника равна 10 см10text{ см}. Один из катетов равен 6 см6text{ см}. Найдите косинус угла, прилежащего к наибольшему катету.

Решение

Пользуясь теоремой Пифагора вычислим длину неизвестного нам катета.

a2+b2=c2a^2+b^2=c^2

62+b2=1026^2+b^2=10^2

36+b2=10036+b^2=100

b2=64b^2=64

b=8b=8

Катет bb длиннее катета aa. Нам нужно найти косинус угла, прилежащего к наибольшему катету, то есть, к катету bb:

cos⁡α=bc=810=0.8cosalpha=frac{b}{c}=frac{8}{10}=0.8

Ответ

0.8

Задача 2

Две стороны треугольника равны 4 см4text{ см} и 9 см9text{ см}. Периметр его равен 25 см25text{ см}.
Найдите косинус угла, прилежащего к неизвестной стороне и стороне с длиной 4 см4text{ см}.

Решение

Найдем третью сторону треугольника. Так как известен периметр, это будет легко сделать:

P=a+b+cP=a+b+c

25=9+4+c25=9+4+c

c=12c=12

При нахождении косинуса угла нам поможет следствие из теоремы косинусов, которое выглядит так:

cos⁡α=b2+c2−a22⋅b⋅c=42+122−922⋅4⋅12=16+144−8196=7996≈0.82cosalpha=frac{b^2+c^2-a^2}{2cdot bcdot c}=frac{4^2+12^2-9^2}{2cdot 4cdot 12}=frac{16+144-81}{96}=frac{79}{96}approx0.82

Ответ

0.820.82

Решение задач по математике от экспертов сайта Студворк!

Тест по теме “Вычисление косинуса”

Примеры:

(cos{⁡30^°}=)(frac{sqrt{3}}{2})
(cos⁡)(frac{π}{3})(=)(frac{1}{2})
(cos⁡2=-0,416…)

Содержание:

  • Аргумент и значение

  • Коcинус острого угла

  • Косинус числа

  • Косинус любого угла

  • Знаки по четвертям

  • Связь с другими функциями

  • Функция
     

Аргумент и значение

аргумент и значение косинуса

Косинус острого угла

Косинус острого угла можно определить с помощью прямоугольного треугольника – он равен отношению прилежащего катета к гипотенузе.

Пример:

1) Пусть дан угол и нужно определить косинус этого угла.

угол

2) Достроим на этом угле любой прямоугольный треугольник.

нужно найти отношение прилежащего катета на гипотенузу

3) Измерив, нужные стороны, можем вычислить косинус.

косинус - это отношение прилежащего катета на гипотенузу

Косинус острого угла больше (0) и меньше (1)

Если при решении задачи косинус острого угла получился больше 1 или отрицательным, то значит где-то в решении есть ошибка.

Косинус числа

Числовая окружность позволяет определить косинус любого числа, но обычно находят косинус чисел как-то связанных с Пи: (frac{π}{2}), (frac{3π}{4}), (-2π).

Например, для числа (frac{π}{6}) – косинус будет равен (frac{sqrt{3}}{2}). А для числа (-)(frac{3π}{4}) он будет равен (-)(frac{sqrt{2}}{2}) (приблизительно (-0,71)).

как определить косинус числа

Косинус для других часто встречающихся в практике чисел смотри в тригонометрической таблице.

Значение косинуса всегда лежит в пределах от (-1) до (1). При этом вычислен косинус может быть для абсолютно любого угла и числа.

Косинус любого угла

Благодаря числовой окружности можно определять косинус не только острого угла, но и тупого, отрицательного, и даже большего, чем (360°) (полный оборот). Как это делать – проще один раз увидеть, чем (100) раз услышать, поэтому смотрите картинку.

как определить косинус тупого угла

Теперь пояснение: пусть нужно определить косинус угла КОА с градусной мерой в (150°). Совмещаем точку О с центром окружности, а сторону ОК – с осью (x). После этого откладываем (150°) против часовой стрелки. Тогда ордината точки А покажет нам косинус этого угла.

Если же нас интересует угол с градусной мерой, например, в (-60°) (угол КОВ), делаем также, но (60°) откладываем по часовой стрелке.

как определить косинус отрицательного угла

И, наконец, угол больше (360°) (угол КОС) – всё аналогично тупому, только пройдя по часовой стрелке полный оборот, отправляемся на второй круг и «добираем нехватку градусов». Конкретно в нашем случае угол (405°) отложен как (360° + 45°).

как определить косинус угла больше 360 градусов

Несложно догадаться, что для откладывания угла, например, в (960°), надо сделать уже два оборота ((360°+360°+240°)), а для угла в (2640°) – целых семь.

Стоит запомнить, что:

Косинус прямого угла равен нулю. Косинус тупого угла – отрицателен.

Знаки косинуса по четвертям

С помощью оси косинусов (то есть, оси абсцисс, выделенной на рисунке красным цветом) легко определить знаки косинусов по четвертям числовой (тригонометрической) окружности:

– там, где значения на оси от (0) до (1), косинус будет иметь знак плюс (I и IV четверти – зеленая область),
– там, где значения на оси от (0) до (-1), косинус будет иметь знак минус (II и III  четверти – фиолетовая область).

знаки косинуса в разных четвертях

Пример. Определите знак (cos 1).
Решение: Найдем (1) на тригонометрическом круге. Будем отталкиваться от того, что (π=3,14). Значит единица, примерно, в три раза ближе к нулю (точке «старта»).

1 на числовой окружности

Если провести перпендикуляр к оси косинусов, то станет очевидно, что (cos⁡1) – положителен.
Ответ: плюс.

Связь с другими тригонометрическими функциями:

– синусом того же угла (или числа): основным тригонометрическим тождеством (sin^2⁡x+cos^2⁡x=1)
– тангенсом того же угла (или числа): формулой (1+tg^2⁡x=)(frac{1}{cos^2⁡x})
– котангенсом и синусом того же угла (или числа): формулой (ctgx=)(frac{cos{x}}{sin⁡x})
Другие наиболее часто применяемые формулы смотри здесь.

Функция (y=cos{x})

Если отложить по оси (x) углы в радианах, а по оси (y) – соответствующие этим углам значения косинуса, мы получим следующий график:

косинусоида

График данной функции называется косинусоида и обладает следующими свойствами:

      – область определения – любое значение икса:   (D(cos{⁡x} )=R)
      – область значений – от (-1) до (1) включительно:    (E(cos{x} )=[-1;1])
      – четная:   (cos⁡(-x)=cos{x})
      – периодическая с периодом (2π):   (cos⁡(x+2π)=cos{x})
      – точки пересечения с осями координат:
             ось абсцисс:   (()(frac{π}{2})(+πn),(;0)), где (n ϵ Z)
             ось ординат:   ((0;1))
      – промежутки знакопостоянства:
             функция положительна на интервалах:   ((-)(frac{π}{2})(+2πn;) (frac{π}{2})(+2πn)), где (n ϵ Z)
             функция отрицательна на интервалах:   (()(frac{π}{2})(+2πn;)(frac{3π}{2})(+2πn)), где (n ϵ Z)
      – промежутки возрастания и убывания:
             функция возрастает на интервалах:    ((π+2πn;2π+2πn)), где (n ϵ Z)
             функция убывает на интервалах:    ((2πn;π+2πn)), где (n ϵ Z)
       – максимумы и минимумы функции:
             функция имеет максимальное значение (y=1) в точках (x=2πn), где (n ϵ Z)
             функция имеет минимальное значение (y=-1) в точках (x=π+2πn), где (n ϵ Z).

Смотрите также:

Синус
Тангенс
Котангенс
Решение уравнения (cos⁡x=a)

Косинус угла cos(A)

Косинус угла cos(A) — есть отношение прилежащего катета b к гипотенузе c

[ cos(A) = frac{b}{c} ]

Косинус угла — cos(A), таблица

0°
Косинус угла 0 градусов

$ cos(0°) = cos(0) = 1 $
1.000
30°
Косинус угла 30 градусов

$ cos(30°) = cosBig(Largefrac{pi}{6}normalsizeBig) = Largefrac{sqrt{3}}{2}normalsize $
0.866
45°
Косинус угла 45 градусов

$ cos(45°) = cosBig(Largefrac{pi}{4}normalsizeBig) = Largefrac{sqrt{2}}{2}normalsize $
0.707
60°
Косинус угла 60 градусов

$ cos(60°) = cosBig(Largefrac{pi}{3}normalsizeBig) = Largefrac{1}{2}normalsize $
0.500
90°
Косинус угла 90 градусов

$ cos(90°) = cosBig(Largefrac{pi}{2}normalsizeBig) = 0 $
0.000

Вычислить, найти косинус угла cos(A) и угол, в прямоугольном треугольнике

Вычислить, найти косинус угла cos(A) по углу A в градусах

Вычислить, найти косинус угла cos(A) по углу A в радианах

Косинус угла — cos(A)

стр. 218

Косинус угла. Таблица косинусов.

Косинус угла через градусы, минуты и секунды

Косинус угла через десятичную запись угла

Как найти угол зная косинус этого угла

У косинуса есть обратная тригонометрическая функция – arccos(y)=x

cos(arccos(y))=y

Пример cos(60°) = 1/2; arccos(1/2) = 60°

Рассчитать арккосинус

Определение косинуса

Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.

Косинусом угла α называется абсцисса точки B единичной окружности, полученной при повороте точки P(1;0) на угол α.

Косинус острого угла

cos(α) = AC/AB

cos(-α) = cos(α)

cos(α ± 2π) = cos(α)

Таблица косинусов в радианах

cos(0°) = 1cos(π/12) = cos(15°) = 0.9659258263cos(π/6) = cos(30°) = 0.8660254038cos(π/4) = cos(45°) = 0.7071067812cos(π/3) = cos(60°) = 0.5cos(5π/12) = cos(75°) = 0.2588190451cos(π/2) = cos(90°) = 0cos(7π/12) = cos(105°) = -0.2588190451cos(2π/3) = cos(120°) = -0.5cos(3π/4) = cos(135°) = -0.7071067812cos(5π/6) = cos(150°) = -0.8660254038cos(11π/12) = cos(165°) = -0.9659258263cos(π) = cos(180°) = -1cos(13π/12) = cos(195°) = -0.9659258263cos(7π/6) = cos(210°) = -0.8660254038cos(5π/4) = cos(225°) = -0.7071067812cos(4π/3) = cos(240°) = -0.5cos(17π/12) = cos(255°) = -0.2588190451cos(3π/2) = cos(270°) = 0cos(19π/12) = cos(285°) = 0.2588190451cos(5π/3) = cos(300°) = 0.5cos(7π/4) = cos(315°) = 0.7071067812cos(11π/6) = cos(330°) = 0.8660254038cos(23π/12) = cos(345°) = 0.9659258263

Таблица Брадиса косинусы

cos(0) = 1 cos(120) = -0.5 cos(240) = -0.5
cos(1) = 0.9998476952 cos(121) = -0.5150380749 cos(241) = -0.4848096202
cos(2) = 0.999390827 cos(122) = -0.5299192642 cos(242) = -0.4694715628
cos(3) = 0.9986295348 cos(123) = -0.544639035 cos(243) = -0.4539904997
cos(4) = 0.9975640503 cos(124) = -0.5591929035 cos(244) = -0.4383711468
cos(5) = 0.9961946981 cos(125) = -0.5735764364 cos(245) = -0.4226182617
cos(6) = 0.9945218954 cos(126) = -0.5877852523 cos(246) = -0.4067366431
cos(7) = 0.9925461516 cos(127) = -0.6018150232 cos(247) = -0.3907311285
cos(8) = 0.9902680687 cos(128) = -0.6156614753 cos(248) = -0.3746065934
cos(9) = 0.9876883406 cos(129) = -0.629320391 cos(249) = -0.3583679495
cos(10) = 0.984807753 cos(130) = -0.6427876097 cos(250) = -0.3420201433
cos(11) = 0.9816271834 cos(131) = -0.656059029 cos(251) = -0.3255681545
cos(12) = 0.9781476007 cos(132) = -0.6691306064 cos(252) = -0.3090169944
cos(13) = 0.9743700648 cos(133) = -0.6819983601 cos(253) = -0.2923717047
cos(14) = 0.9702957263 cos(134) = -0.6946583705 cos(254) = -0.2756373558
cos(15) = 0.9659258263 cos(135) = -0.7071067812 cos(255) = -0.2588190451
cos(16) = 0.9612616959 cos(136) = -0.7193398003 cos(256) = -0.2419218956
cos(17) = 0.956304756 cos(137) = -0.7313537016 cos(257) = -0.2249510543
cos(18) = 0.9510565163 cos(138) = -0.7431448255 cos(258) = -0.2079116908
cos(19) = 0.9455185756 cos(139) = -0.7547095802 cos(259) = -0.1908089954
cos(20) = 0.9396926208 cos(140) = -0.7660444431 cos(260) = -0.1736481777
cos(21) = 0.9335804265 cos(141) = -0.7771459615 cos(261) = -0.156434465
cos(22) = 0.9271838546 cos(142) = -0.7880107536 cos(262) = -0.139173101
cos(23) = 0.9205048535 cos(143) = -0.79863551 cos(263) = -0.1218693434
cos(24) = 0.9135454576 cos(144) = -0.8090169944 cos(264) = -0.1045284633
cos(25) = 0.906307787 cos(145) = -0.8191520443 cos(265) = -0.08715574275
cos(26) = 0.8987940463 cos(146) = -0.8290375726 cos(266) = -0.06975647374
cos(27) = 0.8910065242 cos(147) = -0.8386705679 cos(267) = -0.05233595624
cos(28) = 0.8829475929 cos(148) = -0.8480480962 cos(268) = -0.0348994967
cos(29) = 0.8746197071 cos(149) = -0.8571673007 cos(269) = -0.01745240644
cos(30) = 0.8660254038 cos(150) = -0.8660254038 cos(270) = 0
cos(31) = 0.8571673007 cos(151) = -0.8746197071 cos(271) = 0.01745240644
cos(32) = 0.8480480962 cos(152) = -0.8829475929 cos(272) = 0.0348994967
cos(33) = 0.8386705679 cos(153) = -0.8910065242 cos(273) = 0.05233595624
cos(34) = 0.8290375726 cos(154) = -0.8987940463 cos(274) = 0.06975647374
cos(35) = 0.8191520443 cos(155) = -0.906307787 cos(275) = 0.08715574275
cos(36) = 0.8090169944 cos(156) = -0.9135454576 cos(276) = 0.1045284633
cos(37) = 0.79863551 cos(157) = -0.9205048535 cos(277) = 0.1218693434
cos(38) = 0.7880107536 cos(158) = -0.9271838546 cos(278) = 0.139173101
cos(39) = 0.7771459615 cos(159) = -0.9335804265 cos(279) = 0.156434465
cos(40) = 0.7660444431 cos(160) = -0.9396926208 cos(280) = 0.1736481777
cos(41) = 0.7547095802 cos(161) = -0.9455185756 cos(281) = 0.1908089954
cos(42) = 0.7431448255 cos(162) = -0.9510565163 cos(282) = 0.2079116908
cos(43) = 0.7313537016 cos(163) = -0.956304756 cos(283) = 0.2249510543
cos(44) = 0.7193398003 cos(164) = -0.9612616959 cos(284) = 0.2419218956
cos(45) = 0.7071067812 cos(165) = -0.9659258263 cos(285) = 0.2588190451
cos(46) = 0.6946583705 cos(166) = -0.9702957263 cos(286) = 0.2756373558
cos(47) = 0.6819983601 cos(167) = -0.9743700648 cos(287) = 0.2923717047
cos(48) = 0.6691306064 cos(168) = -0.9781476007 cos(288) = 0.3090169944
cos(49) = 0.656059029 cos(169) = -0.9816271834 cos(289) = 0.3255681545
cos(50) = 0.6427876097 cos(170) = -0.984807753 cos(290) = 0.3420201433
cos(51) = 0.629320391 cos(171) = -0.9876883406 cos(291) = 0.3583679495
cos(52) = 0.6156614753 cos(172) = -0.9902680687 cos(292) = 0.3746065934
cos(53) = 0.6018150232 cos(173) = -0.9925461516 cos(293) = 0.3907311285
cos(54) = 0.5877852523 cos(174) = -0.9945218954 cos(294) = 0.4067366431
cos(55) = 0.5735764364 cos(175) = -0.9961946981 cos(295) = 0.4226182617
cos(56) = 0.5591929035 cos(176) = -0.9975640503 cos(296) = 0.4383711468
cos(57) = 0.544639035 cos(177) = -0.9986295348 cos(297) = 0.4539904997
cos(58) = 0.5299192642 cos(178) = -0.999390827 cos(298) = 0.4694715628
cos(59) = 0.5150380749 cos(179) = -0.9998476952 cos(299) = 0.4848096202
cos(60) = 0.5 cos(180) = -1 cos(300) = 0.5
cos(61) = 0.4848096202 cos(181) = -0.9998476952 cos(301) = 0.5150380749
cos(62) = 0.4694715628 cos(182) = -0.999390827 cos(302) = 0.5299192642
cos(63) = 0.4539904997 cos(183) = -0.9986295348 cos(303) = 0.544639035
cos(64) = 0.4383711468 cos(184) = -0.9975640503 cos(304) = 0.5591929035
cos(65) = 0.4226182617 cos(185) = -0.9961946981 cos(305) = 0.5735764364
cos(66) = 0.4067366431 cos(186) = -0.9945218954 cos(306) = 0.5877852523
cos(67) = 0.3907311285 cos(187) = -0.9925461516 cos(307) = 0.6018150232
cos(68) = 0.3746065934 cos(188) = -0.9902680687 cos(308) = 0.6156614753
cos(69) = 0.3583679495 cos(189) = -0.9876883406 cos(309) = 0.629320391
cos(70) = 0.3420201433 cos(190) = -0.984807753 cos(310) = 0.6427876097
cos(71) = 0.3255681545 cos(191) = -0.9816271834 cos(311) = 0.656059029
cos(72) = 0.3090169944 cos(192) = -0.9781476007 cos(312) = 0.6691306064
cos(73) = 0.2923717047 cos(193) = -0.9743700648 cos(313) = 0.6819983601
cos(74) = 0.2756373558 cos(194) = -0.9702957263 cos(314) = 0.6946583705
cos(75) = 0.2588190451 cos(195) = -0.9659258263 cos(315) = 0.7071067812
cos(76) = 0.2419218956 cos(196) = -0.9612616959 cos(316) = 0.7193398003
cos(77) = 0.2249510543 cos(197) = -0.956304756 cos(317) = 0.7313537016
cos(78) = 0.2079116908 cos(198) = -0.9510565163 cos(318) = 0.7431448255
cos(79) = 0.1908089954 cos(199) = -0.9455185756 cos(319) = 0.7547095802
cos(80) = 0.1736481777 cos(200) = -0.9396926208 cos(320) = 0.7660444431
cos(81) = 0.156434465 cos(201) = -0.9335804265 cos(321) = 0.7771459615
cos(82) = 0.139173101 cos(202) = -0.9271838546 cos(322) = 0.7880107536
cos(83) = 0.1218693434 cos(203) = -0.9205048535 cos(323) = 0.79863551
cos(84) = 0.1045284633 cos(204) = -0.9135454576 cos(324) = 0.8090169944
cos(85) = 0.08715574275 cos(205) = -0.906307787 cos(325) = 0.8191520443
cos(86) = 0.06975647374 cos(206) = -0.8987940463 cos(326) = 0.8290375726
cos(87) = 0.05233595624 cos(207) = -0.8910065242 cos(327) = 0.8386705679
cos(88) = 0.0348994967 cos(208) = -0.8829475929 cos(328) = 0.8480480962
cos(89) = 0.01745240644 cos(209) = -0.8746197071 cos(329) = 0.8571673007
cos(90) = 0 cos(210) = -0.8660254038 cos(330) = 0.8660254038
cos(91) = -0.01745240644 cos(211) = -0.8571673007 cos(331) = 0.8746197071
cos(92) = -0.0348994967 cos(212) = -0.8480480962 cos(332) = 0.8829475929
cos(93) = -0.05233595624 cos(213) = -0.8386705679 cos(333) = 0.8910065242
cos(94) = -0.06975647374 cos(214) = -0.8290375726 cos(334) = 0.8987940463
cos(95) = -0.08715574275 cos(215) = -0.8191520443 cos(335) = 0.906307787
cos(96) = -0.1045284633 cos(216) = -0.8090169944 cos(336) = 0.9135454576
cos(97) = -0.1218693434 cos(217) = -0.79863551 cos(337) = 0.9205048535
cos(98) = -0.139173101 cos(218) = -0.7880107536 cos(338) = 0.9271838546
cos(99) = -0.156434465 cos(219) = -0.7771459615 cos(339) = 0.9335804265
cos(100) = -0.1736481777 cos(220) = -0.7660444431 cos(340) = 0.9396926208
cos(101) = -0.1908089954 cos(221) = -0.7547095802 cos(341) = 0.9455185756
cos(102) = -0.2079116908 cos(222) = -0.7431448255 cos(342) = 0.9510565163
cos(103) = -0.2249510543 cos(223) = -0.7313537016 cos(343) = 0.956304756
cos(104) = -0.2419218956 cos(224) = -0.7193398003 cos(344) = 0.9612616959
cos(105) = -0.2588190451 cos(225) = -0.7071067812 cos(345) = 0.9659258263
cos(106) = -0.2756373558 cos(226) = -0.6946583705 cos(346) = 0.9702957263
cos(107) = -0.2923717047 cos(227) = -0.6819983601 cos(347) = 0.9743700648
cos(108) = -0.3090169944 cos(228) = -0.6691306064 cos(348) = 0.9781476007
cos(109) = -0.3255681545 cos(229) = -0.656059029 cos(349) = 0.9816271834
cos(110) = -0.3420201433 cos(230) = -0.6427876097 cos(350) = 0.984807753
cos(111) = -0.3583679495 cos(231) = -0.629320391 cos(351) = 0.9876883406
cos(112) = -0.3746065934 cos(232) = -0.6156614753 cos(352) = 0.9902680687
cos(113) = -0.3907311285 cos(233) = -0.6018150232 cos(353) = 0.9925461516
cos(114) = -0.4067366431 cos(234) = -0.5877852523 cos(354) = 0.9945218954
cos(115) = -0.4226182617 cos(235) = -0.5735764364 cos(355) = 0.9961946981
cos(116) = -0.4383711468 cos(236) = -0.5591929035 cos(356) = 0.9975640503
cos(117) = -0.4539904997 cos(237) = -0.544639035 cos(357) = 0.9986295348
cos(118) = -0.4694715628 cos(238) = -0.5299192642 cos(358) = 0.999390827
cos(119) = -0.4848096202 cos(239) = -0.5150380749 cos(359) = 0.9998476952

Похожие калькуляторы

Для того, чтобы определить значение угла α, необходимо воспользоваться подходящей функции из тригонометрии. Во время решения задач постоянно возникает необходимость в том, чтобы узнать значение углов. Для некоторых углов можно найти точные значения, для других сложно определить точную цифру и можно вывести только приблизительное значение.

В этой статье мы подробно поговорим о функциях из тригонометрии. Мы не только расскажем о свойствах синуса, тангенса и других функций, но и узнаем, как правильно вычислять значения для каждого отдельного случая.

Рассмотрим подробно каждый случай.

Определение 1

Приближенное число для каждой из известных функций можно найти по определению. Для одних можно указать точные значения, для других – только приблизительные.

Соотношения сторон и углов фигуры используются для того, чтобы определить значения для 30°, 45°, 60°. Если угол выходит за пределы 90°, то перед вычислением значения следует воспользоваться специальной формулой для того, чтобы привести угол к нужному виду.

Если известно значение синуса для α, можно быстро узнать значение косинуса для этого же угла. Это легко выполнить с помощью основных тождеств, которые представлены в геометрии.

В некоторых случаях для того, чтобы узнать sin или cos угла, можно использовать подходящую тригонометрическую формулу. Например, по известному значению синуса 45°, мы сможем определить значение синуса 30°, воспользовавшись правилом из тригонометрии.

Если для примера не подходит ни одно из приведенных выше решений, можно найти приближенное значение. В этом вам помогут таблицы основных тригонометрических функций, которые легко можно найти.

Если взять за основу определения, возможно определить значения для определенного угла α. Также можно вычислить значения тангенса и котангенса для определенного случая. Можно найти значений основных функций из тригонометрии для частных вариантов. Это углы 0°, 90°, 180°, 270°, 360°.

Разобьем эти углы на четыре группы: 360·z градусов (2π·z рад), 90+360·z градусов (π2+2π·z рад), 180+360·z градусов (π+2π·z рад) и 270+360·z градусов (3π2+2π·z рад), где z- любое целое число.

Изобразим данные формулы на рисунке: 

Нахождение значений синуса, косинуса, тангенса и котангенса 

Для каждой группы соответствуют свои значения.

Пример 1

При повороте из точки A на 360·z°, она переходит в себя. А1(1, 0). Синус 0°, 360°, 720° равен 0, а косинус равен 1.  Представим это в виде формулы: sin (360°·z)=0 и cos (360°·z)=1 .

Можно определить, что tg (360°·z)=01=0 , а котангенс не определен. 

Пример 2

Если А(1, 0) повернуть на 90+360·z°, то она перейдет в А1 (0, 1).  По определению:  sin (90°+360°·z) =1 и cos (90°+360°·z) =0 . Мы не сможем определить значение тангенса, но котангенс рассчитывается по данной формуле: ctg (90°+360°·z) =01=0 . 

Пример 3

Рассмотрим особенности для третьей группы углов. После поворота точки А(1, 0) на любой из углов 180+360·z°, она перейдет в A1(−1, 0). Мы находим значения функций кроме тангенса.

Пример 4

Рассмотрим правила для четвертой группы углов. При повороте точки на 270+360·z° мы попадем в A1(0, −1). Мы находим значения всех функций кроме тангенса.  

Для углов, которые не относятся к перечню от 0 °, 90 °, 180 °, 270 °, 360 °…, точных значений нет. Мы можем найти лишь приближенные значения. Рассмотрим пример. Условия – найти основные значения для угла −52 °.  Выполним построения. 

Нахождение значений синуса, косинуса, тангенса и котангенса

Согласно рисунку, абсцисса А1 ≈ 0,62, а ордината ≈ −0,78. Соответственно, sin(-52°)≈-0,78 и cos(-52°)≈0,62 . Осталось определиться с тангенсом и котангенсом. 

Выполняем вычисления:  tg(-52°)≈-0, 780, 62≈-1,26 и ctg(-52°)≈0,62-0,78≈-0,79. 

Чем точнее выполняется чертеж, тем более точными будут значения для каждого индивидуального случая. Выполнять вычисления удобно только в теории, так как на практике довольно сложно и долго выполнять рисунки.

Линии тригонометрических функций

Определение 2

Линии тригонометрических функций – это линии, которые изображаются вместе с единичной окружностью. Они имеют точку отсчета и единичный отрезок, которая равна единице в координатной системе. Они используются для наглядного изображения значений.

Рассмотрим их на подробном рисунке

Линии тригонометрических функций

Как найти sin α, cos α, tg α, ctg α

Для тридцати-, сорокопяти-, шестидесятиградусных углов мы имеем определенные значения. Чтобы найти их, можно воспользоваться правилами о прямоугольном треугольнике с острыми углами. Для этого используется теорема Пифагора.

Пример 5

Для того, чтобы узнать значения для углов тридцати- и шестидесятиградусных углов изображаем прямоугольный треугольник с углами данной величины. Длина гипотенузы должна быть равна 1. Согласно теореме Пифагора, катет, лежащий напротив тридцатиградусного угла,  равен половине гипотенузы. Воспользуемся теоремой: 12-122=32 .  Так как синус угла – это катет, деленный на гипотенузу, вычисляем, что sin 30°=121=12 и sin 60°=321=32 . 

Косинус можно найти по формуле, которая предполагает деление прилежащего катета на гипотенузу. Вычисляем: cos 30°=321=32 и cos 60°=121=12 .

Тангенс можно найти по формуле, которая предполагает деление противолежащего катета на прилежащий. Котангенс находим по такой же схеме – делим прилежащий катет на противолежащий. 

Вычисляем: tg 30°=1232=13=33 и tg 60°=3212=3 . Находим котангенс по подобной схеме: сtg 30°=3212=3 и сtg 60°=1232=13=33 .  После этого приступаем к вычислению значений основных тригонометрических функций для сорока пятиградусного угла. Используем равнобедренный треугольник с углами 45° и гипотенузой, которая равна 1. Используем теорему Пифагора. Согласно формуле, длины катетов равны 22 . Т

Теперь мы сможем найти значения для основных тригонометрических функций. Используем формулу, которая предполагает деление длин соответствующих сторон рассматриваемого треугольника.

Выводим формулу: ctg 45°=2222=1 . 

Полученные значения для тридцати-, сорокапяти-, шестидесятиградусных углов будут использоваться для решения различных задач. Запишите их – они часто будут использоваться. Для удобства можно использовать таблицу значений.

Проиллюстрируем значения для тридцати-, сорокапяти-, шестидесятиградусных углов с использованием окружности и линий.

Линии тригонометрических функций

Значения основных функций тригонометрии

Основные тождества из геометрии связывают с собой sin α, cos α, tg α, ctg α для определенного угла. С помощью одной функции вы легко сможете найти другую.

Определение 3

Для того, чтобы найти синус по известному косинусу, sin2α+cos2α=1 . 

Определение 4

Тангенс по известному косинусу tg2α+1=1cos2α . 

Определение 5

Котангенс по известному синусу или наоборот 1+ctg2α= 1sin2α . 

Определение 6

Тангенс через котангенс или наоборот можно найти благодаря удобной формуле: tg α·ctg α=1 . 

Для того, чтобы закрепить полученные знания, рассмотрим их на подробном примере

Пример 6

Необходимо найти значение синуса угла π8, если tg π8=2-1 . 

Сначала найдем котангенс угла: ctgπ8=1tgπ8=12-1=2+1(2-1)·(2+1)= 2+1(2)2-12=2+1  Воспользуемся формулой 1+ctg2α=1sin2α . Благодаря этому мы вычисляем значение синуса. Имеем
sin2π8=11+ctg2π8=11+(2+1)2=14+22=12·(2+2)=2-22·(2+2)·(2-2)==2-22·(22-(2)2)=2-24

Для завершения необходимо определить значение синуса. Угол π8 является углом первой четверти, то синус является положительным. Чтобы точно определить знак, вы можете воспользоваться таблицей, в которой определены знаки по четвертям координатной плоскости. Таким образом, sin π8=sin2π8=2-24=2-22 .  sin π8=2-22.

Сведение к углу 

Удобнее всего находить значения для угла от 0 до 90 °. Сведение к углу из интервала от 0 до 90 °. Если угол не соответствует заданному интервалу, можно использовать законы и тождества, которые мы учили на уроках геометрии. Тогда мы сможем найти значение, которое будет равно для угла указанных пределах.

Пример 7

Задача заключается в том, чтобы найти синус 210°. Представим 210 как разность или сумму, разложив число на несколько. Воспользуемся соответствующей формулой для приведения.  Используем формулу для нахождения значения синуса 30°: sin 210°=sin(180°+30°)=-sin 30°=-12 , или косинуса 60 ° sin 210°=sin(270°-60°)=-cos 60°=-12.

Для того, чтобы решать задачи было намного проще, при нахождении значений переходите к углам из интервала от 0 до 90° с помощью формул приведения, если угол не находится в этих пределах.

Использование формул

Раннее мы рассмотрели подробности, касающиеся нахождению значений основных функций с использованием формул тригонометрии. Для того, чтобы определить значение для определенного угла, используйте формулы и значения основных функций для известных углов.

Для примера вычислим значение тангенса π8, который был использован в предыдущем примере. Возьмем за основу основные формулы тригонометрии.

Пример 8

Найдите значение tgπ8 . 

Используя формулу тангенса, преобразуем уравнение до следующего равенства tg2π8=1-cosπ41+cosπ4 . Значения косинуса угла π4 известны из предыдущего примера. Благодаря этому мы быстро найдем значения тангенса.
tg2π8=1-cosπ41+cosπ4=1-221+22=2-22+2==(2-2)2(2+2)·(2-2)=(2-2)222-(2)2=(2-2)22 

Угол π8 является углом первой четверти. Согласно таблице основных тригонометрических функций по четвертям координатной плоскости, тангенс этого угла положителен. Продолжаем вычисления для дальнейшего решения: tgπ8=tg2π8=(2-2)22=2-22=2-1

tgπ8=2-1.

Частные случаи

Тригонометрия – довольно сложная наука. Далеко не всегда можно найти формулы, используемые для вычисления. Существует множество уравнений, которые не поддаются стандартным формулам. Некоторые значения очень сложно обозначить точной цифрой. Это не так просто, как может показаться.

Однако точные значения не всегда нужны. Хватает и тех, что не претендуют на высокую точность. Благодаря существующим таблицам, которые можно найти в математических учебниках, можно найти любое приближенное значение основных функций. Благодаря справочным материалам вычислять формулы будет намного проще. В таблицах содержатся значения с высокой точностью.

Добавить комментарий