Как найти косинус авс зная все стороны

В статье про прямоугольный треугольник посмотрели задачи связанные с синусами и косинусами из 1 части ОГЭ. Так что обязательно заглядывай.

Получается, что решить прямоугольный треугольник (найти все стороны и острые углы) можно довольно просто, зная всего лишь два элемента прямоугольного треугольника :две стороны (по теореме Пифагора) или сторону и острый угол (из определений синуса, косинуса, тангенса).

Но решить треугольник (найти все стороны и углы ) можно и произвольный, зная три элемента: три стороны, две стороны и угол, или два угла и сторону.

Для первых двух случаев в решении пользуются теоремой косинусов (вполне возможно эта тема вас поджидает уже на следующей неделе в школе, а может уже и была):

в любом треугольнике квадрат одной стороны равен сумме квадратов двух других сторон минус удвоенное произведение этих двух сторон на косинус угла между ними.

Теорема косинусов в 1 части ОГЭ
  • Если известны три стороны треугольника можно найти косинусы всех углов
  • Если известны две стороны и угол между ними треугольника, то можно найти третью сторону.

В этом случае полезно пользоваться таблицей значений косинусов некоторых углов :

Теорема косинусов в 1 части ОГЭ

Рассмотрим решение задачи №16 из сборника Ященко (36 вариантов) на теорему косинусов :

Теорема косинусов в 1 части ОГЭ

Изобразим треугольник АВС и найдем в нем противолежащую сторону для угла АВС.

Теорема косинусов в 1 части ОГЭ

Из рисунка видно, что противолежащая сторона – это сторона АС.

Для стороны АС записываем теорему косинусов:

Теорема косинусов в 1 части ОГЭ

Подставим значения всех сторон:

Теорема косинусов в 1 части ОГЭ

Переносим все “свободные” числа (меняя знак) в левую часть равенства и считаем:

Теорема косинусов в 1 части ОГЭ

Находим косинус угла АВС, как неизвестный множитель:

Теорема косинусов в 1 части ОГЭ

Записываем ответ:

Теорема косинусов в 1 части ОГЭ

Если вы знаете того, кто готовится к ОГЭ, не забудьте поделиться с ним этой информацией. Всегда пригодится.

Продолжение следует…

Не забудь нажать на пальчик вверх после прочтения и подписаться. За это отдельная благодарность

(✿◠‿◠)

Теорема косинусов в 1 части ОГЭ

Косинус в треугольнике

Что такое косинус в треугольнике? Как найти косинус острого угла в прямоугольном треугольнике?

Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.

Например, для угла A треугольника ABC

Соответственно, косинус угла A в треугольнике ABC — это

Для угла B треугольника ABC

прилежащим является катет BC.

Соответственно, косинус угла B в треугольнике ABC

равен отношению BC к AB:

Таким образом, косинус острого угла в прямоугольном треугольнике — это некоторое число, получаемое в результате деления длины прилежащего катета на длину гипотенузы.

Длины отрезков — положительные числа, поэтому косинус острого угла прямоугольного треугольника также является положительным числом.

Поскольку длина катета всегда меньше длины гипотенузы, то косинус острого угла прямоугольного треугольника — число, меньшее единицы.

Косинус любого острого угла прямоугольного треугольника больше нуля, но меньше единицы:

Косинус зависит от величины угла.

Если в треугольнике изменить длины сторон, но не изменять угол, значение косинуса этого угла не изменится.

в треугольниках ABC и FPK

Косинус угла в произвольном (не прямоугольном треугольнике) определяется через теорему косинусов. О том, как это делать, мы будем говорить позже.

Теорема косинусов и синусов

О чем эта статья:

Формулировка и доказательство теоремы косинусов

Для начала вспомним теорему Пифагора: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Формула Теоремы Пифагора:

a 2 > + b 2 > = c 2 >, где a, b — катеты, с — гипотенуза.

Теорема косинусов звучит так: квадрат стороны треугольника равен сумме квадратов двух других его сторон минус удвоенное произведение этих сторон на косинус угла между ними.

Формула теоремы косинусов:

a 2 = b 2 + c 2 – 2bc cos α

В доказательстве теоремы косинусов используем формулу длины отрезка в координатах. Рассмотрим данную формулу:

В доказательстве теоремы косинусов BC — это сторона треугольника АВС, которая обозначена буквой а. Введем удобную систему координат и найдем координаты нужных нам точек. У точки В координаты (с; 0).
Координаты точки С — (b cos α; b sin α) при α ∈ (0° ; 180°).

BC 2 = a 2 = (b cos α – c) 2 + b 2 sin 2 α = b 2 cos 2 α + b 2 sin 2 α – 2bc cos α + c 2 = b 2 (cos 2 α + sin 2 α) – 2bc cos α + c 2

cos 2 α + sin 2 α = 1основное тригонометрическое тождество.

Что и требовалось доказать.

Совет: чтобы быстрее разобраться в сложной теме, запишитесь на онлайн-курсы по математике для детей и подростков.

С помощью теоремы косинусов можно найти косинус угла треугольника:

  • Когда b 2 + c 2 – a 2 > 0, угол α будет острым.
  • Когда b 2 + c 2 – a 2 = 0, угол α будет прямым.
  • Когда b 2 + c 2 – a 2

Сформулируем еще одно доказательство теоремы косинусов.

Пусть нам дан треугольник ABC, в котором из вершины C на сторону AB опустили высоту CD. Это значит:

  • AD = b × cos α,
  • DB = c – b × cos α.

Запишем теорему Пифагора для двух прямоугольных треугольников ADC и BDC:

  • h 2 = b 2 – (b × cos α) 2
  • h 2 = a 2 – (c – b × cos α) 2

Приравниваем правые части уравнений:

  • b 2 – (b × cos α) 2 = a 2 – (c – b × cos α) 2
  • a 2 = b 2 + c 2 – 2bc × cos α

Если один из углов при основании тупой (высота упирается в продолжение основания), полностью аналогичен рассмотренному выше.

Определим стороны b и c:

  • b 2 = a 2 + c 2 – 2ac × cos β;
  • c 2 = a 2 + b 2 – 2ab × cos γ.

Формулировка теоремы для каждой из сторон треугольника

Теорема косинусов справедлива для всех сторон треугольника, то есть:

a 2 = b 2 + c 2 – 2bc cos α

b 2 = c 2 + a 2 – 2ca cos β

c 2 = a 2 + b 2 – 2ab cos γ

Теорема косинусов может быть использована для любого вида треугольника.

Косинусы углов треугольника

Теорема косинусов позволяет найти как косинус, так и угол треугольника. Найдём косинусы углов:

Определение угла с помощью косинуса

А теперь обратим внимание на углы.

Как мы уже знаем, косинус угла из промежутка (0°; 180°) определяет угол (в отличие от его синуса).

Пусть нам дана единичная полуокружность. Если нам задан cos α, то нам задана точка на верхней полуокружности и задан угол α. Следовательно, cos α однозначно определяет точку М(cos α; sin α), и однозначно определяется угол ∠AOM.

Рассмотрение пределов изменения cos α и sin α

Рассмотрим пределы изменения синуса и косинуса α. Вспомним, что если α — угол треугольника, то он лежит в пределах от 0° до 180°.

Предел изменения косинуса: -1 0, то α ∈ (0°;90°)
Если cos α

Примеры решения задач

При помощи теоремы косинусов можно решать задачки по геометрии. Рассмотрим интересные случаи.

Пример 1. Дан треугольник АВС. Найти длину СМ.

∠C = 90°, АВ = 9, ВС = 3, AM/MB = 1/2, где М — точка на гипотенузе АВ.

    Так как АМ + МВ = 9, а AM/MB = 1/2, то АМ = 3, МВ = 6.
    Из треугольника АВС найдем cos B:

Из треугольника СМВ по теореме косинусов найдём СМ:

Пример 2. Дан треугольник АВС, в котором a2+ b22 + b 2 2 , то cos C 2 = a 2 + b 2 , то ∠C = 90°.

  • Если c 2 2 + b 2 , то ∠C — острый.


Косинус угла. Таблица косинусов.

Косинус угла через градусы, минуты и секунды

Косинус угла через десятичную запись угла

Как найти угол зная косинус этого угла

У косинуса есть обратная тригонометрическая функция – arccos(y)=x

Пример cos(60°) = 1/2; arccos(1/2) = 60°

Определение косинуса

Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.

Косинусом угла α называется абсцисса точки B единичной окружности, полученной при повороте точки P(1;0) на угол α.

[spoiler title=”источники:”]

http://skysmart.ru/articles/mathematic/teorema-kosinusov-i-sinusov

http://calc-best.ru/matematicheskie/trigonometriya/kosinus-ugla

[/spoiler]

Определение косинуса угла

Косинусом угла в прямоугольном треугольнике называют отношение прилежащего катета к гипотенузе.

Для простоты запоминания можно дать такое определение: косинус угла — это отношение ближнего от рассматриваемого угла катета к гипотенузе.

1.png

В случае с рисунком, описанным выше: cos⁡α=bccosalpha=frac{b}{c}

Задача 1

Гипотенуза прямоугольного треугольника равна 10 см10text{ см}. Один из катетов равен 6 см6text{ см}. Найдите косинус угла, прилежащего к наибольшему катету.

Решение

Пользуясь теоремой Пифагора вычислим длину неизвестного нам катета.

a2+b2=c2a^2+b^2=c^2

62+b2=1026^2+b^2=10^2

36+b2=10036+b^2=100

b2=64b^2=64

b=8b=8

Катет bb длиннее катета aa. Нам нужно найти косинус угла, прилежащего к наибольшему катету, то есть, к катету bb:

cos⁡α=bc=810=0.8cosalpha=frac{b}{c}=frac{8}{10}=0.8

Ответ

0.8

Задача 2

Две стороны треугольника равны 4 см4text{ см} и 9 см9text{ см}. Периметр его равен 25 см25text{ см}.
Найдите косинус угла, прилежащего к неизвестной стороне и стороне с длиной 4 см4text{ см}.

Решение

Найдем третью сторону треугольника. Так как известен периметр, это будет легко сделать:

P=a+b+cP=a+b+c

25=9+4+c25=9+4+c

c=12c=12

При нахождении косинуса угла нам поможет следствие из теоремы косинусов, которое выглядит так:

cos⁡α=b2+c2−a22⋅b⋅c=42+122−922⋅4⋅12=16+144−8196=7996≈0.82cosalpha=frac{b^2+c^2-a^2}{2cdot bcdot c}=frac{4^2+12^2-9^2}{2cdot 4cdot 12}=frac{16+144-81}{96}=frac{79}{96}approx0.82

Ответ

0.820.82

Решение задач по математике от экспертов сайта Студворк!

Тест по теме “Вычисление косинуса”

Для того, что бы найти косинус угла в треугольнике надо знать длину прилежащего катета и гипотенузы (в мерах длины) или значение самого угла (в градусах). Можно просто воспользоваться формулой для вычисления cos(х):

текст при наведении

автор вопроса выбрал этот ответ лучшим

Fanto­meRU
[13.3K]

5 лет назад 

Для того, чтобы найти косинус какого-нибудь угла в треугольнике необходимо прилежащий катет поделить на гипотенузу. Это следует из определения косинуса.

Среди значение косинуса можно выделить следующие:

cos(0°) = 1

cos(30°) = √3/2

cos(45°) = √2/2

cos(60°) = 0,5

cos(90°) = 0

Roxri­te
[79.1K]

9 лет назад 

Чтобы найти косинус угла в треугольнике необходимо знать определение косинуса и название сторон.

В математике cos(угла “a”) – это есть отношение прилежащего катета к гипотенузе;

То есть cos(угла “a”)=AC/AB:

текст при наведении

Знаете ответ?

Мы уже находили косинусы углов треугольника по его сторонам в произвольном треугольнике и косинус острого угла прямоугольного треугольника.

Рассмотрим, как найти косинусы углов треугольника по его вершинам.

Задача

Дано: ΔABC,

A(-2;0), B(6;1), C(-3;-5).

1) Найти косинусы углов треугольника ABC;

2) Определить вид треугольника.

Решение:

kosinusy-uglov-treugolnika1) Угол A образован векторами

    [overrightarrow {AB} uoverrightarrow {AC} .]

(Чертёж не обязательно делать на координатной плоскости. Достаточно выполнить его схематически, для упрощения понимания, какой угол какими векторами образован).

Следовательно,

    [cos A = frac{{overrightarrow {AB} cdot overrightarrow {AC} }}{{left| {overrightarrow {AB} } right| cdot left| {overrightarrow {AC} } right|}}.]

Найдём координаты векторов:

    [overrightarrow {AB} (x_B - x_A ;y_B - y_A ),]

    [overrightarrow {AB} (6 - ( - 2);1 - 0),]

    [overrightarrow {AB} (8;1).]

    [overrightarrow {AC} (x_C - x_A ;y_C - y_A ),]

    [overrightarrow {AC} ( - 3 - ( - 2); - 5 - 0),]

    [overrightarrow {AC} ( - 1; - 5).]

Находим скалярное произведение векторов:

    [overrightarrow {AB} cdot overrightarrow {AC} = 8 cdot ( - 1) + 1 cdot ( - 5) = - 13.]

Поскольку скалярное произведение меньше нуля, угол, образованный данными векторами, тупой. Значит треугольник ABC — тупоугольный.

Длины (или модули) векторов:

    [left| {overrightarrow {AB} } right| = sqrt {8^2 + 1^2 } = sqrt {65} ,]

    [left| {overrightarrow {AC} } right| = sqrt {( - 1)^2 + ( - 5)^2 } = sqrt {26} .]

Отсюда

    [cos A = frac{{ - 13}}{{sqrt {65} cdot sqrt {26} }} = frac{{ - 13}}{{sqrt {5 cdot 13 cdot 2 cdot 13} }} = ]

    [= frac{{ - 13}}{{13sqrt {10} }} = - frac{1}{{sqrt {10} }} = - frac{{sqrt {10} }}{{10}}.]

2) Угол B образован векторами

    [overrightarrow {BA} uoverrightarrow {BC} .]

Таким образом,

    [cos B = frac{{overrightarrow {BA} cdot overrightarrow {BC} }}{{left| {overrightarrow {BA} } right| cdot left| {overrightarrow {BC} } right|}}.]

Так как

    [overrightarrow {BA} uoverrightarrow {AB} ]

— противоположные векторы, то их координаты отличаются только знаками и векторы имеют одинаковую длину:

    [overrightarrow {AB} (8;1), Rightarrow overrightarrow {BA} ( - 8; - 1),]

    [left| {overrightarrow {BA} } right| = left| {overrightarrow {AB} } right| = sqrt {65} .]

    [overrightarrow {BC} (x_C - x_B ;y_C - y_B ),]

    [overrightarrow {BC} ( - 3 - 6; - 5 - 1),]

    [overrightarrow {BC} ( - 9; - 6).]

    [overrightarrow {BA} cdot overrightarrow {BC} = - 8 cdot ( - 9) + ( - 1) cdot ( - 6) = 78.]

    [left| {overrightarrow {BC} } right| = sqrt {( - 9)^2 + ( - 6)^2 } = sqrt {117} .]

    [cos B = frac{{78}}{{sqrt {65} cdot sqrt {117} }} = frac{{13 cdot 6}}{{sqrt {5 cdot 13 cdot 9 cdot 13} }} =]

    [= frac{{13 cdot 6}}{{13 cdot 3sqrt 5 }} = frac{2}{{sqrt 5 }} = frac{{2sqrt 5 }}{5}.]

3) Угол C образован векторами

    [overrightarrow {CA} uoverrightarrow {CB} ,]

    [cos C = frac{{overrightarrow {CA} cdot overrightarrow {CB} }}{{left| {overrightarrow {CA} } right| cdot left| {overrightarrow {CB} } right|}}.]

    [overrightarrow {AC} ( - 1; - 5), Rightarrow overrightarrow {CA} (1;5),]

    [overrightarrow {BC} ( - 9; - 6), Rightarrow overrightarrow {CB} (9;6),]

    [left| {overrightarrow {CA} } right| = left| {overrightarrow {AC} } right| = sqrt {26} ,]

    [left| {overrightarrow {CB} } right| = left| {overrightarrow {BC} } right| = sqrt {117} ,]

    [overrightarrow {CA} cdot overrightarrow {CB} = 1 cdot 9 + 5 cdot 6 = 39.]

    [cos C = frac{{39}}{{sqrt {26} cdot sqrt {117} }} = frac{{13 cdot 3}}{{sqrt {2 cdot 13 cdot 9 cdot 13} }} = ]

    [= frac{{13 cdot 3}}{{13 cdot 3sqrt 2 }} = frac{1}{{sqrt 2 }} = frac{{sqrt 2 }}{2}.]

Ответ:

    [cos A = - frac{{sqrt {10} }}{{10}},cos B = frac{{2sqrt 5 }}{5},cos C = frac{{sqrt 2 }}{2};]

ΔABC — тупоугольный.

Добавить комментарий