Стороны прямоугольного треугольника связаны между собой гораздо более тесно, нежели в любой другой фигуре. Зная любые две из них, можно найти все углы прямоугольного треугольника, а также третью сторону. Так как в основе всех их отношений лежит прямой угол, то прямоугольный треугольник можно найти и использовать практически во всех геометрических фигурах и телах. Основными измерениями прямоугольного треугольника являются катеты, которые представляют собой сторону, образующие прямой угол. Сторона, которая лежит напротив прямого угла, называется гипотенузой, и она длиннее любого из катетов. Гипотенуза служит точкой отсчета для двух тригонометрических понятий – синуса и косинуса. Отношение катета b, прилежащего к углу α, то есть фактически являющимся одной из его сторон, к гипотенузе c, называется косинусом угла α, и вычислить его можно по формуле:
Значение данной дроби и будет косинусом, которому соответствует конкретная градусная мера искомого угла. Определить ее можно, руководствуясь упрощенной таблицей наиболее часто встречаемых в задачах значений, приведенной ниже, или полной таблицей значений косинусов по ссылке.
Свойства
Косинус угла cos(α) — есть отношение прилежащего катета b к гипотенузе c.
Таблица косинусов
Косинус угла 0° градусов | 1 | 1.000 |
Косинус угла 30° градусов | √3/2 | 0.866 |
Косинус угла 45° градусов | √2/2 | 0.707 |
Косинус угла 60° градусов | 1/2 | 0.500 |
Косинус угла 90° градусов | 0 | 0 |
Теорема косинусов
Определение теоремы косинусов
Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними.
a2=b2+c2-2*b*c*cos(A)
b2=a2+c2-2*a*c*cos(B)
c2=a2+b2-2*a*b*cos(C)
Расчёт стороны по теореме косинусов
Введите сторону
Введите сторону
Введите угол
Формула расчёта стороны по теореме косинусов
Где a, b и c – стороны треугольника,
A – угол между сторонами b и c
Расчёт углов треугольника по теореме косинусов
Введите сторону a
a =
Введите сторону b
b =
Введите сторону c
c =
Формулы расчёта углов по теореме косинусов
Где a, b и c – стороны треугольника,
A, B и C – углы треугольника
Доказательство теоремы косинусов
Дано
Треугольник со сторонами a, b и c.
Доказать
a2=b2+c2-2*b*c*cos(α)
Доказательство
Из вершины B проведём высоту h
Сравним и упростим
Теорема доказана
Калькулятор онлайн.
Решение треугольников.
Решением треугольника называется нахождение всех его шести элементов (т.е. трех сторон и трех углов) по каким-нибудь трем
данным элементам, определяющим треугольник.
Эта математическая программа находит углы ( alpha, beta ) и ( gamma ) по заданным пользователем
сторонам ( a, b ) и ( c )
Программа не только даёт ответ задачи, но и отображает процесс нахождения решения.
Этот калькулятор онлайн может быть полезен учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и
экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре.
А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее
сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным
решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень
образования в области решаемых задач повышается.
Если вы не знакомы с правилами ввода чисел, рекомендуем с ними ознакомиться.
Правила ввода чисел
Числа можно задать не только целые, но и дробные.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так 2.5 или так 2,5
Введите стороны a, b и c
Наши игры, головоломки, эмуляторы:
Немного теории.
Теорема синусов
Теорема
Пусть в треугольнике ABC AB = c, ВС = а, СА = b. Тогда
Стороны треугольника пропорциональны синусам противолежащих углов:
$$ frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C} $$
Теорема косинусов
Теорема
Пусть в треугольнике ABC AB = c, ВС = а, СА = b. Тогда
Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон, умноженное
на косинус угла между ними.
$$ a^2 = b^2+c^2-2ba cos A $$
Решение треугольников
Решением треугольника называется нахождение всех его шести элементов (т.е. трёх сторон и трёх углов) по каким-нибудь трём данным
элементам, определяющим треугольник.
Рассмотрим три задачи на решение треугольника. При этом будем пользоваться такими обозначениями для сторон треугольника ABC:
AB = c, BC = a, CA = b.
Решение треугольника по двум сторонам и углу между ними
Дано: ( a, b, angle C ). Найти ( c, angle A, angle B )
Решение
1. По теореме косинусов находим (c):
$$ c = sqrt{ a^2+b^2-2ab cos C } $$
2. Пользуясь теоремой косинусов, имеем:
$$ cos A = frac{ b^2+c^2-a^2 }{2bc} $$
По ( cos A ) находим ( angle A ) с помощью микрокалькулятора или по таблице.
3. ( angle B = 180^circ -angle A -angle C )
Решение треугольника по стороне и прилежащим к ней углам
Дано: ( a, angle B, angle C ). Найти ( angle A, b, c )
Решение
1. ( angle A = 180^circ -angle B -angle C )
2. С помощью теоремы синусов вычисляем b и c:
$$ b = a frac{sin B}{sin A}, quad c = a frac{sin C}{sin A} $$
Решение треугольника по трём сторонам
Дано: ( a, b, c ). Найти ( angle A, angle B, angle C )
Решение
1. По теореме косинусов получаем:
$$ cos A = frac{b^2+c^2-a^2}{2bc} $$
По ( cos A ) находим ( angle A ) с помощью микрокалькулятора или по таблице.
2. Аналогично находим угол B.
3. ( angle C = 180^circ -angle A -angle B )
Решение треугольника по двум сторонам и углу напротив известной стороны
Дано: ( a, b, angle A ). Найти ( c, angle B, angle C )
Решение
1. По теореме синусов находим ( sin B ) получаем:
$$ frac{a}{sin A} = frac{b}{sin B} Rightarrow sin B = frac{b}{a} cdot sin A $$
Введём обозначение: ( D = frac{b}{a} cdot sin A ). В зависимости от числа D возможны случаи:
Если D > 1, такого треугольника не существует, т.к. ( sin B ) больше 1 быть не может
Если D = 1, существует единственный ( angle B: quad sin B = 1 Rightarrow angle B = 90^circ )
Если D < 1 и a < b, то ( angle B ) имеет два возможных значения: острый ( angle B = arcsin D ) и тупой
( angle B’ = 180^circ – angle B )
Если D < 1 и ( a geqslant b), то ( angle A geqslant angle B ) (против большей стороны лежит больший угол). Т.к. в треугольнике не
может быть двух тупых углов, тупой угол для ( angle B ) исключён, и угол ( angle B = arcsin D ) единственный.
2. ( angle C = 180^circ -angle A -angle B )
3. С помощью теоремы синусов вычисляем сторону c:
$$ c = a frac{sin C}{sin A} $$
Косинус — тригонометрическая функция, которая геометрически определяется как соотношение прилежащего катета к гипотенузе. Как и все тригонометрические функции, косинус нашел широчайшее применение в науке.
История вопроса
Тригонометрия как наука возникла еще в Древней Индии, когда ученые разработали таблицу соотношений катетов и гипотенуз и их численных значений для основных углов. Термин «косинус» — сравнительно молодой, так как изначально ученые пользовались только синусом и тангенсом угла. Complementry sinus, он же дополнительный синус, он же косинус — это просто синус угла, смещенного на 90 градусов. Именно поэтому для расчета соотношений прилежащего к углу катета и гипотенузы использовался синус смещенного угла, что упрощало расчеты.
Геометрически косинус — это соотношение прилежащего катета к гипотенузе. Прилежащий катет — это сторона прямоугольного треугольника, которая вместе с гипотенузой образует рассматриваемый угол. Как и любая тригонометрическая функция, изначально косинус рассчитывался только для углов. Для любого значения угла косинус имеет строго определенное значение и никогда не изменяется. С развитием математической науки тригонометрические функции были расширены на всю числовую ось, и сегодня легко взять косинус не только целого числа, но также вещественного и даже комплексного.
Определение косинуса
Итак, есть прямоугольный треугольник, катеты которого обозначаются как A и B, а гипотенуза как C. Из определения косинуса мы получаем, что для заданного угла AC его соотношение прилежащего катета и гипотенузы будет равно cosAC = A/C. Изначально косинусы рассчитывались только для прямоугольных треугольников, однако с развитием математической науки косинусы прочно вошли в расчеты и сейчас используются для любых треугольников. Одним из таких примеров является теорема косинусов — теорема евклидовой геометрии, которая расширяет теорему Пифагора на любые плоские треугольники.
Теорема косинусов
Для любого треугольника справедливо равенство:
a2 = b2 + c2 — 2b × c × cosA,
где угол A — это угол, противолежащий стороне a.
Данное уравнение правдиво для любых плоских треугольников и при помощи него легко определить угол или одну из сторон. Если угол A — прямой, то выражение 2b×c×cosA обращается в ноль, так как cos90 = 0. Следовательно, напротив прямого угла лежит наибольшая сторона или гипотенуза, а теорема косинусов превращается в классическую теорему Пифагора:
a2 = b2 + c2,
где a — гипотенуза.
Использование косинусов
В повседневной жизни тригонометрические функции не находят применения. Вся бытовая математика находится на уровне математических познаний древних греков, когда для простейших расчетов используются элементарные арифметические функции и рациональные соотношения. Однако большая часть современных технологий функционирует с использованием различных тригонометрических функций. К примеру, для определения мощности электротехнических приборов используется косинус фи — косинус угла между векторными значениями тока и напряжения. Еще пример: через тригонометрические функции легко перевести геодезические углы в привычные нам координаты на земной поверхности.
Наша программа представляет собой онлайн-калькулятор, который позволяет рассчитывать значения основных тригонометрических функций углов, выраженных в градусах или радианах. Для использования калькулятора требуется выбрать в меню программы требуемую функцию и ввести величину угла в градусах. Калькулятор вычисляет и обратную функцию арккосинуса. Если требуется определить угол по известному значению косинуса, введите значение функции в ячейку «Косинус» и выполните расчет. Программа мгновенно выдаст значение угла. Рассмотрим пару примеров использования калькулятора.
Примеры из жизни
Вычисление углов
Пусть в задаче по геометрии дан треугольник со сторонами A = 3 см, B = 4 см и C = 5 см. Требуется найти значения всех углов. На первый взгляд это сложная задача, однако мы знаем, что 3, 4 и 5 — это классическая пифагорова тройка, следовательно, известны значения катетов и гипотенуз. Очевидно, что угол AB = 90 градусов, так как катеты всегда образуют прямой угол. Теперь мы можем найти углы AC и BC. Косинус угла численно равен дроби, в числителе которой стоит прилежащий катет, а в знаменателе — гипотенуза. Прилежащие катеты — это образующие угол катеты, следовательно, cosAC = A/C и cosBC = B/C. Подсчитаем численные значения:
- cosAC = A/C = 3/5 = 0,6;
- cosBC = B/C = 4/5 = 0,8.
Теперь определим соответствующие углы при помощи нашего калькулятора. Углы с такими значениями косинусов равны соответственно 53,13 и 36,87 градуса. Правильность решения легко проверить, сложив величины углов:
90 + 53,13 + 36,87 = 180.
Расчет косинусов
Прямая задача определения численных значений функций — это вычисление косинуса в зависимости от величины угла. Для такой задачи можно использовать таблицу Брадиса — четырехзначные таблицы значений тригонометрических функций для целочисленных величин углов. Вычислим значения косинусов для основных углов. Для этого введем значения в ячейки «Косинус»:
- cos30 = 0,866;
- cos45 = 0,707;
- cos60 = 0,5;
- cos90 = 0;
- cos120 = –0,5;
- cos150 = — 0,866;
- cos180 = — 1.
Это основные значения косинусов для стандартных величин углов треугольника. В целом значения тригонометрических функций периодически повторяются каждые 360 градусов.
Заключение
Тригонометрия — определенно важный раздел математики, функции которого повсеместно используются в современных технологиях. Наши калькуляторы прекрасно подходят для элементарных расчетов по геометрии и тригонометрии.
Косинусом угла в прямоугольном треугольнике называют отношение прилежащего катета к гипотенузе.
Для простоты запоминания можно дать такое определение: косинус угла — это отношение ближнего от рассматриваемого угла катета к гипотенузе.
В случае с рисунком, описанным выше: cosα=bccosalpha=frac{b}{c}
Гипотенуза прямоугольного треугольника равна 10 см10text{ см}. Один из катетов равен 6 см6text{ см}. Найдите косинус угла, прилежащего к наибольшему катету.
Решение
Пользуясь теоремой Пифагора вычислим длину неизвестного нам катета.
a2+b2=c2a^2+b^2=c^2
62+b2=1026^2+b^2=10^2
36+b2=10036+b^2=100
b2=64b^2=64
b=8b=8
Катет bb длиннее катета aa. Нам нужно найти косинус угла, прилежащего к наибольшему катету, то есть, к катету bb:
cosα=bc=810=0.8cosalpha=frac{b}{c}=frac{8}{10}=0.8
Ответ
0.8
Две стороны треугольника равны 4 см4text{ см} и 9 см9text{ см}. Периметр его равен 25 см25text{ см}.
Найдите косинус угла, прилежащего к неизвестной стороне и стороне с длиной 4 см4text{ см}.
Решение
Найдем третью сторону треугольника. Так как известен периметр, это будет легко сделать:
P=a+b+cP=a+b+c
25=9+4+c25=9+4+c
c=12c=12
При нахождении косинуса угла нам поможет следствие из теоремы косинусов, которое выглядит так:
cosα=b2+c2−a22⋅b⋅c=42+122−922⋅4⋅12=16+144−8196=7996≈0.82cosalpha=frac{b^2+c^2-a^2}{2cdot bcdot c}=frac{4^2+12^2-9^2}{2cdot 4cdot 12}=frac{16+144-81}{96}=frac{79}{96}approx0.82
Ответ
0.820.82
Решение задач по математике от экспертов сайта Студворк!