Как найти косинус фи через мощности

На шильдиках некоторых устройств можно увидеть непонятный параметр: косинус фи (cos φ). Что же этот параметр означает? В данной статье мы доходчиво и вкратце объясним что это такое.

Косинус фи (cos φ) часто называют «Коэффициент мощности». Это почти одно и то же при правильной синусоидальной форме тока.
Иногда, для обозначения коэффициента мощности используется λ, эту величину выражают в процентах, или PF.

Условные обозначения

P — активная мощность S — полная мощность Q — реактивная мощность, U — напряжение I — ток.

Что такое Косинус фи (cos φ) — «Коэффициент мощности»

Косинус фи (cos φ) – это косинус угла между фазой напряжения и фазой тока.

При активной нагрузке фаза напряжения совпадает с фазой тока, φ (между фазами) равен 0 (нулю). А, как мы знаем, cos0=1. То есть, при активной нагрузке коэффициент мощности равен 1 или 100%.

Активная нагрузка

Косинус фи (cos φ) — Коэффициент мощности

При емкостной или индуктивной нагрузке фаза тока не совпадает с фазой напряжения. Получается «сдвиг фаз».

При индуктивной или активно-индуктивной нагрузке (с катушками: двигатели, дросселя, трансформаторы) фаза тока отстает от фазы напряжения.

При емкостной нагрузке (конденсатор) фаза тока опережает фазу напряжения.

А почему тогда косинус фи (cos φ) это тоже самое, что коэффициент мощности? Да потому что S=U*I.

Посмотрите на графики ниже. Здесь φ равно 90 косинус фи (cosφ)=0(нулю).

Емкостная нагрузка

Косинус фи (cos φ) — Коэффициент мощности

Индуктивная нагрузка

Косинус фи (cos φ) — Коэффициент мощности

Попытаемся вычислить мощность. Для простоты возьмем максимальное значение напряжения, равное 1 (100%) в этот момент ток равен 0(нулю). Соответственно, их произведение, то есть мощность, равны 0(нулю). И наоборот, когда ток максимальный, напряжение равно нулю.

Получается что полезная, активная мощность равна 0(нулю).

Коэффициент мощности – это соотношение полезной активной мощности к полной мощности, то есть cosφ=P/S.

Треугольник мощностей

Косинус фи (cos φ) — Коэффициент мощности

Посмотрите на треугольник мощностей. Вспомним тригонометрию (это что то из математики) вот здесь то она нам и пригодится.

P=U x I x cos φ

Q =U x I x sin φ

Косинус фи (cos φ) — Коэффициент мощности

На практике.

Если подключить асинхронный двигатель в сеть без нагрузки, в холостую. Напряжение вроде как есть, ток, если замерить, тоже есть. При этом, никакой полезной работы не совершается. Соответственно, активная мощность минимальна.

Если на двигателе увеличить нагрузку, то сдвиг фаз начнет уменьшаться и, соответственно, косинус фи (cos φ) будет увеличиваться, а с ним и активная мощность.

К счастью, счётчики активной мощности фиксируют соответственно только активную мощность, что логично. И нам не приходится переплачивать за полную мощность.

Однако, у реактивной мощности есть большой минус: она создает бесполезную нагрузку на электрическую сеть из-за чего образуются потери.

Диэлектрическими потерями называют энергию, рассеиваемую в электроизоляционном материале под воздействием на него электрического поля. Способность диэлектрика рассеивать энергию в электрическом поле обычно характеризуют углом диэлектрических потерь, а также тангенсом угла диэлектрических потерь. При испытании диэлектрик рассматривается как диэлектрик конденсатора, у которого измеряется емкость и угол δ, дополняющий до 90° угол сдвига фаз между током и напряжением в емкостной цепи. Этот угол называется углом диэлектрических потерь.

Низкий коэффициент мощности и его последствия

Рассмотренное запаздывание тока относительно напряжения — это не хорошее явление. Как оно может сказаться на ваших лампочках или проводке?

  • во-первых, это повышенное потребление электроэнергии

Часть энергии будет просто “болтаться” в катушке, при этом не принося никакой пользы. Правда не пугайтесь, ваш бытовой счетчик реактивную энергию не считает и платить вы за нее не будете.

Например, если вы включите в розетку инструмент или светильник с полной мощностью 100Ва, на блоке питания которого будет указано cos ϕ=0,5. То прибор учета накрутит вам только на половину от этой величины, то есть 50Вт.

  • во-вторых, величина тока в проводке увеличится
  • в-третьих, для эл.станций и трансформаторов это чревато перегрузкой

Казалось бы, выбросить катушку и вся проблема исчезнет. Однако, делать это нельзя.

В большинстве светильников, лампы работают не отдельно, а в паре с источниками питания. И в этих самых источниках, как раз и присутствуют разнообразные катушки.

Катушки просто необходимы как функциональная часть всей схемы и избавиться от них не получится. Например, в тех же дроссельных лампах ДРЛ, ДНАТ, люминесцентных и т.п.

Косинус фи (cos φ) — Коэффициент мощности

Ноль означает, что полезная работа не совершается. Единица – вся энергия идет на совершение полезной работы.

Чем выше коэффициент мощности, тем ниже потери электроэнергии. Вот таблица косинуса фи для различных потребителей:

Косинус фи (cos φ) — Коэффициент мощности
Косинус фи (cos φ) — Коэффициент мощности

Как измерить коэффициент мощности

Если вы не знаете точный коэффициент мощности своего прибора, или его нет на бирке, можно ли измерить косинус фи в домашних условиях, не прибегая к различным формулам и вычислениям? Конечно можно.

Для этого достаточно приобрести широко распространенный инструмент – цифровой ваттметр в розетку.

Косинус фи (cos φ) — Коэффициент мощности

Подключая любое оборудование через него, можно легко без замеров и сложных вычислений, узнать фактический cos ϕ.

Зачастую, фактические данные могут быть даже точнее, чем написанные на шильдике, которые рассчитаны для идеальных условий.

Если он слишком низкий, что делать, чтобы привести его значение как можно ближе к единице? Можно это дело определенным образом компенсировать. Например, с помощью конденсаторов.

#электричество #электрика #коэффициент мощности #ремонт #полезные советы

Спасибо за внимание и не пропустите следующие статьи.

Подписаться.

Обратитесь к специалистам компании xiot.ru “Разумная автоматизация” и мы разработаем для Вас детальный проект любой сложности.

Приобрести оборудование Вы можете в нашем магазине xiot-shop.ru.

Больше полезных советов, обзоров, интересных статей, оборудования умных домов и новостей о нём Вы можете найти на новостной странице нашего сайтаЮтубе и  Инстаграм.​

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 29 марта 2021 года; проверки требуют 7 правок.

Синусоидальное напряжение (красная линия) и ток (зелёная линия) синфазны, то есть, угол фазового сдвига φ=0° (cosφ=1) — нагрузка полностью активная, нет реактивной составляющей. Мгновенная мощность (синяя линия) и активная мощность (голубая линия) рассчитаны с коэффициентом мощности, равным 1. Как видно, синяя линия (график мгновенной мощности) находится полностью над осью абсцисс (в положительной полуплоскости), вся подводимая энергия преобразуется в работу: переходит в активную мощность, потребляемую нагрузкой.

Синусоидальное напряжение (красная линия) и ток (зелёная линия) имеют фазовый сдвиг φ в 90° (cosφ=0) — нагрузка полностью реактивная, нет активной составляющей. Мгновенная мощность (синяя линия) и активная мощность (голубая линия) рассчитаны с коэффициентом мощности, равным 0. Расположение синей линии (графика мгновенной мощности) на оси абсцисс показывает, что в течение первой четверти цикла вся подводимая мощность временно сохраняется в нагрузке, а во второй четверти цикла возвращается в сеть, и так далее, то есть никакой активной мощности не потребляется, полезной работы в нагрузке не совершается.

Синусоидальное напряжение (красная линия) и ток (зелёная линия) имеют фазовый сдвиг φ в 45° (cosφ=0,71) — нагрузка имеет и активную, и реактивную составляющие. Мгновенная мощность (синяя линия) и активная мощность (голубая линия) рассчитаны из переменного напряжения и тока с коэффициентом мощности, равным 0,71. Расположение синей линии (графика мгновенной мощности) под осью абсцисс показывает, что некоторая часть подводимой мощности всё же возвращается в сеть в течение части цикла, отмеченного φ.

Коэффицие́нт мо́щности — безразмерная физическая величина, характеризующая потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей и мощности искажения (собирательное название — неактивная мощность). Следует отличать понятие «коэффициент мощности» от понятия «косинус фи», который равен косинусу сдвига фазы переменного тока, протекающего через нагрузку, относительно приложенного к ней напряжения. Второе понятие используют в случае синусоидальных тока и напряжения, и только в этом случае оба понятия эквивалентны.

Определение и физический смысл[править | править код]

Коэффициент мощности равен отношению потребляемой электроприёмником активной мощности к полной мощности. Активная мощность расходуется на совершение работы. В случае синусоидальных тока и напряжения полная мощность представляет собой геометрическую сумму активной и реактивной мощностей. Иными словами, она равна корню квадратному из суммы квадратов активной и реактивной мощностей. В общем случае полную мощность можно определить как произведение действующих (среднеквадратических) значений тока и напряжения в цепи. В качестве единицы измерения полной мощности принято использовать вольт-ампер (В∙А) вместо ватта (Вт).

В электроэнергетике для коэффициента мощности приняты обозначения {displaystyle operatorname {cos} varphi } (где varphi  — сдвиг фаз между силой тока и напряжением) либо lambda . Когда для обозначения коэффициента мощности используется lambda , его величину обычно выражают в процентах.

Согласно неравенству Коши—Буняковского, активная мощность, равная среднему значению произведения тока и напряжения, всегда не превышает произведение соответствующих среднеквадратических значений. Поэтому коэффициент мощности принимает значения от нуля до единицы (или от 0 до 100 %).

Коэффициент мощности математически можно интерпретировать как косинус угла между векторами тока и напряжения (в общем случае бесконечномерных). Поэтому в случае синусоидальных напряжения и тока величина коэффициента мощности совпадает с косинусом угла, на который отстают соответствующие фазы.

В случае синусоидального напряжения, но несинусоидального тока, если нагрузка не имеет реактивной составляющей, коэффициент мощности равен доле мощности первой гармоники тока в полной мощности, потребляемой нагрузкой.

При наличии реактивной составляющей в нагрузке, кроме значения коэффициента мощности, иногда также указывают характер нагрузки: активно-ёмкостный или активно-индуктивный. В этом случае коэффициент мощности соответственно называют опережающим или отстающим.

Прикладной смысл[править | править код]

Можно показать, что если к источнику синусоидального напряжения (например, розетка ~230 В, 50 Гц) подключить нагрузку, в которой ток опережает или отстаёт по фазе на некоторый угол от напряжения, то на внутреннем активном сопротивлении источника выделяется повышенная мощность. На практике это означает, что при работе на нагрузку с реактивной составляющей от электростанции требуется больше отвода тепла, чем при работе на активную нагрузку; избыток передаваемой энергии выделяется в виде тепла в проводах, и в масштабах, например, предприятия потери могут быть довольно значительными.

Не следует путать коэффициент мощности и коэффициент полезного действия (КПД) нагрузки. Коэффициент мощности практически не влияет на энергопотребление самого устройства, включённого в сеть, но влияет на потери энергии в идущих к нему проводах, а также в местах выработки или преобразования энергии (например, на подстанциях). То есть счётчик электроэнергии в квартире практически не будет реагировать на коэффициент мощности устройств, поскольку оплате подлежит лишь электроэнергия, совершающая работу (активная составляющая нагрузки). В то же время от КПД непосредственно зависит потребляемая электроприбором активная мощность. Например, компактная люминесцентная («энергосберегающая») лампа потребляет примерно в 1,5 раза больше энергии, чем аналогичная по яркости светодиодная лампа. Это связано с более высоким КПД последней. Однако независимо от этого каждая из этих ламп может иметь как низкий, так и высокий коэффициент мощности, который определяется используемыми схемотехническими решениями.

Для импульсного блока питания коэффициент мощности в первом приближении равен cos(f).[1]

Математические расчёты[править | править код]

Коэффициент мощности необходимо учитывать при проектировании электросетей. Низкий коэффициент мощности ведёт к увеличению доли потерь электроэнергии в электрической сети в общих потерях. Если его снижение вызвано нелинейным, и особенно импульсным характером нагрузки, это дополнительно приводит к искажениям формы напряжения в сети. Чтобы увеличить коэффициент мощности, используют компенсирующие устройства. Неверно рассчитанный коэффициент мощности может привести к избыточному потреблению электроэнергии и снижению КПД электрооборудования, питающегося от данной сети.

Для расчётов в случае гармонических переменных U (напряжение) и I (сила тока) используются следующие математические формулы:

  1. {displaystyle chi ={frac {P}{S}}}
  2. P=Utimes Itimes cos varphi
  3. Q=Utimes Itimes sin varphi
  4. {displaystyle S=textstyle sum _{k=1}^{infty }displaystyle (U)times I={sqrt {P^{2}+Q^{2}+T^{2}}}}

Здесь {displaystyle P} — активная мощность, S — полная мощность, Q — реактивная мощность, T — мощность искажения.

Типовые оценки качества электропотребления[править | править код]

Значение
коэффициента
мощности
Высокое Хорошее Удовлетворительное Низкое Неудовлетворительное
{displaystyle operatorname {cos} varphi } 0,95…1 0,8…0,95 0,65…0,8 0,5…0,65 0…0,5
lambda 95…100 % 80…95 % 65…80 % 50…65 % 0…50 %

При одной и той же активной мощности нагрузки мощность, бесполезно рассеиваемая на проводах, обратно пропорциональна квадрату коэффициента мощности. Таким образом, чем меньше коэффициент мощности, тем ниже качество потребления электроэнергии. Для повышения качества электропотребления применяются различные способы коррекции коэффициента мощности, то есть его повышения до значения, близкого к единице.

Например, большинство старых светильников с люминесцентными лампами для зажигания и поддержания горения используют электромагнитные балласты (ЭмПРА), характеризующиеся низким значением коэффициента мощности, то есть неэффективным электропотреблением. Многие компактные люминесцентные («энергосберегающие») лампы, имеющие ЭПРА, тоже характеризуются низким коэффициентом мощности (0,5…0,65). Но аналогичные изделия известных производителей, как и большинство современных светильников, содержат схемы коррекции коэффициента мощности, и для них значение {displaystyle operatorname {cos} varphi } близко к 1, то есть к идеальному значению.

Несинусоидальность[править | править код]

Низкое качество потребителей электроэнергии, связанное с наличием в нагрузке мощности искажения, то есть нелинейная нагрузка (особенно при импульсном её характере), приводит к искажению синусоидальной формы питающего напряжения. Несинусоидальность — вид нелинейных искажений напряжения в электрической сети, который связан с появлением в составе напряжения гармоник с частотами, многократно превышающими основную частоту сети. Высшие гармоники напряжения оказывают отрицательное влияние на работу системы электроснабжения, вызывая дополнительные активные потери в трансформаторах, электрических машинах и сетях; повышенную аварийность в кабельных сетях.

Источниками высших гармоник тока и напряжения являются электроприёмники с нелинейными нагрузками. Например, мощные выпрямители переменного тока, применяемые в металлургической промышленности и на железнодорожном транспорте, газоразрядные лампы, импульсные источники питания и др.

Коррекция коэффициента мощности[править | править код]

Коррекция коэффициента мощности при помощи конденсаторов

Коррекция коэффициента мощности (англ. power factor correction, PFC) — процесс приведения потребления конечного устройства, обладающего низким коэффициентом мощности при питании от силовой сети переменного тока, к состоянию, при котором коэффициент мощности соответствует принятым стандартам.

К ухудшению коэффициента мощности (изменению потребляемого тока непропорционально приложенному напряжению) приводят нерезистивные нагрузки: реактивная и нелинейная.
Реактивные нагрузки корректируются внешними реактивностями, именно для них определена величина {displaystyle cos varphi }.
Коррекция нелинейной нагрузки технически реализуется в виде той или иной дополнительной схемы на входе устройства.

Данная процедура необходима для равномерного использования мощности фазы и исключения перегрузки нейтрального провода трёхфазной сети. Так, коррекция коэффициента мощности рекомендуется для достаточно мощных импульсных источников питания. Компенсация обеспечивает отсутствие всплесков тока потребления на вершине синусоиды питающего напряжения, которая характерна для схем, где на входе стоит диодный мост и сглаживающий конденсатор, и, как следствие, более равномерную нагрузку на силовую линию.

Разновидности коррекции коэффициента мощности[править | править код]

  • Коррекция реактивной составляющей полной мощности потребления устройства. Выполняется путём включения в цепь реактивного элемента, производящего обратное действие. Например, для компенсации действия электродвигателя переменного тока, обладающего высокой индуктивной реактивной составляющей полной мощности, параллельно цепи питания включается конденсатор. В масштабах предприятия для компенсации реактивной мощности применяются батареи конденсаторов и других компенсирующих устройств.
  • Коррекция нелинейности потребления тока в течение периода колебаний питающего напряжения. Если нагрузка потребляет ток непропорционально приложенному напряжению, для повышения коэффициента мощности требуется схема пассивного (PPFC) или активного корректора коэффициента мощности (APFC). Простейшим пассивным корректором коэффициента мощности является дроссель с большой индуктивностью, включённый последовательно с питаемой нагрузкой. Дроссель выполняет сглаживание импульсного потребления нагрузки и выделение низшей, то есть основной, гармоники потребления тока, что и требуется (правда, это достигается в ущерб форме напряжения, поступающего на вход устройства). Активная коррекция коэффициента мощности ценой некоторого усложнения схемы устройства способна обеспечивать наилучшее качество коррекции, приближая коэффициент мощности к 1.

Примечания[править | править код]

  1. Вопросы про коэффициент мощности . Доморост. Дата обращения: 20 мая 2023.

Ссылки[править | править код]

  • Как повысить коэффициент мощности без использования компенсирующих устройств
  • Суднова В. В., Влияние качества электроэнергии на работу электроприемников
  • Несинусоидальность напряжения
  • Влияние высших гармоник напряжения и тока на работу электрооборудования
  • ГОСТ 13109-97
  • Оптимизация работы электроприемников — эффективный способ коррекции коэффициента мощности
  • PFC, Никс, 25.11.2007.
  • Решения от Texas Instruments для AC/DC- и DC/DC-преобразователей, «Новости электроники», N9, 2007.
  • Коррекция фактора мощности // Методика тестирования блоков питания, F-center, 24.12.2004.
  • постановлением Правительства РФ от 20 июля 2011 года № 602 «Об утверждении требований к осветительным устройствам и электрическим лампам, используемым в цепях переменного тока в целях освещения»
  • ТЕХНИЧЕСКИЙ РЕГЛАМЕНТ Таможенного союза «О требованиях к энергетической эффективности электрических энергопотребляющих устройств» (на стадии принятия)
  • ОСТ 45.183-2001 Установки электропитания аппаратуры электросвязи стационарные. Общие технические требования.

С помощью калькулятора мощности вы можете самостоятельно выполнить расчет мощности по току и напряжению для однофазных (220 В) и трехфазных сетей (380 В). Программа также рассчитывает мощность через сопротивление и напряжение, или через ток и сопротивление согласно закону Ома. Значение cos φ принимается согласно указаниям технического паспорта прибора, усредненным значениям таблиц ниже или рассчитываются самостоятельно по формулам. Без необходимости рекомендуем не изменять коэффициент и оставлять равным 0.95. Чтобы получить результат расчета, нажмите кнопку «Рассчитать».

Смежные нормативные документы:

  • СП 256.1325800.2016 «Электроустановки жилых и общественных зданий. Правила проектирования и монтажа»
  • СП 31-110-2003 «Проектирование и монтаж электроустановок жилых и общественных зданий»
  • СП 76.13330.2016 «Электротехнические устройства»
  • ГОСТ 31565-2012 «Кабельные изделия. Требования пожарной безопасности»
  • ГОСТ 10434-82 «Соединения контактные электрические. Классификация»
  • ГОСТ Р 50571.1-93 «Электроустановки зданий»

Формулы расчета мощности

Мощность — это физическая величина, равная отношению количества работы ко времени совершения этой работы.
Мощность электрического тока (P) — это величина, характеризующая скорость преобразования электрической энергии в другие виды энергии. Международная единица измерения — Ватт (Вт/W).

— Мощность по току и напряжению (постоянный ток): P = I × U
— Мощность по току и напряжению (переменный ток однофазный): P = I × U × cos φ
— Мощность по току и напряжению (переменный ток трехфазный): P = I × U × cos φ × √3
— Мощность по току и сопротивлению: P = I2 × R
— Мощность по напряжению и сопротивлению: P = U2 / R

  • I – сила тока, А;
  • U – напряжение, В;
  • R – сопротивление, Ом;
  • cos φ – коэффициент мощности.

Расчет мощности (закон Ома)

Расчет косинуса фи (cos φ)

φ – угол сдвига между фазой тока и напряжения, причем если последний опережает ток сдвиг считается положительным, если отстает, то отрицательным.

cos φ – безразмерная величина, которая равна отношению активной мощности к полной и показывает насколько эффективно используется энергия.

Формула расчета косинуса фи: cos φ = S / P

  • S – полная мощность, ВА (Вольт-ампер);
  • P – активная мощность, Вт.

Активная мощность (P) — реальная, полезная, настоящая мощность, эта нагрузка поглощает всю энергию и превращает ее в полезную работу, например, свет от лампочки. Сдвиг по фазе отсутствует.

Формула расчета активной мощности: P (Вт) = I × U × cos φ

Реактивная мощность (Q) — безваттная (бесполезная) мощность, которая характеризуется тем, что не участвует в работе, а передается обратно к источнику. Наличие реактивной составляющей считается вредной характеристикой цепи, поскольку главная цель существующего электроснабжения — это сокращение издержек, а не перекачивание ее туда и обратно. Такой эффект создают катушки и конденсаторы.

Формула расчета реактивной мощности: P (ВАР) = I × U × sin φ

Полная мощность электроприбора (S) — это суммарная величина, которая включает в себе как активную, так и реактивную составляющие мощности. 

Формула расчета полной мощности: S (ВА) = I × U или S = √( P2 + Q2)

Полная, активная и реактивная мощность

Косинус фи для различных потребителей – таблица

Наименование электроприбора cos φ
Бойлер 1
Болгарка 0.8
Вакуумный насос 0.85
Индукционные печи 0.85
Компрессор 0.7
Компьютер 0.95
Кофеварка 1
Лампы газоразрядные 0.4-0.6
Лампы люминисцентные 0.95
Лампы накаливания 1
Обогреватель 1
Перфоратор 0.85
Пылесос 0.9
СВЧ-печь 1
Стиральная машина 0.9
Телевизор 1
Утюг 1
Фен 1
Холодильник 0.95
Электродрель 0.85
Электромоторы 0.7-0.8
Электроплита 1
Электросварка дуговая 0.3-0.6
Электрочайник 1

Что такое коэффициент мощности, косинус фи и тангенс фи

Содержание

  • 1 Виды мощности
  • 2 Что такое коэффициент мощности
  • 3 Выгода электрооборудования с высоким коэффициентом мощности
  • 4 Как узнать коэффициент мощности
  • 5 Значения коэффициента для различных случаев
  • 6 Видео по теме

Одной из важнейших характеристик электрических устройств является мощность. Поэтому желательно знать, что такое коэффициент мощности и как он рассчитывается. Это поможет не только оценить эффективность использования электрической энергии, но и правильно организовать работу электроприбора.

Коэффициент мощности определяет эффективность-использования электроэнергии

Виды мощности

В цепи переменного электротока возникают три мощности: активная, реактивная и полная. Активную называют полезной или действующей мощностью. Это связано с тем, что она тратится на осуществление полезной работы. Обычно при этом электрическая энергия преобразуется в другие виды.

Реактивная мощность в процессе работы электроприбора не тратится, а лишь переходит из одной формы в другую. В данной мощности нуждаются устройства, принцип действия которых основывается на использовании электромагнитного поля.

Одним из примеров таких устройств может служить колебательный контур, включающий в себя индуктивность и ёмкость в предположении, что активное сопротивление деталей пренебрежимо мало. Ещё одним можно считать трансформатор. В нём ток и напряжение передаются по сердечнику с помощью колебаний электромагнитного поля.

Полную мощность можно получить векторным сложением активной и реактивной составляющих.

Треугольник мощностей

Что такое коэффициент мощности

Иногда бывает важно понять, какая часть мощности уходит на выполнение полезной работы. Для этого необходимо узнать активную и реактивную мощность рассматриваемого электрического прибора. Далее на их основе определяют полную.

В электротехнике для определения мощности в сети постоянного тока используется следующее соотношение:

Формула мощности

В цепи переменного тока вычисление искомой величины производится более сложным образом. При этом следует учитывать, что изменения напряжения и тока по времени совпадать не будут. Электроток в ёмкостной нагрузке опережает напряжение, а в индуктивной, наоборот, отстает.

Поэтому при вычислении мощности принято использовать эффективные значения тока и напряжения. При этом рассматривается такая постоянная величина тока и напряжения, которая на активном сопротивлении выделит то же количество тепла, что и рассматриваемые переменные величины.

Сдвиг между напряжением и током

Конечно, в таких случаях можно также вычислить мгновенную мощность. Для этого достаточно перемножить мгновенные значения тока и напряжения. Однако данная величина не учитывает сильную инерцию энергетических процессов, в связи с чем подобный расчет величин имеет ограниченное применение.

Чтобы определить коэффициент активной мощности нужно разделить активную мощность на полную. Данный коэффициент позволяет оценить эффективность использования рассматриваемого технического решения. Соотношение между реактивной и активной мощностью определяет тангенс «фи».

Полная мощность измеряется в вольт-амперах (ВА). Для активной используют ватты (Вт). Для реактивной применяется единица измерения вольт-ампер реактивный (ВАР).

Поскольку сложение мощностей происходит по векторным правилам, то нужно учитывать, что векторы активной и реактивной составляющих перпендикулярны друг к другу. Результат вычислений представляет собой гипотенузу прямоугольного треугольника с указанными катетами. Формула полной мощности выглядит следующим образом:

Выражение для полной мощности

Это следует из теоремы Пифагора. Здесь применяется правило для нахождения гипотенузы прямоугольного треугольника. Если выразить катеты через гипотенузу и угол «фи», то можно получить формулу для определения активной мощности:

Активная мощность

Аналогичным образом выражается и реактивная:

Реактивная мощность

Следовательно, из формулы для активной мощности можно найти cosφ:

Определение косинуса фи

Для трехфазного напряжения формула принимает следующий вид:

Формула для трёхфазного напряжения

Поэтому следует понимать, что такое косинус «фи» в данной формуле. А это все тот же коэффициент мощности, который позволяет оценивать электроприемники при наличии реактивной составляющей в потребляемом токе.

Называется cosφ коэффициентом мощности в связи с тем, что при векторном сложении в прямоугольном треугольнике значение косинуса угла φ можно найти, разделив длину катета, соответствующего активной мощности, на длину гипотенузы, выражающей полную мощность. Следовательно, формула коэффициента мощности выглядит так:

Выражение для коэффициента мощности

Коэффициент активной мощности cosφ может иметь значение в диапазоне от 0 до 1. Иногда его выражают в процентах. В таком случае коэффициент обозначают греческой буквой «лямбда». Соотношение катетов в прямоугольном треугольнике определяет тангенс «фи».

Коэффициент мощности является низким в тех случаях, когда активная составляющая мала по сравнению с полной мощностью. Это говорит о неэффективности применяемого оборудования.

Для тока и напряжения синусоидальной формы cosφ соответствует косинусу угла отставания по фазе для этих параметров.

Сущность косинуса фи

Выгода электрооборудования с высоким коэффициентом мощности

Это связано с наличием следующих факторов:

  • Поставщики электроэнергии в некоторых случаях контролируют коэффициент мощности оборудования, используемого потребителями. Они могут выставлять дополнительный счёт, если он будет ниже 0.95. В том случае, когда коэффициент меньше 0.85, поставка электроэнергии может быть ограничена.
  • Низкий коэффициент приводит к тому, что при относительно небольшом объёме полезной работы происходят повышенные траты электроэнергии. Таким образом, за определённый объём полезной работы потребителю приходится переплачивать.
  • В линиях электропередач наличие высоких показателей указывает на незначительные потери при передаче энергии.
  • Низкий коэффициент в системе электроснабжения может приводить к уменьшению напряжения в сети. Это часто становится причиной перегрева используемых потребителем устройств.

При рассмотрении работы электрических устройств нужно учитывать, что часть из них генерирует реактивную мощность, а другие являются потребителями. Следовательно, применение первых приводит к возрастанию реактивной мощности, а использование вторых — к её уменьшению.

Реактивная мощность генерируется при работе асинхронного электродвигателя, трансформаторов, ветряных генераторов, систем освещения на разрядных лампах. Наличие реактивной нагрузки ухудшает эффективность работы оборудования. В качестве потребителей рассматриваются конденсаторы, синхронные двигатели и генераторы.

Для уменьшения реактивной мощности можно использовать следующие способы:

  • В цепи устанавливаются конденсаторы. При их использовании совместно с индуктивностью они образуют колебательный контур. В нём мощность от индуктивности будет потребляться ёмкостью.
  • Следует избегать работы асинхронных двигателей вхолостую или с малой мощностью.
  • Нужно исключить возможность работы оборудования при напряжении, которое превышает номинальное.
  • Рекомендуется по мере замены двигателей переходить на те, которые имеют более высокий коэффициент полезного действия.

Оптимальной нагрузкой является номинальная. Если используется нагрузка, значение которой меньше или больше номинальной, то это существенно снижает эффективность работы оборудования.

Как узнать коэффициент мощности

Значение рассматриваемого коэффициента указывается в сопроводительной технической документации к приобретаемому промышленному оборудованию или бытовому прибору. Однако при этом речь идёт о номинальном значении.

Указание косинуса фи на этикетке

Более точно коэффициент измеряется с помощью специализированного прибора, который называется фазометром.

Такие приборы могут быть электродинамическими или цифровыми. С помощью измерений можно достаточно просто и с большой точностью узнать чему равен cosφ и какова эффективность использования прибора.

Если фазометра нет в распоряжении, следует воспользоваться амперметром, вольтметром и ваттметром, с помощью которых измеряются такие физические величины, как сила тока, напряжение и мощность, а затем с помощью соответствующих формул вычислить коэффициент мощности.

Фазометр

Значения коэффициента для различных случаев

При измерении или вычислении коэффициента мощности необходимо знать характерные значения для различных видов оборудования:

  • При использовании нагревательных устройств, несмотря на возможное присутствие индуктивных элементов, считается, что вся используемая мощность является активной. В таких случаях принимают косинус «фи» равный единице.
  • Для перфораторов и ударных дрелей этот коэффициент составляет 0.95-0.97.
  • Сварочные трансформаторы в значительной степени используют индуктивную нагрузку. Поэтому коэффициент мощности трансформатора обычно находится в диапазоне от 0.5 до 0.85.

Значение коэффициента мощности

Когда значения коэффициента являются широко известными, их могут не указывать в сопроводительной документации. Нужно помнить, что хотя в большинстве случаев напряжение меняется синусоидально, иногда оно может существенно отклоняться от этой формы. В такой ситуации говорят о присутствии высших гармоник в колебаниях.

Их появление ведёт к дополнительным затратам мощности, а также снижает компенсацию реактивной мощности, если она применялась. Подобное явление наблюдается при работе с дуговыми сталеплавильными печами, установками дуговой сварки, газоразрядными лампами.

Видео по теме

Допустим, вы купили компрессор для полива растений или электродвигатель для циркулярной пилы. В инструкции по эксплуатации помимо основных технических характеристик (таких, как потребляемый ток, рабочее напряжение, частота вращения) вы можете обнаружить такой непонятный показатель, как косинус фи (cos ϕ). Данная информация может быть указана и на пластинке (шильдике), закрепленной на корпусе прибора. В нашей статье мы постараемся объяснить простым и доступным языком  всем, даже пользователям далеким от электротехнических тонкостей, как тригонометрическая функция (знакомая нам со школьной скамьи) влияет на работу всем нам привычных электробытовых приборов, и почему ее называют коэффициентом мощности.

Косинус фи

Важно! Все нижесказанное касается только сетей переменного тока.

Далекий от электротехники, но весьма наглядный пример

Чтобы объяснить, каким образом угол ϕ (а точнее его косинус) влияет на мощность, рассмотрим пример, не имеющий никакого отношения к электротехнике. Допустим нам необходимо передвинуть тележку, стоящую на рельсах. Чтобы удобнее было производить данную операцию, к ее передней части прикрепляем канат.

Тележка на рельсах

Если мы будем тянуть за веревку прямо вперед по направлению движения, то для перемещения тележки нам понадобится приложить достаточно небольшое усилие. Однако если находиться сбоку от рельсов и тянуть за канат в сторону, то для движения тележки с такой же скоростью необходимо будет приложить значительно большее усилие. Причем чем больше угол (ϕ) между направлением движения и прикладываемым усилием, тем больше «мощности» потребуется от нас.

Угол приложения усилий

Вывод! То есть, увеличение угла ϕ ведет к увеличению расходуемой нами энергии (при одной и той же выполненной работе).

Сдвиг фаз между напряжением и током

При использовании энергии переменного тока происходит приблизительно то же самое. При активной нагрузке (например, при включении электрочайника или лампы накаливания) переменные напряжение (U) и ток (I) полностью совпадают по фазе и одновременно достигают своих максимальных значений. В данном случае мощность потребителя электроэнергии можно рассчитать по формуле P=U•I.

Активная нагрузка

Для сети переменного тока работающий электродвигатель, имеющийся, например, в стиральной машине, является комплексной нагрузкой, включающей в себя активную и индуктивную составляющие. При подаче напряжения на такой прибор оно появляется на обмотках, практически, мгновенно. А вот ток (из-за влияния индуктивности) запаздывает. То есть между ними образуется так называемый сдвиг фаз, который мы и называем ϕ.

Индуктивная нагрузка

При активно-емкостной нагрузке, наоборот, переменный ток сразу начинает течь через конденсатор, а напряжение отстает от него по фазе на величину ϕ.

Емкостная нагрузка

Треугольник мощностей

Коэффициент мощности (PF) – это отношение мощностей: активной полезной (P) к полной (S). Чтобы показать, каким образом сдвиг фаз влияет на PF, используем так называемый треугольник мощностей. И вот тут-то нам и потребуются минимальные знания школьной тригонометрии.

Треугольник мощностей

Из теории о прямоугольных треугольниках всем нам известно, что cos ϕ=P/S. То есть, косинус фи – это и есть коэффициент мощности (PF), который показывает, какая часть от полной мощности (S= U•I) фактически необходима для конкретной нагрузки. Чем больше реактивная составляющая Q, тем меньше полезная P. Чтобы вычислить активную мощность необходимо полную S умножить на косинус фи: P= S•cos ϕ.

На заметку! Считать косинус фи абсолютным аналогом коэффициента мощности можно только при том условии, что мы имеем в электрической сети идеальную синусоиду. Для более точного расчета необходимо учитывать нелинейные искажения, которые имеют переменные напряжение и ток. На практике, зачастую коэффициентом нелинейных искажений синусоиды пренебрегают, и значение косинуса фи принимают за приближенное значение коэффициента мощности.

Усредненные значения коэффициента мощности

Лампы накаливания и электрические нагревательные элементы, хотя и имеют в своих конструкциях спирали, намотанные с помощью специального провода, считаются чисто активной нагрузкой для сетей переменного тока. Так как индуктивность этих элементов настолько мала, что ею, как правило, просто пренебрегают. Для таких приборов cos ϕ (или коэффициент мощности) принимают равным 1.

В разнообразных электрических ручных инструментах (дрелях, перфораторах, лобзиках и так далее) индуктивная составляющая мощности достаточно мала. Для них принято считать cos ϕ≈0,96÷0,97. Этот показатель достаточно близок к единице, поэтому его, практически, никогда не указывают в технических характеристиках.

Для мощных электродвигателей, люминесцентных ламп и сварочных трансформаторов cos ϕ≈0,5÷0,82. Этот коэффициент мощности необходимо учитывать, например, при выборе диаметра питающих проводов, чтобы они не нагрелись, и не сгорела их изоляция.

Сварочный аппарат

На что влияет низкий коэффициент мощности

К чему могут привести низкие показатели коэффициента мощности:

  • При низком PF возрастает потребляемый нагрузкой ток. cos ϕ=P/S=P/(U•I), следовательно I=P/(U•cos ϕ). Допустим, для конкретной нагрузки необходима активная мощность P=10000 ВА при напряжении U=220 В. В идеальном варианте PF=cos ϕ=1. Тогда ток нагрузки: I=10000/(220•1)≈45 А. При PF=0,8  I=10000/(220•0,8)≈57 А. То есть при снижении PF с 1 до 0,8 ток возрастет приблизительно на 20%. Значит, это приведет к излишним затратам на электроэнергию.
  • Снижение коэффициента мощности, и как следствие увеличение тока приводит к значительным энергетическим потерям в проводах, которые по закону Ома равны I•R², где R – активное сопротивление проводников. Для уменьшения этих потерь приходится увеличивать диаметр проводов, что опять же приводит к излишним экономическим затратам.
  • Вышеуказанные потери расходуются на выделение тепла. В этом случае придется применять более термостойкие, а следовательно, и более дорогие изоляционные материалы).

В заключении

Смело можно утверждать, что чем ближе значение PF к единице, тем эффективнее используется электроэнергия. В некоторых мощных приборах производители устанавливают специальные приспособления, которые позволяют осуществлять коррекцию коэффициента мощности.

Добавить комментарий