Как найти косинус/синус/тангенс угла в НЕпрямоугольном треугольнике?
Профи
(684),
закрыт
14 лет назад
Сергей Токарев
Мастер
(1023)
14 лет назад
Определение данных тригонометрических функции в Эвклидовой геометрии (где сумма внутренних углов треугольника равна 180 градусов) применимы только для прямоугольных треугольников, в противном случае, вероятно, нужно переходить к геометрии Лобачевского.
Однако, если у вас есть любой треугольник, сумма внутренних углов которого равна 180 градусам, то, зная величины сторон, по теореме косинусов можно рассчитать внутренние углы, а уже к этим углам применить интересующие вас тригонометрические функции.
Крис
Ученик
(206)
6 лет назад
Теорема Пифагора для любого треугольника:
а2= в2+с2-2*а*в*cos( угла между ними). т. к. в прямоугольном треугольнике cos 90 = 0, то выражение принимает знакомый нам вид: а2= в2+с2
Теорема косинусов
Теорема косинусов — в любом треугольнике квадрат одной стороны равен сумме квадратов двух других сторон минус удвоенное произведение этих двух сторон на косинус угла между ними.
- a² = b² + c² – 2b.c.cosα
- b² = a² + c² – 2a.c.cosβ
- c² = a² + b² – 2a.b.cosγ
Например:
Одна сторона треугольника равна 12 см, другая — 8 см, между ними образовался угол 120º. Найдите длину третьей стороны.
Решение по формуле a² = b² + c² – 2b.c.cosα:
cos α = cos 120º = — 1/2 (это значение можно найти в таблицах)
a² = 12² + 8² – 2×12×8×(- 1/2)
Длина третьей стороны — примерно 17,436 см.
Следствия
Следствие косинуса угла треугольника
При помощи теоремы косинусов можно найти косинус угла треугольника.
Используйте теорему косинусов, чтобы найти угол β.
Решение:
Будем использовать эту версию формулы:
cos β = (6² + 8² − 7²) / 2×6×8
Следствие верхней части формулы cos α
Чтобы узнать, если угол α острый, прямой или тупой, нужно вычислить b²+c²−a² (это верхняя часть формулы для cos α):
- b²+c²−a²<0, значит угол α — тупой;
- b²+c²−a²=0, значит угол α — прямой;
- b²+c²−a²>0, значит угол α — острый.
Доказательство теоремы косинусов
Нужно доказать, что c² = a² + b² − 2a.b.cos C
1. Из определения косинуса известно, что в прямоугольном треугольнике BCD: cos C = CD/a <=> CD = a.cos C.
2. Вычитаем это из стороны b, так мы получим DA:
3. Мы знаем из определения синуса, что в том же треугольнике BCD:
sin C = BD/a <=> BD = a.sinC.
4. Применяем теорему Пифагора в треугольнике ADB: c² = BD² + DA²
5. Заменим BD и DA из пунктов 2) и 3), получится выражение: c²= (a. sin C)²+(b−a.cos C)²
6. Раскрываем скобки: c² = a² sin ²C + b² − 2a.b.cosC + a².cos²C
6.1. Поменяем их местами (a²cos²C поставим на второе место): c² = a² sin ²C + a²cos²C + b² − 2a.b.cosC
7. Выносим за скобки «a²»: c² = a² (sin²C+cos²C) + b² − 2a.b.cosC
8. В скобках получилось основное тригонометрическим тождество (sin²α + cos²α = 1), значит его можно сократить т. к. умножение на единицу ничего не меняет, получилось: c² = a² + b² − 2a.b.cos C
Теорема косинусов для равнобедренного треугольника
В равнобедренном треугольнике:
- две его стороны равны;
- углы при основании равны.
Используем формулу теоремы косинусов
a² = b² + c² – 2b.c.cosα
Подставляем все известные:
x² = 8² + 8² – 2×8×8×cos140º
x² = 64 + 64 – 128 × (-0,766)
Теорема синусов
Теорема синусов гласит, что отношение стороны треугольника к синусу угла, противолежащего данной стороне, одинаково для всех сторон и углов в данном треугольнике:
Как найти косинус угла в непрямоугольном треугольнике ?
Как найти косинус угла в непрямоугольном треугольнике ?
Определение данных тригонометрических функции в Эвклидовой геометрии (где сумма внутренних углов треугольника равна 180 градусов) применимы только для прямоугольных треугольников, в противном случае, вероятно, нужно переходить к геометрии Лобачевского.
Однако, если у вас есть любой треугольник, сумма внутренних углов которого равна 180 градусам, то, зная величины сторон, по теореме косинусов можно рассчитать внутренние углы, а уже к этим углам применить интересующие вас тригонометрические функции.
Стороны прямоугольного треугольника равны 10 дм 8 дм и 6 дм ?
Стороны прямоугольного треугольника равны 10 дм 8 дм и 6 дм .
Найти минус , косинус и тангенс острогов угла этого треугольника .
Найдите синус косинус и тангенс угла а треугольника авс?
Найдите синус косинус и тангенс угла а треугольника авс.
В треугольнике ABC : AB = 8?
В треугольнике ABC : AB = 8.
AC = 7 Найти косинус угла B.
Косинусом острого угла прямоугольного треугольника называется отношение?
Косинусом острого угла прямоугольного треугольника называется отношение.
В треугольнике ABC катет равен — 5 а гепотенуза — 13?
В треугольнике ABC катет равен — 5 а гепотенуза — 13.
Найти не известный катет, синус, косинус, тангецы острых углов».
В остроугольном треугольнике ABC высота AH равна 26√3 а сторона AB равна 52 , найти косинус угла B?
В остроугольном треугольнике ABC высота AH равна 26√3 а сторона AB равна 52 , найти косинус угла B.
Катеты прямоугольного треугольника равны 2 см и √5 см?
Катеты прямоугольного треугольника равны 2 см и √5 см.
Найти косинус меньшего острого угла этого треугольника.
Две стороны треугольника равны 7 и 8, а косинус угла между этими сторонами равен 4 / 7?
Две стороны треугольника равны 7 и 8, а косинус угла между этими сторонами равен 4 / 7.
Найти высоту, опущенную на третью сторону этого треугольника.
Найдите гипотенузу и косинус угла А прямоугольного треугольника, если его катеты равны?
Найдите гипотенузу и косинус угла А прямоугольного треугольника, если его катеты равны.
В прямоугольном треугольнике катеты = 5 и 6?
В прямоугольном треугольнике катеты = 5 и 6.
Найти синусы косинусы и тангенсы острых углов.
Вопрос Как найти косинус угла в непрямоугольном треугольнике ?, расположенный на этой странице сайта, относится к категории Математика и соответствует программе для 5 — 9 классов. Если ответ не удовлетворяет в полной мере, найдите с помощью автоматического поиска похожие вопросы, из этой же категории, или сформулируйте вопрос по-своему. Для этого ключевые фразы введите в строку поиска, нажав на кнопку, расположенную вверху страницы. Воспользуйтесь также подсказками посетителей, оставившими комментарии под вопросом.
47 : 4 = 11 3 / 4(м / c) скорость собаки — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — 206 : 5 = 41 1 / 5(км / ч) скорость теплохода.
Теорема косинусов
Для плоского треугольника со сторонами a,b,c и углом α, противолежащим стороне a, справедливо соотношение:
Квадрат одной стороны треугольника равен сумме квадратов двух других сторон за вычетом удвоенного их произведения, умноженного на косинус угла между ними
Полезные формулы теоремы косинусов:
Как видно из указанного выше, с помощью теоремы косинусов можно найти не только сторону треугольника по двум сторонам и углу между ними, можно, зная размеры всех сторон треугольника, определить косинусы всех углов, а также вычислить величину любого угла треугольника. Вычисление любого угла треугольника по его сторонам является следствием преобразования формулы теоремы косинусов.
Теорема Пифагора
Теорема Пифагора . В прямоугольном треугольнике сумма квадратов длин катетов равна квадрату длины гипотенузы .
Доказательство . Докажем, что длины сторон произвольного прямоугольного треугольника ABC (рис.1)
С этой целью рассмотрим квадрат квадрат со стороной, равной c , изображённый на рисунке 2.
Площадь этого квадрата равна сумме площадей четырёх одинаковых прямоугольных треугольников, равных треугольнику ABC (рис.3, рис.4), и площади квадрата со стороной, равной a – b (рис.5).
Рис.3 |
Рис.4 |
Рис.5 |
Поэтому справедливо равенство
что и требовалось доказать.
Формулировка теоремы косинусов для треугольника
Теорема косинусов для треугольника связывает две стороны треугольника и угол между ними со стороной, лежащей против этого угла. К примеру, обозначим буквами , , и длины сторон треугольника ABC, лежащие соответственно против углов A, B и C.
Тогда имеет теорема косинусов для этого треугольника может быть записана в виде:
На рисунке для удобства дальнейших рассуждений угол С обозначен углом . Словами это можно сформулировать следующим образом: «Квадрат любой стороны треугольника равен сумме квадратов двух других сторон за вычетом удвоенного произведения этих сторон на косинус угла между ними.»
Понятно, что если бы вы выражали другую сторону треугольника, например, сторону , то в формуле нужно было бы брать косинус угла A, то есть лежащего против искомой стороны в треугольнике, а справа в уравнении на своих местах стояли бы стороны , то в формуле нужно было бы брать косинус угла A, то есть лежащего против искомой стороны в треугольнике, а справа в уравнении на своих местах стояли бы стороны и . Выражение для квадрата стороны . Выражение для квадрата стороны получается аналогично:
Классическое доказательство теоремы косинусов.
Пусть есть треугольник ABC. Из вершины C на сторону AB опустили высоту CD. Значит:
Записываем теорему Пифагора для 2-х прямоугольных треугольников ADC и BDC:
h 2 = b 2 – (b cos α) 2 (1)
h 2 = a 2 – (c – b cos α) 2 (2)
Приравниваем правые части уравнений (1) и (2):
b 2 – (b cos α) 2 = a 2 – (c – b cos α) 2
a 2 = b 2 + c 2 – 2bc cos α.
Если 1-н из углов при основании тупой (высота упирается в продолжение основания), полностью аналогичен рассмотренному выше.
Определить стороны b и c:
b 2 = a 2 + c 2 – 2ac cos β
c 2 = a 2 + b 2 – 2ab cos γ.
Формулировка и формула теоремы
В плоском треугольнике квадрат стороны равняется сумме квадратов двух других сторон минус удвоенное произведение данных сторон, умноженное на косинус угла между ними.
a 2 = b 2 + c 2 – 2bc cos α
Теорема косинусов для остроугольного треугольника.
Если угол острый, то справедлива формула:
a 2 = b 2 + c 2 −2bx
Доказательство теоремы косинусов для треугольника
Доказательство теоремы косинусов для треугольника проводят обычно следующим образом. Разбивают исходный треугольник на два прямоугольных треугольника высотой, а дальше играются со сторонами полученных треугольников и теоремой Пифагора. В результате после долгих нудных преобразований получаю нужный результат. Мне лично этот подход не по душе. И не только из-за громоздких вычислений, но ещё и потому что в этом случае приходится отдельно рассматривать случай, когда треугольник является тупоугольным. Слишком много трудностей.
Я предлагаю доказать эту теорему с помощью понятия «скалярного произведения векторов». Я сознательно иду на этот риск для себя, зная, что многие школьники предпочитают обходить эту тему стороной, считая, что она какая-то мутная и с ней лучше не иметь дела. Но нежелание возиться отдельно с тупоугольным треугольником во мне всё же пересиливает. Тем более, что доказательство в результате получается удивительно простым и запоминающимся. Сейчас вы в этом убедитесь.
Заменим стороны нашего треугольника следующими векторами:
Согласно правилам сложения векторов имеем: . Действительно, по правилу треугольника вектор, равный сумме двух векторов, отложенных последовательно один за другим, — это вектор с началом в начале первого вектора и концом в конце второго. Переносим . Действительно, по правилу треугольника вектор, равный сумме двух векторов, отложенных последовательно один за другим, — это вектор с началом в начале первого вектора и концом в конце второго. Переносим в правую часть равенства с противоположным знаком, в результате чего получаем следующее векторное выражение: .
Теперь возьмём скалярный квадрат обеих частей полученного выражения. В результате чего получим:
Я напоминаю, что по определению скалярное произведение векторов равно произведению длин этих векторов на косинус угла между ними. Из этого определения также следует, что скалярный квадрат вектора равен квадрату его длины. Действительно, ведь угол между вектором и им же самим равен нулю, то есть соответствующих косинус равен 1. То есть остаётся только квадрат длины вектора. Исходя из этого мы сразу получаем выражение для теоремы косинусов:
Что и требовалось доказать. Причём данное доказательство хорошо ещё тем, что позволяет лучше запомнить саму формулу. Ведь теперь становится понятным, откуда берётся этот хвост . Как раз из скалярного произведения. Ну и, как я уже говорил, это доказательство справедливо для любых треугольников: остроугольных, тупоугольных и прямоугольных. То есть угол . Как раз из скалярного произведения. Ну и, как я уже говорил, это доказательство справедливо для любых треугольников: остроугольных, тупоугольных и прямоугольных. То есть угол может быть острым, тупым или прямым. И не требуется рассматривать доказательство для каждого из этих случаев, что не может не радовать.
Кстати, в случае, когда угол прямой, мы получаем прямой, мы получаем , и выражение принимает следующий вид: . Что мы получили? Правильно! Это запись теоремы Пифагора. Квадрат гипотенузы равен сумме квадратов катетов. Так что ниточки постепенно сплетаются. То есть, как обычно говорят, теорема косинусов для треугольника есть обобщение теоремы Пифагора на случай произвольного треугольника, не обязательно прямоугольного.
Теорема косинусов
Теорема косинусов . Квадрат длины стороны треугольника равен сумме квадратов длин других сторон минус удвоенное произведение длин этих сторон на косинус угла между ними.
Доказательство . Рассмотрим сначала треугольник ABC , у которого углы A и С – острые (рис.6).
Докажем, что длины сторон этого треугольника удовлетворяют равенству
a 2 = b 2 + c 2 – – 2bc cos A |
(1) |
С этой целью проведём высоту BD из вершины B (рис.7).
В соответствии с определениями синуса и косинуса угла прямоугольного треугольника справедливы равенства
BD = c sin A, AD = c cos A, DC = b – AD = b – c cos A.
Из теоремы Пифагора , применённой к прямоугольному треугольнику BDC , получим
Таким образом, в случае треугольника ABC с острыми углами A и С теорема косинусов доказана.
Замечание 1 . Для того, чтобы получить полное доказательство теоремы косинусов, необходимо рассмотреть также и следующие случаи:
- Угол A – острый, угол C – тупой (рис.8)
Во всех перечисленных случаях доказательства теоремы косинусов проводятся совершенно аналогично тому, как это было сделано для случая острых углов A и C , и мы рекомендуем читателю провести эти доказательства в качестве полезного и несложного упражнения.
Замечание 2 . В случае, когда угол A является прямым углом, формула (1) принимает вид
откуда вытекает, что теорема Пифагора является частным случаем теоремы косинусов.
Замечание 3 . Если у треугольника известны длины всех сторон, то с помощью теоремы косинусов можно найти косинус любого угла треугольника, например,
Примеры задач
Задание 1
В треугольнике известны длины двух сторон – 5 и 9 см, а также, угол между ними – 60°. Найдите длину третьей стороны.
Решение:
Применим формулу теоремы, приняв известные стороны за b и c, а неизвестную за a:
a 2 = 5 2 + 9 2 – 2 * 5 * 9 * cos 60° = 25 + 81 – 45 = 61 см 2 . Следовательно, сторона a = √ 61 см ≈ 7,81 см.
Задание 2
Самая большая сторона треугольника равна 26 см, а две другие – 16 и 18 см. Найдите угол между меньшими сторонами.
Решение:
Примем бОльшую сторону за a. Чтобы найти угол между сторонами b и c, воспользуемся следствием из теоремы:
Теорема косинусов и синусов
О чем эта статья:
Формулировка и доказательство теоремы косинусов
Для начала вспомним теорему Пифагора: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
Формула Теоремы Пифагора:
a 2 > + b 2 > = c 2 >, где a, b — катеты, с — гипотенуза.
Теорема косинусов звучит так: квадрат стороны треугольника равен сумме квадратов двух других его сторон минус удвоенное произведение этих сторон на косинус угла между ними.
Формула теоремы косинусов:
a 2 = b 2 + c 2 – 2bc cos α
В доказательстве теоремы косинусов используем формулу длины отрезка в координатах. Рассмотрим данную формулу:
В доказательстве теоремы косинусов BC — это сторона треугольника АВС, которая обозначена буквой а. Введем удобную систему координат и найдем координаты нужных нам точек. У точки В координаты (с; 0).
Координаты точки С — (b cos α; b sin α) при α ∈ (0° ; 180°).
BC 2 = a 2 = (b cos α – c) 2 + b 2 sin 2 α = b 2 cos 2 α + b 2 sin 2 α – 2bc cos α + c 2 = b 2 (cos 2 α + sin 2 α) – 2bc cos α + c 2
cos 2 α + sin 2 α = 1 — основное тригонометрическое тождество.
Что и требовалось доказать.
Совет: чтобы быстрее разобраться в сложной теме, запишитесь на онлайн-курсы по математике для детей и подростков.
С помощью теоремы косинусов можно найти косинус угла треугольника:
- Когда b 2 + c 2 – a 2 > 0, угол α будет острым.
- Когда b 2 + c 2 – a 2 = 0, угол α будет прямым.
- Когда b 2 + c 2 – a 2
Сформулируем еще одно доказательство теоремы косинусов.
Пусть нам дан треугольник ABC, в котором из вершины C на сторону AB опустили высоту CD. Это значит:
- AD = b × cos α,
- DB = c – b × cos α.
Запишем теорему Пифагора для двух прямоугольных треугольников ADC и BDC:
- h 2 = b 2 – (b × cos α) 2
- h 2 = a 2 – (c – b × cos α) 2
Приравниваем правые части уравнений:
- b 2 – (b × cos α) 2 = a 2 – (c – b × cos α) 2
- a 2 = b 2 + c 2 – 2bc × cos α
Если один из углов при основании тупой (высота упирается в продолжение основания), полностью аналогичен рассмотренному выше.
Определим стороны b и c:
- b 2 = a 2 + c 2 – 2ac × cos β;
- c 2 = a 2 + b 2 – 2ab × cos γ.
Формулировка теоремы для каждой из сторон треугольника
Теорема косинусов справедлива для всех сторон треугольника, то есть:
a 2 = b 2 + c 2 – 2bc cos α
b 2 = c 2 + a 2 – 2ca cos β
c 2 = a 2 + b 2 – 2ab cos γ
Теорема косинусов может быть использована для любого вида треугольника.
Косинусы углов треугольника
Теорема косинусов позволяет найти как косинус, так и угол треугольника. Найдём косинусы углов:
Определение угла с помощью косинуса
А теперь обратим внимание на углы.
Как мы уже знаем, косинус угла из промежутка (0°; 180°) определяет угол (в отличие от его синуса).
Пусть нам дана единичная полуокружность. Если нам задан cos α, то нам задана точка на верхней полуокружности и задан угол α. Следовательно, cos α однозначно определяет точку М(cos α; sin α), и однозначно определяется угол ∠AOM.
Рассмотрение пределов изменения cos α и sin α
Рассмотрим пределы изменения синуса и косинуса α. Вспомним, что если α — угол треугольника, то он лежит в пределах от 0° до 180°.
Предел изменения косинуса: -1 0, то α ∈ (0°;90°)
Если cos α
Примеры решения задач
При помощи теоремы косинусов можно решать задачки по геометрии. Рассмотрим интересные случаи.
Пример 1. Дан треугольник АВС. Найти длину СМ.
∠C = 90°, АВ = 9, ВС = 3, AM/MB = 1/2, где М — точка на гипотенузе АВ.
-
Так как АМ + МВ = 9, а AM/MB = 1/2, то АМ = 3, МВ = 6.
Из треугольника АВС найдем cos B:
Из треугольника СМВ по теореме косинусов найдём СМ:
Пример 2. Дан треугольник АВС, в котором a2+ b22 + b 2 2 , то cos C 2 = a 2 + b 2 , то ∠C = 90°.
- Если c 2 2 + b 2 , то ∠C — острый.
Как найти синус угла в треугольнике? Не в прямоугольном, в любом
Если рассматриваемый треугольник является прямоугольным, то можно использовать базовое определение тригонометрической функции синуса для острых углов. По определению синусом угла называют соотношение длины катета, лежащего напротив этого угла, к длине гипотенузы этого треугольника. То есть, если катеты имеют длину А и В, а длина гипотенузы равна С, то синус угла α, лежащего напротив катета А, определяйте по формуле α=А/С, а синус угла β, лежащего напротив катета В – по формуле β=В/С. Синус третьего угла в прямоугольном треугольнике находить нет необходимости, так как угол, лежащий напротив гипотенузы всегда равен 90°, а его синус всегда равен единице.
2
Для нахождения синусов углов в произвольном треугольнике, как это ни странно, проще использовать не теорему синусов, а теорему косинусов. Она гласит, что возведенная в квадрат длина любой стороны равна сумме квадратов длин двух других сторон без удвоенного произведения этих длин на косинус угла между ними: А²=В²+С2-2*В*С*cos(α). Из этой теоремы можно вывести формулу для нахождения косинуса: cos(α)=(В²+С²-А²)/(2*В*С) . А поскольку сумма квадратов синуса и косинуса одного и того же угла всегда равна единице, то можно вывести и формулу для нахождения синуса угла α: sin(α)=√(1-(cos(α))²)= √(1-(В²+С²-А²)²/(2*В*С) ²).
3
Воспользуйтесь для нахождения синуса угла двумя разными формулами расчета площади треугольника, в одной из которых задействованы только длины его сторон, а в другой – длины двух сторон и синус угла между ними. Так как результаты их будут равны, то из тождества можно выразить синус угла. Формула нахождения площади через длины сторон (формула Герона) выглядит так: S=¼*√((А+В+С) *(В+С-А) *(А+С-В) *(А+В-С)) . А вторую формулу можно написать так: S=А*В*sin(γ). Подставьте первую формулу во вторую и составьте формулу для синуса угла, лежащего напротив стороны С: sin(γ)= ¼*√((А+В+С) *(В+С-А) *(А+С-В) *(А+В-С) /(А*В)) . Синусы двух других углов можно найти по аналогичным формулам.
Синус, косинус, тангенс в прямоугольном треугольнике
Гипотенузой называется та сторона треугольника, что лежит против угла в 90 градусов, две оставшиеся стороны называются катетами прямоугольного треугольника.
Подробнее про прямоугольный треугольник здесь.
Синусом угла в прямоугольном треугольнике называется отношение противолежащего катета к гипотенузе.
Косинусом угла в прямоугольном треугольнике называется отношение прилежащего катета к гипотенузе.
Тангенсом угла в прямоугольном треугольнике называется отношение противолежащего катета к прилежащему.
Котангенсом угла в прямоугольном треугольнике называется отношение прилежащего катета к противолежащему.
Бывает (и на ЕГЭ, ГИА), что приходится иметь дело с косинусами, синусами и тангенсами внешних углов треугольника. Формулы приведения позволяют увидеть, что есть еще и вот такая связь между смежными углами (помимо того, что их сумма равна 180):
Смотрите подборку задач на применение указанных соотношений в статье «Прямоугольный треугольник. Вычисление длин и углов» часть I, часть II.
Чтобы не потерять страничку, вы можете сохранить ее у себя:
[spoiler title=”источники:”]
http://sprashivalka.com/tqa/q/807447
[/spoiler]
Предмет: Геометрия,
автор: arishatrifonova5601
Как мы можем найти косинус в непрямоугольном треугольнике?Заранее спасибо!
Приложения:
Ответы
Автор ответа: binamaksimchuk
1
Ответ:
ctg(α)=12/27;cos(α)=0,4
Объяснение:
В прямоугольном треугольнике медиана, проведённая к гипотенузе равна половине гипотенузы.
CD=BD=AD=15
AB=2CD=2×15=30 см
ΔCBD-равнобедренный,CD=BD,BC-основание
<B=α,
cos(B)=CB/AB=12/30=0,4
cos(α)=0,4
AC=√AB²-BC²=√30²-12²=√900-144=√756≈27см
ctg(B)=ВС/АС=12/27
ctg(α)=12/27
arishatrifonova5601:
Большое спасибо,все поняла!
Интересные вопросы
Предмет: Алгебра,
автор: eueheh8888
Предмет: Химия,
автор: Аноним
Adobe Gitler! Zip File 😀 688 / 210 / 2 Регистрация: 06.07.2010 Сообщений: 1,611 |
|
1 |
|
Косинусы и синусы в непрямоугольном треугольнике02.12.2010, 16:58. Показов 79797. Ответов 2
Косинусы и синусы в непрямоугольном треугольнике, как?_
0 |
здесь больше нет… 3372 / 1670 / 184 Регистрация: 03.02.2010 Сообщений: 1,219 |
|
02.12.2010, 17:37 |
2 |
догадываемся, что косинусы и синусы углов в непрямоуг… Миниатюры
1 |
3132 / 1325 / 156 Регистрация: 19.12.2009 Сообщений: 1,808 |
|
02.12.2010, 21:12 |
3 |
аналитика, я бы не горячился бы со словом мера – это не самый подходящий, в данном случае термин, лучше функция.
1 |
IT_Exp Эксперт 87844 / 49110 / 22898 Регистрация: 17.06.2006 Сообщений: 92,604 |
02.12.2010, 21:12 |
Помогаю со студенческими работами здесь Синусы и косинусы Синусы и косинусы Синусы, косинусы Косинусы и синусы в Паскале Искать еще темы с ответами Или воспользуйтесь поиском по форуму: 3 |