Содержание:
Теорема синусов, теорема косинусов:
Теорема синусов
Вы уже знаете, что в треугольнике против большей стороны лежит больший угол, а против большего угла — большая сторона. Пусть
Теорема синусов. Стороны треугольника пропорциональны синусам противолежащих углов. Отношение стороны треугольника к синусу противолежащего угла равно удвоенному радиусу окружности, описанной около треугольника, т. е.
Доказательство:
Пусть дан треугольник АВС, ВС = — радиус его описанной окружности. Угол а может быть острым, тупым или прямым. Рассмотрим эти случаи отдельно.
1) Угол острый (рис. 152, а). Проведя диаметр BD и отрезок DC, получим прямоугольный треугольник BCD, в котором как вписанный угол, опирающийся на диаметр. Заметим, что как вписанные углы, опирающиеся на одну и ту же дугу ВС. Из прямоугольного треугольника BCD находим т. е. откуда
2) Угол тупой (рис. 152, б). Проведем диаметр BD и отрезок DC. В четырехугольнике ABDC по свойству вписанного четырехугольника Из прямоугольного треугольника как вписанный угол, опирающийся на диаметр) Поскольку то откуда
3) Для справедливость равенства докажите самостоятельно, В силу доказанного откуда
Теорема доказана.
Теорема синусов дает возможность решать широкий круг задач.
Так, пропорция позволяет решить две следующие задачи:
- зная две стороны треугольника и угол, противолежащий одной из них, найти синус угла, противолежащего другой стороне;
- зная два угла треугольника и сторону, противолежащую одному из этих углов, найти сторону, противолежащую другому углу.
С помощью формулы можно решить еще три задачи (рис. 153):
- зная сторону треугольника и противолежащий ей угол, найти радиус окружности, описанной около треугольника;
- зная угол треугольника и радиус описанной окружности, найти сторону треугольника, противолежащую данному углу;
- зная сторону треугольника и радиус его описанной окружности, найти синус угла, противолежащего данной стороне.
Повторение
Пример:
В остроугольном треугольнике известны стороны и угол Найти два других угла округлив их значения до 1°, и третью сторону треугольника, округлив ее длину до 0,1.
Решение:
По теореме синусов откуда При помощи калькулятора (таблиц). находим Тогда По теореме синусов откуда
Ответ:
Замечание. Если бы по условию треугольник был тупоугольным с тупым углом то, зная вначале мы нашли бы острый угол А затем, используя формулу получили бы, что
Пример:
Доказать справедливость формулы площади треугольника где — его стороны, R — радиус описанной окружности.
Доказательство:
Воспользуемся известной формулой площади треугольника: По теореме синусов откуда Тогда Что и требовалось доказать.
Замечание. Выведенная формула позволяет найти радиус описанной окружности треугольника
Пример:
Найти радиус R окружности, описанной около равнобедренного треугольника АВС с основанием АС = 10 и боковой стороной ВС =13 (рис. 154).
Решение:
Способ 1. Из формулы следует, что Найдем . Для этого в треугольнике АВС проведем высоту ВК, которая будет и медианой, откуда Из по теореме Пифагора откуда
Тогда
Способ 2. Используем формулу из которой Так как то
Ответ:
Замечание*. Напомним, что в главе II мы находили радиус R описанной окружности равнобедренного треугольника, проводя серединные перпендикуляры к его сторонам и используя подобие полученных прямоугольных треугольников. Также мы могли использовать формулу где — боковая сторона, — высота, проведенная к основанию
Заменив в формуле получим — формулу радиуса описанной окружности для произвольного треугольника. Итак, мы имеем четыре формулы для нахождения радиуса R описанной окружности треугольника:
Теорема косинусов
Теорема косинусов позволяет выразить длину любой стороны треугольника через длины двух других его сторон и косинус угла между ними (например, длину стороны треугольника АВС (рис. 165) через длины сторон ). Теорему косинусов можно назвать самой «работающей» в геометрии. Она имеет многочисленные следствия, которые часто используются при решении задач.
Теорема косинусов. Квадрат любой стороны треугольника равен сумме квадратов двух других его сторон минус удвоенное произведение этих сторон на косинус угла между ними, т. е.
Доказательство:
Докажем теорему для случая, когда в треугольнике АВС угол А и угол С острые (рис. 166).
Проведем высоту ВН к стороне АС. Из находим откуда
Из по теореме Пифагора
По основному тригонометрическому тождеству
Тогда
Справедливость теоремы для случаев, когда или тупой или прямой, докажите самостоятельно. Теорема доказана.
Для сторон теорема косинусов запишется так:
Замечание. Если , то по теореме Пифагора Так как то Таким образом, теорема Пифагора — частный случай теоремы косинусов.
С помощью теоремы косинусов можно решить следующие задачи:
• зная две стороны и угол между ними, найти третью сторону треугольника;
• зная две стороны и угол, противолежащий одной из этих сторон, найти третью сторону (рис. 167) (в этом случае возможны два решения).
Рассмотрим следствия из теоремы косинусов, которые дают возможность решить еще целый ряд задач.
Следствие:
Теорема косинусов позволяет, зная три стороны треугольника, найти его углы (косинусы углов). Из равенства следует формула
Для углов получим:
Пример:
В треугольнике АВС стороны АВ = 8, ВС = 5, АС = 7. Найдем ZB (рис. 168).
По теореме косинусов
Используя записанную выше формулу, можно сразу получить:
Следствие:
С помощью теоремы косинусов можно по трем сторонам определить вид треугольника: остроугольный, прямоугольный или тупоугольный.
Так, из формулы с учетом того, что следует:
- если то и угол острый;
- если то и угол тупой;
- если то и угол прямой.
При определении вида треугольника достаточно найти знак косинуса угла, лежащего против большей стороны, поскольку только больший угол треугольника может быть прямым или тупым.
Пример:
Выясним, каким является треугольник со сторонами a = 2, 6 = 3 и с = 4. Для этого найдем знак косинуса угла у, лежащего против большей стороны с. Так как то угол тупой и данный треугольник тупоугольный.
Сформулируем правило определения вида треугольника (относительно углов). Треугольник является:
- остроугольным, если квадрат его большей стороны меньше суммы квадратов двух других его сторон:
- тупоугольным, если квадрат его большей стороны больше суммы квадратов двух других его сторон:
- прямоугольным, если квадрат его большей стороны равен сумме квадратов двух других его сторон:
Следствие:
Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон:
Доказательство:
Пусть в параллелограмме ABCD — острый, откуда — тупой (рис. 169). По теореме косинусов из
(1)
Из Поскольку cos то
(2)
Сложив почленно равенство (1) и равенство (2), получим что и требовалось доказать.
Данная формула дает возможность:
- • зная две соседние стороны и одну из диагоналей параллелограмма, найти другую диагональ;
- • зная две диагонали и одну из сторон параллелограмма, найти соседнюю с ней сторону.
Следствие:
Медиану треугольника со сторонами а, b и с можно найти по формуле
Доказательство:
Рассмотрим — медиана треугольника (рис. 170). Продлим медиану AM за точку М на ее длину:
Проведем отрезки BD и DC. Так как у четырехугольника ABDC диагонали AD и ВС точкой пересечения делятся пополам, то он — параллелограмм. По свойству диагоналей параллелограмма Отсюда следует, что
Утверждение доказано.
Аналогично:
Формула медианы позволяет:
- зная три стороны треугольника, найти любую из его медиан;
- зная две стороны и медиану, проведенную к третьей стороне, найти третью сторону;
- зная три медианы, найти любую из сторон треугольника.
Пример:
а) Дан треугольник АВС, а = 5, 5 = 3, Найти сторону с. б) Дан треугольник АВС, а = 7, с = 8, а = 60°. Найти сторону Ь.
Решение:
а) По теореме косинусов
Отсюда б) Пусть По теореме косинусов то есть Отсюда или так как для наборов длин отрезков 7, 3, 8 и 7, 5, 8 выполняется неравенство треугольника.
Ответ: а) 7; б) 3 или 5.
Пример:
Две стороны треугольника равны 6 и 10, его площадь —
Найти третью сторону треугольника при условии, что противолежащий ей угол — тупой.
Решение:
Пусть в стороны АВ = 6, ВС = 10 и (рис. 171).
Поскольку то откуда
Так как и по условию — тупой, то . Для нахождения стороны АС применим теорему косинусов:
Ответ: 14.
Пример:
Найти площадь треугольника, две стороны которого равны 6 и 8, а медиана, проведенная к третьей стороне, равна 5.
Решение:
Обозначим стороны треугольника Пусть — медиана (рис. 172).
По формуле медианы откуда По обратной теореме Пифагора данный треугольник со сторонами 6, 8 и 10 — прямоугольный, его площадь равна половине произведения катетов:
Ответ: 24.
Формула Герона
Мы знаем, как найти площадь треугольника по основанию и высоте, проведенной к этому основанию: а также по двум сторонам и углу между ними: Теперь мы выведем формулу нахождения площади треугольника по трем сторонам.
Теорема (формула Герона).
Площадь треугольника со сторонами можно найти по формуле где — полупериметр треугольника.
Доказательство:
(рис. 183). Из основного тригонометрического тождества следует, что Для синус положительный. Поэтому Из теоремы косинусов откуда
Тогда
Так как
Теорема доказана.
Решение треугольников
Решением треугольника называется нахождение его неизвестных сторон и углов (иногда других элементов) по данным, определяющим треугольник.
Такая задача часто встречается на практике, например в геодезии, астрономии, строительстве, навигации.
Рассмотрим алгоритмы решения трех задач.
Пример №1 (решение треугольника по двум сторонам и углу между ними).
Дано: (рис. 184).
Найти :
Решение:
Рис. 184
1) По теореме косинусов
2) По следствию из теоремы косинусов
3) Угол находим при помощи калькулятора или таблиц.
4) Угол
Замечание. Нахождение угла по теореме синусов требует выяснения того, острый или тупой угол
Пример №2 (решение треугольника по стороне и двум прилежащим к ней углам).
Дано: (рис. 185).
Найти:
Решение:
1) Угол
2) По теореме синусов (sin и sin находим при помощи калькулятора или таблиц).
3) Сторону с можно найти с помощью теоремы косинусов или теоремы синусов: или (cos и sin находим при помощи калькулятора или таблиц).
Пример №3 (решение треугольника по трем сторонам).
Дано: (рис. 186).
Найти: и радиус R описанной окружности.
Решение:
1) По следствию из теоремы косинусов
2) Зная угол находим при помощи калькулятора или таблиц.
3) Аналогично находим угол
4) Угол
5) Радиус R описанной окружности треугольника можно найти по формуле где
Замечание*. Вторым способом нахождения R будет нахождение косинуса любого угла при помощи теоремы косинусов затем нахождение по косинусу угла его синуса и, наконец, использование теоремы синусов для нахождения R.
Пример №4
Найти площадь S и радиус R описанной окружности треугольника со сторонами 9, 12 и 15.
Решение:
Способ 1. Воспользуемся формулой Герона. Обозначим а = 9, b = 12, с = 15. Получим:
Тогда
Радиус R описанной окружности найдем из формулы Имеем:
Ответ:
Способ 2. Так как поскольку то треугольник — прямоугольный по обратной теореме Пифагора. Его площадь равна половине произведения катетов: а радиус описанной окружности равен половине гипотенузы:
Пример №5
Найти площадь трапеции с основаниями, равными 5 и 14, и боковыми сторонами, равными 10 и 17.
Решение:
Пусть в трапеции ABCD основания AD = 14 и ВС = 5, боковые стороны АВ = 10 и Проведем (рис. 187). Так как АВСК — параллелограмм, то СК = АВ = 10, АК = ВС = 5, откуда KD = AD – АК = 9. Найдем высоту СН треугольника KCD, которая равна высоте трапеции. Площадь треугольника KCD найдем по формуле Герона, обозначив его стороны а = 10, b = 17, с = 9. Получим:
Так как СН = 8. Площадь трапеции
Ответ: 76.
Примеры решения задач с использованием теоремы синусов и теоремы косинусов
Пример:
Внутри угла А, равного 60°, взята точка М, которая находится на расстоянии 1 от одной стороны угла и на расстоянии 2 от другой стороны. Найти расстояние от точки М до вершины угла А (рис. 189, а).
Решение:
Пусть Найдем
длину отрезка AM. Сумма углов четырехугольника АВМС равна 360°.
Поэтому
Так как в четырехугольнике АВМС , то около него можно описать окружность по признаку вписанного четырехугольника (рис. 189, б). Поскольку прямой вписанный угол опирается на диаметр, то отрезок AM — диаметр этой окружности, т. е. где R — радиус. Из по теореме косинусов Из по теореме синусов откуда
Ответ:
Замечание. Вторым способом решения будет продление отрезка ВМ до пересечения с лучом АС и использование свойств полученных прямоугольных треугольников. Рассмотрите этот способ самостоятельно.
Пример №6
В прямоугольном треугольнике АВС известно: высота СН = 2 (рис. 190). Найти гипотенузу АВ.
Решение:
Построим симметричный относительно прямой АВ (см. рис. 190).
Поскольку то вокруг четырехугольника можно описать окружность, где АВ — диаметр этой окружности (прямой вписанный угол опирается на диаметр). Треугольник вписан в эту окружность, По теореме синусов откуда
Ответ: 8.
Пример №7
Дан прямоугольный треугольник АВС с катетами ВС = а и АС = На гипотенузе АВ как на стороне построен квадрат ADFB (рис. 191). Найти расстояние от центра О этого квадрата до вершины С прямого угла, т. е. отрезок СО.
Решение:
Способ 1. Так как (диагонали квадрата ADFB взаимно перпендикулярны), то поэтому четырехугольник АОВС является вписанным в окружность, ее диаметр Тогда
Пусть СО = х. По теореме косинусов из находим
из находим
По свойству вписанного четырехугольника Поскольку то откуда находим Тогда .
Способ 2. Используем теорему Птолемея, которая гласит: «Произведение диагоналей вписанного четырехугольника равно сумме произведений его противоположных сторон». Для нашей задачи получаем (см. рис. 191):
Способ 3. Достроим до квадрата CMNK, как показано на рисунке 192. Можно показать, что центр квадрата CMNK совпадет с центром квадрата ADFB, т. е. с точкой О (точки В и D симметричны относительно центров обоих квадратов). Тогда
Ответ:
Пример №8
Точка О — центр окружности, вписанной в треугольник АВС, Найти стороны треугольника (см. задачу 232*).
Решение:
Пусть и
— радиус вписанной окружности (рис. 193).
Тогда
Отсюда Применим формулу Герона:
С другой стороны, Из уравнения находим = 2. Откуда (см), (см), (см).
Ответ: 15 см; 20 см; 7 см.
Теорема Стюарта
Следующая теорема позволяет найти длину отрезка, соединяющего вершину треугольника с точкой на противоположной стороне.
Теорема Стюарта. «Если а, b и с — стороны треугольника и отрезок d делит сторону с на отрезки, равные х и у (рис. 194), то справедлива формула
Доказательство:
По теореме косинусов из и (см. рис. 194) следует:
(1)
(2)
Умножим обе части равенства (1) на у, равенства (2) — на
Сложим почленно полученные равенства:
Из последнего равенства выразим
Теорема доказана.
Следствие:
Биссектрису треугольника можно найти по формуле (рис. 195)
Доказательство:
По свойству биссектрисы треугольника Разделив сторону с в отношении получим:
По теореме Стюарта
Пример №9
Доказать, что если в треугольнике две биссектрисы равны, то треугольник — равнобедренный (теорема Штейнера—Лемуса).
Доказательство:
Пусть дан треугольник АВС, — биссектрисы, проведенные к сторонам ВС = а и АС = b соответственно, и (рис. 196). Нужно доказать, что Выразим и через и приравняем полученные выражения. Биссектриса делит противолежащую сторону на части, пропорциональные прилежащим сторонам. Поэтому откуда откуда
По формуле биссектрисы треугольника
Из условия следует: Перенеся слагаемые в одну сторону равенства и разложив на множители (проделайте это самостоятельно), получим: Отсюда (второй множитель при положительных больше нуля). Утверждение доказано.
Теорема Птолемея о вписанном четырехугольнике
Произведение диагоналей вписанного четырехугольника равно сумме произведений его противоположных сторон, т. е. (рис. 197).
Доказательство:
Из по теореме косинусов
Так как (по свойству вписанного четырехугольника) и откуда
Аналогично из получим Тогда Теорема доказана.
Запомните:
- Теорема синусов. Стороны треугольника пропорциональны синусам противолежащих углов. Отношение стороны треугольника к синусу противолежащего угла равно удвоенному радиусу его описанной окружности:
- Радиус описанной окружности треугольника можно найти, используя формулы:
- Теорема косинусов. Квадрат любой стороны треугольника равен сумме квадратов двух других его сторон минус удвоенное произведение этих сторон на косинус угла между ними:
- Пусть — стороны треугольника и с — большая сторона. Если , то треугольник тупоугольный, если то треугольник остроугольный, если , то треугольник прямоугольный.
- Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон:
- Формула Герона:
- Формула медианы:
- Параллельность прямых и плоскостей
- Перпендикулярность прямой и плоскости
- Взаимное расположение прямых в пространстве, прямой и плоскости
- Перпендикулярность прямых и плоскостей в пространстве
- Углы и расстояния в пространстве
- Подобие треугольников
- Решение прямоугольных треугольников
- Параллелограмм
-
Для решения этой задачи воспользуемся теоремой косинусов.
a²=b²+c²-2*b*c*cosα
Выведем отсюда формулу для нахождения косинуса угла:
cosα = (b²+c²-a²) / 2*b*c
теперь подставляем:
cosα = (6²+7²-8²) / 2*6*7 = (36+49-64) / 84=21/84=0.25
Ответ: cosα = 0,25
- Комментировать
- Жалоба
- Ссылка
Найди верный ответ на вопрос ✅ «Стороны треугольника равны 6, 7 и 8. Найдите косинус угла лежащего против большей стороны …» по предмету 📙 Геометрия, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы
Новые вопросы по геометрии
Главная » Геометрия » Стороны треугольника равны 6, 7 и 8. Найдите косинус угла лежащего против большей стороны
Предмет: Геометрия,
автор: Зая13
Ответы
Автор ответа: Cora
0
Для решения этой задачи воспользуемся теоремой косинусов.
a²=b²+c²-2×b×c×cosα
Выведем отсюда формулу для нахождения косинуса угла:
cosα=(b²+c²-a²)/2×b×c
теперь подставляем:
cosα=(6²+7²-8²)/2×6×7=(36+49-64)/84=21/84=0.25
Ответ: cosα = 0,25
Предыдущий вопрос
Следующий вопрос
Интересные вопросы
Предмет: Русский язык,
автор: ahevko1225678
Прочитайте текст и ответьте на вопросы(ниже есть вопрос-“Почему по мгению автора,памятники,которыми скульптор украшал город,были необычными?”)
5 лет назад
Предмет: Геометрия,
автор: nasretdinovaana98
На рис, 1 PK||CD,CP=20см,PO=8см,KD=15см
Найдите KO.
5 лет назад
Предмет: Алгебра,
автор: kabdralan
441. Представьте функцию у =-x^2 + 2х + 2 в виде у = а(х — m)^2 +n.
Найдите:
1) ось симметрии параболы у = х^2 + 2х + 2;
2)координаты точки пересечения этой параболы с осью Оy
и точки, симметричной ей относительно оси симметрии данной параболы;
3) координаты двух точек параболы симметричных относительно ее оси симметрии.
Постройте график функции y =-x^2 + 2х + 2.
5 лет назад
Предмет: Алгебра,
автор: 2008
за несколько книг заплатили 320 р. Стоимость одной из книг составила 30%,а другой 45% израсходованных денег.На сколько рублей пеовая книга дешевле второй?
8 лет назад
Предмет: Математика,
автор: вар
Составь и реши задачи по схемам 42+16, Оля 18, Наташа?
8 лет назад
Исторический термин «решение треугольников» (лат. solutio triangulorum) обозначает решение следующей тригонометрической задачи: найти остальные стороны и/или углы треугольника по уже известным[1]. Существуют также обобщения этой задачи на случай, когда заданы другие элементы треугольника (например, медианы, биссектрисы, высоты, площадь и т. д.), а также на случай, когда треугольник располагается не на евклидовой плоскости, а на сфере (сферический треугольник), на гиперболической плоскости (гиперболический треугольник) и т. п. Данная задача часто встречается в тригонометрических приложениях — например, в геодезии, астрономии, строительстве, навигации.
Решение плоских треугольников[править | править код]
У треугольника[2] общего вида имеется 6 основных элементов: 3 линейные (длины сторон ) и 3 угловые (). Сторону, противолежащую углу при вершине, традиционно обозначают той же буквой, что и эта вершина, но не заглавной, а строчной (см. рисунок). В классической задаче плоской тригонометрии заданы 3 из этих 6 характеристик, и нужно определить 3 остальные. Очевидно, если известны только 2 или 3 угла, однозначного решения не получится, так как любой треугольник, подобный данному, тоже будет решением, поэтому далее предполагается, что хотя бы одна из известных величин — линейная[3].
Алгоритм решения задачи зависит от того, какие именно характеристики треугольника считаются известными. Поскольку вариант «заданы три угла» исключён из рассмотрения, остаются 5 различных вариантов[4]:
- три стороны;
- две стороны и угол между ними;
- две стороны и угол напротив одной из них;
- сторона и два прилежащих угла;
- сторона, противолежащий угол и один из прилежащих.
Основные теоремы[править | править код]
Стандартным методом решения задачи является использование нескольких фундаментальных соотношений, выполняющихся для всех плоских треугольников[5]:
- Теорема косинусов
- Теорема синусов
- Сумма углов треугольника
Из других иногда полезных на практике универсальных соотношений следует упомянуть теорему тангенсов, теорему котангенсов, теорему о проекциях и формулы Мольвейде.
Замечания[править | править код]
- Для нахождения неизвестного угла надёжнее использовать теорему косинусов, а не синусов, потому что значение синуса угла при вершине треугольника не определяет однозначно самого угла, поскольку смежные углы имеют один и тот же синус[6]. Например, если то угол может быть как , так и , потому что синусы этих углов совпадают. Исключением является случай, когда заранее известно, что в данном треугольнике тупых углов быть не может — например, если треугольник прямоугольный. С косинусом такие проблемы не возникают: в интервале от до значение косинуса определяет угол однозначно.
- При построении треугольников важно помнить, что зеркальное отражение построенного треугольника тоже будет решением задачи. Например, три стороны однозначно определяют треугольник с точностью до отражения.
- Все треугольники подразумеваются невырожденными, то есть длина стороны не может быть нулевой, а величина угла — положительное число, меньшее, чем .
Три стороны[править | править код]
Пусть заданы длины всех трёх сторон . Условие разрешимости задачи — выполнение неравенства треугольника, то есть каждая длина должна быть меньше, чем сумма двух других длин:
Чтобы найти углы , надо воспользоваться теоремой косинусов[7]:
Третий угол сразу находится из правила, что сумма всех трёх углов должна быть равна
Не рекомендуется второй угол находить по теореме синусов, потому что, как указано в замечании 1, существует опасность спутать тупой угол с острым. Этой опасности не возникнет, если первым определить, по теореме косинусов, наибольший угол (он лежит против наибольшей из сторон) — два других угла точно являются острыми, и применение к ним теоремы синусов безопасно.
Ещё один метод вычисления углов по известным сторонам — использование теоремы котангенсов.
Две стороны и угол между ними[править | править код]
Пусть для определённости известны длины сторон и угол между ними. Этот вариант задачи всегда имеет единственное решение. Для определения длины стороны применяется теорема косинусов[8]:
Фактически задача сведена к предыдущему случаю. Далее ещё раз применяется теорема косинусов для нахождения второго угла:
Третий угол находится из теоремы о сумме углов треугольника: .
Две стороны и угол напротив одной из них[править | править код]
В этом случае решений может быть два, одно или ни одного. Пусть известны две стороны и угол . Тогда уравнение для угла находится из теоремы синусов[9]:
Для краткости обозначим (правая часть уравнения). Это число всегда положительно. При решении уравнения возможны 4 случая, во многом зависящие от D[10][11].
- Задача не имеет решения (сторона «не достаёт» до линии ) в двух случаях: если или если угол и при этом
- Если существует единственное решение, причём треугольник прямоугольный:
- Если то возможны 2 варианта.
- Если , то угол имеет два возможных значения: острый угол и тупой угол . На рисунке справа первому значению соответствуют точка , сторона и угол , а второму значению — точка , сторона и угол .
- Если , то (большей стороне треугольника соответствует больший противолежащий угол). Поскольку в треугольнике не может быть двух тупых углов, тупой угол для исключён и решение единственно.
Третий угол определяется по формуле . Третью сторону можно найти по теореме синусов:
Сторона и два угла[править | править код]
Пусть задана сторона и два угла. Эта задача имеет единственное решение, если сумма двух углов меньше . В противном случае задача решения не имеет.
Вначале определяется третий угол. Например, если даны углы , то . Далее обе неизвестные стороны находятся по теореме синусов[12]:
Решение прямоугольных треугольников[править | править код]
Прямоугольный треугольник
В этом случае известен один из углов — он равен 90°. Необходимо знать ещё два элемента, хотя бы один из которых — сторона. Возможны следующие случаи:
- два катета;
- катет и гипотенуза;
- катет и прилежащий острый угол;
- катет и противолежащий острый угол;
- гипотенуза и острый угол.
Вершину прямого угла традиционно обозначают буквой , гипотенузу — . Катеты обозначаются и , а величины противолежащих им углов — и соответственно.
Расчётные формулы существенно упрощаются, так как вместо теорем синусов и косинусов можно использовать более простые соотношения — теорему Пифагора:
и определения основных тригонометрических функций:
Ясно также, что углы и — острые, так как их сумма равна . Поэтому любой из неизвестных углов однозначно определяется по любой из его тригонометрических функций (синусу, косинусу, тангенсу и др.) путём вычисления соответствующей обратной тригонометрической функции.
При корректной постановке задачи (если заданы гипотенуза и катет, то катет должен быть меньше гипотенузы; если задан один из двух непрямых углов, то он должен быть острый) решение всегда существует и единственно.
Два катета[править | править код]
Гипотенуза находится по теореме Пифагора:
Углы могут быть найдены с использованием функции арктангенса:
или же по только что найденной гипотенузе:
Катет и гипотенуза[править | править код]
Пусть известны катет и гипотенуза — тогда катет находится из теоремы Пифагора:
После этого углы определяются аналогично предыдущему случаю.
Катет и прилежащий острый угол[править | править код]
Пусть известны катет и прилежащий к нему угол .
Гипотенуза находится из соотношения
Катет может быть найден либо по теореме Пифагора аналогично предыдущему случаю, либо из соотношения
Острый угол может быть найден как
Катет и противолежащий острый угол[править | править код]
Пусть известны катет и противолежащий ему угол .
Гипотенуза находится из соотношения
Катет и второй острый угол могут быть найдены аналогично предыдущему случаю.
Гипотенуза и острый угол[править | править код]
Пусть известны гипотенуза и острый угол .
Острый угол может быть найден как
Катеты определяются из соотношений
Решение сферических треугольников[править | править код]
Стороны сферического треугольника измеряют величиной опирающихся на них центральных углов
Сферический треугольник общего вида полностью определяется тремя из шести своих характеристик (3 стороны и 3 угла). Стороны сферического треугольника принято измерять не линейными единицами, а величиной опирающихся на них центральных углов.
Решение треугольников в сферической геометрии имеет ряд отличий от плоского случая. Например, сумма трёх углов зависит от треугольника; кроме того, на сфере не существует неравных подобных треугольников, и поэтому задача построения треугольника по трём углам имеет единственное решение. Но основные соотношения: две сферические теоремы косинусов и сферическая теорема синусов, — используемые для решения задачи, аналогичны плоскому случаю.
Из других соотношений могут оказаться полезными формулы аналогии Непера[13] и формула половины стороны[14].
Три стороны[править | править код]
Если даны (в угловых единицах) стороны , то углы треугольника определяются из теоремы косинусов[15]:
- ,
- ,
- ,
Две стороны и угол между ними[править | править код]
Пусть заданы стороны и угол между ними. Сторона находится по теореме косинусов[15]:
Углы можно найти так же, как в предыдущем случае, можно также использовать формулы аналогии Непера:
Две стороны и угол не между ними[править | править код]
Пусть заданы стороны и угол . Чтобы решение существовало, необходимо выполнение условия:
Угол получается из теоремы синусов:
Здесь, аналогично плоскому случаю, при получаются два решения: и .
Остальные величины можно найти из формул аналогии Непера[16]:
- ,
- .
Сторона и прилежащие углы[править | править код]
В этом варианте задана сторона и углы . Угол определяется по теореме косинусов[17]:
Две неизвестные стороны получаются из формул аналогии Непера:
или, если использовать вычисленный угол , по теореме косинусов:
Два угла и сторона не между ними[править | править код]
В отличие от плоского аналога данная задача может иметь несколько решений.
Пусть заданы сторона и углы . Сторона определяется по теореме синусов[18]:
Если угол для стороны острый и , существует второе решение:
Остальные величины определяются из формул аналогии Непера:
Три угла[править | править код]
Если заданы три угла, стороны находятся по теореме косинусов:
- ,
- ,
- .
Другой вариант: использование формулы половины угла[19].
Решение прямоугольных сферических треугольников[править | править код]
Изложенные алгоритмы значительно упрощаются, если известно, что один из углов треугольника (например, угол ) прямой. Прямоугольный сферический треугольник полностью определяется двумя элементами, остальные три находятся при помощи мнемонического правила Непера или из нижеприведённых соотношений[20]:
Вариации и обобщения[править | править код]
Во многих практически важных задачах вместо сторон треугольника задаются другие его характеристики — например, длина медианы, высоты, биссектрисы, радиус вписанного или описанного круга и т. д. Аналогично вместо углов при вершинах треугольника в задаче могут фигурировать иные углы. Алгоритмы решения подобных задач чаще всего комбинируются из рассмотренных выше теорем тригонометрии.
Примеры:
Примеры практического применения[править | править код]
Триангуляция[править | править код]
Чтобы определить расстояние от берега до недоступной точки — например, до удалённого корабля,— нужно отметить на берегу две точки, расстояние между которыми известно, и измерить углы и между линией, соединяющей эти точки, и направлением на корабль. Из формул варианта «сторона и два угла» можно найти длину высоты треугольника[23]:
Этот метод используется в каботажном судоходстве. Углы при этом оцениваются наблюдениями с корабля известных ориентиров на земле. Аналогичная схема используется в астрономии, чтобы определить расстояние до близкой звезды: измеряются углы наблюдения этой звезды с противоположных точек земной орбиты (то есть с интервалом в полгода) и по их разности (параллаксу) вычисляют искомое расстояние[23].
Другой пример: требуется измерить высоту горы или высокого здания. Известны углы наблюдения вершины из двух точек, расположенных на расстоянии . Из формул того же варианта, что и выше, получается[24]:
Расстояние между двумя точками на поверхности земного шара[править | править код]
Надо вычислить расстояние между двумя точками на земном шаре[25]:
- Точка : широта долгота
- Точка : широта долгота
Для сферического треугольника , где — северный полюс, известны следующие величины:
Это случай «две стороны и угол между ними». Из приведенных выше формул получается:
- ,
где — радиус Земли.
История[править | править код]
Зачатки тригонометрических знаний можно найти в математических рукописях Древнего Египта, Вавилона и Древнего Китая. Главным достижением этого периода стало соотношение, позже получившее имя теоремы Пифагора; Ван дер Варден считает, что вавилоняне открыли его между 2000 и 1786 годами до н. э.[26]
Общая постановка задачи решения треугольников (как плоских, так и сферических) появилась в древнегреческой геометрии[27]. Во второй книге «Начал» Евклида теорема 12 представляет собой словесный аналог теоремы косинусов для тупоугольных треугольников[28]:
В тупоугольных треугольниках квадрат на стороне, стягивающей тупой угол, больше [суммы] квадратов на сторонах, содержащих тупой угол, на дважды взятый прямоугольник, заключённый между одной из сторон при тупом угле, на которую падает перпендикуляр, и отсекаемым этим перпендикуляром снаружи отрезком при тупом угле.
Следующая за ней теорема 13 — вариант теоремы косинусов для остроугольных треугольников. Аналога теоремы синусов у греков не было, это важнейшее открытие было сделано гораздо позднее[29]: древнейшее из дошедших до нас доказательств теоремы синусов на плоскости описано в книге Насир ад-Дин Ат-Туси «Трактат о полном четырёхстороннике», написанной в XIII веке[30].
Первые тригонометрические таблицы составил, вероятно, Гиппарх в середине II века до н. э. для астрономических расчётов. Позднее астроном II века Клавдий Птолемей в «Альмагесте» дополнил результаты Гиппарха. Первая книга «Альмагеста» — самая значимая тригонометрическая работа всей античности. В частности, «Альмагест» содержит обширные тригонометрические таблицы хорд для острых и тупых углов, с шагом 30 угловых минут. В таблицах Птолемей приводит значение длин хорд с точностью до трех шестидесятиричных знаков[31]. Такая точность примерно соответствует пятизначной десятичной таблице синусов с шагом 15 угловых минут[1].
Птолемей явно не формулирует теорему синусов и косинусов для треугольников. Тем не менее он всегда справляется с задачей решения треугольников, разбивая треугольник на два прямоугольных[32].
Параллельно с развитием тригонометрии плоскости греки, под влиянием астрономии, далеко продвинули сферическую тригонометрию[33]. Решающим этапом в развитии теории стала монография «Сферика» в трёх книгах, которую написал Менелай Александрийский (около 100 года н. э.). В первой книге он изложил теоремы о сферических треугольниках, аналогичные теоремам Евклида о плоских треугольниках (см. I книгу «Начал»). По сообщению Паппа, Менелай первым ввёл понятие сферического треугольника как фигуры, образованной отрезками больших кругов[34]. Несколько десятилетий спустя Клавдий Птолемей в своих трудах «География», «Аналемма» и «Планисферий» даёт подробное изложение тригонометрических приложений к картографии, астрономии и механике.
В IV веке, после упадка античной науки, центр развития математики переместился в Индию. Сочинения индийских математиков (сиддханты) показывают, что их авторы были хорошо знакомы с трудами греческих астрономов и геометров[35]. Чистой геометрией индийцы интересовались мало, но их вклад в прикладную астрономию и расчётные аспекты тригонометрии очень значителен. В частности, индийцы первыми ввели в использование косинус[36]. Кроме того, индийцы знали формулы для кратных углов , для . В «Сурья-сиддханте» и в трудах Брахмагупты при решении задач фактически используется сферический вариант теоремы синусов, однако общая формулировка этой теоремы в Индии так и не появилась[37].
В VIII веке учёные стран Ближнего и Среднего Востока познакомились с трудами древнегреческих и индийских математиков и астрономов. Их астрономические трактаты, аналогичные индийским сиддхантам, назывались «зиджи»; типичный зидж представлял собой сборник астрономических и тригонометрических таблиц, снабжённый руководством по их использованию и (не всегда) изложением общей теории[38]. Сравнение зиджей периода VIII—XIII веков показывает быструю эволюцию тригонометрических знаний. Самые ранние из сохранившихся трудов принадлежат ал-Хорезми и ал-Марвази (IX век), которые рассмотрели, наряду с известными ещё индийцам синусом и косинусом, новые тригонометрические функции: тангенс, котангенс, секанс и косеканс[36].
Сабит ибн Курра (IX век) и ал-Баттани (X век) первыми открыли фундаментальную теорему синусов для частного случая прямоугольного сферического треугольника. Для произвольного сферического треугольника доказательство было найдено (разными способами и, вероятно, независимо друг от друга) Абу-л-Вафой, ал-Худжанди и ибн Ираком в конце X века[29]. В другом трактате ибн Ирака сформулирована и доказана теорема синусов для плоского треугольника[39]. Сферическая теорема косинусов в общем виде сформулирована в странах ислама не была, однако в трудах Сабита ибн Курры, ал-Баттани и других астрономов имеются эквивалентные ей утверждения[40].
Фундаментальное изложение тригонометрии как самостоятельной науки (как плоской, так и сферической) дал персидский математик и астроном Насир ад-Дин ат-Туси в 1260 году[41]. Его «Трактат о полном четырёхстороннике» содержит практические способы решения типичных задач, в том числе труднейших, решенных самим ат-Туси — например, построение сторон сферического треугольника по заданным трём углам[42]. Таким образом, к концу XIII века были открыты базовые теоремы, необходимые для эффективного решения треугольников.
В Европе развитие тригонометрической теории стало чрезвычайно важным в Новое время, в первую очередь для артиллерии, оптики и навигации при дальних морских путешествиях. В 1551 году появились 15-значные тригонометрические таблицы Ретика, ученика Коперника, с шагом 10″[43]. Потребность в сложных тригонометрических расчётах вызвала в начале XVII века открытие логарифмов, причём первые логарифмические таблицы Джона Непера содержали только логарифмы тригонометрических функций. Среди других открытий Непера — эффективный алгоритм решения сферических треугольников, получивший название «формулы аналогии Непера»[44]. Алгебраизация тригонометрии, начатая Франсуа Виетом, была завершена Леонардом Эйлером в XVIII веке, после чего алгоритмы решения треугольников приобрели современный вид.
См. также[править | править код]
- Признаки подобия треугольников
- Площадь треугольника
- Сферическая тригонометрия
- Сферический треугольник
- Триангуляция
- Тригонометрические тождества
- Тригонометрические функции
- Формулы Мольвейде
Примечания[править | править код]
- ↑ 1 2 Выгодский М. Я., 1978, с. 266—268.
- ↑ Плоский треугольник иногда называют прямолинейным.
- ↑ Элементарная математика, 1976, с. 487.
- ↑ Solving Triangles. Maths is Fun. Дата обращения: 23 Jule 2012. Архивировано 30 июня 2019 года.
- ↑ Элементарная математика, 1976, с. 488.
- ↑ Степанов Н. Н., 1948, с. 133.
- ↑ Solving SSS Triangles. Maths is Fun. Дата обращения: 23 Jule 2012. Архивировано 30 сентября 2012 года.
- ↑ Solving SAS Triangles. Maths is Fun. Дата обращения: 24 Jule 2012. Архивировано 30 сентября 2012 года.
- ↑ Solving SSA Triangles. Maths is Fun. Дата обращения: 24 Jule 2012). Архивировано 30 сентября 2012 года.
- ↑ Выгодский М. Я., 1978, с. 294.
- ↑ Элементарная математика, 1976, с. 493—496.
- ↑ Solving ASA Triangles. Maths is Fun. Дата обращения: 24 Jule 2012. Архивировано 30 сентября 2012 года.
- ↑ Степанов Н. Н., 1948, с. 87—90.
- ↑ Степанов Н. Н., 1948, с. 102—104.
- ↑ 1 2 Энциклопедия элементарной математики, 1963, с. 545.
- ↑ Степанов Н. Н., 1948, с. 121—128.
- ↑ Степанов Н. Н., 1948, с. 115—121.
- ↑ Степанов Н. Н., 1948, с. 128—133.
- ↑ Степанов Н. Н., 1948, с. 104—108.
- ↑ Основные формулы физики, 1957, с. 14—15.
- ↑ Цейтен Г. Г., 1932, с. 223—224.
- ↑ Цейтен Г. Г., 1938, с. 126—127.
- ↑ 1 2 Геометрия: 7—9 классы, 2009, с. 260—261.
- ↑ Геометрия: 7—9 классы, 2009, с. 260.
- ↑ Степанов Н. Н., 1948, с. 136—137.
- ↑ van der Waerden, Bartel Leendert. Geometry and Algebra in Ancient Civilizations. — Springer, 1983. — ISBN 3-540-12159-5.
- ↑ Глейзер Г. И., 1982, с. 77.
- ↑ Глейзер Г. И., 1982, с. 94—95.
- ↑ 1 2 Матвиевская Г. П., 2012, с. 92—96.
- ↑ Berggren, J. Lennart. Mathematics in Medieval Islam // The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook (англ.). — Princeton University Press, 2007. — P. 518. — ISBN 9780691114859.
- ↑ История математики, том I, 1970, с. 143.
- ↑ Ван дер Варден. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции. — М.: Наука, 1959. — С. 366. — 456 с.
- ↑ Матвиевская Г. П., 2012, с. 25—27.
- ↑ Матвиевская Г. П., 2012, с. 33—36.
- ↑ Матвиевская Г. П., 2012, с. 40—44.
- ↑ 1 2 Сираждинов С. Х., Матвиевская Г. П., 1978, с. 79.
- ↑ Юшкевич А. П. История математики в Средние века. — М.: ГИФМЛ, 1961. — С. 160. — 448 с.
- ↑ Матвиевская Г. П., 2012, с. 51—55.
- ↑ Матвиевская Г. П., 2012, с. 111.
- ↑ Матвиевская Г. П., 2012, с. 96—98.
- ↑ Туси Насирэддин. Трактат о полном четырёхстороннике. Баку, Изд. АН АзССР, 1952.
- ↑ Рыбников К. А., 1960, с. 105.
- ↑ История математики, том I, 1970, с. 320.
- ↑ Степанов Н. Н. § 42. Формулы «аналогии Непера» // Сферическая тригонометрия. — М.—Л.: ОГИЗ, 1948. — С. 87—90. — 154 с.
Литература[править | править код]
- Теория и алгоритмы
- Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б., Позняк Э. Г., Юдина И. И. Геометрия: 7—9 классы. Учебник для общеобразовательных учреждений. — 19-е изд. — М.: Просвещение, 2009. — 384 с. — ISBN 978-5-09-021136-9.
- Выгодский М. Я. Справочник по элементарной математике. — М.: Наука, 1978.
- Гельфанд И. М., Львовский С. М., Тоом А. Л. Тригонометрия, учебник для 10 класса. — М.: МЦНМО, 2002. — ISBN 5-94057-050-X.
- Зайцев В. В., Рыжков В. В., Сканави М. И. Элементарная математика. Повторительный курс. — Издание третье, стереотипное. — М.: Наука, 1976. — 591 с.
- Мензел Д. (ред.). Основные формулы физики. Глава 1. Основные математические формулы. — М.: Изд. иностранной литературы, 1957. — 658 с.
- Основные понятия сферической геометрии и тригонометрии // Энциклопедия элементарной математики (в 5 томах). — М.: Физматгиз, 1963. — Т. 4. — С. 518—557. — 568 с.
- Степанов Н. Н. Сферическая тригонометрия. — М.—Л.: ОГИЗ, 1948.
- История
- Глейзер Г. И. История математики в школе. VII-VIII классы. Пособие для учителей. — М.: Просвещение, 1982. — С. 76—95. — 240 с.
- Глейзер Г. И. История математики в школе. IX-X классы. Пособие для учителей. — М.: Просвещение, 1983. — 352 с.
- История математики под редакцией А. П. Юшкевича в трёх томах, М.: Наука.
- История математики. С древнейших времен до начала Нового времени // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. I.
- Математика XVII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. II.
- Математика XVIII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1972. — Т. III.
- Матвиевская Г. П. Очерки истории тригонометрии: Древняя Греция. Средневековый Восток. Позднее Средневековье. — Изд. 2-е. — М.: Либроком, 2012. — 160 с. — (Физико-математическое наследие: математика (история математики)). — ISBN 978-5-397-02777-9.
- Рыбников К. А. История математики в двух томах. — М.: Изд. МГУ, 1960. — Т. I.
- Сираждинов С. Х., Матвиевская Г. П. Абу Райхан Беруни и его математические труды. Пособие для учащихся. — М.: Просвещение, 1978. — 95 с. — (Люди науки).
- Цейтен Г. Г. История математики в древности и в средние века. — М.—Л.: ГТТИ, 1932. — 230 с.
- Цейтен Г. Г. История математики в XVI и XVII веках. — М.—Л.: ОНТИ, 1938. — 456 с.
Ученик
(191),
закрыт
6 лет назад
Дюхич
Мудрец
(15438)
8 лет назад
теорему косинусов читаем…
c^2 = a^2 + b^2 – 2ab*cos(alfa);
cos(alfa) = (a^2 + b^2 – c^2) / 2ab;
В твоём случае c = 8, подставляй и считай