Как найти косинус угла асв

Решение:

Решение №2303 В тупоугольном треугольнике ABC известно, что  AC = BC = 10, высота AH равна √51.

    В прямоугольном ΔАНС по теореме Пифагора найдём катет НС:

HC=sqrt{AC^{2}-AH^{2}}=sqrt{10^{2}-(sqrt{51})^{2}}=sqrt{100-51}=sqrt{49}=7

    Косинусы смежных углов равны по модулю, противоположны по знаку:

cos∠ACB = –cos∠ACH

    Косинус острого угла прямоугольного треугольника – это отношение прилежащего катета к гипотенузе.
    Найдём cos∠ACH:

cosangle ACH=frac{HC}{AC}=frac{7}{10}=0,7

    Найдём косинус искомого угла АСВ:

cos∠ACB = –cos∠ACH = –0,7

Ответ: –0,7.

Решение:

Чтобы решить эту задачу просто необходимо знать вот такую клевую информацию:

синусы смежных углов равны, а косинусы, тангенсы и котангенсы смежных углов противоположны.

Более подробно о синусах, коминусах, тангенсах и котангенсах можно прочитать тут.

Таким образом нужно найти косинус угла HCA и просто подрисовать минус перед числом, которое получится.

Косинус – это отношение прилежащего катета НС к гипотенузе АН.

Катет НС неизвестен, находим его по теореме Пифагора:

Далее находим косинус угла HCA:

И автоматически находим cosACB: он равен -0,7.

Ответ: -0,7.

#936

Перейти к содержанию

На чтение 1 мин. Просмотров 8.2k.

В тупоугольном треугольнике ABC известно, что AC=BC=10, высота AH равна √51. Найдите косинус угла ACB.

В тупоугольном треугольнике

Решение:

Косинус угла ACB удобнее всего находить по теореме косинусов:

AB^2=AC^2+CB^2-2 cdot AC cdot CB cdot cos ABC.

Нам известны  AC и CB, нужно лишь найти AB.

Для того, чтобы найти  сторону AB из прямоугольного треугольника AHB, найдем сначала сторону HB.

HB=HC+CB,

CB известна по условию задачи. Найдем из треугольника AHC сторону HC по теореме Пифагора:

HC^2=AC^2-AH^2

HC^2=100-51=49

HC=7.

Тогда HB=17

Теперь найдем AB: AB^2=AH^2+HB^2=51+289=340

Подставим значение AB в формулу теоремы косинуса: AB^2=AC^2+CB^2-2 cdot AC cdot CB cdot cos ABC;

340=100+100-2 cdot 10 cdot 10 cos ABC;

340=200-200 cos ABC

140=-200 cos ABC

cos ABC=frac{140}{-200}=frac{-7}{10}=-0,7

Ответ: -0,7

( 11 оценок, среднее 4.09 из 5 )

Теорема косинусов и синусов

О чем эта статья:

Формулировка и доказательство теоремы косинусов

Для начала вспомним теорему Пифагора: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Формула Теоремы Пифагора:

a 2 > + b 2 > = c 2 >, где a, b — катеты, с — гипотенуза.

Теорема косинусов звучит так: квадрат стороны треугольника равен сумме квадратов двух других его сторон минус удвоенное произведение этих сторон на косинус угла между ними.

Формула теоремы косинусов:

a 2 = b 2 + c 2 – 2bc cos α

В доказательстве теоремы косинусов используем формулу длины отрезка в координатах. Рассмотрим данную формулу:

В доказательстве теоремы косинусов BC — это сторона треугольника АВС, которая обозначена буквой а. Введем удобную систему координат и найдем координаты нужных нам точек. У точки В координаты (с; 0).
Координаты точки С — (b cos α; b sin α) при α ∈ (0° ; 180°).

cos 2 α + sin 2 α = 1основное тригонометрическое тождество.

BC 2 = a 2 = (b cos α – c) 2 + b 2 sin 2 α = b 2 cos 2 α + b 2 sin 2 α – 2bc cos α + c 2 = b 2 (cos 2 α + sin 2 α) – 2bc cos α + c 2

Что и требовалось доказать.

Совет: чтобы быстрее разобраться в сложной теме, запишитесь на онлайн-курсы по математике для детей и подростков.

С помощью теоремы косинусов можно найти косинус угла треугольника:

  • Когда b 2 + c 2 – a 2 > 0, угол α будет острым.
  • Когда b 2 + c 2 – a 2 = 0, угол α будет прямым.
  • Когда b 2 + c 2 – a 2

Сформулируем еще одно доказательство теоремы косинусов.

Пусть нам дан треугольник ABC, в котором из вершины C на сторону AB опустили высоту CD. Это значит:

  • AD = b × cos α,
  • DB = c – b × cos α.

Запишем теорему Пифагора для двух прямоугольных треугольников ADC и BDC:

  • h 2 = b 2 – (b × cos α) 2
  • h 2 = a 2 – (c – b × cos α) 2

Приравниваем правые части уравнений:

  • b 2 – (b × cos α) 2 = a 2 – (c – b × cos α) 2
  • a 2 = b 2 + c 2 – 2bc × cos α

Если один из углов при основании тупой (высота упирается в продолжение основания), полностью аналогичен рассмотренному выше.

Определим стороны b и c:

  • b 2 = a 2 + c 2 – 2ac × cos β;
  • c 2 = a 2 + b 2 – 2ab × cos γ.

Формулировка теоремы для каждой из сторон треугольника

Теорема косинусов справедлива для всех сторон треугольника, то есть:

a 2 = b 2 + c 2 – 2bc cos α

b 2 = c 2 + a 2 – 2ca cos β

c 2 = a 2 + b 2 – 2ab cos γ

Теорема косинусов может быть использована для любого вида треугольника.

Косинусы углов треугольника

Теорема косинусов позволяет найти как косинус, так и угол треугольника. Найдём косинусы углов:

Определение угла с помощью косинуса

А теперь обратим внимание на углы.

Как мы уже знаем, косинус угла из промежутка (0°; 180°) определяет угол (в отличие от его синуса).

Пусть нам дана единичная полуокружность. Если нам задан cos α, то нам задана точка на верхней полуокружности и задан угол α. Следовательно, cos α однозначно определяет точку М(cos α; sin α), и однозначно определяется угол ∠AOM.

Рассмотрение пределов изменения cos α и sin α

Рассмотрим пределы изменения синуса и косинуса α. Вспомним, что если α — угол треугольника, то он лежит в пределах от 0° до 180°.

Предел изменения косинуса: -1 0, то α ∈ (0°;90°)
Если cos α

Примеры решения задач

При помощи теоремы косинусов можно решать задачки по геометрии. Рассмотрим интересные случаи.

Пример 1. Дан треугольник АВС. Найти длину СМ.

∠C = 90°, АВ = 9, ВС = 3, AM/MB = 1/2, где М — точка на гипотенузе АВ.

    Так как АМ + МВ = 9, а AM/MB = 1/2, то АМ = 3, МВ = 6.
    Из треугольника АВС найдем cos B:

Из треугольника СМВ по теореме косинусов найдём СМ:

Пример 2. Дан треугольник АВС, в котором a2+ b22 + b 2 2 , то cos C 2 = a 2 + b 2 , то ∠C = 90°.

  • Если c 2 2 + b 2 , то ∠C — острый.

Теорема косинусов. Доказательство теоремы косинусов.

Теорема косинусов — теорема евклидовой геометрии, которая обобщающает теорему Пифагора.

Теорема косинусов:

Для плоского треугольника, у которого стороны a, b, c и угол α, который противолежит стороне a, справедливо соотношение:

Квадрат стороны треугольника равняется сумме квадратов 2-х других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

Следствие из теоремы косинусов.

  • Теорема косинусов используется для определения cos угла треугольника:

h 2 = a 2 – (c – b cos α) 2 (2)

Приравниваем правые части уравнений (1) и (2):

b 2 – (b cos α) 2 = a 2 – (c – b cos α) 2

a 2 = b 2 + c 2 – 2bc cos α.

Если 1-н из углов при основании тупой (высота упирается в продолжение основания), полностью аналогичен рассмотренному выше.

Определить стороны b и c:

Решение №2303 В тупоугольном треугольнике ABC известно, что AC = BC = 10, высота AH равна √51.

В тупоугольном треугольнике ABC известно, что AC = BC = 10, высота AH равна √51. Найдите косинус угла ACB.

Источник: Ященко ЕГЭ 2022 (36 вар)

В прямоугольном ΔАНС по теореме Пифагора найдём катет НС:

Косинусы смежных углов равны по модулю, противоположны по знаку:

cos ∠ACB = –cos ∠ACH

Косинус острого угла прямоугольного треугольника – это отношение прилежащего катета к гипотенузе.
Найдём cos∠ACH:

Найдём косинус искомого угла АСВ:

cos∠ACB = –cos∠ACH = –0,7

[spoiler title=”источники:”]

http://www.calc.ru/Teorema-Kosinusov-Dokazatelstvo-Teoremy-Kosinusov.html

[/spoiler]

Изучение тригонометрии мы начнем с прямоугольного треугольника. Определим, что такое синус и косинус, а также тангенс и котангенс острого угла. Это основы тригонометрии.

Напомним, что прямой угол — это угол, равный 90 градусов. Другими словами, половина развернутого угла.

Острый угол — меньший 90 градусов.

Тупой угол — больший 90 градусов. Применительно к такому углу «тупой» — не оскорбление, а математический термин :-)

Развёрнутый, прямой, острый и тупой углы

Нарисуем прямоугольный треугольник. Прямой угол обычно обозначается C. Обратим внимание, что сторона, лежащая напротив угла, обозначается той же буквой, только маленькой. Так, сторона, лежащая напротив угла A, обозначается a.

Угол A обозначается соответствующей греческой буквой alpha.

Гипотенуза и катеты

Гипотенуза прямоугольного треугольника — это сторона, лежащая напротив прямого угла.

Катеты — стороны, лежащие напротив острых углов.

Катет a, лежащий напротив угла alpha, называется противолежащим (по отношению к углу alpha). Другой катет b, который лежит на одной из сторон угла alpha, называется прилежащим.

Синус острого угла в прямоугольном треугольнике — это отношение противолежащего катета к гипотенузе:

sin A =genfrac{}{}{}{0}{displaystyle a}{displaystyle c}

Косинус острого угла в прямоугольном треугольнике — отношение прилежащего катета к гипотенузе:

cos A =genfrac{}{}{}{0}{displaystyle b}{displaystyle c}

Тангенс острого угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:

tg , A =genfrac{}{}{}{0}{displaystyle a}{displaystyle b}

Другое (равносильное) определение: тангенсом острого угла называется отношение синуса угла к его косинусу:

tg , A =genfrac{}{}{}{0}{displaystyle sin A}{displaystyle cos A}

Котангенс острого угла в прямоугольном треугольнике — отношение прилежащего катета к противолежащему (или, что то же самое, отношение косинуса к синусу):

ctg , A =genfrac{}{}{}{0}{displaystyle cos A}{displaystyle sin A}

Обратите внимание на основные соотношения для синуса, косинуса, тангенса и котангенса, которые приведены ниже. Они пригодятся нам при решении задач.

Синус, косинус, тангенс и котангенс

Давайте докажем некоторые из них.

  1. Сумма углов любого треугольника равна 180^{circ}. Значит, сумма двух острых углов прямоугольного треугольника равнa 90^{circ}.
  2. С одной стороны, sin A =genfrac{}{}{}{0}{displaystyle a}{displaystyle c} как отношение противолежащего катета к гипотенузе. С другой стороны, cos B =genfrac{}{}{}{0}{displaystyle a}{displaystyle c}, поскольку для угла beta катет а будет прилежащим.Получаем, что cos beta =sin alpha. Иными словами, cos left( 90^{circ}-A right) = sin A.
  3. Возьмем теорему Пифагора: a^2+b^2=c^2. Поделим обе части на cos^2 A:sin^2 A +cos^2 A=1 Мы получили основное тригонометрическое тождество.
  4. Поделив обе части основного тригонометрического тождества на cos^2 A, получим: 1+tg ^2 A = genfrac{}{}{}{0}{displaystyle 1}{displaystyle cos ^2 A } Это значит, что если нам дан тангенс острого угла alpha, то мы сразу можем найти его косинус. Аналогично,

    1+ctg ^2 A =genfrac{}{}{}{0}{1}{sin ^2 A }

Хорошо, мы дали определения и записали формулы. А для чего все-таки нужны синус, косинус, тангенс и котангенс?

Мы знаем, что сумма углов любого треугольника равна 180^{circ}.

Знаем соотношение между сторонами прямоугольного треугольника. Это теорема Пифагора: a^2+b^2=c^2.

Получается, что зная два угла в треугольнике, можно найти третий. Зная две стороны в прямоугольном треугольнике, можно найти третью. Значит, для углов — свое соотношение, для сторон — свое. А что делать, если в прямоугольном треугольнике известен один угол (кроме прямого) и одна сторона, а найти надо другие стороны?

Косинус тупоугольного треугольника егэ

С этим и столкнулись люди в прошлом, составляя карты местности и звездного неба. Ведь не всегда можно непосредственно измерить все стороны треугольника.

Синус, косинус и тангенс — их еще называют тригонометрическими функциями угла — дают соотношения между сторонами и углами треугольника. Зная угол, можно найти все его тригонометрические функции по специальным таблицам. А зная синусы, косинусы и тангенсы углов треугольника и одну из его сторон, можно найти остальные.

Мы тоже нарисуем таблицу значений синуса, косинуса, тангенса и котангенса для «хороших» углов от 0^{circ} до 90^{circ}.

Обратите внимание на два красных прочерка в таблице. При соответствующих значениях углов тангенс и котангенс не существуют.

Разберем несколько задач по тригонометрии из Банка заданий ФИПИ.

1. В треугольнике ABC угол C равен 90^{circ}, sin A = 0,1. Найдите cos B.

Задача решается за четыре секунды.

Поскольку A+B = 90^{circ}, sin A = cos B = 0,1.

2. В треугольнике ABC угол C равен 90^{circ}, AB=5, sin A = genfrac{}{}{}{0}{displaystyle 7}{displaystyle 25}. Найдите AC.

Косинус тупоугольного треугольника егэ

Имеем:

sin A = genfrac{}{}{}{0}{displaystyle a}{displaystyle c} = genfrac{}{}{}{0}{displaystyle BC}{displaystyle AB} = genfrac{}{}{}{0}{displaystyle 7}{displaystyle 25}

Отсюда

BC= genfrac{}{}{}{0}{displaystyle 7}{displaystyle 25} cdot AB = genfrac{}{}{}{0}{displaystyle 7}{displaystyle 5}

Найдем AC по теореме Пифагора.

AC=sqrt{AB^2-BC^2} = genfrac{}{}{}{0}{displaystyle 24}{displaystyle 5} = 4,8

Задача решена.

Часто в задачах встречаются треугольники с углами 90^{circ},, 30^{circ} и 60^{circ} или с углами 90^{circ},, 45^{circ} и 45^{circ}. Основные соотношения для них запоминайте наизусть!

Прямоугольные треугольники с углами 30, 60, 90 и 45, 45, 90 градусов

Для треугольника с углами 90^{circ},, 30^{circ} и 60^{circ} катет, лежащий напротив угла в 30^{circ}, равен половине гипотенузы.

Треугольник с углами 90^{circ},, 45^{circ} и 45^{circ} — равнобедренный. В нем гипотенуза в sqrt{2} раз больше катета.

Мы рассмотрели задачи на решение прямоугольных треугольников — то есть на нахождение неизвестных сторон или углов. Но это не всё! В вариантах ЕГЭ по математике множество задач, где фигурирует синус, косинус, тангенс или котангенс внешнего угла треугольника. Об этом — в следующей статье.

Добавить комментарий