Как найти косинус угла между двумя гранями

8. Геометрия в пространстве (стереометрия)


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Нахождение угла между плоскостями (двугранный угол)

(blacktriangleright) Двугранный угол – угол, образованный двумя полуплоскостями и прямой (a), которая является их общей границей.

(blacktriangleright) Чтобы найти угол между плоскостями (xi) и (pi), нужно найти линейный угол (причем острый или прямой) двугранного угла, образованного плоскостями (xi) и (pi):

Шаг 1: пусть (xicappi=a) (линия пересечения плоскостей). В плоскости (xi) отметим произвольную точку (F) и проведем (FAperp
a)
;

Шаг 2: проведем (FGperp pi);

Шаг 3: по ТТП ((FG) – перпендикуляр, (FA) –наклонная, (AG) – проекция) имеем: (AGperp a);

Шаг 4: угол (angle FAG) называется линейным углом двугранного угла, образованного плоскостями (xi) и (pi).

Заметим, что треугольник (AG) – прямоугольный.
Заметим также, что плоскость (AFG), построенная таким образом, перпендикулярна обеим плоскостям (xi) и (pi). Следовательно, можно сказать по-другому: угол между плоскостями (xi) и (pi) — это угол между двумя пересекающимися прямыми (cin xi) и (binpi), образующими плоскость, перпендикулярную и (xi), и (pi).


Задание
1

#2875

Уровень задания: Сложнее ЕГЭ

Дана четырехугольная пирамида, все ребра которой равны, причем основание является квадратом. Найдите (6cos alpha), где (alpha) – угол между ее смежными боковыми гранями.

Пусть (SABCD) – данная пирамида ((S) – вершина), ребра которой равны (a). Следовательно, все боковые грани представляют собой равные равносторонние треугольники. Найдем угол между гранями (SAD) и (SCD).

Проведем (CHperp SD). Так как (triangle SAD=triangle SCD), то (AH) также будет высотой в (triangle SAD). Следовательно, по определению (angle AHC=alpha) – линейный угол двугранного угла между гранями (SAD) и (SCD).
Так как в основании лежит квадрат, то (AC=asqrt2). Заметим также, что (CH=AH) – высота равностороннего треугольника со стороной (a), следовательно, (CH=AH=frac{sqrt3}2a).
Тогда по теореме косинусов из (triangle AHC): [cos alpha=dfrac{CH^2+AH^2-AC^2}{2CHcdot AH}=-dfrac13 quadRightarrowquad
6cosalpha=-2.]

Ответ: -2


Задание
2

#2876

Уровень задания: Сложнее ЕГЭ

Плоскости (pi_1) и (pi_2) пересекаются под углом, косинус которого равен (0,2). Плоскости (pi_2) и (pi_3) пересекаются под прямым углом, причем линия пересечения плоскостей (pi_1) и (pi_2) параллельна линии пересечения плоскостей (pi_2) и (pi_3). Найдите синус угла между плоскостями (pi_1) и (pi_3).

Пусть линия пересечения (pi_1) и (pi_2) – прямая (a), линия пересечения (pi_2) и (pi_3) – прямая (b), а линия пересечения (pi_3) и (pi_1) – прямая (c). Так как (aparallel b), то (cparallel aparallel b) (по теореме из раздела теоретической справки “Геометрия в пространстве” (rightarrow) “Введение в стереометрию, параллельность”).

Отметим точки (Ain a, Bin b) так, чтобы (ABperp a, ABperp b) (это возможно, так как (aparallel b)). Отметим (Cin c) так, чтобы (BCperp c), следовательно, (BCperp b). Тогда (ACperp c) и (ACperp a).
Действительно, так как (ABperp b, BCperp b), то (b) перпендикулярна плоскости (ABC). Так как (cparallel aparallel b), то прямые (a) и (c) тоже перпендикулярны плоскости (ABC), а значит и любой прямой из этой плоскости, в частности, прямой (AC).

Отсюда следует, что (angle BAC=angle (pi_1, pi_2)), (angle
ABC=angle (pi_2, pi_3)=90^circ)
, (angle BCA=angle (pi_3,
pi_1))
. Получается, что (triangle ABC) прямоугольный, а значит [sin angle BCA=cos angle BAC=0,2.]

Ответ: 0,2


Задание
3

#2877

Уровень задания: Сложнее ЕГЭ

Даны прямые (a, b, c), пересекающиеся в одной точке, причем угол между любыми двумя из них равен (60^circ). Найдите (cos^{-1}alpha), где (alpha) – угол между плоскостью, образованной прямыми (a) и (c), и плоскостью, образованной прямыми (b) и (c). Ответ дайте в градусах.

Пусть прямые пересекаются в точке (O). Так как угол между любыми двумя их них равен (60^circ), то все три прямые не могут лежать в одной плоскости. Отметим на прямой (a) точку (A) и проведем (ABperp
b)
и (ACperp c). Тогда (triangle AOB=triangle AOC) как прямоугольные по гипотенузе и острому углу. Следовательно, (OB=OC) и (AB=AC).
Проведем (AHperp (BOC)). Тогда по теореме о трех перпендикулярах (HCperp c), (HBperp b). Так как (AB=AC), то (triangle
AHB=triangle AHC)
как прямоугольные по гипотенузе и катету. Следовательно, (HB=HC). Значит, (OH) – биссектриса угла (BOC) (так как точка (H) равноудалена от сторон угла).

Заметим, что таким образом мы к тому же построили линейный угол двугранного угла, образованного плоскостью, образованной прямыми (a) и (c), и плоскостью, образованной прямыми (b) и (c). Это угол (ACH).

Найдем этот угол. Так как точку (A) мы выбирали произвольно, то пусть мы выбрали ее так, что (OA=2). Тогда в прямоугольном (triangle AOC): [sin 60^circ=dfrac{AC}{OA}
quadRightarrowquad AC=sqrt3 quadRightarrowquad
OC=sqrt{OA^2-AC^2}=1.]
Так как (OH) – биссектриса, то (angle
HOC=30^circ)
, следовательно, в прямоугольном (triangle HOC): [mathrm{tg},30^circ=dfrac{HC}{OC}quadRightarrowquad HC=dfrac1{sqrt3}.] Тогда из прямоугольного (triangle ACH): [cosangle alpha=cosangle ACH=dfrac{HC}{AC}=dfrac13 quadRightarrowquad
cos^{-1}alpha=3.]

Ответ: 3


Задание
4

#2910

Уровень задания: Сложнее ЕГЭ

Плоскости (pi_1) и (pi_2) пересекаются по прямой (l), на которой лежат точки (M) и (N). Отрезки (MA) и (MB) перпендикулярны прямой (l) и лежат в плоскостях (pi_1) и (pi_2) соответственно, причем (MN = 15), (AN = 39), (BN = 17), (AB = 40). Найдите (3cosalpha), где (alpha) – угол между плоскостями (pi_1) и (pi_2).

Треугольник (AMN) прямоугольный, (AN^2 = AM^2 + MN^2), откуда [AM^2 = 39^2 – 15^2 = 36^2.] Треугольник (BMN) прямоугольный, (BN^2 = BM^2 + MN^2), откуда [BM^2 = 17^2 – 15^2 = 8^2.] Запишем для треугольника (AMB) теорему косинусов: [AB^2 = AM^2 + MB^2 – 2cdot AMcdot MBcdotcosangle AMB.] Тогда [40^2 = 36^2 + 8^2 – 2cdot 36cdot 8cdotcosangle AMBqquadLeftrightarrowqquad cosangle AMB = -dfrac{5}{12}] Так как угол (alpha) между плоскостями – это острый угол, а (angle AMB) получился тупым, то (cosalpha=dfrac5{12}). Тогда [3cosalpha = dfrac54=1,25.]

Ответ: 1,25


Задание
5

#2911

Уровень задания: Сложнее ЕГЭ

(ABCDA_1B_1C_1D_1) – параллелепипед, (ABCD) – квадрат со стороной (a), точка (M) – основание перпендикуляра, опущенного из точки (A_1) на плоскость ((ABCD)), кроме того (M) – точка пересечения диагоналей квадрата (ABCD). Известно, что (A_1M = dfrac{sqrt{3}}{2}a). Найдите угол между плоскостями ((ABCD)) и ((AA_1B_1B)). Ответ дайте в градусах.

Построим (MN) перпендикулярно (AB) как показано на рисунке.

Так как (ABCD) – квадрат со стороной (a) и (MNperp AB) и (BCperp AB), то (MNparallel BC). Так как (M) – точка пересечения диагоналей квадрата, то (M) – середина (AC), следовательно, (MN) – средняя линия и (MN =frac12BC= frac{1}{2}a).
(MN) – проекция (A_1N) на плоскость ((ABCD)), причем (MN) перпендикулярен (AB), тогда по теореме о трех перпендикулярах (A_1N) перпендикулярен (AB) и угол между плоскостями ((ABCD)) и ((AA_1B_1B)) есть (angle A_1NM).
[mathrm{tg}, angle A_1NM = dfrac{A_1M}{NM} = dfrac{frac{sqrt{3}}{2}a}{frac{1}{2}a} = sqrt{3}qquadRightarrowqquadangle A_1NM = 60^{circ}]

Ответ: 60


Задание
6

#1854

Уровень задания: Сложнее ЕГЭ

В квадрате (ABCD): (O) – точка пересечения диагоналей; (S) – не лежит в плоскости квадрата, (SO perp ABC). Найдите угол между плоскостями (ASD) и (ABC), если (SO = 5), а (AB = 10).

Прямоугольные треугольники (triangle SAO) и (triangle SDO) равны по двум сторонам и углу между ними ((SO perp ABC) (Rightarrow) (angle SOA = angle SOD = 90^circ); (AO = DO), т.к. (O) – точка пересечения диагоналей квадрата, (SO) – общая сторона) (Rightarrow) (AS = SD) (Rightarrow) (triangle ASD) – равнобедренный. Точка (K) – середина (AD), тогда (SK) – высота в треугольнике (triangle ASD), а (OK) – высота в треугольнике (AOD) (Rightarrow) плоскость (SOK) перпендикулярна плоскостям (ASD) и (ABC) (Rightarrow) (angle SKO) – линейный угол, равный искомому двугранному углу.

В (triangle SKO): (OK = frac{1}{2}cdot AB = frac{1}{2}cdot 10 = 5 = SO) (Rightarrow) (triangle SOK) – равнобедренный прямоугольный треугольник (Rightarrow) (angle SKO = 45^circ).

Ответ: 45


Задание
7

#1855

Уровень задания: Сложнее ЕГЭ

В квадрате (ABCD): (O) – точка пересечения диагоналей; (S) – не лежит в плоскости квадрата, (SO perp ABC). Найдите угол между плоскостями (ASD) и (BSC), если (SO = 5), а (AB = 10).

Прямоугольные треугольники (triangle SAO), (triangle SDO), (triangle SOB) и (triangle SOC) равны по двум сторонам и углу между ними ((SO perp ABC) (Rightarrow) (angle SOA = angle SOD = angle SOB = angle SOC = 90^circ); (AO = OD = OB = OC), т.к. (O) – точка пересечения диагоналей квадрата, (SO) – общая сторона) (Rightarrow) (AS = DS = BS = CS) (Rightarrow) (triangle ASD) и (triangle BSC) – равнобедренные. Точка (K) – середина (AD), тогда (SK) – высота в треугольнике (triangle ASD), а (OK) – высота в треугольнике (AOD) (Rightarrow) плоскость (SOK) перпендикулярна плоскости (ASD). Точка (L) – середина (BC), тогда (SL) – высота в треугольнике (triangle BSC), а (OL) – высота в треугольнике (BOC) (Rightarrow) плоскость (SOL) (она же плоскость (SOK)) перпендикулярна плоскости (BSC). Таким образом получаем, что (angle KSL) – линейный угол, равный искомому двугранному углу.

(KL = KO + OL = 2cdot OL = AB = 10) (Rightarrow) (OL = 5); (SK = SL) – высоты в равных равнобедренных треугольниках, которые можно найти по теореме Пифагора: (SL^2 = SO^2 + OL^2 = 5^2 + 5^2 = 50). Можно заметить, что (SK^2 + SL^2 = 50 + 50 = 100 = KL^2) (Rightarrow) для треугольника (triangle KSL) выполняется обратная теорема Пифагора (Rightarrow) (triangle KSL) – прямоугольный треугольник (Rightarrow) (angle KSL = 90^circ).

Ответ: 90

Подготовка учащихся к сдаче ЕГЭ по математике, как правило, начинается с повторения основных формул, в том числе и тех, которые позволяют определить угол между плоскостями. Несмотря на то, что этот раздел геометрии достаточно подробно освещается в рамках школьной программы, многие выпускники нуждаются в повторении базового материала. Понимая, как найти угол между плоскостями, старшеклассники смогут оперативно вычислить правильный ответ в ходе решения задачи и рассчитывать на получение достойных баллов по итогам сдачи единого государственного экзамена.

Основные нюансы

  • Чтобы вопрос, как найти двугранный угол, не вызывал затруднений, рекомендуем следовать алгоритму решения, который поможет справиться с заданиями ЕГЭ.

  • Вначале необходимо определить прямую, по которой пересекаются плоскости.

  • Затем на этой прямой нужно выбрать точку и провести к ней два перпендикуляра.

  • Следующий шаг — нахождение тригонометрической функции двугранного угла, который образован перпендикулярами. Делать это удобнее всего при помощи получившегося треугольника, частью которого является угол.

  • Ответом будет значение угла или его тригонометрической функции.

Подготовка к экзаменационному испытанию вместе со «Школково» — залог вашего успеха

В процессе занятий накануне сдачи ЕГЭ многие школьники сталкиваются с проблемой поиска определений и формул, которые позволяют вычислить угол между 2 плоскостями. Школьный учебник не всегда есть под рукой именно тогда, когда это необходимо. А чтобы найти нужные формулы и примеры их правильного применения, в том числе и для нахождения угла между плоскостями в Интернете в режиме онлайн, порой требуется потратить немало времени.

Математический портал «Школково» предлагает новый подход к подготовке к госэкзамену. Занятия на нашем сайте помогут ученикам определить наиболее сложные для себя разделы и восполнить пробелы в знаниях.

Мы подготовили и понятно изложили весь необходимый материал. Базовые определения и формулы представлены в разделе «Теоретическая справка».

Для того чтобы лучше усвоить материал, предлагаем также попрактиковаться в выполнении соответствующих упражнений. Большая подборка задач различной степени сложности, например, на нахождение угла между прямой и плоскостью, представлена в разделе «Каталог». Все задания содержат подробный алгоритм нахождения правильного ответа. Перечень упражнений на сайте постоянно дополняется и обновляется.

Практикуясь в решении задач, в которых требуется найти угол между двумя плоскостями, учащиеся имеют возможность в онлайн-режиме сохранить любое задание в «Избранное». Благодаря этому они смогут вернуться к нему необходимое количество раз и обсудить ход его решения со школьным учителем или репетитором.

УСТАЛ? Просто отдохни

62. В трёхгранном угле два плоских
угла по 45,а двугранный
угол между ними равен 60.
Найти третий плоский угол.

Ответ:

63. Определить угол между двумя
смежными диагональными сечениями в
кубе. (Диагональные сечения в кубе
называются смежными, если они проходят
через смежные стороны основания).

П
лан
решения.

1. Двугранный угол АВ1

искомый, пусть его величина .

2. Рассмотреть трёхгранный угол DAB1C.

В обозначениях теоремы о трёх косинусах

 B1DA=α,
B1DC=
β, ADC=γ,

Рис. 278

3. α = β, γ=90.

4. cos .
Ответ: 120.

64. Линейный угол двугранного угла,
составленного двумя смежными боковыми
гранями правильной четырёхугольной
пирамиды, в два раза больше плоского
угла при вершине пирамиды. Найти плоский
угол при вершине пирамиды.

П
лан
решения.

1. Построения: DK PC,
BK.

2. BKD
– линейный.

3. Рассмотреть трёхгранный угол CDPB.

В обозначениях теоремы о трёх косинусах

 РСD = α, РCB
= β, DCВ
= γ, BKD
= .

4. α = β, γ=90.

5. Выразить α и β через .

6. Составить уравнение по теореме о трёх

косинусах.

7. Решить полученное уравнение относительно
cos

Ответ:

65. В треугольной пирамиде две
боковые грани – равнобедренные
прямоугольные треугольники, гипотенузы
которых равны с и угол между ними
равен γ. Одно из боковых рёбер пирамиды
перпендикулярно к плоскости основания.
Найти объём пирамиды.

П
лан
решения.

1. Рассмотреть трёхгранный угол PАBC.

В обозначениях теоремы о трёх косинусах

 АРВ=α, CРB=β,
АРС=γ,
АВС = .

2. α = β = 45.

3. cos
(по теореме о трёх косинусах).

4. sin.

Рис. 280

5. АВ, АВ=ВС=ВР.

6. S АВС.
7. VSABC.

Ответ:

66. Отрезок прямой, соединяющий
центр основания правильной треугольной
пирамиды с серединой бокового ребра,
равен стороне основания. Найти косинус
угла между смежными боковыми гранями.

План решения.

1. АО.

2. AS (ASO).

3. cos SAO
(ASO).

4.cosSAC
(по теореме о трёх косинусах).

5. Рассмотреть трёхгранный угол
ASBC.

В обозначениях теоремы о трёх
косинусах

двугранный угол с ребром AS
равен ,

SAC=α, SAB=β,
α = β, ВАС =γ.

6. ВАС. 7. sinSAC.
8. cos
(по теореме косинусов).

Ответ:

67. Основанием пирамиды служит
правильный треугольник, одна из боковых
граней пирамиды перпендикулярна к
плоскости основания. Найти косинус угла
между двумя другими боковыми гранями,
если обе они составляют с плоскостью
основания один и тот же угол .

П
лан
решения.

1. Построения:

1.1. SO 
ABC.

1.2. OM 
BC, SM

1.3. OK 
AC, SK.

2. SKO
=SMO
= .

3. Пусть АВ = АС = ВС = а.

АО = ОВ=0,5а.

4. Выразить ОК через а (АКО).

5. Выразить SК через а
(SКО).

6. Выразить АК через а (АКО),
выразить КС через а (АКО).

7. tgSCK
(SCК),
cosSCK,
sinSCK.

8. Рассмотреть трёхгранный угол СASB
с вершиной С. В обозначениях теоремы
косинусов искомый двугранный угол с
ребром SC равен ,
SCА=α,
 SCB=β,
α=β, ACB=γ.

9. ACB=γ.
10. cos
(по теореме косинусов).

Ответ:

68. Стороны основания параллелепипеда
равны а и в, а угол между ними
равен α. Найти объём параллелепипеда,
если боковое ребро, проходящее через
вершину данного угла, составляет с
его сторонами углы β и γ, а длина его
равна с.

П
лан
решения.

1. Построения: А1О 
ABCD,

OK 
AD, A1K.

2. А1КО –
линейный угол

двугранного угла с ребром AD.

3. SABCD.

4. А1К.

5. Рассмотреть трёхгранный угол ASBC.
В обозначениях теоремы о трёх косинусах
двугранный угол с ребром AD
равен А1КО =
, BAD=
α, А1AD=
β, A1АB
=γ.

6. cos 
( по теореме косинусов). Значение cos
обозначить р.

7. sin 
(выразить через р) . 8. А1О.
9. Vпризмы.

Ответ:

68. Основанием призмы служит
правильный треугольник со стороной,
равной а. Боковое ребро равно в
и составляет с пересекающими его
сторонами основания острые углы,
соответственно равные α и β. Найти объём
призмы.

Решение задачи аналогично решению
задачи № 6.

Ответ:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Содержание материала

  1. Угол между плоскостями теория
  2. Видео
  3. Прямоугольный параллелепипед
  4. Двугранный угол определения
  5. Расположение плоскостей и формула вычисления угла между ними
  6. Параллельность
  7. Доказательство
  8. Перпендикулярность
  9. Доказательство
  10. Доказательство
  11. Угол между плоскостями
  12. Многогранный угол
  13. Как найти угол между плоскостями?
  14. Геометрический способ
  15. Алгебраический способ

Угол между плоскостями теория

Пусть заданы две плоскости α и β общими уравнениями

Угол между этими плоскостями сводится к определению угла φ между нормальными векторами n1=(A1, B1, C1) и n2=(A2, B2, C2) этих плоскостей.

Из определения скалярного произведения, имеем

(3). (3)

Тогда из (3) можно найти косинус угла между нормальными векторами n1 и n2:

(4). (4)

Учитывая, что (n1, n2)=A1A2+B1B2+C1C2 и длины векторов |n1|=n и |n2|=  	   .(5)  выражение (4) можно записать так:

(5). (5)

Таким образом косинус угла между нормальными векторами и, следовательно, косинус угла между плоскостями α и β определяется формулой (5). Далее можно найти угол φ с помощью функции arccos.

Отметим, что пересекающиеся плоскости образую два угла. Другой угол можно найти так: φ‘=180−φ.

Видео

Прямоугольный параллелепипед

Ранее мы уже узнали про параллелепипед. Это фигура с 6 гранями, каждая из которых представляет собой параллелограмм. Особый интерес представляет его частный случай – прямоугольный параллелепипед.

Такую форму имеют многие шкафы, другие предметы ме

Такую форму имеют многие шкафы, другие предметы мебели, коробки для обуви, небоскребы. Изображают прямоугольный параллелепипед так:

Для обозначения вершин параллелепипеда применяют л

Для обозначения вершин параллелепипеда применяют латинские буквы. Очень часто для вершин одной грани используют 4 буквы без индекса (на рисунке выше это А, В, С, D), а другие 4 вершины обозначают такими же буквами, но с нижним индексом 1: А1, B1, C1 и D1. При этом одноименные вершины (например, А и А1) находятся на одном ребре, которое располагается на рисунке вертикально.

Докажем некоторые свойства прямоугольного параллелепипеда.

Например, ребро АD пересекается с гранями АВВ1А1 и

Например, ребро АD пересекается с гранями АВВ1А1 и CDD1C1. Значит, оно перпендикулярно этим граням (точнее говоря, оно перпендикулярно плоскостям, проходящим через эти грани). Действительно, AD⊥DC, ведь ∠ADC является углом в прямоугольнике АВСD и потому он прямой. Аналогично и AD⊥DD1, ведь и ADD1A1 – прямоугольник. Получается, что ребро AD перпендикулярно 2 прямым в грани CDD1C1 (которые при этом пересекаются), и потому оно перпендикулярно и всей грани. То же самое можно продемонстрировать для любого ребра прямоугольного параллелепипеда и любой грани, которую она пересекает.

Эти грани пересекаются по ребру А1D1. Этому ребру

Эти грани пересекаются по ребру А1D1. Этому ребру в свою очередь перпендикулярны ребра АА1 и А1В1, лежащие в гранях ADD1A1 и A1D1C1B1. Значит, ∠АА1В1 и будет углом между этими гранями. Но он составляет 90°, то есть грани перпендикулярны, ч. т. д.

Хотя у прямоугольного параллелепипеда есть 12 граней, многие из них имеют одинаковую длину. Поэтому для описания размеров этой фигуры достаточно указать только три параметра. Обычно их называют длиной, шириной и высотой:

Эти параметры также называют измерениями прямоугол

Эти параметры также называют измерениями прямоугольного параллелепипеда. Зная их, можно вычислить длину диагонали прямоугольного параллелепипеда. Для этого используется следующая теорема:

Действительно, пусть есть прямоугольный параллелеп

Действительно, пусть есть прямоугольный параллелепипед АВСDA1B1C1D1. Назовем ребро AD его длиной, АВ – шириной, а ВВ1 – высотой. Пусть необходимо найти длину диагонали В1D:

Сначала построим отрезок BD и рассмотрим ∆ABD. Он

Сначала построим отрезок BD и рассмотрим ∆ABD. Он прямоугольный, и потому для него верна теорема Пифагора:

Теперь перейдем к ∆В1ВD. Так как ребро BB1 перпенд

Теперь перейдем к ∆В1ВD. Так как ребро BB1 перпендикулярно грани ABCD, то ∠В1ВD – прямой. Тогда и ∆В1ВD – прямоугольный, а потому и для него можно записать теорему Пифагора:

Дополнительно отметим уже известный нам факт, что

Дополнительно отметим уже известный нам факт, что тот прямоугольный параллелепипед, у которого все стороны одинаковы, именуется кубом. Можно дать и такое определение куба:

Двугранный угол определения

Двугранный угол – это фигура, образованная двумя полуплоскостями, исходящими из одной прямой.

Вот так:

При этом прямая ( displaystyle AB) – это ребро двугранного угла, а полуплоскости ( displaystyle alpha ) и ( displaystyle beta ) – стороны или грани двугранного угла.

Двугранный угол получает обозначение по своему ребру: «двугранный угол ( displaystyle AB)».

С понятием двугранного угла тесно связано понятие угол между плоскостями.

Угол между плоскостями – наименьший из двугранных углов, образованных при пересечении плоскостей.

Итак, внимание! Различие между двугранным углом и углом между плоскостями в том, что:

Двугранный угол может быть и острым, и тупым, а угол между плоскостями только острым! НЕ ПУТАЙ!

Расположение плоскостей и формула вычисления угла между ними

Существует несколько вариаций взаимного расположения двух плоскостей.

Параллельность

Теорема

Две плоскости считаются параллельными в том случае, если у них отсутствуют общие точки.

Возьмем за условие, что плоскости α, расположенной в некоторой прямоугольной системе координат, соответствует общее уравнение: А1х+В1у+С1z+D1=0. А плоскость β определяется общим уравнением вида: А2х+В2у+С2z+D2=0.

Согласно теореме о параллельности плоскостей, чтобы α и β являлись параллельными, достаточно отсутствия решений системы линейных уравнений вида:

(left{begin{array}{l}A_1x+B_1y+C_1z+D_1=0\A_2x+B_2y+C_2z+D_2=0end{array}right.)

То есть приведенная выше система должна быть несовместной.

Доказательство

Допустим, указанные плоскости, соответствующие уравнениям А1х+В1у+С1z+D1=0 и А2х+В2у+С2z+D2=0 параллельны друг другу, следовательно, у них отсутствуют общие точки. Это значит, что нет ни одной точки в прямоугольной системе координат, находящейся в трехмерном пространстве, чьи координаты отвечали бы условиям обоих уравнений одновременно или:

(left{begin{array}{l}A_1x+B_1y+C_1z+D_1=0\A_2x+B_2y+C_2z+D_2=0end{array}right.)

не имеет решения.

В случае, если данная система уравнений не имеет решений, то в прямоугольной системе координат трехмерного пространства отсутствуют точки с координатами, одновременно отвечающими условиям обоих уравнений, входящих в рассматриваемую систему. Отсюда можно сделать вывод, что плоскости α и β с соответствующими им уравнениями А1х+В1у+С1z+D1=0 и А2х+В2у+С2z+D2=0 не обладают ни одной общей точкой, а значит, являются параллельными. Теорема доказана.

Перпендикулярность

Две плоскости перпендикулярны друг другу, в ситуации, когда они при взаимном пересечении образуют прямой угол, то есть угол в 90°.

Теорема

Если одна из двух плоскостей проходит через прямую, которая перпендикулярна другой плоскости, то такие плоскости являются перпендикулярными.

Доказательство

Пусть: AB∈α, AB⊥β, AB∩β=A.

Необходимо доказать, что α⊥β.

  1. α∩β=AC, причем AB⊥AC по условию.
  2. Проведем прямую AD, принадлежащую плоскости β и перпендикулярную AC.
  3. ∠BAD=90°, поскольку AB⊥β. Следовательно, заданные плоскости перпендикулярны, что и требовалось доказать.

Следствие

Плоскость, перпендикулярная к прямой, по которой пересекаются две заданные плоскости, перпендикулярна к каждой из этих плоскостей.

Теорема

Явность перпендикулярных пересекающихся плоскостей достигается при необходимом и достаточном условии, что нормальные векторы данных плоскостей при пересечении образовали прямой угол.

Доказательство

Допустим, в трехмерном пространстве существует некоторая прямоугольная система координат. При наличии нормальных векторов заданных плоскостей α и β с координатами:

(overrightarrow{n_1}=(A_1,B_1,C_1),)

(overrightarrow{n_2}=(A_2,B_2,C_2),)

то необходимо и достаточно, чтобы эти векторы приняли вид:

(left(overrightarrow{n_1},overrightarrow{;n_2}right)=0Leftrightarrow A_1times A_2+B_1times B_2+C_1times C_2=0)

Отсюда следует, что:

(overrightarrow{n_1}=(A_1,B_1,C_1),)

(overrightarrow{n_2}=(A_2,B_2,C_2))

— нормальные векторы плоскостей α и β. Чтобы заданные плоскости были перпендикулярными, достаточно, чтобы скалярное произведение данных векторов ровнялось нулю, то есть принимало вид:

(left(overrightarrow{n_1},overrightarrow{;n_2}right)=0Leftrightarrow A_1times A_2+B_1times B_2+C_1times C_2=0)

Равенство соблюдено.

Угол между плоскостями

Для вычисления угла между двумя пересекающимися плоскостями используют метод координат. Суть данного способа заключается в нахождении косинуса угла, образованного при пересечении плоскостей.

Предположим, что плоскости P1 и P2 заданы следующими уравнениями:

(P_1:;A_1x+B_1y+C_1z+D_1=0,;{overline N}_1=left(A_1,B_1,C_1right);)

(P_2:;A_2x+B_2y+C_2z+D_2=0,;{overline N}_2=left(A_2,B_2,C_2right))

Найдем косинус угла между P1 и P2 по формуле:

(cosleft(overbrace{P_1,P_2}right)=frac{overline{N_1}timesoverline{N_2}}{left|overline{N_1}right|timesleft|overline{N_2}right|}frac{A_1times A_2+B_1times B_2+C_1times C_2}{sqrt{A_1^2+B_1^2+C_1^2}timessqrt{A_2^2+B_2^2+C_2^2}})

Запишем в ответе модуль косинуса угла, поскольку за величину угла между плоскостями принимают острый угол. 

Многогранный угол

Возможен случай, когда из одной точки в пространстве выходят не три, а большее количество лучей, причем образуемые ими углы не располагаются в единой плоскости. Такая фигура именуется многогранным углом. Трехгранный угол можно считать его частным случаем. Также его частными случаями будут четырехгранный угол, пятигранный угол, шестигранный угол и т. д.

Более наглядна следующая демонстрация многогранного угла. Построим на плоскости α произвольный многоугольник. Далее выберем какую-нибудь точку вне плоскости α и соединим ее с вершинами многоугольника с помощью лучей. При этом у нас как раз получится многогранный угол. Если, например, в качестве многоугольника мы использовали пятиугольник, то и получим мы пятигранный угол:

Важно отметить, что в данном случае состоит многог

Важно отметить, что в данном случае состоит многогранный угол именно из лучей КА1, КА2, КА3…, а не из одноименных отрезков. То есть многогранный угол – это ни в коем случае не многогранник КА1А2А3А4А5, у него есть только одна вершина – точка К. Многогранник КА1А2А3А4А5 – это пирамида, такая фигура изучается в курсе стереометрии чуть позже. Многоугольник А1А2А3А4А5 – это сечение многогранного угла. Углы ∠А1КА2, ∠А2КА3, ∠А3КА4… – это плоские углы многогранного угла.

Заметим, что на исходный многоугольник на плоскости может быть как выпуклым, так и невыпуклым. Соответственно и многогранный угол может быть как выпуклым, так и невыпуклым:

Так как любой треугольник – это выпуклый многоугол

Так как любой треугольник – это выпуклый многоугольник, то и любой трехгранный угол является выпуклым. В выпуклом угле все его точки лежат по одну сторону от любой плоскости, проходящей, через какие-нибудь два смежных луча угла. Вообще любое сечение многогранного угла представляет собой выпуклый многоугольник.

Докажем важное утверждение:

Для доказательства возьмем произвольный многогранн

Для доказательства возьмем произвольный многогранный угол и проведем в нем сечение А1А2А3…Аn, которое будет являться выпуклым многоугольником:

В последнем равенстве в каждой скобке стоят по два

В последнем равенстве в каждой скобке стоят по два плоских угла в тех трехгранных углах, вершины которых совпадают с вершинами многоугольника А1А2А3…Аn. В предыдущей теореме мы выяснили, что эта сумма меньше третьего плоского угла, то есть

В правой части в скобках стоит сумма углов выпукло

В правой части в скобках стоит сумма углов выпуклого n-угольника А1А2А3…Аn. Она, как мы знаем, составляет 180°•(n – 2), то есть

Последнее неравенство и необходимо было доказать.

Последнее неравенство и необходимо было доказать.

Как найти угол между плоскостями?

Найти угол между плоскостями можно двумя способами: геометрическим и алгебраическим.

Геометрический способ

При геометрическом способе нужно сначала построить угол двугранного угла, а потом искать этот линейный угол с помощью знаний из планиметрии.

Алгебраический способ

Алгебраический способ – это применение метода координат – там есть формула для нахождения угла между плоскостями.

Вот такая:

( displaystyle cos gamma =frac{{{A}_{1}}{{A}_{2}}+{{B}_{1}}{{B}_{2}}+{{C}_{1}}{{C}_{2}}}{sqrt{A_{1}^{2}+B_{1}^{2}+C_{1}^{2}}sqrt{A_{2}^{2}+B_{2}^{2}+C_{2}^{2}}})

Здесь ( displaystyle {{A}_{1}},{{B}_{1}},{{C}_{1}},{{A}_{2}},{{B}_{2}},{{C}_{2}}) — коэффициенты уравнений плоскостей ( displaystyle alpha ) и ( displaystyle beta ) соответственно.

Подробнее про уравнение плоскости ты можешь прочитать в статье «Расстояние от точки до плоскости»!

( displaystyle alpha ): ( displaystyle {{A}_{1}}x+{{B}_{1}}y+{{C}_{1}}z+D=0)

( displaystyle beta ): ( displaystyle {{A}_{2}}x+{{B}_{2}}y+{{C}_{2}}z+D=0).

Какой же способ лучше? Зависит от задачи.

Если нужно найти, скажем, двугранный угол при основании правильной , то проще использовать геометрический способ.

А если линейный угол двугранного угла никак не хочет проходить ни через какие удобные точки, то можно использовать метод координат как палочку выручалочку.

Но тогда нужно очень твёрдо знать формулы и не делать арифметических ошибок при многочисленных подсчётах – ведь придётся искать ( displaystyle {{A}_{1}},{{B}_{1}},{{C}_{1}},{{A}_{2}},{{B}_{2}},{{C}_{2}}), а потом ещё и ( displaystyle cos gamma ).

Давай разберём несложную задачу для примера. Мы применим оба метода к одной и той же задаче.

Теги

Онлайн калькулятор. Вычисление угла между векторами

Этот онлайн калькулятор позволит вам очень просто найти угол между двумя векторами (косинус угла между векторами) для плоских и пространственных задач.

Воспользовавшись онлайн калькулятором, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на вычисление угла между векторами и закрепить пройденный материал.

Калькулятор для вычисления угла между векторами

Инструкция использования калькулятора для вычисления угла между векторами

Ввод даных в калькулятор для вычисления угла между векторами

В онлайн калькулятор можно вводить числа или дроби. Более подробно читайте в правилах ввода чисел.

Дополнительные возможности калькулятора для вычисления угла между векторами

  • Между полями для ввода можно перемещаться нажимая клавиши “влево” и “вправо” на клавиатуре.

Теория. Вычисление угла между векторами

Угол между двумя векторами a и b можно найти использовав следующую формулу:

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Нахождение угла между векторами

Длина вектора, угол между векторами – эти понятия являются естественно-применимыми и интуитивно понятными при определении вектора как отрезка определенного направления. Ниже научимся определять угол между векторами в трехмерном пространстве, его косинус и рассмотрим теорию на примерах.

Для рассмотрения понятия угла между векторами обратимся к графической иллюстрации: зададим на плоскости или в трехмерном пространстве два вектора a → и b → , являющиеся ненулевыми. Зададим также произвольную точку O и отложим от нее векторы O A → = b → и O B → = b →

Углом между векторами a → и b → называется угол между лучами О А и О В .

Полученный угол будем обозначать следующим образом: a → , b → ^

Очевидно, что угол имеет возможность принимать значения от 0 до π или от 0 до 180 градусов.

a → , b → ^ = 0 , когда векторы являются сонаправленными и a → , b → ^ = π , когда векторы противоположнонаправлены.

Векторы называются перпендикулярными, если угол между ними равен 90 градусов или π 2 радиан.

Если хотя бы один из векторов является нулевым, то угол a → , b → ^ не определен.

Нахождение угла между векторами

Косинус угла между двумя векторами, а значит и собственно угол, обычно может быть определен или при помощи скалярного произведения векторов, или посредством теоремы косинусов для треугольника, построенного на основе двух данных векторов.

Согласно определению скалярное произведение есть a → , b → = a → · b → · cos a → , b → ^ .

Если заданные векторы a → и b → ненулевые, то можем разделить правую и левую части равенства на произведение длин этих векторов, получая, таким образом, формулу для нахождения косинуса угла между ненулевыми векторами:

cos a → , b → ^ = a → , b → a → · b →

Данная формула используется, когда в числе исходных данных есть длины векторов и их скалярное произведение.

Исходные данные: векторы a → и b → . Длины их равны 3 и 6 соответственно, а их скалярное произведение равно – 9 . Необходимо вычислить косинус угла между векторами и найти сам угол.

Решение

Исходных данных достаточно, чтобы применить полученную выше формулу, тогда cos a → , b → ^ = – 9 3 · 6 = – 1 2 ,

Теперь определим угол между векторами: a → , b → ^ = a r c cos ( – 1 2 ) = 3 π 4

Ответ: cos a → , b → ^ = – 1 2 , a → , b → ^ = 3 π 4

Чаще встречаются задачи, где векторы задаются координатами в прямоугольной системе координат. Для таких случаев необходимо вывести ту же формулу, но в координатной форме.

Длина вектора определяется как корень квадратный из суммы квадратов его координат, а скалярное произведение векторов равно сумме произведений соответствующих координат. Тогда формула для нахождения косинуса угла между векторами на плоскости a → = ( a x , a y ) , b → = ( b x , b y ) выглядит так:

cos a → , b → ^ = a x · b x + a y · b y a x 2 + a y 2 · b x 2 + b y 2

А формула для нахождения косинуса угла между векторами в трехмерном пространстве a → = ( a x , a y , a z ) , b → = ( b x , b y , b z ) будет иметь вид: cos a → , b → ^ = a x · b x + a y · b y + a z · b z a x 2 + a y 2 + a z 2 · b x 2 + b y 2 + b z 2

Исходные данные: векторы a → = ( 2 , 0 , – 1 ) , b → = ( 1 , 2 , 3 ) в прямоугольной системе координат. Необходимо определить угол между ними.

Решение

  1. Для решения задачи можем сразу применить формулу:

cos a → , b → ^ = 2 · 1 + 0 · 2 + ( – 1 ) · 3 2 2 + 0 2 + ( – 1 ) 2 · 1 2 + 2 2 + 3 2 = – 1 70 ⇒ a → , b → ^ = a r c cos ( – 1 70 ) = – a r c cos 1 70

  1. Также можно определить угол по формуле:

cos a → , b → ^ = ( a → , b → ) a → · b → ,

но предварительно рассчитать длины векторов и скалярное произведение по координатам: a → = 2 2 + 0 2 + ( – 1 ) 2 = 5 b → = 1 2 + 2 2 + 3 2 = 14 a → , b → ^ = 2 · 1 + 0 · 2 + ( – 1 ) · 3 = – 1 cos a → , b → ^ = a → , b → ^ a → · b → = – 1 5 · 14 = – 1 70 ⇒ a → , b → ^ = – a r c cos 1 70

Ответ: a → , b → ^ = – a r c cos 1 70

Также распространены задачи, когда заданы координаты трех точек в прямоугольной системе координат и необходимо определить какой-нибудь угол. И тогда, для того, чтобы определить угол между векторами с заданными координатами точек, необходимо вычислить координаты векторов в виде разности соответствующих точек начала и конца вектора.

Исходные данные: на плоскости в прямоугольной системе координат заданы точки A ( 2 , – 1 ) , B ( 3 , 2 ) , C ( 7 , – 2 ) . Необходимо определить косинус угла между векторами A C → и B C → .

Решение

Найдем координаты векторов по координатам заданных точек A C → = ( 7 – 2 , – 2 – ( – 1 ) ) = ( 5 , – 1 ) B C → = ( 7 – 3 , – 2 – 2 ) = ( 4 , – 4 )

Теперь используем формулу для определения косинуса угла между векторами на плоскости в координатах: cos A C → , B C → ^ = ( A C → , B C → ) A C → · B C → = 5 · 4 + ( – 1 ) · ( – 4 ) 5 2 + ( – 1 ) 2 · 4 2 + ( – 4 ) 2 = 24 26 · 32 = 3 13

Ответ: cos A C → , B C → ^ = 3 13

Угол между векторами можно определить по теореме косинусов. Отложим от точки O векторы O A → = a → и O B → = b → , тогда, согласно теореме косинусов в треугольнике О А В , будет верным равенство:

A B 2 = O A 2 + O B 2 – 2 · O A · O B · cos ( ∠ A O B ) ,

b → – a → 2 = a → + b → – 2 · a → · b → · cos ( a → , b → ) ^

и отсюда выведем формулу косинуса угла:

cos ( a → , b → ) ^ = 1 2 · a → 2 + b → 2 – b → – a → 2 a → · b →

Для применения полученной формулы нам нужны длины векторов, которые несложно определяются по их координатам.

Хотя указанный способ имеет место быть, все же чаще применяют формулу:

Смешанное, векторное и скалярное произведение векторов

Задача:

Дан параллелепипед ABCDA1B1C1D1, построен на векторах AB(4,3,0), AD(2,1,2) и AA1(-3,-2,5).
Найти:

Решение:

  • а) Объем параллелепипеда будем искать через смешанное произведение векторов (AB AD AA1). Мы знаем, что модуль смешанного произведения векторов равен объему параллелепипеда, построенному на этих векторах.
(AB AD AA1) =
4 3 0
2 1 2
-3 -2 5
= 20 — 18 + 0 — 0 — 30 + 16 = -12 .

Мы нашли смешанное произведение, ещё надо его взять по модулю и найдём объем параллелепипеда:
VABCDA1B1C1D1=12.
б) Площадь, как мы уже знаем, можно искать через векторное произведение векторов. Грань ABCD построена на векторах AB и AD, найдём их векторное произведение. SABCD= |[AB AD]|.

[AB AD] =
i j k
4 3 0
2 1 2
= 6i — 8j — 2k ,

Теперь найдём модуль этого вектора:

SABCD= |[AB AD]|=√ (36+64+4) =2√(26).
[AD AA1] =
i j k
2 1 2
-3 -2 5
= 9i — 16jk ,

SADD1A1= |[AD AA1]|=√(81+256+1)=13√2.

  • в) Что бы найти длину высоты, проведенной из вершины A1 на грань ABCD, используем формулу для нахождения объема параллелепипеда V=h SABCD. С этой формулы видим:
    h =
    V
    SABCD
    =
    12
    2√(26)
    =
    6
    √(26)
    =
    3√(26)
    13
    .
  • г) Косинус угла λ1, между ребром AB и диагональю B1D будем высчитывать с помощью скалярного произведения векторов
    cos(λ1) =
    (AB B1D)
    |AB| * |B1D|
    .

    Координаты вектора AB мы имеем, от вектор B1D надо найти. Для этого используем следующую формулу:
    B1D = B1A1 + A1A + AD = — AB — AA1 + AD1 = — (4, 3, 0) — (-3, -2, 5) + (2, 1, 2); (Не забывайте, что всё это векторы, надо сложить их соответствующие координаты. )
    Сделав вычисления по этой формуле, мы найдём, что вектор B1D имеет координаты (1, 0, -3). Теперь надо найти длину векторов AB и B1D:
    |AB|=√(16+9+0)=5, |B1D|=√(1+0+9)=√(10).
    Найдём скалярное произведение векторов AB и B1D, (AB B1D)=4*1 + 3*0 + 0*(-3)=4.
    Теперь, имея все данные мы можем подставить их в нашу формулу:

    cos(λ1) =
    4
    5√(10)
    =
    2√(10)
    25
    .

    д) Что бы найти cos(λ2), мы используем то, что угол между двумя плоскостями равен углу между перпендикулярами до этих плоскостей. А как мы знаем, векторное произведение — это и есть перпендикуляр до плоскости перемножаемых векторов. Поэтому в роле перпендикуляра к плоскости ADD1A1 мы можем взять вектор [AD AA1], который мы нашли в пункте б), и знаем, что его координаты (9, -16, -1), точно также и для плоскости ABCD — вектор [AB AD] с координатами (6, -8, -2).
    Теперь нам остаётся, как в предыдущем варианте найти только косинус угла между двумя векторами, координаты которых нам известны.

    cos(λ2) =
    6*9 + (-8)*(-16) + (-2)*(-1)
    2√(26) * 13√(2)
    =
    46√(13)
    169
    .

    Вот таким не хитрым способом мы и нашли косинус угла между гранями ABCD и ADD1A1.

    [spoiler title=”источники:”]

    http://zaochnik.com/spravochnik/matematika/vektory/nahozhdenie-ugla-mezhdu-vektorami-primery-i-reshen/

    http://matemonline.com/primeru/zada4a-na-vektor/

    [/spoiler]


  • 12.279_Косинус угла между двумя смежными боковыми гранями

    28.11.2013, 17:31
    Косинус угла между двумя смежными боковыми гранями правильной четырехугольной пирамиды равен k . Найти косинус угла между боковой гранью и плоскостью основания и допустимые значения k.

    • 1
    • 2
    • 3
    • 4
    • 5

    Категория: Задачи по Геометрии с применением Тригонометрии | Добавил: alexlat

    Просмотров: 815 | Загрузок: 0

    | Рейтинг: 0.0/0

    Добавлять комментарии могут только зарегистрированные пользователи.

    [

    Регистрация

    |

    Вход

    ]

    Статистика

    Добавить комментарий