Как найти косинус угла в призме

Учебник

Геометрия, 10 класс

Угол между скрещивающимися прямыми в пространстве

Скрещивающиеся прямые    не параллельны,    не имеют общих точек,    не пересекаются.

    

Признаки Скрещивающихся прямых

  1. 1-ая прямая лежит в плоскости, а 2-ая пересекает плоскость в точке не из 1-ой, то прямые скрещивающиеся.
  2. Через каждую из скрещивающихся прямых проходит плоскость, параллельная другой прямой. Единственная.
  3. Скрещивающиеся   $a$   и   $b$ :      есть пара пареллельных плоскостей $alpha$   и   $beta$,   таких что   $ain alpha$,     $bin beta$

Задача 1:            В прямоугольном параллелепипеде     $ABCDMNKL$     найти угол между

скрещивающимися прямыми   $AN$   и   $BK$, если известны ребра      $BA=36$,    $BN=15$,   $BC=20$

  • Как находить угол между двумя стереометрическими объектами? по алгоритму параллельных переносов, совмещений.
  • Свойство инвариантности углов при параллельном переносе    стереометрических объектов – прямых, плоскостей:
  • Если объекты $A$   и   $B$ параллельны соответственно $A’$   и   $B’$,   то углы между парами равные:          $angle left(A;Bright)=angle left(A’;B’right)$
  • В нашем случае,   $BKparallel AL$,   поэтому равны углы    $angle left(AN;BKright)=angle left(AN;ALright)=angle NAL$
  • Перетащим    $BK$ по плоскости   $BKLA$ вдоль   $BA$   до совмещения с точкой $A$. Тогда $BK$ совметится с отрезком $AL$.
  • Итак, мы ищем угол $angle NAL$.   Найдем его через теорему косинусов    в треугольнике   $ANL$    для угла   $angle NAL$ :
  • ***                       $NL^2=AN^2+AL^2-2cdot ANcdot NLcdot cos angle NAL$
  • Стороны   $AN$,   $NL$ и $AL$ можем признать диагоналями граней – прямоугольников, значит, найти их по теоремам Пифагора.
  • Решение:       $AN=sqrt{36^2+15^2}=39$        $AL=sqrt{20^2+15^2}=25$         $NL=sqrt{36^2+20^2}=4cdot sqrt{106}$
  • Из теоремы косинусов      $cos angle NAL=frac{AN^2+AL^2-NL^2}{2cdot ANcdot AL}=frac{39^2+25^2-16cdot 106}{2cdot 39cdot 25}=frac{450}{1950}=frac{3}{13}$          Ответ:    $angle NAL=arccos frac{3}{13}$
  • Признак:                    $NAL$      плоскость угла:           $ANin NAL$      и      $BKparallel NAL$

case I                      case II       

Алгоритм: нахождение угла между прямыми путем параллельного переноса     (демонстрация по II, прямые $AN$, $BK$   ):

1-ый шаг:    Выбираем точку, в которой хотим совместить прямые. Например, точку   $Z$ – середину отрезка   $BK$.

2-ой шаг:    Для прямой $AN$   определим плоскость “скольжения” – плоскость, содержащая эту прямую и точку   $Z$.   Это   $ANC$

3-ий шаг:    Двинем прямую $AN$ по плоскости $ANC$ оставаясь параллельно “как стержень”. Она совместится с отрезком $ZX$.

4-ый шаг:    Что за точка $X$ ?           угол    $angle XZB$ – именно то, что нам нужно:      $angle XZB=angle left(XZ;BKright)=angle left(AN;BKright)$.

Признак:    – увидеть ту главную плоскость угла , которая параллельна обеим скрещивающимся прямым.   Здесь это    $XZB$.

Задача 2:     В правильной треугольной призме все ребра 1. Найти косинус угла   $angle left(AB;CMright)$

  • $ABCMNK$ правильная призма:    в основании правильный   $bigtriangleup ABC$ , ребро $BN$ перпендикулярно основанию.
  • Нужен угол между $AB$ и $CM$. Выберем Точкой совмещения $M$.       Прямая $CM$ уже проходит через нее.
  • Прямая $AB$ и точка $M$   лежат в плоскости $ABNM$. Значит, $ABNM$ – плоскость сколжения. $AB$ перейдет в   $MN$.
  • Путем параллельного совмещения $AB$ с   $MN$ мы устоновили, что искомый угол – это    $angle CMN$.
  • Косинус угла $angle CMN$ можно найти по теореме косинусов треугольника $CMN$:      $cos angle CMN=frac{CM^2+MN^2-CN^2}{2cdot CMcdot MN}$
  • Признак:                    $CMN$      плоскость угла:           $ABparallel CMN$      и      $MCin CMN$

k задачe 2 к задаче 3    

Задача 3:     В правильном тетраэдре   $DABC$    все ребра 1 см. Найти угол между $AD$ и $BC$.

  • Для нахождения угла, совместим “движениями” наши прямые в точку $O$ – основание высоты $DO$ .
  • В правильном тетраэдре в основании равносторонный треугольник    $DABC$, высота пирамиды попадает в центр окружностей.
  • Точка $O$ – пересечение высот, медиан, биссектрис. $O$ лежит на высоте $AH$ ,    $DH$ – высота грани $BDC$.
  • В точке $O$ проведем прямую    параллельную прямой   $BC$. Им будет линия   $MN$
  • В точке $O$ проведем прямую    $OK$, параллельную   $AD$. Она будет лежат в плоскости   $ADH$ Значит, $Kin DH$.
  • Итак, “взамен” наших    $AD$   и   $BC$   мы получили прямые    $OK$     и     $MN$ :     $OKparallel AD$, $MNparallel BC$
  • по свойству углов при параллельном переносе             $angle left(AD;BCright)=angle left(OK;MNright)=angle MOK$
  • Найти   $angle MOK$ ?   Легко! учтите, что у нас правильный тетраэдр и находите.
  • Признак:                    $MONK$      плоскость угла:           $ADparallel MONK$      и      $BCparallel MONK$

Алгоритм: вычисление   угла   в пространстве или плоскости

  1. В каком треугольнике этот угол?     узнать стороны треугольника и найти угол по теореме косинусов.
  2. Если треугольник окажется равнобедренным, то провести высоту и найти угол прямоугольного треугольника.
  3. А если треугольник прямоугольный, то написать   cos   или   sin   или   tg    этого угла и найти как   arc !

Задача 4:     В кубе $ABCD{A_1}{B_1}{C_1}{D_1}$ все ребра равны 1. Точка   $Q$ – середина ребра . Точка $K$

делит ребро $D_1D$ в соотношении   1 : 3 считая от вершины $D_1$, а точка $M$ делит $C_1C$ в соотношении

5 : 2 считая от вершины $C_1$. Найти угол между скрещивающимися прямыми    $BQ$   и    $KM$ .

     

  • Параллельными переносами добъемся совмещения в точке $B$. Для этого, перенесем   $KM$ в два этапа.
  • Сперва соскользим   $KM$ по грани   $DD_1C_1C$    вдоль $C_1C$ до вершины $C$. Получим   отрезок    $CYparallel MK$
  • Затем,   $CY$   протащим параллельно себе вдоль пути $CB$ и перейдем к отрезку    $BXparallel CY$.
  • В итоге получили то, что надо:    $KM$    параллельна     $BX$, потому как   $MKparallel CYparallel BX$.
  • Требуемый угол     $angle left(MK;BQright)=angle left(BX;BQright)=angle XBQ$.    Найдем его через треугольник $bigtriangleup XBQ$
  • В теореме косинусов нам нужны стороны этого треугольника. Вычислим постепенно, шаг за шагом, зная ребро куба 1:
  • Из отношения    $frac{D_1K}{DK}=frac{1}{3}Rightarrow D_1K=frac{1}{4} DK=frac{3}{4}$.                Из отношения    $frac{C_1K}{CM}=frac{5}{2}Rightarrow C_1M=frac{5}{7} CM=frac{2}{7}$
  • $MKparallel CYRightarrow KY=MC$        отрезок   $DY=D_1D-D_1K-KY=1-frac{1}{4}-frac{2}{7}=frac{13}{28}$
  • $BXparallel CYRightarrow BX=DY=frac{13}{28}$.         По условию задачи     $B_1Q=frac{1}{2}$.
  • Нужные нам стороны треугольника     $bigtriangleup XBQ$     являются гипотенузами    прямоугольных треугольников.
  • Зная все катеты, как части ребер, по теореме Пифагора найдем стороны   $XB$,   $BQ$,   $XQ$.
  • Нужный угол   $angle XBQ$ вычислим из теоремы косинусов         $XQ^2=XB^2+BQ^2-2cdot XBcdot BQcdot cos angle XBQ$   
  • наконец:     $cos angle XBQ=frac{XB^2+BQ^2-XQ^2}{2cdot XBcdot BQ}$                         $angle XBQ=arccos frac{XB^2+BQ^2-XQ^2}{2cdot XBcdot BQ}$
  • Признак:                    $XBQ$      плоскость угла:           $KMparallel XBQ$      и      $BQin XBQ$

Задача 5:     В правильной треугольной призме    $ABCMNK$ все ребра равны 2. Точка   $D$   делит

ребро $MN$ в отношении   3 : 2    считая от вершины $M$. Найдите угол между прямыми   $AD$    и    $BK$.

                      

  • Чтоб найти угол между скрещивающимися прямыми, нужно “подвигать параллельно”    $AD$    и    $BK$ до совмещения.
  • Если двинуть $AD$ так, чтоб точка $D$ совпала с $K$ – т.е. скользить по плоскости   $ADK$, но тогда другой конец $D$ вне рисунка.
  • Достроим призму до параллелепипеда $ABCYMNKZ$ и все нужные отрезки, “движения”, плоскости будут внутри!
  • $AD$ скользит по плоскости   $ADK$ и совпадет с $XK$. Точка $X$, конечно, окажется на ребре   $YC$
  • по построению:    $Xin CDK$ плоскости;        $ADparallel XK$ ,     $XCparallel AB$ . Значит,    $XK$ параллельна   $AD$
  • Угол между прямыми    $angle left(AD;BKright)=angle left(XK;BKright)=angle XKB$.      Надо найти угол $angle XKB$.
  • Угол $XKB$ ищем , как обычно, через треугольник $bigtriangleup XKB$,   с помощью теоремы косинусов.
  • Для этого надо найти стороны этого треугольника.   Сторону $BK$ найдем по Пифагору для треугольника    $bigtriangleup BKC$.
  • $XC=MD$, найдем   $MD$ из отношения   3 : 2 для   $MN$ . Затем, по Пифагору    $bigtriangleup XKC$ найдем $XK$.
  • С вычислением $XB$ придется повозится через теорему косинусов треугольника $bigtriangleup XBC$, две его стороны известны.
  • А что с углом $angle XCB$? по условию    $bigtriangleup ABC$ равносторонный, значит в параллелограмме   $angle YCB=120$ градусов.
  • Ну и финально: как только найдем все стороны   $bigtriangleup XKB$, мы найдем и его угол $angle XKB$ – то что надо!
  • Признак:                    $XKB$      плоскость угла:           $ADparallel XKB$      и      $BKin XKB$

Упражнения:

Призма

Призма – это многогранник, состоящий из двух равных многоугольников, расположенных в параллельных плоскостях, и $n$-го количества параллелограммов.

Многоугольники $ABCD$ и $A_1B_1C_1D_1$ – называются основаниями призмы.

Параллелограммы $АА_1В_1В, ВВ_1С_1С$ и т.д.- боковыми гранями.

Перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания, называется высотой призмы.

$С_1Н$ – высота

Если боковые ребра призмы перпендикулярны к основаниям, то призма называется прямой, в противном случае – наклонной. Высота прямой призмы равна ее боковому ребру.

Формулы вычисления объема и площади поверхности призмы:

Чтобы были понятны формулы, введем обозначения:

$P_{осн}$ – периметр основания;

$S_{осн}$ – площадь основания;

$S_{бок}$ – площадь боковой поверхности;

$S_{п.п}$ – площадь полной поверхности;

$h$ – высота призмы.

$S_{бок}=P_{осн}·h$

$S_{п.п}=S_{бок}+2S_{осн}$

$V=S_{осн}·h$

В основании призмы могут лежать различные многоугольники, рассмотрим площади некоторых из них.

В основании лежит треугольник.

  1. $S={a·h_a}/{2}$, где $h_a$ – высота, проведенная к стороне $а$
  2. $S={a·b·sin⁡α}/{2}$, где $a,b$ – соседние стороны, $α$ – угол между этими соседними сторонами.
  3. Формула Герона $S=√{p(p-a)(p-b)(p-c)}$, где $р$ – это полупериметр $p={a+b+c}/{2}$
  4. $S=p·r$, где $r$ – радиус вписанной окружности
  5. $S={a·b·c}/{4R}$, где $R$ – радиус описанной окружности
  6. Для прямоугольного треугольника $S={a·b}/{2}$, где $а$ и $b$ – катеты прямоугольного треугольника.

В основании лежит четырехугольник

1. Прямоугольник

$S=a·b$, где $а$ и $b$ – смежные стороны.

2. Ромб

$S={d_1·d_2}/{2}$, где $d_1$ и $d_2$ – диагонали ромба

$S=a^2·sin⁡α$, где $а$ – длина стороны ромба, а $α$ – угол между соседними сторонами.

3. Трапеция

$S={(a+b)·h}/{2}$, где $а$ и $b$ – основания трапеции, $h$ – высота трапеции.

Прямая призма называется правильной, если ее основания – правильные многоугольники.

Рассмотрим площади правильных многоугольников:

1. Для равностороннего треугольника $S={a^2√3}/{4}$, где $а$ – длина стороны.

2. Квадрат

$S=a^2$, где $а$ – сторона квадрата.

3. Правильный шестиугольник

Шестиугольник разделим на шесть правильных треугольников и найдем площадь как:

$S=6·S_{треугольника}={6·a^2√3}/{4}={3·a^2√3}/{2}$, где $а$ – сторона правильного шестиугольника.

Пример:

Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными $10$ и $24$, а её боковое ребро равно $20$.

Решение:

Построим прямую призму, в основании которой лежит ромб.

Распишем формулу площади полной поверхности:

$S_{п.п}=S_{бок}+2S_{осн}=P_{осн}·h+2S_{ромба}$

В прямой призме высота равна боковому ребру, следовательно, $h=С_1С=20$

Чтобы найти периметр основания, надо узнать сторону ромба. Рассмотрим один из прямоугольных треугольников, получившихся, при пересечении диагоналей и воспользуемся теоремой Пифагора.

Диагонали точкой пересечения делятся пополам, поэтому катеты прямоугольного треугольника равны $5$ и $12$.

$АВ=√{5^2+12^2}=√{25+144}=√{169}=13$

$Р=13·4=52$

Теперь найдем площадь основания: площадь ромба равна половине произведения его диагоналей.

$S_{основания}={d_1·d_2}/{2}={10·24}/{2}=120$

Далее подставим все найденные величины в формулу полной поверхности и вычислим ее:

$S_{п.п}=P_{осн}·h+2S_{ромба}=52·20+2·120=1040+240=1280$

Ответ: $1280$

Цилиндр – это та же призма, в основании которой лежит круг.

$S_{бок}=P_{осн}·h=2πRh$

$S_{п.п}=S_{бок}+2S_{осн}=2πRh+2πR^2=2πR(h+R)$

$V=S_{осн}·h=πR^2 h$

Подобные призмы: при увеличении всех линейных размеров призмы в $k$ раз, её объём увеличится в $k^3$ раз.

Средняя линия треугольника параллельна основанию и равна его половине.

$MN$ – средняя линия, так как соединяет середины соседних сторон.

$MN {//} AC, MN = {AC}/{2}$

Подобие треугольников

Два треугольника называются подобными, если их углы соответственно равны, а стороны одного треугольника больше сходственных сторон другого треугольника в некоторое число раз.

Число $k$ – коэффициент подобия (показывает во сколько раз стороны одного треугольника больше сторон другого треугольника.)

  1. Периметры подобных треугольников и их линейные величины (медианы, биссектрисы, высоты) относятся друг к другу как коэффициент подобия $k$.
  2. Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.

Прямоугольный треугольник и его свойства:

В прямоугольном треугольнике катетами называются две стороны треугольника, которые образуют прямой угол. Гипотенузой называется сторона, лежащая напротив прямого угла.

Некоторые свойства прямоугольного треугольника:

  1. Сумма острых углов в прямоугольном треугольнике равна $90$ градусов.
  2. Катет прямоугольного треугольника, лежащий напротив угла в $30$ градусов, равен половине гипотенузы. (Этот катет называется малым катетом.)

Теорема Пифагора

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

$AC^2+BC^2=AB^2$

Соотношение между сторонами и углами в прямоугольном треугольнике:

В прямоугольном треугольнике $АВС$, с прямым углом $С$

Для острого угла $В: АС$ – противолежащий катет; $ВС$ – прилежащий катет.

Для острого угла $А: ВС$ – противолежащий катет; $АС$ – прилежащий катет.

  1. Синусом (sin) острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
  2. Косинусом (cos) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
  3. Тангенсом (tg) острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
  4. Котангенсом (ctg) острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.
  5. В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.
  6. Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.
  7. Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения

Значения тригонометрических функций некоторых углов:

$α$ $30$ $45$ $60$
$sinα$ ${1}/{2}$ ${√2}/{2}$ ${√3}/{2}$
$cosα$ ${√3}/{2}$ ${√2}/{2}$ ${1}/{2}$
$tgα$ ${√3}/{3}$ $1$ $√3$
$ctgα$ $√3$ $1$ ${√3}/{3}$

Теорема синусов

Во всяком треугольнике стороны относятся как синусы противолежащих углов:

${a}/{sinα}={b}/{sinβ}={c}/{sinγ}=2R$, где $R$ – радиус описанной около треугольника окружности.

Теорема косинусов

Квадрат одной из сторон треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:

$a^2=b^2+c^2-2·b·c·cosα;$

$b^2=a^2+c^2-2·a·c·cos⁡β;$

$c^2=b^2+a^2-2·b·a·cosγ.$

Для решения рассмотрим рисунок (https://bit.ly/2GHxi4Y).

Прямые ВА1 и ДВ1 скрещивающиеся прямые. Проведем прямую ДЕ1, тогда угол Е1ДВ1 наш искомый угол. Проведем отрезок Е1В1.

Е1В1 большая диагональ шестиугольника которая равна диаметру описанной около него окружности, а так как радиус окружности равен длине стороны шестиугольника, то Е1В1 = 2 * АВ = 2 * 1 = 2 см.

В прямоугольном треугольнике ДЕЕ1, ДЕ12 = ДЕ2 + ЕЕ12 = 1 + 1 = 2. ДЕ1 = √2 см.

Треугольник Е1В1Д прямоугольный с прямым углов в точке Е1, тогда по теореме Пифагора, ДВ12 = ДЕ12 + Е1В12 = 2 + 2 = 4. ДВ1 = 2 см.

В треугольнике ДЕ1В1, по теореме косинусов, Е1В12 = ДЕ12 + ДВ12 – 2 * ДЕ1 * ДВ1 * CosЕ1ДВ1.

4 = 2 + 4 – 2 * √2 * 2 * CosЕ1ДВ1 = 6 – 4 * √2 * CosЕ1ДВ1.

4 * √2 * CosЕ1ДВ1 = 6 – 4 = 2.

CosЕ1ДВ1 = 1 / 2 * √2 = √2 / 4.

Ответ: Косинус угла равен √2 / 4.

Светило науки – 1549 ответов – 6854 помощи

Ответ:

Косинус угла между диагональю боковой грани и другой боковой гранью призмы равен 0,54.

Объяснение:

4. Длина ребра основания правильной треугольной призмы равна 4 см, а ее высота – 1 см. Найдите косинус угла между диагональю боковой грани и другой боковой гранью призмы.

Дано: АВСА₁В₁С₁ – правильная треугольная призма;

АВ = 4 см; АА₁ = 1 см;

В₁С – диагональ;

Найти: косинус угла между В₁С и (АВ₁В).

Решение:

  • В правильной треугольной призме основания – равносторонние треугольники, а боковые грани – равные прямоугольники.

Определимся с углом.

  • Углом между прямой и плоскостью называют угол между прямой и ее проекцией на эту плоскость.

Из точки опустим перпендикуляр СН на плоскость (АВ₁В).

В₁Н – проекция В₁С на плоскость   (АВ₁В).

∠НВ₁С – искомый угол.

Обозначим этот угол α.

  • Косинус угла – отношение прилежащего катета к гипотенузе.

Найдем В₁С.

Рассмотрим ΔВ₁ВС – прямоугольный.

По теореме Пифагора найдем В₁С:

В₁С² = ВВ₁² + ВС² = 1 + 16 = 17   ⇒ В₁С = √17 (см)

Найдем В₁Н.

Рассмотрим ΔНВ₁В – прямоугольный.

СН – высота ΔАВС – равностороннего.

  • В равностороннем треугольнике высоты являются медианами.

⇒ АН = НВ = 4 : 2 = 2 (см)

По теореме Пифагора найдем В₁Н:

В₁Н² = В₁В² + НВ² = 1 + 4 = 5  ⇒ В₁Н = √5 (см).

#SPJ1

По условию задачи в правильной треугольной призме (displaystyle ABCA_1B_1C_1) требуется найти косинус угла между прямыми (displaystyle AD) и (displaystyle BE small, ) где (displaystyle D) и (displaystyle E) – середины рёбер соответственно  (displaystyle A_1B_1) и (displaystyle B_1C_1 small. )

Данные прямые являются скрещивающимися.

Определение

Угол между скрещивающимися прямыми

Угол между скрещивающимися прямыми – это угол между прямыми, параллельными заданным и лежащими в одной плоскости.

Замечание / комментарий

Для построения угла проще всего выбрать точку пространства и через нее провести две прямые, параллельные исходным. Угол между этими прямыми и будет искомым углом.

На прямой (displaystyle BE)  выберем точку (displaystyle E small. )


Через точку (displaystyle E) построим прямую (displaystyle EMsmall, ) параллельную прямой (displaystyle AD small. )

Угол между скрещивающимися прямыми (displaystyle AD) и (displaystyle BE) равен углу между пересекающимися прямыми (displaystyle EM) и (displaystyle BE small. ) Для того, чтобы найти косинус угла между прямыми (displaystyle AD) и (displaystyle BE small, ) необходимо вычислить (displaystyle cos angle BEM small. )

Соединим отрезком точки (displaystyle B) и (displaystyle M) и рассмотрим треугольник (displaystyle BEM small. )

По теореме косинусов

(displaystyle BM^2=BE^2+EM^2-2 cdot BE cdot EM cdot cos angle BEM small. )

Выразим косинус угла (displaystyle BEM small: )

(displaystyle cos angle BEM=frac{BE^2+EM^2-BM^2}{2 cdot BE cdot EM} small.)

Чтобы вычислить (displaystyle cos angle BEMsmall,) необходимо найти длины отрезков (displaystyle BEsmall, ) (displaystyle EM) и (displaystyle BM small. )


(displaystyle BE=frac{sqrt{5}}{2} small. )


(displaystyle EM=frac{sqrt{5}}{2} small. )


(displaystyle BM=frac{sqrt{3}}{2} small. )

Подставим найденные значения (displaystyle BE=frac{sqrt{5}}{2} small, ) (displaystyle EM=frac{sqrt{5}}{2} small, ) (displaystyle BM=frac{sqrt{3}}{2} ) и вычислим косинус угла (displaystyle BEM small: )

(displaystyle cos angle BEM=frac{BE^2+EM^2-BM^2}{2 cdot BE cdot EM} small, \ )

(displaystyle cos angle BEM=frac{bigg( frac{sqrt{5}}{2} bigg)^2+bigg( frac{sqrt{5}}{2} bigg)^2-bigg( frac{sqrt{3}}{2} bigg)^2}{2 cdot frac{sqrt{5}}{2} cdot frac{sqrt{5}}{2} } small,\ )

(displaystyle cos angle BEM=frac{frac{5}{4}+frac{5}{4}-frac{3}{4}}{frac{5}{2}}=frac{7}{4}:frac{5}{2}=frac{7 cdot 2}{4 cdot 5}=frac{7}{10}=0{,}7 small. )

Ответ: (displaystyle 0{,}7 small. )

Добавить комментарий