Как найти косинус в квадрате зная тангенс

Как найти синус, если известен тангенс?

Как найти косинус, если известен тангенс?

довольно часто при решении уравнений и упрощении тригонометрических выражений требуется найти синус или косинус через тангенс.

Для этого существуют специальные формулы. Итак, для нахождения косинуса нужно извлечь квадратный корень из дроби в числителе которой единица, а в знаменателе выражение единица плюс тангенс в квадрате.

А вот для того, чтобы найти синус нужно извлечь квадратный корень из выражения один минус дробь

в числителе которой единица, а в знаменателе выражение единица плюс тангенс в квадрате.

Но нужно обратить на знак синуса и косинуса, в зависимости от того в какой четверти находится угол. И если синус находим, то в 3 и 4 четвертях он будет отрицателен, а если косинус, то во второй и третьей.

система выбрала этот ответ лучшим

Ксарф­акс
[156K]

4 года назад 

Косинус через тангенс

Для того, чтобы найти значение косинуса по известному тангенсу, нужно воспользоваться одним из тригонометрических тождеств.

Сумма квадрата тангенса и единицы равна отношению единицы и квадрата косинуса.

Отсюда можно выразить косинус:

Наличие знака ± связано с тем, что в одних четвертях косинус угла может быть положительным, а в других – отрицательным.

То есть в условии задачи должна оговариваться четверть, в которой находится угол.

**

Пример.

tgα = 1/√3, α находится в 1 четверти (0 < α < 90).

Найдём косинус: cosα = √ ( 1 / (1 + 1/3)) = √ ( 1 / (4/3)) = √ (3/4) = √3/2.

Итак, если тангенс равен 1/√3, то косинус равен √3/2.

Нетрудно догадаться, что мы имели дело с углом 30°.


Синус через тангенс

Здесь также понадобятся тригонометрические тождества.

Можно пойти двумя путями:

1) Выразить котангенс через тангенс и найти синус по котангенсу.

2) Найти косинус по тангенсу, а затем воспользоваться основным тригонометрическим тождеством.

**

Пример.

tgα = √3, α находится в 1 четверти (0 < α < 90).

Найдём котангенс: ctga = 1 / tgα = 1 / √3.

Теперь найдём синус: sina = √ ( 1 / (1 + 1/3)) = √ ( 1 / (4/3)) = √ (3/4) = √3/2.

Или:

cosa = √ ( 1 / (1 + 3)) = √ (1/4) = 1/2.

sina = √ (1 – 1/4) = √ (3/4) = √3/2.

Таким образом, если тангенс равен √3, то синус равен √3/2.

Здесь также понятно, что это угол 60°.

Серге­йНико­лаев
[126K]

4 месяца назад 

Для этого существуют вполне определённые математические тригонометрические формулы. Например, косинус любого угла можно найти, зная его тангенс, исходя из соотношения что он равен корню квадратному из дроби, в числителе которой будет единица, а в знаменателе квадрат тангенса плюс единица. Только надо учитывать момент, что он может быть положительным и отрицательным.

Зная косинус, несложно вычислить и синус любого угла, если вспомнить, что сумма их квадратов всегда равна единице. Также можно найти котангенс этого угла, разделив 1 на тангенс, а дальше воспользоваться аналогичной приведённой в первом абзаце формулой для синуса и котангенса.

Optor­ius
[13.8K]

5 месяцев назад 

Синус и косинус через тангенс можно найти:

1 – По таблице значений тригонометрических функций некоторых углов.

2 – Через вычисления по формулам тригонометрических тождеств. Сначала находим косинус, затем по нему синус.

3 – Через универсальные тригонометрические подстановки (полуугловые подстановки). Такой способ обычно используют при вычислении интегралов, он дает приближенный результат.

Для примера:

Возьмем tg = √3. По таблице sin = √3/2 ≈ 0,866. По второму способу sin = √(1-1/4) ≈ 0,866. По третьему способу sin = √3/(7/4) ≈ 0,9897.

Дмитр­ий Подко­паев
[95]

2 года назад 

Приведу на всякий случай, на мой взгляд, наиболее общий способ нахождения синуса и косинуса по тангенсу. Как говорится определил знак подставил в выражение и получил ответ.

В алгебре и геометрии очень часто при решении задач используются тригонометрические формулы, которые чаще называют тригонометрическими тождествами. Из любого тригонометрического тождества несложно вывести новую формулу, необходимую для нахождения одной из величин, входящих в его состав.

****************­*****************­*****************­*****************­*****

Для того, чтобы найти косинус угла, зная его тангенс, возьмем тригонометрическое тождество:

фото из интернета

.

Из данного тождества выводим новую формулу для вычисления косинуса:

фото из интернета

Не забываем, что косинус может принимать как положительные, так и отрицательные значения в зависимости от четверти нахождения угла.

****************­*****************­*****************­*****************­*****

Для вычисления синуса угла через его тангенс можно действовать по-разному.

Например, вычислить по выведенной выше формуле косинус угла, а затем воспользоваться еще одним тригонометрическим тождеством и вывести из него формулу для вычисления синуса угла:

фото из интернета

Алиса в Стран­е
[363K]

3 года назад 

В тригонометрических тождествах нет, конечно, ничего сложного, вот только запомнить их все так, чтобы не пользоваться справочными материалами, обычному человеку достаточно трудно, поэтому всегда приходится где-то искать эти формулы. Вот одна из них:

Из нее то мы и будем получать формулу для выполнения задания из вопроса, а именно – нахождения косинуса через тангенс, проведя несложные преобразования, получим:

Как видите, действительно все очень просто.

Теперь, найдя косинус, воспользуемся основным тригонометрическим тождеством, преобразуем его, чтобы найти синус через уже найденный косинус, формула такая:

RIOLI­t
[176K]

5 лет назад 

конечно тангенс угла- это отношение синуса этого угла к косинусу того же угла- условно- а/б= с и а= с*в, в= а/с, сразу видно, что, кроме с, что- нибудь еще должно быть дано иначе не расколоть задачку, разве с будет равно 1 или еще какому замечательному значению, позволяющему определить величину угла угла.

Ellic
[125K]

8 месяцев назад 

Синус, косинус и тангенс являются тригонометрическими функциями. Исторически они возникли как отношения между сторонами прямоугольного треугольника, поэтому их удобнее вычислять через прямоугольный треугольник. Однако через него могут быть выражены только тригонометрические функции острых углов. Для тупых углов вам нужно будет вставить окружность.

Иногда, необходимо найти синус или косинус через тангенс. Для этого существуют специальные формулы. Итак, чтобы найти косинус, нужно извлечь квадратный корень из дроби, в числителе которой единица, а в знаменателе выражение единица плюс тангенс к квадрату.

Но чтобы найти синус, нужно извлечь квадратный корень из выражения один минус дробь в числителе которого единица, а в знаменателе выражение равно единице плюс касательная к квадрату.

Но нужно обращать внимание на знак синуса и косинуса в зависимости от того, в какой четверти находится угол. И если мы найдем синус, то в 3-й и 4-й четвертях он будет отрицательным, а если косинус – во 2 и 3.

Если говорить о тангенсе угла, то является отношением синуса по отношению к косинусу. Так, следует воспользоваться тригонометрическим тождеством. Согласно ему выводится формула, которую используем для того, чтобы вычислить косинус.

Вы можете вычислить по формуле, а также воспользуюсь еще 1 тригонометрическим тождеством, выведя формула вычислить:

Лара Изюми­нка
[59.6K]

2 года назад 

Итак , чтобы найти синус нужно взять корень из выражения 1 деленное на 1 плюс тангенс в квадрате.

Далее по основному тригонометрическому тождесьву можно найти косинус. Для этого нужно извлечь квадратный корень их 1 минус только что найденнный синус в квадрате.

sin=sqrt(1/(1+((1/tg)**2)))

cos=sqrt(1/(1+((1/ctg)**2)))

Знаете ответ?

Смотрите также:

Что такое тангенс, катангенс, синус, косинус, секанс, касеканс?

Как найти тангенс, если известен косинус и синус?

Как выучить значения косинусов, синусов, тангенсов?

Какова этимология слов “тангенс, котангенс, синус, косинус, тон”?

А вам в жизни когда нибудь приходились столкнуться с косинусами, синусами?

Как легко запомнить тригонометрический круг (единичную окружность)?

Как узнать синус угла в треугольнике если известны синусы остальных углов?

Определите знак выражения и как вы нашли?

Sin имеет много рациональных значений, а в таблицах мало, почему (см.)?

Для чего и где нужны математические Sin и Cos?

Найти косинус фи (cos φ), через тангенс фи (tg φ)

tg фи=…  чему равен cos фи?

Как перевести тангенс в косинус формула:

  • cos(a)=(+-)1/sqrt(1+(tg(a))^2)

Косинус через тангенс, перевести tg в cos, калькулятор – онлайн

tg φ:

cos φ:

±

Поделиться в соц сетях:

Популярные сообщения из этого блога

Найти тангенс фи , если известен косинус фи

Калькулятор коэффициент мощности cos fi в tg fi Как найти тангенс фи, если известен косинус фи формула: tg φ = (√(1-cos²φ))/cos φ Калькулятор онлайн – косинус в тангенс cos φ: tg φ: Поделиться в соц сетях: Найти синус φ, если известен тангенс φ Найти косинус φ, если известен тангенс φ

Индекс Руфье калькулятор

Проба Руфье калькулятор онлайн. Первые упоминания теста относиться к 1950 году. Именно в это время мы находим первое упоминание  доктора Диксона о “Использование сердечного индекса Руфье в медико-спортивном контроле”. Проба Руфье – представляет собой нагрузочный комплекс, предназначенный для оценки работоспособности сердца при физической нагрузке. Индекс Руфье для школьников и студентов. У испытуемого, находящегося в положении лежа на спине в течение 5 мин, определяют число пульсаций за 15 сек (P1); После чего в течение 45 сек испытуемый выполняет 30 приседаний. После окончания нагрузки испытуемый ложится, и у него вновь подсчитывается число пульсаций за первые 15 с (Р2); И в завершении за последние 15 сек первой минуты периода восстановления (Р3); Оценку работоспособности сердца производят по формуле:  Индекс Руфье = (4(P1+P2+P3)-200)/10; Индекс Руфье для спортсменов Измеряют пульс в положении сидя (Р1); Спортсмен выполняет 30 глубоких приседаний в

Тригонометрия — это раздел математики, в котором изучаются тригонометрические функции, их свойства, взаимосвязи и применение.

Слово «тригонометрия» образовано от греческих слов «trigonom» (треугольник) и «metreo» (измерять).

Возникновение и развитие тригонометрии связаны с практическими потребностями в измерении и вычислении сначала элементов треугольников на местности, а позднее — в строительстве, мореплавании и астрономии. Современная тригонометрия широко применяется в разных областях математики, в частности в геометрии, других науках, в технике. Например, тригонометрические функции используются при решении задач оптики, задач кинематического анализа и синтеза механизмов, гармонического анализа и других.

Cинус, косинус, тангенс, котангенс острого угла прямоугольного треугольника

Нет понятий «просто синус» или «просто косинус», не имеют смысла записи типа «sin» и «cos» сами по себе, они сами по себе никакой величины не обозначают (точно так же, как и, например, значок квадратного корня сам по себе). Те, кто этого не понимает, часто делает грубую ошибку типа: sin x /cos x = in /co

Есть понятие синуса, косинуса, тангенса, котангенса как тригонометрических функций угла. Здесь угол — аргумент функции. Он может обозначаться «х», «а», «альфа», «бета», «гамма», «фи», «дельта» или ещё какой-нибудь буквой. Суть от этого не меняется.

Для того, чтобы более наглядно представить приведенные ниже определения, начертите прямоугольный треугольник. Это треугольник, один из углов которого — прямой (т.е. один из углов равен 90 градусов). Стороны, прилежащие к прямому углу (перпендикулярные друг другу стороны) — это катеты данного прямоугольного треугольника. Противолежащая прямому углу сторона — это гипотенуза.

Теперь выберите любой из двух других (острых) углов треугольника и обозначьте его, например, альфа. Один из катетов будет примыкать к вершине этого угла (и, собственно, образовывать этот угол вместе с гипотенузой). Это — прилежащий катет. Другой катет не примыкает к вершине этого угла, он находится как бы напротив данной вершины. Это — противолежащий катет.

Кстати, почему-то не все представляют, что такое угол треугольника при данной вершине. У треугольника (обозначим его ABC) есть три вершины: А, В и С. Когда говорят об угле А треугольника, то подразумевают угол, образованный сторонами ВА и АС. Это и есть угол при вершине А.

Итак,

Синусом острого угла называется отношение противолежащего этому углу катета к гипотенузе.

Косинусом острого угла называется отношение прилежащего к этому углу катета к гипотенузе.

Тангенсом острого угла называется отношение противолежащего этому углу катета к прилежащему катету.

Котангенсом острого угла называется отношение прилежащего этому углу катета к противолежащему катету.

Секансом острого угла называется отношение гипотенузы к прилежащему к этому углу катету. Обозначается: sec x.

Косекансом острого угла называется отношение гипотенузы к противолежащему этому углу катету. Обозначается: cosec x.

Как найти углы в прямоугольном треугольнике, если известны стороны?

Дан треугольник АВС, угол С — прямой.

Стороны АВ, АС и ВС известны.

Т.к. угол С — прямой, он равен 90 градусам.

Другие углы можно найти, например, так:

если известен катет и гипотенуза

sinA = BC / AB,

sinB = AC / AB,

если известны два катета

tg A = BC / AC

tg B = AC / BC

Предположим, получили, что sin A = ½. По таблице смотрим, что такому значению sin x соответствует величина угла 30 градусов.

Или, к примеру, получили, что tg B = 1. Значит, угол В равен 45 градусов.

Или, к примеру, мы получили, что sin B = 0,259. По таблице Брадиса или с помощью калькулятора находим, что угол В равен 15 градусов.

sin 15° = 0,259

arcsin0,259 = 15°

Как найти углы в прямоугольном треугольнике, если известен один угол?

Поскольку треугольник прямоугольный, то один из его углов равен 90 градусов. Величина второго угла известна (по условию задачи, обозначим её альфа). В сумме углы треугольника составляют 180 градусов. Значит, третий угол равен 180—90—альфа.

Еединичная окружность (единичный круг)

Единичный круг — это круг с центром в начале координат и радиусом, равным единице (R = 1).

Единичная окружность — это окружность единичного круга (т.е. окружность с центром в начале координат и с радиусом, равным единице).

Единичный радиус-вектор — это вектор, начало которого совпадает с началом координат, а его длина равна единице.

Углы отсчитывают от начального положения подвижного радиуса-вектора (совпадает с положением Ох).

Координатные четверти отсчитываются так:

                        y

                       |

                       |

(II четверть)   |   (I четверть)

                       |

________________________ x

                       |0

                       |

(III четверть)  |   (IV четверть)

                       |

                       |

Угол первой четверти — от 0 до 90 градусов (от 0 до пи/2).

Угол второй четверти — от 90 до 180 градусов (от пи/2 до пи).

Угол третьей четверти — от 180 до 270 градусов (от пи до 2пи/3).

Угол четвертой четверти — от 270 до 360 градусов (от 2пи/3 до 2пи).

Например:

  • углы первой четверти: 30 градусов, 85 градусов, пи/4;
  • углы второй четверти: 120 градусов, 178 градусов;
  • углы третьей четверти: 205 градусов, 260 градусов;
  • углы четвертой четверти: 272 градуса, 305 градусов.

Тригонометрические функции

К тригонометрическим функциям относятся функции:

y = sin x;

y = cos x;

y = tg x;

y = ctg x;

y = sec x;

y = cosec x.

Синусом угла, образованного осью Ох и произвольным радиусом-вектором ОА, называется отношение проекции этого вектора на ось Оу к его длине.

Косинусом угла, образованного осью Ох и произвольным радиусом-вектором ОА, называется отношение проекции этого вектора на ось Ох к его длине.

Тангенсом угла, образованного осью Ох и произвольным радиусом-вектором ОА, называется отношение проекции этого вектора на ось Оу к его проекции на ось Ох.

Котангенсом угла, образованного осью Ох и произвольным радиусом-вектором ОА, называется отношение проекции этого вектора на ось Ох к его проекции на ось Оу.

Секансом угла, образованного осью Ох и произвольным радиусом-вектором ОА, называется отношение длины этого вектора к его проекции на ось Ох.

Косекансом угла, образованного осью Ох и произвольным радиусом-вектором ОА, называется отношение длины этого вектора к его проекции на ось Оу.

Тригонометрические функции связаны между собой, и этим можно воспользоваться для нахождения синуса угла по его косинусу или котангенсу или косинуса угла по его синусу или тангенсу.

Как найти синус угла, если известен косинус?

Нужно воспользоваться основным тригонометрическим тождеством:

sin2a + cos2a = 1

sin2a = 1 − cos2a

|sin a| = КОРЕНЬ(1 − cos2a)

sin a = ± КОРЕНЬ(1 − cos2a)

знак перед корнем нужно выбрать в соответствии с четвертью данного угла (синус положительный в I и II четвертях, косинус положительный в I и IV четвертях)

Как найти косинус угла, если известен синус?

Нужно воспользоваться основным тригонометрическим тождеством:

sin2a + cos2a = 1

cos2a = 1 − sin2a

|cos a| = КОРЕНЬ(1 − sin2a)

cos a = ± КОРЕНЬ(1 − sin2a)

знак перед корнем нужно выбрать в соответствии с четвертью данного угла (синус положительный в I и II четвертях, косинус положительный в I и IV четвертях)

Как найти синус угла, если известен котангенс?

Нужно воспользоваться тригонометрическим тождеством

1 + ctg2 a = 1/sin2 a

sin2 a = 1 / (1 + ctg2 a)

|sin a| = 1/ КОРЕНЬ(1 + ctg2 a)

sin a = ±1/ КОРЕНЬ(1 + ctg2 a)

знак перед корнем нужно выбрать в соответствии с четвертью данного угла (синус положительный в I и II четвертях, котангенс положительный в I и III четвертях)

Как найти косинус угла, если известен тангенс?

Нужно воспользоваться тригонометрическим тождеством

1 + tg2 a = 1/cos2 a

cos2 a = 1 / (1 + tg2 a)

|cos a| = 1/ КОРЕНЬ(1 + tg2 a)

cos a = ±1/ КОРЕНЬ(1 + tg2 a)

знак перед корнем нужно выбрать в соответствии с четвертью данного угла (косинус положительный в I и IV четвертях, тангенс положительный в I и III четвертях)

Тригонометрическое тождество

Тригонометрическим тождеством называется равенство, в которое входят тригонометрические функции и которое удовлетворяется произвольным допустимым значением угла — аргумента тригонометрических функций, но не удовлетворяется, если каждую в отдельности тригонометрическую функцию заменить произвольной величиной.

Основные тригонометрические тождества:

sin2a + cos2a = 1

tg a = sin a / cos a

ctg a = cos a / sin a

sec a = 1 / cos a

cosec a = 1 / sin a

Arcsin, arcos, arctg, arcctg (обратные тригонометрические функции)

  • arcsin — читается: арксинус;
  • arcos — читается: арккосинус;
  • arctg — читается: арктангенс;
  • arcctg — читается: арккотангенс.

arcsin, arcos, arctg, arcctg — это обратные тригонометрические функции.

Обратной тригонометрической функцией y = arcsin x называют угол у, взятый на отрезке от –пи/2 до +пи/2, синус которого равен х:

y = arcsin x sin y = x

Обратной тригонометрической функцией y = arccos x называют угол у, взятый на отрезке от –пи до +пи, косинус которого равен х:

y = arccos x cos y = x

Обратной тригонометрической функцией y = arctg x называют угол у, взятый на промежутке от –пи/2 до +пи/2 (исключая концы), тангенс которого равен х:

y = arctg x tg y = x

Обратной тригонометрической функцией y = arcctg x называют угол у, взятый на промежутке от 0 до пи (исключая концы), котангенс которого равен х:

y = arctg x tg y = x

Например,

sin 30° = 0,5

arcsin0,5 = 30°

Синусоида и косинусоида

График функции y = sin x называется синусоидой.

График функции y = cos x называется косинусоидой.

Источники информации:

  • Справочник по элементарной математике. Геометрия, тригонометрия, векторная алгебра. Под редакцией П.Ф. Фильчакова. —К.: Наукова думка, 1967. — 442 с.
  • В.Д. Гетманцев, О.Ф. Саушкiн. Математика: Тригонометрiя: Посiбник для слухачiв пiдотовчих вiддiлень, вступникiв до вищих навчальних закладiв, студентiв педагогiчних iнститутiв (на укр.). —К.: Либiдь, 1994. — 144 с.
  • docme.ru — зачем нужна тригонометрия?
  • ru.wikipedia.org — Википедия — тригонометрия;
  • ru.wikihow.com — как изучать тригонометрию?

Математика для блондинок

Математикой должны заниматься блондинки – они врать не умеют.

Страницы

вторник, 9 октября 2012 г.

Как найти угол по тангенсу

В комментариях к тригонометрической таблице меня спросили, как перевести в градусы tg@= 4,99237? В общем виде вопрос заключается в том, как найти угол по тангенсу? Для решения этой задачи мы будем использовать калькулятор. Поскольку математики никогда не ставили перед собой задачи навести порядок в математике, то углы и сегодня измеряются в самых разных единицах измерения. Наиболее популярны среди математиков градусная и радианная меры углов. Мы тоже найдем решение как в градусах, так и в радианах. Благо, на калькуляторе они есть.

Как включить калькулятор? Читайте в конце этой страницы.

Сначала мы найдем угол по тангенсу в градусах. Для этого в правом верхнем углу калькулятора нужно установить специальный пыптик в положение Deg 360, что соответствует градусам. Дальше кнопочками вводим число 4,99237. Вот что у нас должно получиться.

После этого нужно нажать кнопочку арктангенс. Именно эта математическая ерунда превращает значение тангенса в угол. На калькуляторе эта хитрая обратная тригонометрическая функция (как её величают математики) замаскирована под кнопочку tan в степени минус 1, то есть тангенс в минус первой степени. После нажатия этой кнопочки восторженный калькулятор на все лады расхваливает нашу мудрость и всеми возможными способами сообщает нам, что мы таки ковырнули арктангенс, а не что нибудь другое. Об этом свидетельствует название функции atan (4.99237) в окошке калькулятора. Для особо одаренных здесь же буковками написано Arc tangent. Правда, особо одаренным нужно ещё знать английский язык, для того, чтобы понять всю глубину восторга калькулятора.

“А где же угол?” – спросите вы и будете правы. Угла нет, не смотря на все наши старания. Для превращения восторга калькулятора в математический результат нужно ещё нажать здоровенную кнопку равно, обозначенную двумя горизонтальными палочками =. Вот теперь мы нашли угол по тангенсу в градусах. Он равняется 78,6732 (ну, и так далее) градусов.

Для полного счастья, можно пролить бальзам на душу математиков, разложив эту десятичную форму записи градусов на градусы, минуты и секунды. Для этого дробную часть числа умножаем на 60 и получаем количество минут в дробном хвосте градусов.

0,6732 * 60 = 40,392′

Подобную процедуру повторяем с минутами. Дробную часть минут умножаем на 60 и получаем секунды.

Процедуру можно повторять и дальше до бесконечности, но, к счастью, математики до этого ещё не додумались. По этому на секундах мы и остановимся. Ничего, что секунды у нас получились с дробным хвостиком. Математики к таким хвостам относятся терпимо. В итоге, полнометражная версия полученного нами угла в градусной мере углов выглядит следующим образом:

78 градусов 40′ 23,52″

В слух эта магическая надпись произносится так: “78 градусов, 40 минут, 23 целых и 52 сотых секунды”. Аминь!

Нет, ещё не “Аминь!”. Теперь нужно выковырять из калькулятора этот же угол, только в радианах. Процедура добывания угла точно такая же, как и для градусов, с той только разницей, что в самом начале мы на калькуляторе нажимаем соседний пыптик Rad 2п. Повинуясь нашей воле, калькулятор добросовестно выдаст нам результат в радианах. Вот как это будет выглядеть.

Как видите, в радианах мы получили всего-навсего 1,3731 радиан. И за что математики так любят радианы? Ведь, плюнуть не на что. Ну, да Бог с ними, с этими математиками.

Тетерь самый интересный вопрос из комментариев: “А как включить-то калькулятор. “

Теритически, на всех компьютерах и смартфонах калькулятор устанавливается по умолчанию. Просто его нужно найти.

Компьютер. Нажимаем кнопку “Пуск”, затем нажимаем “Все программы”. Ищем среди программ “Стандартные” и открываем эту папку. У меня именно в ней спрятана программа “Калькулятор”. Открываем эту программу нажатием левой кнопки мыши, появляется калькулятор. Если вы не видите на калькуляторе тангансов, котангенсов и прочей математической ерунды, тогда в верхнем меню нажмите на слово “Вид” и включите пиптик “Инженерный”. Ваш калькулятор готов к великим математическим свершениям. Кстати, по логике разработчиков калькуляторов, вся эта математическая ерунда типа тангенсы-котангенсы обычным людям и даром не нужна, о чем всидетельствует “Обычный” вид калькулятора.

Смартфон. У меня калькулятор расположен прямо на главном экране. Нажимай и пользуйся. Вот только вылезает калькулятор в обычном виде. Где найти математику? Никогда не задавался таким вопросом. Методом научного тыка выяснил, что в левом нижнем углу экрана есть красненький значек, изображающий два какдратика по диагонали и две стрелочки. После нажатия на этот символ появляются все математические фишки, заложенные разработкичами. Теперь вы становитесь повелителем тангенсов-котангенсов и прочих математических чудес.

Попробую сделать отдельную страницу, посвященную калькулятору, где будут картики и разные полезности. Метод научного тыка – не самый эффективный научный метод, гораздо разумнее пользоваться информацией, которую раздобыли другие пользователи.

Углы прямоугольного треугольника

Калькулятор расчёта углов прямоугольного треугольника

Прямоугольный треугольник — это геометрическая фигура, образованная тремя отрезками соединяющихся тремя точками, у которой все углы внутренние, при этом один из углов прямой (равен 90°).

Тангенс угла tg(α) — это тригонометрическая функция выражающая отношение противолежащего катета a к прилежащему катету b.

Формула тангенса

  • tg α – тангенс угла α
  • a – противолежащий катет
  • b – прилежащий катет

Арктангенс — это обратная тригонометрическая функция. Арктангенсом числа x называется такое значение угла α, выраженное в радианах, для которого tg α = x . Вычислить арктангенс, означает найти угол α, тангенс которого равен числу x.

Углы треугольника

Сумма углов треугольника всегда равна 180 градусов:

Так как у прямоугольного треугольника один из углов равен 90°, то сумма двух других углов равна 90°.

Поэтому, если известен один из острых углов треугольника, второй угол можно посчитать по формуле:

Острый угол — угол, значение которого меньше 90°.

У прямоугольного треугольника один угол прямой, а два других угла – острые.

Как с помощью тангенса найти сторону треугольника. Теорема Пифагора, чтобы найти катет прямоугольного треугольника

В жизни нам часто придется сталкиваться с математическими задачами: в школе, в университете, а затем помогая своему ребенку с выполнением домашнего задания. Люди определенных профессий будут сталкиваться с математикой ежедневно. Поэтому полезно запоминать или вспоминать математические правила. В этой статье мы разберем одно из них: нахождение катета прямоугольного треугольника.

Что такое прямоугольный треугольник

Для начала вспомним, что такое прямоугольный треугольник. Прямоугольный треугольник – это геометрическая фигура из трех отрезков, которые соединяют точки, не лежащие на одной прямой, и один из углов этой фигуры равен 90 градусам. Стороны, образующие прямой угол, называются катетами, а сторона, которая лежит напротив прямого угла – гипотенузой.

Находим катет прямоугольного треугольника

Существует несколько способов, позволяющих узнать длину катета. Хотелось бы рассмотреть бы их подробнее.

Теорема Пифагора, чтобы найти катет прямоугольного треугольника

Если нам известны гипотенуза и катет, то мы можем найти длину неизвестного катета по теореме Пифагора. Звучит она так: “Квадрат гипотенузы равен сумме квадратов катетов”. Формула: c²=a²+b², где c – гипотенуза, a и b – катеты. Преобразовываем формулу и получаем: a²=c²-b².

Пример. Гипотенуза равна 5 см, а катет – 3 см. Преобразовываем формулу: c²=a²+b² → a²=c²-b². Далее решаем: a²=5²-3²; a²=25-9; a²=16; a=√16; a=4 (см).


Тригонометрические соотношения, чтобы найти катет прямоугольного треугольника

Также можно найти неизвестный катет, если известны любая другая сторона и любой острый угол прямоугольного треугольника. Есть четыре варианта нахождения катета при помощи тригонометрических функций: по синусу, косинусу, тангенсу, котангенсу. Для решения задач нам поможет таблица, которая находится чуть ниже. Рассмотрим эти варианты.


Найти катет прямоугольного треугольника при помощи синуса

Синус угла (sin) – это отношение противолежащего катета к гипотенузе. Формула: sin=a/c, где а – катет, лежащий против данного угла, а с – гипотенуза. Далее преобразуем формулу и получаем: a=sin*c.

Пример. Гипотенуза равна 10 см, угол А равен 30 градусов. По таблице вычисляем синус угла А, он равен 1/2. Затем по преобразованной формуле решаем: a=sin∠А*c; a=1/2*10; a=5 (см).


Найти катет прямоугольного треугольника при помощи косинуса

Косинус угла (cos) – это отношение прилежащего катета к гипотенузе. Формула: cos=b/c, где b – катет, прилежащий к данному углу, а с – гипотенуза. Преобразуем формулу и получим: b=cos*c.

Пример. Угол А равен 60 градусов, гипотенуза равна 10 см. По таблице вычисляем косинус угла А, он равен 1/2. Далее решаем: b=cos∠A*c; b=1/2*10, b=5 (см).


Найти катет прямоугольного треугольника при помощи тангенса

Тангенс угла (tg) – это отношение противолежащего катета к прилежащему. Формула: tg=a/b, где а – противолежащий к углу катет, а b – прилежащий. Преобразуем формулу и получаем: a=tg*b.

Пример. Угол А равен 45 градусов, гипотенуза равна 10 см. По таблице вычисляем тангенс угла А, он равен Решаем: a=tg∠A*b; a=1*10; a=10 (см).


Найти катет прямоугольного треугольника при помощи котангенса

Котангенс угла (ctg) – это отношение прилежащего катета к противолежащему. Формула: ctg=b/a, где b – прилежащий к углу катет, а – противолежащий. Иначе говоря, котангенс – это “перевернутый тангенс”. Получаем: b=ctg*a.

Пример. Угол А равен 30 градусов, противолежащий катет равен 5 см. По таблице тангенс угла А равен √3. Вычисляем: b=ctg∠A*a; b=√3*5; b=5√3 (см).


Итак, теперь вы знаете, как находить катет в прямоугольном треугольнике. Как видите, это не так уж и сложно, главное – запомнить формулы.

Сторону треугольника дозволено обнаружить не только по периметру и площади, но и по заданной стороне и углам. Для этого применяются тригонометрические функции – синус и косинус . Задачи с их применением встречаются в школьном курсе геометрии, а также в вузовском курсе аналитической геометрии и линейной алгебры.

Инструкция

1. Если знаменита одна из сторон треугольника и угол между ней и иной его стороной, воспользуйтесь тригонометрическими функциями – синус ом и косинус ом. Представьте себе прямоугольный треугольник НBC , у которого угол? равен 60 градусам. Треугольник НBC показан на рисунке. От того что синус , как знаменито, представляет собой отношение противолежащего катета к гипотенузе, а косинус – отношение прилежащего катета к гипотенузе, для решения поставленной задачи воспользуйтесь дальнейшим соотношением между этими параметрами:sin ?=НB/BCСоответственно, если вы хотите узнать катет прямоугольного треугольника, выразите его через гипотенузу дальнейшим образом:НB=BC*sin ?

2. Если в условии задачи, напротив, дан катет треугольника, обнаружьте его гипотенузу, руководствуясь дальнейшим соотношением между заданными величинами:BC=НB/sin ?По аналогии обнаружьте стороны треугольника и с применением косинус а, изменив предыдущее выражение дальнейшим образом:cos ?=НC/BC

3. В элементарной математике существует представление теоремы синус ов. Руководствуясь фактами, которые описывает данная теорема, также дозволено обнаружить стороны треугольника. Помимо этого, она разрешает обнаружить стороны треугольника, вписанного в окружность, если знаменит вестим радиус последней. Для этого воспользуйтесь соотношением, указанным ниже:a/sin ?=b/sin b=c/sin y=2RЭта теорема применима в том случае, когда знамениты две стороны и угол треугольника, либо дан один из углов треугольника и радиус описанной вокруг него окружности.

4. Помимо теоремы синус ов, существует и аналогичная ей по сути теорема косинус ов, которая, как и предыдущая, также применима к треугольникам всех 3 разновидностей: прямоугольному, остроугольному и тупоугольному. Руководствуясь фактами, которые доказывают эта теорема, дозволено находить неведомые величины, применяя следующие соотношения между ними:c^2=a^2+b^2-2ab*cos ?

Геометрическая фигура, состоящая из трёх точек, не принадлежащих одной прямой называемых вершинами, и трёх попарно соединяющих их отрезков, называемых сторонами, именуется треугольником. Существует уйма задач на нахождение сторон и углов треугольника по ограниченному числу начальных данных, одна из таких задач – нахождение стороны треугольника по одной из его сторон и двум углам .

Инструкция

1. Пускай построен треугольник?ABC и знамениты – сторона BC и углы?? и. Знаменито, что сумма углов всякого треугольника равна 180?, следственно в треугольнике?ABC угол?? будет равен?? = 180? – (?? + ??).Обнаружить стороны AC и AB дозволено применяя теорему синусов, которая гласитAB/sin?? = BC/sin?? = AC/sin?? = 2 * R, где R – радиус описанной около треугольника?ABC окружности,тогда получаемR = BC/sin. AB = 2 * R * sin. AC = 2 * R * sin. Теорему синусов дозволено использовать при всяких данных 2-х углах и стороне.

2. Стороны заданно треугольника дозволено обнаружить, вычислив его площадь по формулеS = 2 * R? * sin?? * sin?? * sin. где R вычисляется по формулеR = BC/sin. R – радиус описанной около треугольника?ABC отсюдаТогда сторону AB дозволено обнаружить, вычислив высоту, опущенную на неёh = BC * sin. отсель по формуле S = 1/2 * h * AB имеемAB = 2 * S/hАналогичным образом дозволено вычислить сторону AC.

3. Если в качестве углов даны внешние углы треугольника?? и. то обнаружить внутренние углы дозволено с поддержкой соответствующих соотношений?? = 180? – . = 180? – . = 180? – (?? + ??).Дальше действуем подобно первым двум пунктам.

Постижение треугольников ведется математиками на протяжении нескольких тысячелетий. Наука о треугольниках – тригонометрия – использует особые величины: синус и косинус.

Прямоугольный треугольник

Изначально синус и косинус появились из-за необходимости рассчитывать величины в прямоугольных треугольниках. Было подмечено, что если значение градусной меры углов в прямоугольном треугольнике не менять, то соотношение сторон, насколько бы эти стороны ни изменялись в длине, остается неизменно идентичным.Именно так и были введены представления синуса и косинуса. Синус острого угла в прямоугольном треугольнике – это отношение противолежащего катета к гипотенузе, а косинус – прилежащего к гипотенузе.

Теоремы косинусов и синусов

Но косинусы и синусы могут использоваться не только в прямоугольных треугольниках. Дабы обнаружить значение тупого либо острого угла, стороны всякого треугольника, довольно применить теорему косинусов и синусов.Теорема косинусов достаточно примитивна: «Квадрат стороны треугольника равен сумме квадратов 2-х других сторон за вычетом удвоенного произведения этих сторон на косинус угла между ними». Существует две трактовки теоремы синусов: малая и расширенная. Согласно малой: «В треугольнике углы пропорциональны противолежащим сторонам». Данную теорему зачастую расширяют за счет свойства описанной около треугольника окружности: «В треугольнике углы пропорциональны противолежащим сторонам, а их отношение равно диаметру описанной окружности».

Производные

Производная – математический инструмент, показывающий, как стремительно меняется функция касательно метаморфозы ее довода. Производные применяются в алгебре, геометрии, экономике и физике, ряде технических дисциплин. При решении задач требуется знать табличные значения производных тригонометрических функций: синуса и косинуса. Производной синуса является косинус, а косинуса – синус, но со знаком «минус».

Применение в математике

Особенно зачастую синусы и косинусы применяются при решении прямоугольных треугольников и задач, связанных с ними. Удобство синусов и косинусов обнаружило свое отражение и в технике. Углы и стороны было примитивно оценивать по теоремам косинусов и синусов, разбивая трудные фигуры и объекты на «примитивные» треугольники. Инженеры и архитекторы, зачастую имеющие дело с расчетами соотношения сторон и градусных мер, тратили много времени и усилий для вычисления косинусов и синусов не табличных углов. Тогда «на подмогу» пришли таблицы Брадиса, содержащие тысячи значений синусов, косинусов, тангенсов и котангенсов различных углов. В советское время некоторые преподаватели принуждали своих подопечных учить страницы таблиц Брадиса назубок.

Площадь треугольника равна половине произведения его сторон на синус угла между ними.

Рассмотрим произвольный треугольник ABC. Пусть в нем сторона BC = a, сторона CA = b и S – площадь этого треугольника. Необходимо доказать, что S = (1/2)*a*b*sin(C) .

Для начала введем прямоугольную систему координат и поместим начало координат в точку С. Расположим нашу систему координат так, чтобы точка B лежала на положительном направлении оси Сх, а точка А имела бы положительную ординату.

Если все выполнить правильно, то должен получится следующий рисунок.

Площадь данного треугольника можно вычислить по следующей формуле: S = (1/2)*a*h , где h – это высота треугольника. В нашем случае высота треугольника h равна ординате точки А, то есть h = b*sin(C).

Учитывая полученные результат, формулу площади треугольника можно переписать следующим образом: S = (1/2)*a*b*sin(C). Что и требовалось доказать.

Решение задач

Задача 1. Найти площадь треугольника ABC, если а) AB = 6*√8 см, АС = 4 см, угол А = 60 градусов б) BC = 3 см, AB = 18*√2 см, угол B= 45 градусов в) AC = 14 см, CB = 7 см, угол C= 48 градусов.

По доказанной выше теореме площадь S треугольника ABC равна:

а) S = ((1/2) *6*√8*4*sin(60˚)) = 12*√6 см^2.

б) S = (1/2)*BC*BA*sin(B)=((1/2)* 3*18*√2 *(√2/2)) = 27 см^2.

в) S = (1/2)*CA*CB*sin(C) = ½*14*7*sin48˚ см^2.

Значение синуса угла считаем на калькуляторе либо используем значения из таблицы значений тригонометрических углов. Ответ:

в) приблизительно 36.41 см^2.

Задача 2. Площадь треугольника ABC равна 60 см^2. Найдите сторону AB, если AC = 15 см, угол А = 30˚.

Положим S – площадь треугольника ABC. По теореме о площади треугольника имеем:

Подставим в неё имеющиеся у нас значения:

60 = (1/2)*AB*15*sin30˚ = (1/2)*15*(1/2)*AB=(15/4)*AB.

Отсюда выражаем длину стороны AB: AB = (60*4)/15 = 16.

Синус является одной из основных тригонометрических функций, применение которой не ограничено одной лишь геометрией. Таблицы вычисления тригонометрических функций, как и инженерные калькуляторы, не всегда под рукой, а вычисление синуса порой нужно для решения различных задач. Вообще, вычисление синуса поможет закрепить чертёжные навыки и знание тригонометрических тождеств.

Игры с линейкой и карандашом

Простая задача: как найти синус угла, нарисованного на бумаге? Для решения понадобится обычная линейка, треугольник (или циркуль) и карандаш. Простейшим способом вычислить синус угла можно, разделив дальний катет треугольника с прямым углом на длинную сторону – гипотенузу. Таким образом, сначала нужно дополнить острый угол до фигуры прямоугольного треугольника, прочертив перпендикулярную одному из лучей линию на произвольном расстоянии от вершины угла. Потребуется соблюсти угол именно 90°, для чего нам и понадобится канцелярский треугольник.

Использование циркуля немного точнее, но займёт больше времени. На одном из лучей нужно отметить 2 точки на некотором расстоянии, настроить на циркуле радиус, примерно равный расстоянию между точками, и прочертить полуокружности с центрами в этих точках до получения пересечений этих линий. Соединив точки пересечения наших окружностей между собой, мы получим строгий перпендикуляр к лучу нашего угла, остаётся лишь продлить линию до пересечения с другим лучом.

В полученном треугольнике нужно линейкой измерить сторону напротив угла и длинную сторону на одном из лучей. Отношение первого измерения ко второму и будет искомой величиной синуса острого угла.

Найти синус для угла больше 90°

Для тупого угла задача не намного сложнее. Нужно прочертить луч из вершины в противоположную сторону с помощью линейки для образования прямой с одним из лучей интересующего нас угла. С полученным острым углом следует поступать как описано выше, синусы смежных углов, образующих вместе развёрнутый угол 180°, равны.

Вычисление синуса по другим тригонометрическим функциям

Также вычисление синуса возможно, если известны значения других тригонометрических функций угла или хотя бы длины сторон треугольника. В этом нам помогут тригонометрические тождества. Разберём распространённые примеры.

Как находить синус при известном косинусе угла? Первое тригонометрическое тождество, исходящее из теоремы Пифагора, гласит, что сумма квадратов синуса и косинуса одного и того же угла равна единице.

Как находить синус при известном тангенсе угла? Тангенс получают делением дальнего катета на ближний или делением синуса на косинус. Таким образом, синусом будет произведение косинуса на тангенс, а квадратом синуса будет квадрат этого произведения. Заменяем косинус в квадрате на разность между единицей и квадратным синусом согласно первому тригонометрическому тождеству и путём нехитрых манипуляций приводим уравнение к вычислению квадратного синуса через тангенс, соответственно, для вычисления синуса придётся извлечь корень из полученного результата.

Как находить синус при известном котангенсе угла? Значение котангенса можно вычислить, разделив длину ближнего от угла катета на длину дальнего, а также поделив косинус на синус, то есть котангенс – функция, обратная тангенсу относительно числа 1. Для расчёта синуса можно вычислить тангенс по формуле tg α = 1 / ctg α и воспользоваться формулой во втором варианте. Также можно вывести прямую формулу по аналогии с тангенсом, которая будет выглядеть следующим образом.

Как находить синус по трём сторонам треугольника

Существует формула для нахождения длины неизвестной стороны любого треугольника, не только прямоугольного, по двум известным сторонам с использованием тригонометрической функции косинуса противолежащего угла. Выглядит она так.

Ну, а синус можно далее рассчитать по косинусу согласно формулам выше.

Если в задаче даны длины двух сторон треугольника и угол между ними, то можно применить формулу площади треугольника через синус.

Пример расчета площади треугольника через синус. Даны стороны a = 3, b = 4, и угол γ= 30°. По синус угла в 30° равен 0.5

Площадь треугольника будет равна 3 кв. см.

Также могут быть и другие условия. Если дана длина одной стороны и углы, то для начала нужно вычислить недостающий угол. Т.к. сумма всех углов треугольника равняется 180°, то:

Площадь будет равна половине квадрата стороны, умноженной на дробь. В ее числителе находится произведение синусов прилегающих углов, а в знаменателе синус противолежащего угла. Теперь рассчитываем площадь по следующим формулам:

Например, дан треугольник со стороной a=3 и углами γ=60°, β=60°. Вычисляем третий угол:
Подставляем данные в формулу
Получаем, что площадь треугольника равняется 3,87 кв. см.

II. Площадь треугольника через косинус

Чтобы найти площадь треугольника, нужно знать длины всех сторон. По теореме косинусов можно найти не известные стороны, а уже потом использовать .
По теореме косинусов квадрат неизвестной стороны треугольника равняется сумме квадратов остальных сторон минус удвоенное произведение этих сторон на косинус угла, находящегося между ними.

Из теоремы выводим формулы для поиска длины неизвестной стороны:

Зная как найти недостающую сторону, имея две стороны и угол между ними можно легко посчитать площадь. Формула площади треугольника через косинус помогает легко и быстро найти решение различных задач.

Пример расчета формулы площади треугольника через косинус
Дан треугольник с известными сторонами a = 3, b = 4, и углом γ= 45°. Для начала найдем недостающую сторону с . По косинус 45°=0,7. Для этого подставим данные в уравнение, выведенное из теоремы косинусов.
Теперь используя формулу, найдем

Понравилось?

Нажмите на кнопку, если статья Вам понравилась, это поможет нам развивать проект. Спасибо!

[spoiler title=”источники:”]

http://kalk.top/sz/corners-pr-triangle

http://school10-mgn.ru/kak-s-pomoshchyu-tangensa-naiti-storonu-treugolnika-teorema-pifagora.html

[/spoiler]

Автор Сообщение

Заголовок сообщения: Зная тангенс, найти косинус

СообщениеДобавлено: 13 янв 2013, 11:35 

Не в сети
Одарённый


Зарегистрирован:
10 янв 2012, 21:35
Сообщений: 141
Cпасибо сказано: 36
Спасибо получено:
1 раз в 1 сообщении
Очков репутации: -1

Добавить очки репутацииУменьшить очки репутации

объясните,как это получилось?!
оч надо

Вложения:
hw.jpg
hw.jpg [ 5.31 Кб | Просмотров: 34232 ]

Вернуться к началу

Профиль  

Cпасибо сказано 

Yurik

Заголовок сообщения: Re: Из tg в cos

СообщениеДобавлено: 13 янв 2013, 12:03 

[math]begin{gathered} tgalpha = frac{{sin alpha }}{{cos alpha }} = frac{{sqrt {1 – {{cos }^2}alpha } }}{{cos alpha }} = sqrt {frac{1}{{{{cos }^2}alpha }} – 1} = frac{3}{4},,, = > ,,,frac{1}{{{{cos }^2}alpha }} = frac{{25}}{{16}} hfill \ {cos ^2}alpha = frac{{16}}{{25}},,, = > ,,cos alpha = pm frac{4}{5} hfill \ end{gathered}[/math]

Но гораздо проще представить себе тригонометрический круг, и всё станет понятным.

Последний раз редактировалось Yurik 13 янв 2013, 12:19, всего редактировалось 1 раз.

Вернуться к началу

Профиль  

Cпасибо сказано 

За это сообщение пользователю Yurik “Спасибо” сказали:
jackystorm

jackystorm

Заголовок сообщения: Re: Из tg в cos

СообщениеДобавлено: 13 янв 2013, 12:13 

Yurik писал(а):

[math]begin{gathered} tgalpha = frac{{sin alpha }}{{cos alpha }} = frac{{sqrt {1 – {{cos }^2}alpha } }}{{cos alpha }} = sqrt {frac{1}{{{{cos }^2}alpha }} – 1} = frac{3}{4},,, = > ,,,frac{1}{{{{cos }^2}alpha }} = frac{{25}}{{16}} hfill \ {cos ^2}alpha = frac{{16}}{{25}},,, = > ,,cos alpha = pm frac{4}{5} hfill \ end{gathered}[/math]

спасибо :cry:

Вернуться к началу

Профиль  

Cпасибо сказано 

jackystorm

Заголовок сообщения: Re: Из tg в cos

СообщениеДобавлено: 13 янв 2013, 12:33 

Yurik писал(а):

[math]begin{gathered} tgalpha = frac{{sin alpha }}{{cos alpha }} = frac{{sqrt {1 – {{cos }^2}alpha } }}{{cos alpha }} = sqrt {frac{1}{{{{cos }^2}alpha }} – 1} = frac{3}{4},,, = > ,,,frac{1}{{{{cos }^2}alpha }} = frac{{25}}{{16}} hfill \ {cos ^2}alpha = frac{{16}}{{25}},,, = > ,,cos alpha = pm frac{4}{5} hfill \ end{gathered}[/math]

Но гораздо проще представить себе тригонометрический круг, и всё станет понятным.

а можете объяснить,как тут (в показанном примере)
из тех формул “формулы преобразования координат запишутся в виде: “
получается “Подставляем выражения “старых” координат через “новые” в исходное уравнение кривой и, проделав достаточно громоздкие, но простые преобразования, получаем: “
я пробовала подставлять,но у меня не сходится с тем,как у них

Вернуться к началу

Профиль  

Cпасибо сказано 

jackystorm

Заголовок сообщения: Re: Из tg в cos

СообщениеДобавлено: 13 янв 2013, 13:01 

Вернуться к началу

Профиль  

Cпасибо сказано 

Добавить комментарий