Как найти косинусы смежных углов

Синус, косинус, тангенс и котангенс

Острые углы в прямоугольном треугольнике.

В геометрии определения синуса, косинуса, тангенса и котангенса мы изучаем на примере острых углов в прямоугольном треугольнике.

Вот и они:

Возьмем прямоугольный треугольник АВС и распишем для него формулы для нахождения синуса, косинуса, тангенса и котангенса острых углов α и β.

Острые углы прямоугольного треугольника обладают очень интересными сверхспособностями, которые могут пригодится при решении геометрических задач.

Во-первых, их сумма равна 90°.

Во-вторых, верны будут следующие равенства (доказать их верность очень легко – смотри предыдущие 8 формул):

Смежные углы.

Теперь немного отстранимся от прямоугольных треугольников. Есть еще очень клевые формулы, но они подходят для смежных углов.

Пусть даны смежные углы α и β (напомню, что сумма смежных углов равна 180°).

Для них будут верны следующие равенства (доказываются через формулы приведения, т.к. α = 180° – β):

Формулы приведения.

Функции Углы
90°-α 90°+α 180°-α 180°+α 270°-α 270°+α 360°-α 360°+α
sin -sinα +cosα +cosα +sinα -sinα -cosα -cosα -sinα +sinα
cos +cosα +sinα -sinα -cosα -cosα -sinα +sinα +cosα +cosα
tg -tgα +ctgα -ctgα -tgα +tgα +ctgα -ctgα -tgα +tgα
ctg -ctgα +tgα -tgα -ctgα +ctgα +tgα -tgα -ctgα +ctgα

Таблица значений тригонометрических функций для “прекрасных” углов.

α 30° 45° 60° 90° 180° 270° 360°
0 π/6 π/4 π/3 π/2 π 3π/2
sinα 0 1/2 √2/2 √3/2 1 0 -1 0
cosα 1 √3/2 √2/2 1/2 0 -1 0 1
tgα 0 √3/3 1 √3 0 0
ctgα √3 1 √3/3 0 0

Осталось это всё запомнить и научиться применять на практике)

Вообще, достаточно запомнить информацию только про синусы и косинусы, а уже через них выводить значения тангенса и котангенса.

Еще рекомендую к прочтению статью про тригонометрические тождества.

Успехов в подготовке!

С уважением, Васильева Анна.

Работа с внешними углами многоугольника с помощью тригонометрии

Определение

Смежные углы – это два угла, у которых общая вершина и сторона, а другие стороны образуют прямую.

Внешний угол многоугольника – это угол, смежный с каким-нибудь внутренним углом многоугольника.

Утверждение

Для любого действительного (alpha) верно, что
(sinleft(pi – alpharight) = sinalpha),
(cosleft(pi – alpharight) = -cosalpha).

Следствия

Синусы смежных углов равны.

Косинусы смежных углов противоположны.

Следствия

Тангенсы смежных углов либо противоположны, либо оба не существуют (когда смежные углы равны (90^circ)).

Котангенсы смежных углов либо противоположны, либо оба не существуют (когда один из смежных углов развёрнутый).

Смежные углы. Свойства смежных углов

Определение 1. Смежными называются два угла, у которых одна сторона общая, а другие стороны являются продолжениями друг друга.

На Рис.1 углы AOB и BOC смежные, так как сторона OB общая для этих углов, а стороны OA и OC являются продолжениями друг друга. Поскольку угол AOC является развернутым углом, то сумма смежных углов равна 180°:

Свойства смежных углов

1. Сумма смежных углов равна 180°

2. Если оба смежных угла равны между собой, то они являются прямыми.

3. В паре смежных углов всегда один острый, а другой тупой, или оба угла прямые.

4. Синусы смежных углов равны.

5. Косинусы, тангенсы и котангенсы смежгых углов равны, но имеют противоположный знак.

Справедливость пунктов 2 и 3 очевидны и следуют из (1).

Доказательство пункта 4. Обозначим через α один из смежных углов. Тогда величина другого угла будет равна 180°−α. Но (см. статью Формулы приведения тригонометрических функций онлайн)

То есть синусы смежных углов равны.

Доказательство пункта 5. Обозначим через α один из смежных углов. Тогда величина другого угла будет равна 180°−α. Но

То есть косинусы, тангенсы и котангенсы смежных углов равны, но имеют противоположный знак.

В данной публикации мы рассмотрим, что из себя представляют смежные углы, приведем формулировку теоремы касательно них (в т.ч. следствия из нее), а также перечислим тригонометрические свойства смежных углов.

  • Определение смежных углов

  • Теорема о смежных углах

  • Тригонометрические свойства смежных углов

Определение смежных углов

Два прилежащих угла, внешними сторонами образующие прямую, называется смежными. На рисунке ниже это углы α и β.

Смежные углы

Если два угла имеют одну общую вершину и сторону, они являются прилежащими. При этом внутренние области этих углов не должны пересекаться.

Прилежащие углы

Принцип построения смежного угла

Одну из сторон угла протягиваем через вершину дальше, в результате чего образуется новый угол, смежный с исходным.

Принцип построения смежного угла

Теорема о смежных углах

Сумма градусов смежных углов равняется 180°.

Смежн. угол 1 + Смежн. угол 2 = 180°

Пример 1
Один из смежных углов равняется 92°, чему равен второй?

Решение, согласно рассмотренной выше теореме, очевидно:
Смежн. угол 2 = 180° – Смежн. угол 1 = 180° – 92° = 88°.

Следствия из теоремы:

  • Смежные углы двух равных углов равны между собой.
  • Если угол является смежным с прямым (90°), значит он также равен 90°.
  • Если угол является смежным с острым, значит он больше 90°, т.е. является тупым (и наоборот).

Пример 2
Допустим, у нас есть угол, смежный с 75°. Он должен быть больше 90°. Давайте проверим это.

Воспользовавшись теоремой, находим значение второго угла:
180° – 75° = 105°.

105° > 90°, следовательно угол является тупым.

Тригонометрические свойства смежных углов

Смежные углы

  1. Синусы смежных уголов равны, т.е. sin α = sin β.
  2. Величины косинусов и тангенсов смежных углов равны, но имеют противоположные знаки (кроме неопределенных значений).
    • cos α = -cos β.
    • tg α = -tg β.

Смежные углы и их свойства.

Смежные углы – это два угла, у которых одна сторона общая, а две другие являются дополнительными и лежат на одной прямой.

Смежные углы (понятие и определение)

Свойства смежных углов

Вертикальные углы, прямой угол, развернутый угол, смежные углы, тупой угол

Смежные углы (понятие и определение):

Смежные углы – это два угла, у которых одна сторона общая, а две другие являются дополнительными и лежат на одной прямой. Таким образом, вместе смежные углы составляют развёрнутый угол.

Смежные углы и их свойства

Рис. 1. Смежные углы

α, β – смежные углы

В свою очередь, развернутый угол – это угол, градусная мера которого равна 180°.

Поэтому сумма величин смежных углов составляет 180 градусов.

Из этого следует, что величина угла β, являющимся смежным для угла величиной α градусов, будет (180° – α) градусов.

β = 180 – α .

Свойства смежных углов:

1. Сумма величин смежных углов равна 180 градусам.

2. При пересечении двух прямых образуются две пары смежных углов.

Смежные углы и их свойства

Рис. 2. Смежные углы

α, β; γ, δ – смежные углы,

α = γ; β = δ

3. Угол, смежный с прямым углом, есть прямой угол. Такие углы равны между собой.

Смежные углы и их свойства

Рис. 3. Смежные углы

α = β = 90° 

4. В паре смежных углов один угол всегда тупой, а другой – острый либо оба угла являются прямыми.

5. Синусы смежных углов равны.

sin α = sin β

6. Косинусы и тангенсы смежных углов равны по величине, но имеют противоположные знаки.

cos α = – cos β,

tg α = – tg β

Квадрат

Овал

Остроугольный треугольник

Полукруг

Прямой угол

Прямоугольник

Прямоугольный треугольник

Равнобедренный треугольник

Равносторонний треугольник

Ромб

Смежные углы

Трапеция

Тупой угол

Шестиугольник

Примечание: © Фото https://www.pexels.com, https://pixabay.com

Коэффициент востребованности
2 729

Добавить комментарий