Как найти котангенс дроби

Котангенс угла. Таблица котангенсов.

Котангенс угла через градусы, минуты и секунды

Котангенс угла через десятичную запись угла

Определение котангенса

Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.

tg(α) = cos(α)/sin(α)

сtg(α) = 1/tg(α)

Таблица котангенсов в радианах

ctg(0°) = ∞ctg(π/12) = ctg(15°) = 3.732050808ctg(π/6) = ctg(30°) = 1.732050808ctg(π/4) = ctg(45°) = 1ctg(π/3) = ctg(60°) = 0.577350269ctg(5π/12) = ctg(75°) = 0.2679491924ctg(π/2) = ctg(90°) = 0ctg(7π/12) = ctg(105°) = -0.2679491924ctg(2π/3) = ctg(120°) = -0.577350269ctg(3π/4) = ctg(135°) = -1ctg(5π/6) = ctg(150°) = -1.732050808ctg(11π/12) = ctg(165°) = -3.732050808ctg(π) = ctg(180°) = ∞ctg(13π/12) = ctg(195°) = 3.732050808ctg(7π/6) = ctg(210°) = 1.732050808ctg(5π/4) = ctg(225°) = 1ctg(4π/3) = ctg(240°) = 0.577350269ctg(17π/12) = ctg(255°) = 0.2679491924ctg(3π/2) = ctg(270°) = 0ctg(19π/12) = ctg(285°) = -0.2679491924ctg(5π/3) = ctg(300°) = -0.577350269ctg(7π/4) = ctg(315°) = -1ctg(11π/6) = ctg(330°) = -1.732050808ctg(23π/12) = ctg(345°) = -3.732050808

Таблица Брадиса котангенсы

ctg(0) = ∞ ctg(120) = -0.577350269 ctg(240) = 0.577350269
ctg(1) = 57.28996162 ctg(121) = -0.6008606192 ctg(241) = 0.5543090515
ctg(2) = 28.63625328 ctg(122) = -0.6248693519 ctg(242) = 0.5317094318
ctg(3) = 19.08113669 ctg(123) = -0.6494075931 ctg(243) = 0.5095254494
ctg(4) = 14.30066626 ctg(124) = -0.6745085166 ctg(244) = 0.4877325885
ctg(5) = 11.4300523 ctg(125) = -0.7002075381 ctg(245) = 0.466307658
ctg(6) = 9.514364451 ctg(126) = -0.7265425283 ctg(246) = 0.4452286853
ctg(7) = 8.144346428 ctg(127) = -0.7535540499 ctg(247) = 0.4244748162
ctg(8) = 7.115369723 ctg(128) = -0.7812856266 ctg(248) = 0.4040262259
ctg(9) = 6.313751516 ctg(129) = -0.8097840329 ctg(249) = 0.383864035
ctg(10) = 5.67128182 ctg(130) = -0.8390996309 ctg(250) = 0.3639702343
ctg(11) = 5.144554017 ctg(131) = -0.869286738 ctg(251) = 0.3443276133
ctg(12) = 4.704630109 ctg(132) = -0.9004040442 ctg(252) = 0.3249196963
ctg(13) = 4.331475875 ctg(133) = -0.9325150862 ctg(253) = 0.3057306815
ctg(14) = 4.010780934 ctg(134) = -0.9656887746 ctg(254) = 0.2867453857
ctg(15) = 3.732050808 ctg(135) = -1 ctg(255) = 0.2679491924
ctg(16) = 3.487414443 ctg(136) = -1.035530314 ctg(256) = 0.2493280028
ctg(17) = 3.270852618 ctg(137) = -1.07236871 ctg(257) = 0.2308681911
ctg(18) = 3.077683537 ctg(138) = -1.110612515 ctg(258) = 0.2125565617
ctg(19) = 2.904210878 ctg(139) = -1.150368407 ctg(259) = 0.1943803091
ctg(20) = 2.747477419 ctg(140) = -1.191753593 ctg(260) = 0.1763269807
ctg(21) = 2.605089065 ctg(141) = -1.234897157 ctg(261) = 0.1583844403
ctg(22) = 2.475086854 ctg(142) = -1.279941632 ctg(262) = 0.1405408347
ctg(23) = 2.355852366 ctg(143) = -1.327044822 ctg(263) = 0.1227845609
ctg(24) = 2.246036774 ctg(144) = -1.37638192 ctg(264) = 0.1051042353
ctg(25) = 2.14450692 ctg(145) = -1.428148007 ctg(265) = 0.08748866355
ctg(26) = 2.050303841 ctg(146) = -1.482560969 ctg(266) = 0.06992681193
ctg(27) = 1.962610505 ctg(147) = -1.539864964 ctg(267) = 0.05240777928
ctg(28) = 1.880726465 ctg(148) = -1.600334529 ctg(268) = 0.0349207695
ctg(29) = 1.804047755 ctg(149) = -1.664279482 ctg(269) = 0.01745506493
ctg(30) = 1.732050808 ctg(150) = -1.732050808 ctg(270) = 0
ctg(31) = 1.664279482 ctg(151) = -1.804047755 ctg(271) = -0.01745506493
ctg(32) = 1.600334529 ctg(152) = -1.880726465 ctg(272) = -0.0349207695
ctg(33) = 1.539864964 ctg(153) = -1.962610505 ctg(273) = -0.05240777928
ctg(34) = 1.482560969 ctg(154) = -2.050303841 ctg(274) = -0.06992681193
ctg(35) = 1.428148007 ctg(155) = -2.14450692 ctg(275) = -0.08748866355
ctg(36) = 1.37638192 ctg(156) = -2.246036774 ctg(276) = -0.1051042353
ctg(37) = 1.327044822 ctg(157) = -2.355852366 ctg(277) = -0.1227845609
ctg(38) = 1.279941632 ctg(158) = -2.475086854 ctg(278) = -0.1405408347
ctg(39) = 1.234897157 ctg(159) = -2.605089065 ctg(279) = -0.1583844403
ctg(40) = 1.191753593 ctg(160) = -2.747477419 ctg(280) = -0.1763269807
ctg(41) = 1.150368407 ctg(161) = -2.904210878 ctg(281) = -0.1943803091
ctg(42) = 1.110612515 ctg(162) = -3.077683537 ctg(282) = -0.2125565617
ctg(43) = 1.07236871 ctg(163) = -3.270852618 ctg(283) = -0.2308681911
ctg(44) = 1.035530314 ctg(164) = -3.487414443 ctg(284) = -0.2493280028
ctg(45) = 1 ctg(165) = -3.732050808 ctg(285) = -0.2679491924
ctg(46) = 0.9656887746 ctg(166) = -4.010780934 ctg(286) = -0.2867453857
ctg(47) = 0.9325150862 ctg(167) = -4.331475875 ctg(287) = -0.3057306815
ctg(48) = 0.9004040442 ctg(168) = -4.704630109 ctg(288) = -0.3249196963
ctg(49) = 0.869286738 ctg(169) = -5.144554017 ctg(289) = -0.3443276133
ctg(50) = 0.8390996309 ctg(170) = -5.67128182 ctg(290) = -0.3639702343
ctg(51) = 0.8097840329 ctg(171) = -6.313751516 ctg(291) = -0.383864035
ctg(52) = 0.7812856266 ctg(172) = -7.115369723 ctg(292) = -0.4040262259
ctg(53) = 0.7535540499 ctg(173) = -8.144346428 ctg(293) = -0.4244748162
ctg(54) = 0.7265425283 ctg(174) = -9.514364451 ctg(294) = -0.4452286853
ctg(55) = 0.7002075381 ctg(175) = -11.4300523 ctg(295) = -0.466307658
ctg(56) = 0.6745085166 ctg(176) = -14.30066626 ctg(296) = -0.4877325885
ctg(57) = 0.6494075931 ctg(177) = -19.08113669 ctg(297) = -0.5095254494
ctg(58) = 0.6248693519 ctg(178) = -28.63625328 ctg(298) = -0.5317094318
ctg(59) = 0.6008606192 ctg(179) = -57.28996162 ctg(299) = -0.5543090515
ctg(60) = 0.577350269 ctg(180) = ∞ ctg(300) = -0.577350269
ctg(61) = 0.5543090515 ctg(181) = 57.28996162 ctg(301) = -0.6008606192
ctg(62) = 0.5317094318 ctg(182) = 28.63625328 ctg(302) = -0.6248693519
ctg(63) = 0.5095254494 ctg(183) = 19.08113669 ctg(303) = -0.6494075931
ctg(64) = 0.4877325885 ctg(184) = 14.30066626 ctg(304) = -0.6745085166
ctg(65) = 0.466307658 ctg(185) = 11.4300523 ctg(305) = -0.7002075381
ctg(66) = 0.4452286853 ctg(186) = 9.514364451 ctg(306) = -0.7265425283
ctg(67) = 0.4244748162 ctg(187) = 8.144346428 ctg(307) = -0.7535540499
ctg(68) = 0.4040262259 ctg(188) = 7.115369723 ctg(308) = -0.7812856266
ctg(69) = 0.383864035 ctg(189) = 6.313751516 ctg(309) = -0.8097840329
ctg(70) = 0.3639702343 ctg(190) = 5.67128182 ctg(310) = -0.8390996309
ctg(71) = 0.3443276133 ctg(191) = 5.144554017 ctg(311) = -0.869286738
ctg(72) = 0.3249196963 ctg(192) = 4.704630109 ctg(312) = -0.9004040442
ctg(73) = 0.3057306815 ctg(193) = 4.331475875 ctg(313) = -0.9325150862
ctg(74) = 0.2867453857 ctg(194) = 4.010780934 ctg(314) = -0.9656887746
ctg(75) = 0.2679491924 ctg(195) = 3.732050808 ctg(315) = -1
ctg(76) = 0.2493280028 ctg(196) = 3.487414443 ctg(316) = -1.035530314
ctg(77) = 0.2308681911 ctg(197) = 3.270852618 ctg(317) = -1.07236871
ctg(78) = 0.2125565617 ctg(198) = 3.077683537 ctg(318) = -1.110612515
ctg(79) = 0.1943803091 ctg(199) = 2.904210878 ctg(319) = -1.150368407
ctg(80) = 0.1763269807 ctg(200) = 2.747477419 ctg(320) = -1.191753593
ctg(81) = 0.1583844403 ctg(201) = 2.605089065 ctg(321) = -1.234897157
ctg(82) = 0.1405408347 ctg(202) = 2.475086854 ctg(322) = -1.279941632
ctg(83) = 0.1227845609 ctg(203) = 2.355852366 ctg(323) = -1.327044822
ctg(84) = 0.1051042353 ctg(204) = 2.246036774 ctg(324) = -1.37638192
ctg(85) = 0.08748866355 ctg(205) = 2.14450692 ctg(325) = -1.428148007
ctg(86) = 0.06992681193 ctg(206) = 2.050303841 ctg(326) = -1.482560969
ctg(87) = 0.05240777928 ctg(207) = 1.962610505 ctg(327) = -1.539864964
ctg(88) = 0.0349207695 ctg(208) = 1.880726465 ctg(328) = -1.600334529
ctg(89) = 0.01745506493 ctg(209) = 1.804047755 ctg(329) = -1.664279482
ctg(90) = 0 ctg(210) = 1.732050808 ctg(330) = -1.732050808
ctg(91) = -0.01745506493 ctg(211) = 1.664279482 ctg(331) = -1.804047755
ctg(92) = -0.0349207695 ctg(212) = 1.600334529 ctg(332) = -1.880726465
ctg(93) = -0.05240777928 ctg(213) = 1.539864964 ctg(333) = -1.962610505
ctg(94) = -0.06992681193 ctg(214) = 1.482560969 ctg(334) = -2.050303841
ctg(95) = -0.08748866355 ctg(215) = 1.428148007 ctg(335) = -2.14450692
ctg(96) = -0.1051042353 ctg(216) = 1.37638192 ctg(336) = -2.246036774
ctg(97) = -0.1227845609 ctg(217) = 1.327044822 ctg(337) = -2.355852366
ctg(98) = -0.1405408347 ctg(218) = 1.279941632 ctg(338) = -2.475086854
ctg(99) = -0.1583844403 ctg(219) = 1.234897157 ctg(339) = -2.605089065
ctg(100) = -0.1763269807 ctg(220) = 1.191753593 ctg(340) = -2.747477419
ctg(101) = -0.1943803091 ctg(221) = 1.150368407 ctg(341) = -2.904210878
ctg(102) = -0.2125565617 ctg(222) = 1.110612515 ctg(342) = -3.077683537
ctg(103) = -0.2308681911 ctg(223) = 1.07236871 ctg(343) = -3.270852618
ctg(104) = -0.2493280028 ctg(224) = 1.035530314 ctg(344) = -3.487414443
ctg(105) = -0.2679491924 ctg(225) = 1 ctg(345) = -3.732050808
ctg(106) = -0.2867453857 ctg(226) = 0.9656887746 ctg(346) = -4.010780934
ctg(107) = -0.3057306815 ctg(227) = 0.9325150862 ctg(347) = -4.331475875
ctg(108) = -0.3249196963 ctg(228) = 0.9004040442 ctg(348) = -4.704630109
ctg(109) = -0.3443276133 ctg(229) = 0.869286738 ctg(349) = -5.144554017
ctg(110) = -0.3639702343 ctg(230) = 0.8390996309 ctg(350) = -5.67128182
ctg(111) = -0.383864035 ctg(231) = 0.8097840329 ctg(351) = -6.313751516
ctg(112) = -0.4040262259 ctg(232) = 0.7812856266 ctg(352) = -7.115369723
ctg(113) = -0.4244748162 ctg(233) = 0.7535540499 ctg(353) = -8.144346428
ctg(114) = -0.4452286853 ctg(234) = 0.7265425283 ctg(354) = -9.514364451
ctg(115) = -0.466307658 ctg(235) = 0.7002075381 ctg(355) = -11.4300523
ctg(116) = -0.4877325885 ctg(236) = 0.6745085166 ctg(356) = -14.30066626
ctg(117) = -0.5095254494 ctg(237) = 0.6494075931 ctg(357) = -19.08113669
ctg(118) = -0.5317094318 ctg(238) = 0.6248693519 ctg(358) = -28.63625328
ctg(119) = -0.5543090515 ctg(239) = 0.6008606192 ctg(359) = -57.28996162

Похожие калькуляторы

В статье мы рассмотрим, как найти значения:

(tg, frac{π}{3}),       (ctg, (-frac{7π}{3})),     (tg ,0),     (ctg, frac{5π}{6}⁡)

и других тангенсов и котангенсов без тригонометрической таблицы.

Есть два способа вычислять тангенсы и котангенсы. Первый – через синусы и косинусы, второй – через оси тангенсов и котангенсов. Первый способ проще в освоении, второй – быстрее в применении.

Но в любом случае вам нужно уметь уверенно расставлять числа с пи на тригонометрическом круге и откладывать углы.

Способ 1 – вычисление тангенсов и котангенсов через синусы и косинусы

Конечно, этот способ подразумевает, что вы уже умеете вычислять синус и косинус. Не умеете? Тогда бегом читать эту статью, и эту тоже.

Уже умеете? Тогда ловите два определения:

– тангенс равен отношению синуса к косинусу числа.

(tg ,t=)(frac{sin⁡,t}{cos,⁡t})

– котангенс равен отношению косинуса к синусу числа.

(ctg ,t=)(frac{cos⁡,t}{sin,⁡t})

Пример. Вычислите (tg, frac{π}{3}) и (ctg, frac{π}{3}).
Решение:

Ищем сначала (frac{π}{3}), а после вычисляем (sin,⁡frac{π}{3}) и (cos⁡,frac{π}{3}).

пи на 3

(sin⁡, frac{π}{3}=frac{sqrt{3}}{2});      (cos⁡, frac{π}{3}=frac{1}{2});
(tg , frac{π}{3}=) (frac{frac{sqrt{3}}{2}}{frac{1}{2}})(=frac{sqrt{3}}{2}:frac{1}{2}=frac{sqrt{3}}{2}cdot frac{2}{1}=sqrt{3}).
(ctg,frac{π}{3}=)(frac{frac{1}{2}}{frac{sqrt{3}}{2}})(=frac{1}{2}:frac{sqrt{3}}{2}=frac{1}{2}cdotfrac{2}{sqrt{3}}=frac{1}{sqrt{3}}).

Пример. Вычислите (tg, frac{5π}{6}) и (ctg, frac{5π}{6}).
Решение:

Найдем сначала (frac{5π}{6}) на круге: (frac{5π}{6}=frac{6π}{6}-frac{π}{6}=π-frac{π}{6}).

5 пи на 6

(ctg, frac{5π}{6}=)(frac{cos⁡ frac{5π}{6}}{sin⁡frac{5π}{6}})(=-frac{sqrt{3}}{2}:frac{1}{2}=-frac{sqrt{3}}{2} cdot frac{2}{1}=-sqrt{3});
(tg,frac{5π}{6}=)(frac{sin⁡frac{5π}{6}}{cos⁡frac{5π}{6}})(=frac{1}{2}:(-frac{sqrt{3}}{2})=frac{1}{2}cdot(-frac{2}{sqrt{3}})=-frac{1}{sqrt{3}}).

Пример. Вычислите (tg, 0) и (ctg, 0).
Решение:

определение тангенса и котангенса 3.png

(0) на тригонометрическом круге совпадает с (1) на оси косинусов, значит (cos⁡,0=1).
Если из точки (0) на тригонометрическом круге провести перпендикуляр (красная пунктирная линия) к оси синусов, то мы попадем в (0), получается (sin,⁡0=0). Следовательно: (tg, 0=)(frac{sin,⁡0}{cos⁡,0}) (=frac{0}{1}=0).

С котангенсом интереснее: (ctg, 0=)(frac{cos,⁡0}{sin⁡,0}) (=frac{1}{0}=???). На ноль делить нельзя – это железное правило математики. Поэтому и посчитать такой котангенс не получится. (ctg,⁡0) – не вычислим в принципе.

Пример. Вычислите (tg,120^°) и (ctg, 120^°).
Решение:

тангенс и котангенс 120 градусов

(ctg,120^°=)(frac{cos⁡,120^°}{sin,120^°})(=-frac{1}{2}:frac{sqrt{3}}{2}=-frac{1}{2}cdotfrac{2}{sqrt{3}}=-frac{1}{sqrt{3}});
(tg,120^°=)(frac{sin⁡,120^° }{cos⁡,120^°})(=frac{sqrt{3}}{2}:(-frac{1}{2})=frac{sqrt{3}}{2}cdot(-frac{2}{1})=-sqrt{3}).

Способ 2 – вычисление тангенсов и котангенсов с использованием осей

Прямая, проходящая через начало отсчета тригонометрического круга и параллельная оси синусов (ось (y)), называется осью тангенсов. Направление оси тангенсов и оси синусов совпадает.

Прямая проходящая через (frac{π}{2}) ((90^°)) тригонометрического круга и параллельная оси косинусов (ось (x)) называется осью котангенсов. Направление оси котангенсов и оси косинусов совпадает.

оси тангенсов и котангенсов

Ось тангенсов – сдвинутая копия оси синусов, ось котангенсов – копия оси косинусов. Единицы на осях котангенсов и тангенсов совпадают.

Чтобы определить тангенс и котангенс с помощью тригонометрического круга, нужно:
1) Начертить тригонометрический круг и оси тангенсов и котангенсов;
2) Отметить аргумент тангенса или котангенса на тригонометрическом круге;
3) Соединить прямой эту точку, соответствующую аргументу и начало координат;
4) Продлить прямую до осей и найти координаты пересечения, как показано на картинке ниже:

определение тангенса и котангенса черз оси

О том, как просто запомнить где какое значение стоит на осях, можно прочитать в статье «Как запомнить тригонометрический круг».

Пример. Вычислите (tg, frac{π}{4}) и (ctg, frac{π}{4}).
Решение:

1) Строим круг, оси и отмечаем аргумент на окружности;

пи на 4 на тригонометрическом круге

2) Соединяем точку, соответствующую аргументу, и начало координат;

соединяем найденную точку и центр круга

3) Продляем до осей;

продление пунктира до осей тангенса и котангенса

И на оси тангенсов, и на оси котангенсов мы пришли в единицу, поэтому (tg, frac{π}{4}=1) и (ctg, frac{π}{4}=1).

Пример. Вычислите (tg, frac{2π}{3}) и (ctg, frac{2π}{3}).
Решение: (frac{2π}{3}=frac{3π}{3}-frac{π}{3}=π-frac{π}{3})

 2 пи на 3 на тригонометрическом круге 2π/3 ищем тангенс и котангенс 2π/3 находим с помощью осей тангенс и котангенс

(ctg ,frac{2π}{3}=-frac{1}{sqrt{3}});     (tg,frac{2π}{3}=-sqrt{3}).

Пример. Найдите значения выражений (tg,(-30^°)) и (ctg,(-30^°)).
Решение:

откладываем -30 градусов на круге точка -30 градусов на круге определяем тангенс и котангенс -30 градусов

Понятно, что во время ЕГЭ такой красивой картинки не будет, но она и не нужна. Если вы будете знать, как правильно расставлять значения на тригонометрическом круге и будете помнить расположение чисел на осях, то вам будет достаточно нарисованного от руки круга.

Пример (ЕГЭ). Найдите значение выражения (2sqrt{3} tg,(-300^°)).
Решение: (-300^°=-360^°+60^°).

вычисляем тангенс и котангенс -300 градусов

(2sqrt{3}tg(-300^° )=2sqrt{3}cdotsqrt{3}=2cdot 3=6).
Ответ: (6).

Смотрите также:
Как найти синус и косинус без тригонометрической таблицы? 
Из градусов в радианы и наборот
Тригонометрическая таблица с кругом
Почему в тригонометрической таблице такие числа?

Для тех кто хочет закрепить знания:
Задание на вычисление синусов, косинусов, тангенсов и котангенсов

В прямоугольном треугольнике всегда заданы три стороны, из которых две, именуемые катетами, образуют прямой угол в 90°, а третья сторона – гипотенуза, их соединяет. Все тригонометрические отношения в таком треугольнике строятся на делении одной стороны на другую, и так как катетов два, то используемый в формуле катет может быть либо противолежащим – находящимся напротив угла α, и не имеющий с ним общих точек, либо прилежащим – являющимся непосредственно стороной угла α, и выходящим из него. Так как отношением противолежащего катета к прилежащему является тангенс, то другим отношением катетов будет котангенс, где в числителе дроби находится прилежащий катет (как и в косинусе), а в знаменателе противолежащий
.

В отличие от тандема синус-косинус, которые оба отталкиваются от гипотенузы в знаменателе, тангенс и котангенс используют в формулах исключительно катеты в разном порядке. Таким образом, мы получаем не только два разных отношения, соответствующих всем законам тригонометрии, но и два отношения, являющихся обратными друг и другу и взаимно конвертируемыми
.

Стороны и угол ctg  прямоугольного треугольника

Свойства

Котангенс угла ctg(α) — есть отношение прилежащего катета b к противолежащему катету a.

Таблица котангенсов

Котангенс угла градусов   ∞  
Котангенс угла 30° градусов   √3   1.732
Котангенс угла 45° градусов   1   1.000
Котангенс угла 60° градусов   1/√3   0.577
Котангенс угла 90° градусов   0   0.000

Что такое котангенс угла

Пусть задан прямоугольный треугольник ABC с острым углом α, тогда котангенсом угла α будет отношение прилежащего катета к противолежащему ctg α = AB/BC.

Котангенс угла можно определить как отношение косинуса угла к синусу данного угла

ctg = cos α / sin α

Котангенс угла

Так же для определения котангенса угла можно воспользоваться окружностью, построенной в декартовой системе координат, радиуса R и центром в начале координат O.
На окружности отметим точку P с координатами (1;0), теперь повернем луч OP на некоторый угол α. Направление против часовой стрелки считается положительным, по часовой стрелки – отрицательным.
Котангенсом угла α будет отношение абсциссы точки XP к ординате точки YP.
ctg α = XP/YP.

Котангенс угла

Для вычисления котангенса угла, можно также воспользоваться осью котангенсов. Определим окружность радиуса R как единичную с центром в начале координат O.
Параллельно оси x, на расстоянии равном радиусу окружности расположим прямую y=1. На окружности отметим точку P с координатами (1;0), теперь повернем луч OP на некоторый угол α и продолжим луч OP до
пересечения с прямой y=1. Котангенсу угла α будет соответствовать значение в точке B.

Котангенс угла

Определение котангенса угла

Котангенс является обратно пропорциональной величиной к тангенсу. То есть, это отношение прилежащего катета к противолежащему.

Для простоты запоминания можно дать такое определение: котангенс угла — это отношение ближнего от рассматриваемого угла катета к дальнему катету.

1.png

В случае с рисунком, описанным выше: ctg⁡α=bactgalpha=frac{b}{a}

ctg⁡α=cos⁡αsin⁡αctgalpha=frac{cosalpha}{sinalpha}

Задача 1

Пусть в прямоугольном треугольнике синус угла равен 0.200.20, а косинус этого угла равен 0.980.98. Найдите котангенс данного по условию угла.

Решение

sin⁡α=0.20sinalpha=0.20
cos⁡α=0.98cosalpha=0.98

ctg⁡α=cos⁡αsin⁡α=0.980.20=4.9ctgalpha=frac{cosalpha}{sinalpha}=frac{0.98}{0.20}=4.9

Ответ

4.94.9

После того, как мы изучили и тангенс, и котангенс, можно рассмотреть еще одно тождество:

Связь тангенса с котангенсом

tg⁡α⋅ctg⁡α=1tgalphacdotctgalpha=1

Вывод его прост:

tg⁡α⋅ctg⁡α=sin⁡αcos⁡α⋅cos⁡αsin⁡α=1tgalphacdotctgalpha=frac{sinalpha}{cosalpha}cdotfrac{cosalpha}{sinalpha}=1

Благодаря ему можно быстро и без каких-либо трудностей вычислять одну из этих величин.

Задача 2

Каков тангенс угла, если его котангенс равен 4.54.5?

Решение

ctg⁡α=4.5ctgalpha=4.5

tg⁡α⋅ctg⁡α=1tgalphacdotctgalpha=1

tg⁡α⋅4.5=1tgalphacdot4.5=1

tg⁡α=14.5tgalpha=frac{1}{4.5}

tg⁡α≈0.22tgalphaapprox0.22

Ответ

0.220.22

Еще одно тождество помогает решить задачи, связанные с котангенсом:

1+ctg⁡2α=1sin⁡2α1+ctg^2alpha=frac{1}{sin^2alpha}

Оно появляется путем деление каждого слагаемого основного тождества тригонометрии на квадрат синуса.

Задача 3

Найдите котангенс угла, если квадрат его синуса равен 0.490.49.

Решение

sin⁡2α=0.49sin^2alpha=0.49

1+ctg⁡2α=1sin⁡2α1+ctg^2alpha=frac{1}{sin^2alpha}

1+ctg⁡2α=10.491+ctg^2alpha=frac{1}{0.49}

1+ctg⁡2α≈2.041+ctg^2alphaapprox2.04

ctg⁡2α≈1.04ctg^2alphaapprox1.04

ctg⁡α≈1.02ctgalphaapprox1.02

Ответ

1.021.02

Решение задач по математике недорого от экспертов биржи!

Тест по теме «Вычисление котангенса»

Добавить комментарий