Как найти ковариацию двумерной случайной величины

Двумерной называют случайную величину

, возможные значения
которой есть пары чисел

. Составляющие

 и

, рассматриваемые
одновременно, образуют систему двух случайных величин. Двумерную величину
геометрически можно истолковать как случайную точку

 на плоскости

 либо как случайный вектор

.

Дискретной называют двумерную величину, составляющие которой дискретны.

Закон распределения дискретной двумерной СВ.
Безусловные и условные законы распределения составляющих

Законом распределения вероятностей двумерной случайной величины называют соответствие
между возможными значениями и их вероятностями.

Закон
распределения дискретной двумерной случайной величины может быть задан:

а) в
виде таблицы с двойными входом, содержащей возможные значения и их вероятности;

б) аналитически, например в виде функции распределения.

Зная
закон распределения двумерной дискретной случайной величины, можно найти законы
каждой из составляющих. В общем случае, для того чтобы найти вероятность

, надо просуммировать
вероятности столбца

. Аналогично сложив
вероятности строки

 получим вероятность

.

Пусть
составляющие

 и

 дискретны и имеют соответственно следующие
возможные значения:

.

Условным распределением составляющей

 при

 (j сохраняет одно и то же
значение при всех возможных значениях

) называют совокупность
условных вероятностей:

Аналогично
определяется условное распределение

.

Условные
вероятности составляющих

 и

 вычисляют соответственно по формулам:

Для
контроля вычислений целесообразно убедиться, что сумма вероятностей условного
распределения равна единице.

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Ковариация (корреляционный момент)

Ковариация двух случайных величин характеризует степень зависимости случайных величин, так
и их рассеяние вокруг точки

.

Ковариацию
(корреляционный момент) можно найти по формуле:

Свойства ковариации

Свойство 1.

Ковариация двух независимых случайных величин равна нулю.

Свойство 2.

Ковариация двух случайных величин равна математическому ожиданию их
произведение математических ожиданий.

Свойство 3.

Ковариация двухмерной случайной величины по абсолютной случайной величине не
превосходит среднеквадратических отклонений своих компонентов.

Коэффициент корреляции

Коэффициент корреляции – отношение ковариации двухмерной случайной
величины к произведению среднеквадратических отклонений.

Формула коэффициента корреляции:

Две
случайные величины

 и

 называют коррелированными, если их коэффициент
корреляции отличен от нуля.

 и

 называют некоррелированными величинами, если
их коэффициент корреляции равен нулю

Свойства коэффициента корреляции

Свойство 1.

Коэффициент корреляции двух независимых случайных величин равен нулю. Отметим,
что обратное утверждение неверно.

Свойство 2.

Коэффициент корреляции двух случайных величин не превосходит по абсолютной
величине единицы.

Свойство 3.

Коэффициент корреляции двух случайных величин равен по модулю единице тогда и
только тогда, когда между величинами существует линейная функциональная
зависимость.

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Линейная регрессия

Рассмотрим
двумерную случайную величину

, где

 и

 – зависимые случайные величины. Представим
одну из величины как функцию другой. Ограничимся приближенным представлением
величины

 в виде линейной функции величины

:

где

 и

 – параметры, подлежащие определению. Это можно
сделать различными способами и наиболее употребительный из них – метод
наименьших квадратов.

Линейная
средняя квадратическая регрессия

 на

 имеет вид:

Коэффициент

называют
коэффициентом регрессии

 на

, а прямую

называют
прямой среднеквадратической регрессии

 на

.

Аналогично
можно получить прямую среднеквадратической регрессии

 на

:

Смежные темы решебника:

  • Двумерная непрерывная случайная величина
  • Линейный выборочный коэффициент корреляции
  • Парная линейная регрессия и метод наименьших квадратов

Задача 1

Закон
распределения дискретной двумерной случайной величины (X,Y) задан таблицей.

Требуется:


определить одномерные законы распределения случайных величин X и Y;

– найти
условные плотности распределения вероятностей величин;


вычислить математические ожидания mx и my;


вычислить дисперсии σx и σy;


вычислить ковариацию μxy;


вычислить коэффициент корреляции rxy.

xy 3 5 8 10 12
-1 0.04 0.04 0.03 0.03 0.01
1 0.04 0.07 0.06 0.05 0.03
3 0.05 0.08 0.09 0.08 0.05
6 0.03 0.04 0.04 0.06 0.08

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Задача 2

Задана
дискретная двумерная случайная величина (X,Y).

а) найти
безусловные законы распределения составляющих; б) построить регрессию случайной
величины Y на X;  в) построить регрессию случайной величины X на Y;  г) найти коэффициент ковариации; д) найти
коэффициент корреляции.

Y X
1 2 3 4 5
30 0.05 0.03 0.02 0.01 0.01
40 0.03 0.02 0.02 0.04 0.01
50 0.05 0.03 0.02 0.02 0.01
70 0.1 0.03 0.04 0.03 0.01
90 0.1 0.04 0.01 0.07 0.2

Задача 3

Двумерная случайная величина (X,Y) задана
таблицей распределения. Найти законы распределения X и Y, условные
законы, регрессию и линейную регрессию Y на X.

                             x
y
1 2 3
1.5 0.03 0.02 0.02
2.9 0.06 0.13 0.03
4.1 0.4 0.07 0.02
5.6 0.15 0.06 0.01

Задача 4

Двумерная
случайная величина (X,Y) распределена по закону

XY 1 2
-3 0,1 0,2
0 0,2 0,3
-3 0 0,2

Найти
законы распределения случайных величины X и Y, условный закон
распределения Y при X=0 и вычислить ковариацию.
Исследовать зависимость случайной величины X и Y.


Задача 5

Случайные
величины ξ и η имеют следующий совместный закон распределения:

P(ξ=1,η=1)=0.14

P(ξ=1,η=2)=0.18

P(ξ=1,η=3)=0.16

P(ξ=2,η=1)=0.11

P(ξ=2,η=2)=0.2

P(ξ=2,η=3)=0.21

1)
Выписать одномерные законы распределения случайных величин ξ и η, вычислить
математические ожидания Mξ, Mη и дисперсии Dξ, Dη.

2) Найти
ковариацию cov(ξ,η) и коэффициент корреляции ρ(ξ,η).

3)
Выяснить, зависимы или нет события {η=1} и {ξ≥η}

4)
Составить условный закон распределения случайной величины γ=(ξ|η≥2) и найти Mγ и
Dγ.


Задача 6

Дан закон
распределения двумерной случайной величины (ξ,η):

  ξ=-1 ξ=0 ξ=2
η=1 0,1 0,1 0,1
η=2 0,1 0,2 0,1
η=3 0,1 0,1 0,1

1) Выписать одномерные законы
распределения случайных величин ξ и η, вычислить математические ожидания Mξ,
Mη и дисперсии Dξ, Dη

2) Найти ковариацию cov(ξ,η) и
коэффициент корреляции ρ(ξ,η).

3) Являются ли случайные события |ξ>0|
и |η> ξ | зависимыми?

4) Составить условный закон
распределения случайной величины γ=(ξ|η>0) и найти Mγ  и Dγ.


Задача 7

Дано
распределение случайного вектора (X,Y). Найти ковариацию X и Y.

XY 1 2 4
-2 0,25 0 0,25
1 0 0,25 0
3 0 0,25 0

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Задача 8

Случайные
приращения цен акций двух компаний за день имеют совместное распределение,
заданное таблицей. Найти ковариацию этих случайных величин.

YX -1 1
-1 0,4 0,1
1 0,2 0,3

Задача 9

Найдите
ковариацию Cov(X,Y) для случайного дискретного вектора (X,Y),
распределенного по закону:

  X=-3 X=0 X=1
Y=-2 0,3 ? 0,1
Y=1 0,1 0,1 0,2

Задача 10

Совместный
закон распределения пары

 задан таблицей:

xh -1 0 1
-1 1/12 1/4 1/6
1 1/4 1/12 1/6

Найти
закон распределения вероятностей случайной величины xh и вычислить cov(2x-3h,x+2h).
Исследовать вопрос о зависимости случайных величин x и h.


Задача 11

Составить двумерный закон распределения случайной
величины (X,Y), если известны законы независимых составляющих. Чему равен коэффициент
корреляции rxy?

X 20 25 30 35
P 0.1 0.1 0.4 0.4

и


Задача 12

Задано
распределение вероятностей дискретной двумерной случайной величины (X,Y):

XY 0 1 2
-1 ? 0,1 0,2
1 0,1 0,2 0,3

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Задача 13

Совместное
распределение двух дискретных случайных величин ξ и η задано таблицей:

ξη -1 1 2
0 1/7 2/7 1/7
1 1/7 1/7 1/7

Вычислить
ковариацию cov(ξ-η,η+5ξ). Зависимы ли ξ и η?


Задача 14

Рассчитать
коэффициенты ковариации и корреляции на основе заданного закона распределения
двумерной случайной величины и сделать выводы о тесноте связи между X и Y.

XY 2,3 2,9 3,1 3,4
0,2 0,15 0,15 0 0
2,8 0 0,25 0,05 0,01
3,3 0 0,09 0,2 0,1

Задача 15

Задан
закон распределения случайного вектора (ξ,η). Найдите ковариацию (ξ,η)
и коэффициент корреляции случайных величин.

xy 1 4
-10 0,1 0,2
0 0,3 0,1
20 0,2 0,1

Задача 16

Для
случайных величин, совместное распределение которых задано таблицей
распределения. Найти:

а) законы
распределения ее компонент и их числовые характеристики;

b) условные законы распределения СВ X при условии Y=b и СВ Y при
условии X=a, где a и b – наименьшие значения X и Y.

с)
ковариацию и коэффициент корреляции случайных величин X и Y;

d) составить матрицу ковариаций и матрицу корреляций;

e) вероятность попадания в область, ограниченную линиями y=16-x2 и y=0.

f) установить, являются ли случайные величины X и Y зависимыми;
коррелированными.

XY -1 0 1 2
-1 0 1/6 0 1/12
0 1/18 1/9 1/12 1/9
2 1/6 0 1/9 1/9

Задача 17

Совместный
закон распределения случайных величин X и Y задан таблицей:

XY

0

1

3

0

0,15

0,05

0,3

-1

0

0,15

0,1

-2

0,15

0

0,1

Найдите:

а) закон
распределения случайной величины X и закон распределения
случайной величины Y;

б) EX, EY, DX, DY, cov(2X+3Y, X-Y), а
также математическое ожидание и дисперсию случайной величины V=6X-8Y+3.


Задача 18

Известен
закон распределения двумерной случайной величины (X,Y).

а) найти
законы распределения составляющих и их числовые характеристики (M[X],D[X],M[Y],D[Y]);

б)
составить условные законы распределения составляющих и вычислить
соответствующие мат. ожидания;

в)
построить поле распределения и линию регрессии Y по X и X по Y;

г)
вычислить корреляционный момент (коэффициент ковариации) μxy и
коэффициент корреляции rxy.

5 20 35
100 0.05
115 0.2 0.15
130 0.15 0.35
145 0.1 —-
  1. Ковариация и коэффициент корреляции случайных величин. Связь между екоррелированностью и независимостью случай­ных величин.

Пусть имеется
двумерная СВ (Х,Y),
распределение которой известно, т.е.
известна табл. 5.1 или совместная плотность
вероятности
.
Тогда можно найти математические
ожидания М(Х) = ах,
М(Y)
= ау
и дисперсии
иодномерных составляющих Х иY.
Однако математические ожидания и
дисперсии случайных величин Х и Y
недостаточно полно характеризуют
двумерную случайную величину (Х,Y),
т.к. не выражают степени зависимости ее
составляющих Х и Y
эту роль выполняют ковариация
и коэффициент
корреляции
.

Определение.
Ковариацией
(или корреляционным
моментом
)
Кху
случайных величин Х и Y
называется математическое ожидание
произведения отклонений этих величин
от своих математических ожиданий, т.е.

,
Или
,

Где
,.

Из определения
следует, что
.
Кроме того,.

т.е. ковариация СВ
с самой собой есть ее дисперсия.

Для
дискретных случайных величин
:
.

Для
непрерывных случайных величин
:
.

Ковариация двух
случайных величин характеризует как
степень
зависимости

случайных величин, так и их рассеяние
вокруг точки
.
Об этом, в частности, свидетельствуютсвойства
ковариации случайных величин
.

  1. Ковариация двух
    независимых случайных величин равна
    нулю.

  2. Ковариация двух
    случайных величин равна математическому
    ожиданию их произведения минус
    произведение математических ожиданий,
    т.е.
    ,
    или.

  3. Ковариация двух
    случайных величин по абсолютной величине
    не превосходит произведения их средних
    квадратических отклонений, т.е.
    .

Ковариация, как
уже отмечено, характеризует не только
степень зависимости двух случайных
величин, но и их разброс, рассеяние.
Кроме того, она – величина размерная, ее
размерность определяется произведением
размерностей случайных величин. Это
затрудняет использование ковариации
для оценки степени зависимости для
различных случайных величин. Этих
недостатков лишен коэффициент корреляции.

Определение.
Коэффициентом
корреляции

двух случайных величин называется
отношение их ковариации к произведению
средних квадратических отклонений этих
величин:

.

Из определения
следует, что
.
Очевидно также, что коэффициент корреляции
естьбезразмерная
величина
.

Свойства
коэффициента корреляции:

  1. Коэффициент
    корреляции принимает значения на
    отрезке [-1;1], т.е.
    .

  2. Если случайные
    величины независимы, то их коэффициент
    корреляции равен нулю, т.е.
    .

Случайные величины
называются некоррелированными,
если их коэффициент корреляции равен
нулю. Т.о., из независимости случайных
величин следует их некоррелированность.
Обратное утверждение, вообще говоря,
неверно: из некоррелированности двух
случайных величин еще не следует их
независимость.

  1. Если коэффициент
    корреляции двух случайных величин
    равен (по абсолютной величине) единице,
    то между этими случайными величинами
    существует линейная функциональная
    зависимость.

  1. Понятие о двумерном нормальном законе распределения. Условные математические ожидания и дисперсии.

Определение.
Случайная величина (Х,Y)
называется распределенной по двумерному
нормальному закону, если ее совместная
плотность имеет вид:

Где

Из определения
следует, что двумерный нормальный закон
распределения определяется пятью
параметрами:
.

и
аналогично
.;

и аналогично
.;

.

Т.о., параметры
ивыражают математические ожидания
случайных величин Х иY,
параметры
и– их дисперсии, а– коэффициент корреляции между случайными
величинами Х иY.

Нетрудно убедиться
в том, что каждый из условных законов
распределения случайных величин Х и Y
является нормальным с условным
математическим ожиданием и условной
дисперсией, определяемыми по формулам:

,
,

,
.

Теорема.
Если две нормально распределенные
случайные величины Х и Y
некоррелированы, то они независимы.

Т.о., для нормально
распределенных случайных величин
термины «некоррелированность» и
«независимость» равносильны.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Двумерная непрерывная случайная величина

Ранее мы разобрали примеры решений задач для одномерной непрерывной случайной величины. Перейдем к более сложному случаю – двумерной непрерывной случайной величине $(X,Y)$ (или двумерному вектору). Кратко выпишем основы теории.

Спасибо за ваши закладки и рекомендации

Система непрерывных случайных величин: теория

Двумерная непрерывная СВ задается своей функцией распределения $F(x,y)=P(Xlt x, Ylt y)$, свойства которой аналогичны свойствам одномерной ФР. Эта функция должна быть непрерывна, дифференцируема и иметь вторую смешанную производную, которая будет как раз плотностью распределения вероятностей системы непрерывных случайных величин:

$$
f(x,y)= frac{partial ^2}{partial x partial y} F(x,y)
$$

Зная плотность совместного распределения, можно найти одномерные плотности для $X$ и $Y$:

$$
f(x)= int_{-infty}^{infty} f(x,y) dy, quad f(y)= int_{-infty}^{infty} f(x,y) dx.
$$

Вероятность попадания случайного вектора в прямоугольную область можно вычислить как двойной интеграл от плотности (по этой области) или через функцию распределения:

$$P(x_1 le X le x_2, y_1 le Y le y_2) = F(x_2, y_2)-F(x_1, y_2)-F(x_2, y_1)+F(x_1, y_1).$$

Как и для случая дискретных двумерных СВ вводится понятие условного закона распределения, плотности которых можно найти так:

$$
f(x|y)=f_y(x)= frac{f(x,y)}{f(y)}, quad f(y|x)=f_x(y)= frac{f(x,y)}{f(x)} $$

Если для всех значений $(x,y)$ выполняется равенство

$$f(x,y) =f(x)cdot f(y),$$

то случайные величины $X, Y$ называются независимыми (их условные плотности распределения совпадают с безусловными). Для независимых случайных величин выполняется аналогичное равенство для функций распределений:

$$F(x,y) =F(x)cdot F(y).$$

Для случайных величин $X,Y$, входящих в состав случайного вектора, можно вычислить ковариацию и коэффициент корреляции по формулам:

$$
cov (X,Y)=M(XY)-M(X)M(Y)= int_{-infty}^{infty}int_{-infty}^{infty} (x-M(X))(y-M(Y)) f(x,y) dxdy, \
r_{XY} = frac{cov(X,Y)}{sqrt{D(X)D(Y)}}.
$$

В этом разделе мы приведем примеры задач с полным решением, где используются непрерывные двумерные случайные величины (системы случайных величин).

Примеры решений

Задача 1. Дана плотность распределения вероятностей системы
$$
f(x)=
left{
begin{array}{l}
C, mbox{ в треугольнике} O(0,0), A(4,0), B(4,1)\
0, mbox{ в остальных точках} \
end{array}
right.
$$
Найти:
$C, rho_1(x), rho_2(y), m_x, m_y, D_x, D_y, cov(X,Y), r_{xy}, F(2,10), M[X|Y=1/2]$.

Задача 2. Дана плотность распределения $f(x,y)$ системы $X,Y$ двух непрерывных случайных величин в треугольнике АВС.
1.1. Найдите константу с.
1.2. Найдите $f_X(x), f_Y(y)$ – плотности распределения с.в. Х и с.в. Y.
Выясните, зависимы или нет с.в. Х и Y. Сформулируйте критерий независимости системы непрерывных случайных величин.
1.3. Найдите математическое ожидание и дисперсию с.в. Х и с.в. Y. Поясните смысл найденных характеристик.
1.4. Найдите коэффициент корреляции с.в. Х и Y. Являются ли случайные величины коррелированными? Сформулируйте свойства коэффициента корреляции.
1.5. Запишите уравнение регрессии с.в. Y на Х и постройте линию регрессии в треугольнике АВС.
1.6. Запишите уравнение линейной среднеквадратичной регрессии с.в. Y на Х и постройте эту прямую в треугольнике АВС. $$ f(x,y)=csqrt{xy}, quad A(0;0), B(-1;-1), C(-1;0) $$

Задача 3. Интегральная функция распределения случайного вектора (X,Y):
$$
F(x)=
left{
begin{array}{l}
0, mbox{ при } x le 0 mbox{ или } yle 0\
(1-e^{-2x})(1-e^{-3y}), mbox{ при } x gt 0 mbox{ и } ygt 0\
end{array}
right.
$$
Найти центр рассеивания случайного вектора.

Задача 4. Плотность совместного распределения непрерывной двумерной случайной величины (Х, У)
$$f(x,y)=C e^{-x^2-2xy-4y^2}$$
Найти:
а) постоянный множитель С;
б) плотности распределения составляющих;
в) условные плотности распределения составляющих.

Задача 5. Задана двумерная плотность вероятности системы двух случайных величин: $f(x,y)=1/2 sin(x+y)$ в квадрате $0 le x le pi/2$, $0 le y le pi/2$, вне квадрата $f(x,y)=0$. Найти функцию распределения системы (X,Y).

Задача 6. Определить плотность вероятности, математические ожидания и корреляционную матрицу системы случайных величин $(X,Y)$, заданных в интервалах $0 le x le pi/2$, $0 le y le pi/2$, если функция распределения системы $F(x,y)=sin x sin y$.

Задача 7. Плотность вероятности системы случайных величин равна
$$f(x,y) = c(R-sqrt{x^2+y^2}), quad x^2+y^2 lt R^2.$$
Определить:
А) постоянную $c$;
Б) вероятность попадания в круг радиуса $alt R$, если центры обоих кругов совпадают с началом координат.

Задача 8. Совместная плотность вероятности системы двух случайных величин X и Y
$$f(x,y)=frac{c}{36+9x^2+4y^2+x^2y^2}.$$
Найти величину $с$; определить законы распределения $F_1(x)$, $F_2(y)$, $f_1(x)$, $f_2(y)$, $f(x/y)$; построить графики $F_1(x)$, $F_2(y)$; вычислить моменты $m_x$, $m_y$, $D_x$, $D_y$, $K_{xy}$.

Мы отлично умеем решать задачи по теории вероятностей

Решебник по теории вероятности онлайн

Больше 11000 решенных и оформленных задач по теории вероятности:

Добавить комментарий