Как найти кпд объемный

Оценка эффективности гидравлических насосов и моторов

Поводом для замены гидравлического мотора или насоса может стать изношенность подшипников и снижение эффективности работы агрегата. Даже современные разработки, применяемые в профилактике и ремонте гидравлики, не всегда помогают точно определить оставшийся ресурс подшипников.

Количественная оценка гидравлики

Выявить падение эффективности значительно легче, поскольку этот признак дает о себе знать в виде замедленной работы. Во избежание лишних затрат времени и денежных средств, советуем не проводить сразу качественную оценку потерь. При слишком длительном производственном цикле лучше заменить гидронасос или мотор новым оборудованием.

В отдельных случаях количественная оценка гидроузла является обязательным мероприятием, которое позволит сравнить заводские характеристики с фактическими данными.

Эффективность работы насосов и двигателей определяется тремя критериями:

  • Объемный КПД;
  • Механический/гидравлический КПД;
  • Общий КПД.

Объемный КПД

Объемный КПД – это отношение реального расхода жидкости к теоретическому значению. Для определения теоретического значения расхода необходимо умножить объем перерабатываемой жидкости за один оборот на количество оборотов в минуту, выполняемых насосом. Например, если аппарат объемом 100 см3 имеет скорость 1000 об/мин, его теоретический расход достигнет 100 л/мин.

Для определения фактического расхода используется расходомер, после чего полученные показатели соотносятся с теоретическим расходом. Так, при фактическом расходе 90 л/мин и давлении 207 бар, объемный КПД гидронасоса составит 90%.

Чаще всего объемный КПД определяет техническое состояние, а именно степень утечки жидкости в результате деформаций или естественного износа агрегата. Но, не зная теоретического расхода, установленный фактический расход не представляет для нас важности.

Механический/гидравлический КПД

Эта характеристика вычисляется путем деления теоретического крутящего момента, необходимого для приведения гидронасоса в движения, на реальный крутящий момент. 100% механический/гидравлический КПД говорил бы о прокачке жидкости при нулевом давлении и отсутствующем крутящем моменте, что противоречило бы законам механического и жидкостного трения.

Теоретический крутящий момент рассчитывается методом математических вычислений. Для рассмотренного выше случая показатель будет равен 329 Нм. Фактический крутящий момент, как и расход, измеряется при помощи прибора (динамометра). Например, если значение характеристики равна 360 Нм, механический КПД будет достигать 91% (329/360*100 = 91%).

Общий КПД

Представляет собой произведение объемного и механического/гидравлического КПД (в нашей ситуации показатель равен 82%). В таблице ниже рассмотрены типовые значения общего КПД для наиболее распространенных моделей насосов:

Тип насоса Общий КПД
Шестеренный насос с внешним зацеплением 85%
Шестеренный насос с внутренним зацеплением 90%
Пластинчатый насос 85%
Радиально-поршневой насос 90%
Аксиально-поршневой насос 91%
Аксиально-поршневой насос наклонным блоком цилиндров 92%

Производители гидравлических систем используют значение объемного КПД для вычисления фактического расхода насоса при давлении, необходимом для начала работы узлов.

При вычислении объемного КПД по результатам фактического тестирования, необходимо учитывать тот факт, что различные каналы утечки в насосе чаще всего являются одинаковыми. Таким образом, если испытание насоса проводится при меньших показателях давления или не максимальной мощности, значение КПД будет отличаться до тех пор, пока утечки являются константой.

Для примера возьмем случай с насосом переменного объема, имеющим расход жидкости 100 литров в минуту. При работе на полной скорости и расходе 90 л/мин, объемный КПД будет равен 90%. Если работа помпы будет оцениваться при аналогичном давлении и температуре жидкости, но при половине рабочего объема, потери на внутренние протечки будут равны 10 л/мин, а объемный КПД составит 80%. Исходя из этого мы видим, что внутренние утечки – это постоянная величина, при одинаковых условиях объемный КПД будет достигать 90% при полном объеме и 0% при объеме 10%.

Чтобы объяснить такую закономерность, необходимо рассматривать каналы утечек в качестве отверстий определенного диаметра. Скорость перемещения масла через эти отверстия определяется колебаниями давления и вязкостью жидкости. При равных показателях степень утечки всегда будет неизменной, независимо от скорости вращения вала и объема насоса.

Для проведения качественной оценки гидравлических насосов и моторов обращайтесь в компанию «Гидротехтрейд».

РЕМОНТ И ОБСЛУЖИВАНИЕ
ЛЮБОЙ ГИДРАВЛИКИ

КПД насоса характеризует его эффективность. Этот показатель складывается из определенных составляющих, поскольку на работу агрегата влияют силы разного происхождения. Определенные типы насосов, каждый из которых имеет свою особую конструкцию, различаются своим КПД.

Оглавление:

Составляющие КПД насоса

Формула КПД

КПД разных типов насосов

Что такое КПД


В любом насосе рабочие элементы получают от двигателя механическую энергию. Но рабочие элементы аппарата лишь частично преобразуют ее в энергию потока перекачиваемой среды. Чтобы определить эту степень энергии, используется понятие КПД, то есть «коэффициент полезного действия».

Устройство центробежного насоса


Наряду с мощностью КПД является важнейшим параметром насоса, показателем эффективности его работы. Он определяется как отношение полезной мощности аппарата к потребляемой. Этот параметр демонстрирует совершенство конструкции насоса, экономичность его эксплуатации.


КПД насоса (равно как и любого другого механизма) всегда будет менее 1 или 100%. Эта величина выражается чаще всего в процентах.

Составляющие КПД насоса


КПД насоса складывается из нескольких составляющих. Каждая из них возникает из-за сил разной природы:


1. Механический КПД. Обусловлен механическими потерями вследствие работы трущихся элементов, например, в проточной части или трением в подшипниках, торцевом уплотнителе.


2. Объемный КПД насоса, или КПД подачи. Возникает из-за утечек продукта в рабочей камере аппарата, появляется из-за деформаций, естественного износа аппарата.


3. Гидравлический КПД насоса. Обусловлен гидравлическим сопротивлением: поворотами, сужением или расширением потока и пр. Если стенки агрегата будут слишком шероховатыми, то жидкости будет труднее преодолевать сопротивление трения, и скорость течения перекачиваемой среды, соответственно, снизится. Также важен вид течения жидкости: к примеру, при вихревом потоке гидравлические потери возрастают.

Вихревой поток в насосе


Анализируя данные составляющие, то есть причины, приводящие к потере полезной энергии, можно искать пути к увеличению КПД конкретного насоса. Например, это может быть повышение качества внутренних уплотнителей агрегата, замена износившихся элементов.

Формула КПД


Формула КПД выглядит как Ƞпр = P2 / P1. В свою очередь, η = ηо  ηг  ηм, где ηо обозначает объемные потери, ηг – гидравлические потери и ηм – соответственно, механические.


Кроме того, общий КПД насоса рассчитывается по формуле КПД Ƞ = ƞпр * ƞнч . Это произведение КПД привода аппарата (это может быть электродвигатель, гидродвигатель, пневмодвигатель,) и КПД собственно насосной части.

КПД разных типов насосов

Промышленные насосные установки на современном этапе представлены многими типами, которые различаются своими КПД. Охарактеризуем некоторые из них.

Центробежный


КПД данных аппаратов во многом определяется режимом их эксплуатации и спецификой конструкции. Показатель максимален у центробежных устройств с высокомощным приводом и оптимальными рабочими параметрами. Здесь он нередко достигает 95%. У центробежного оборудования мощность двигателя начинается, как правило, с 10кВт, а элементы конструкции отличаются высоким качеством.

Центробежный насос в разрезе

Винтовой


Для данных агрегатов характерны большие механические потери. Прежде всего, это объясняется трением, возникающем между парой статор-ротор, а кроме того, в подшипниковом узле. Однако за счет высоких параметров работы (расход и напор), КПД винтового насосного оборудования находится в диапазоне 40-80%.

Импеллерный


Насосные устройства данного типа транспортируют жидкий продукт в щадящем режиме, создают на выходе значительное давление, равномерный поток без пульсации. Здесь имеют место значительные механические потери, поскольку гибкие лопасти трутся о внутреннюю часть ость камеры. Поэтому, эти агрегаты явно не лидируют по эффективности.

Работа импеллерного насоса

Мембранно-пневматический


Аппараты работают не от двигателя, а от подаваемого на них сжатого воздуха. Здесь необходимо дополнительное преобразование электроэнергии в энергию сжатого воздуха, поэтому КПД частично обусловлено КПД воздушного компрессора. Если он поршневой, то показатель будет примерно 80-92%, если лопастный — 90-96%. В этом насосе отмечаются все три типа потерь. Так, жидкость выходит из рабочей камеры под углом, а поток испытывает резкое расширение и следующий за этим опять-таки резкий поворот. Втулка аппарата выступает парой трения скольжения, что обуславливает механические потери энергии. Также перекачиваемая жидкость трется об элементы устройства: клапаны, мембрану, коллектора. Имеют место здесь и объемные потери продукта, который проходит такты всасывания и нагнетания.

#ФОРМА#

Энергосбережение обретает все большую важность в современной промышленности. На решение проблем по экономии энергии выделяются серьезные ресурсы. Гидравлические системы – приводы и насосные станции, как правило потребляют значительное количество энергии. И, безусловно проблемы, экономии и снижения потерь все более значительны в современной промышленности.

Содержание:

  • Коэффициент полезного действия
  • Гидравлический, механический и объемный КПД
  • Регулирование подачи насоса

Коэффициент полезного действия

Очень часто при перечислении характеристик используется понятие КПД. Что представляет собой КПД насоса. КПД насоса отношение его полезной мощности к потребляемой.

Полезная мощность насоса всегда меньше затраченной, что есть той которая подводится к валу насоса, от электрического, либо другого двигателя.

Разность между полезной и затраченной мощностью обуславливается потерями энергии в насосе.

Весь комплекс потерь энергии можно разделить на три типа механические, гидравлические объемные.

Гидравлический, механический и объемный КПД

Механическими называют потери энергии на преодоление механического трения в подвижных узлах, например, трение в подшипниках.

Гидравлическими потерями называют потери энергии на преодоление гидравлических сопротивлений при движении жидкости в рабочей камере насоса от всасывания к нагнетанию. Эти потери энергии определяют значение гидравлического КПД

В современных динамических насосах гидравлический КПД как правило составляет 0,80…0,96.

Объемными потерями называют потери энергии, возникающие в результате перетекания жидкости из нагнетания в линию всасывания. Для динамических насосов эти потери более существены чем для объемных, ведь в динамических машинах линии всасывания и нагнетания не разделены. Эти потери определяют объемный КПД насоса. Для современных насосов работающих в оптимальных режимах объемный КПД составляет порядка 0,90…0,98.



Регулирование подачи насоса

Как было указано выше, объемный КПД для динамических насосов составляет 0,90…0,98 в оптимальных режимах, но зачастую требуется дополнительная регулировка подачи насоса, самым простым способом является установка регулируемого сопротивления, или по-простому задвижки, на выходе насоса.

Регулирование подачи насоса с помощью задвижки

При этом чем больше будет закрываться задвижка тем больше будут объемные потери, а при полном перекрытии задвижки объемные потери и вовсе составят 100%, т.к. вся жидкость с нагнетания насоса будет отправляться на всасывание.

Кроме того центробежный насос будет заполнен одной и той же жидкостью которая будет отправляться с линии всасывания на нагнетание и обратно, запертая жидкость начнет греться и может закипеть, что приведет к поломке насоса, не говоря и бесполезном расходовании энергии.

Поэтому на длительное время полностью перекрывать линию нагнетания насоса, для остановки подачи лучше выключать питание электродвигателя, что обеспечит некоторую экономию.

В целях экономии энергии для регулирования подачи насоса можно использовать регулятор частоты совместно с электродвигателем. Такая система будет дороже задвижки, но позволит экономить в долгосрочной перспективе.

При изменении частоты приводящего вала динамического насоса следует учитывать допустимы интервал регулирования частоты, ведь центробежный насос на малых оборотах жидкость перекачивать не будет.

Таким образом, выбор частотного регулирования может значительно повысить энергосбережение, но такой способ не всегда применим для динамических насосов.



Важным фактором экономии является правильный выбор динамического насоса для гидравлической системы. Этот выбор осуществляет по характеристике насоса и гидравлической системы.

Частотное регулирование может применяться как для динамических так и для объемных насосов.

    Читайте также:

    Насосные станции повышения давления

    Кабели для погружных насосов

    Уплотнения производства компании YALAN Seals

    Все новости

Эффективность использования энергии насосом оценивается его полным КПД η, который определяется как отношение полезной мощности к мощности на валу насоса

η= Nп /Nв

Внасосх потери мощности подразделяются на механические, гидравлические и объемные. В соответствии с этим вводятся поня-

тия механического ηм, объемного ηо и гидравлического ηг коэффициентов полезного действия.

Объемные потери мощности возникают в результате утечек среды через уплотнения в насосе и перетекания жидкости из области высокого давления в области более низкого. Эти потери учитываются объемным КПД ηо.

Гидравлический КПД ηг учитывает потери, возникающие вследствие наличия гидравлических сопротивлений в подводящем и отводящем трубопроводах, в рабочем колесе насоса.

Потери мощности на различные виды трения в рабочем органе насоса являются механическими потерями, и они учитываются механическим КПД ηм.

Полный КПД равен произведению гидравлического, механического и объемного КПД:

η= ηм ηг ηо.

1.5.Влияние частоты вращения рабочего колеса на параметры насоса

Впредположении постоянства коэффициентов полезного дейст-

вия ηо = const и ηг = const при изменении частоты вращения nn′ параметры насоса можно пересчитать по формулам

H

2

N

3

Q

n

n

n

1 =

,

1

=

,

1

=

n

n

N1

n

Q1

H1

7

1.6. Высота всасывания центробежного насоса

При работе насоса иногда может нарушиться нормальный режим работы и возникнуть кавитация.

Кавитацией называется образование пузырьков газа в объеме движущейся жидкости при снижении гидростатического давления и схлопывание этих пузырьков внутри жидкости в зоне, где давление повышается.

В центробежных насосах кавитация может возникнуть на лопатках вблизи входных кромок, где пониженное давление и максимальная скорость потока жидкости. Понижение давления на входе в насос обусловлено гидравлическими сопротивлениями во всасывающем трубопроводе, необходимостью поднятия жидкости от уровня всасывания до оси насоса, а также пониженным давлением

на поверхности жидкости.

Пусть жидкость поднимается из открытого

рн

нижнего резервуара к насосу за счет разности

атмосферного давления ратм и давления на

Нвс рат

входе в насос рн, создаваемой в результате

вращения рабочего колеса (рисунок 2).

По-

мимо подъема жидкости на высоту Нвc

часть

перепада давления расходуется на создание

динамического напора жидкости сн2/2g и пре-

Рисунок 2

одоление

гидравлических сопротивлений

сывания имеет вид

Hпот во всасывающей трубе. Уравнение вса-

р

р

с

2

+Нпот .

атм

н

= Нвс +

н

ρg

2g

Отсюда высота всасывания равна

2

р

атм

р

н

с

Нпот .

Нвс =

н

ρg

2g

Высота всасывания зависит от давления на поверхности всасываемой жидкости. Если резервуар открытый, то она зависит от ат-

8

мосферного давления, и, как следствие, от высоты местности над уровнем моря (табл. 1).

Таблица 1 Среднее атмосферное давление в зависимости от высоты мест-

ности над уровнем моря

Высота

0

100

200

400

600

800

1000

1500

местности, м

Показание

760

751

742

724

707

690

674

635

барометра

рат, мм.рт.ст.

Атмосферное

10,33

10,21

10,1

9,85

9,61

9,38

9,16

8,63

давление,

м вод.ст.

Чтобы не возникала кавитация, давление на входе в насос всегда должно быть больше давления парообразования рt перекачиваемой жидкости при данной температуре. При несоблюдении этого условия жидкость вскипает, и нарушается нормальная работа насоса. Давление рt сильно зависит от температуры (табл. 2).

Таблица 2 Давление парообразования воды (рt/ρg) при разных температурах

Т, оС

0

5

10

20

30

40

50

pt

, м

0,06

0,09

0,12

0,24

0,43

0,75

1,26

ρg

Продолжение табл. 2

100

Т, оС

60

70

80

90

120

pt

, м

2,03

3,18

4,83

7,15

10,3

20,2

ρg

Разрежение в насосе не должно превышать некоторый предел, учитывающий запас, обеспечивающий отсутствие кавитации. Поэтому в уравнение всасывания вводится запас на кавитацию σН, где

9

σ − коэффициент кавитации, Н – полный напор, создаваемый насосом.

σ = 0,001218 n4 3Q2 3 , (n – частота вращения колеса в об/мин.).

H

Таким образом, предельная высота всасывания определяется выражением

пред

р

ат

р

c

2

Нпот −σН .

Нвс

=

t

н

2g

ρg

Предельная высота всасывания зависит от давления на поверхности всасываемой жидкости, от ее температуры, подачи и характеристик трубопровода на участке всасывания.

При некоторых условиях высота всасывания может стать отрицательной, что требует установки насоса ниже уровня всасываемой жидкости. Возможны два различных случая расположения насоса относительно резервуара-источника жидкости (рисунок 3).

Впервом случае (рисунок 3а) насос установлен выше резервуара

сжидкостью, и это характерно при перекачивании жидкостей с низкой температурой. Установка на рисунке 3б предназначена для насосов, перекачивающих жидкости с высокой температурой, а также при всасывании насосами холодных жидкостей из резервуаров с пониженным давлением.

0

0

(а)

+Нвс

(б)

Нвс

0

0

Рисунок 3

10

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Выбор наиболее оптимальной гидравлической жидкости требует оценки нескольких взаимозависимых факторов, включая типоразмер оборудования и условия эксплуатации, такие как температура, давление и максимальная нагрузка.

Выбор гидравлической жидкости и эффективность работы гидросистемы определяются областью применения, условиями эксплуатации и интенсивностью работы.

Ежегодно гидравлические системы потребляют от 2,25 до 3,0 квадриллионов (х1015) Британских тепловых единиц энергии, из которых приблизительно 1,2 квадриллиона БТЕ приходится на мобильную технику и 1,7 квадриллиона — на промышленное оборудование. Средний КПД гидропривода составляет 21%. Может ли оптимизация подбора гидравлической жидкости снизить энергопотребление и повысить эффективность работы гидравлических систем?

Физический смысл КПД гидросистем

Гидравлическая система преобразует механическую энергию вращения приводного агрегата (ДВС или электродвигателя), вращающего вал насоса, в гидравлическую энергию. Регулирующие клапаны и распределители направляют поток рабочей жидкости от насоса к исполнительным механизмам (гидроцилиндры и гидромоторы), преобразующим гидравлическую энергию обратно в механическую.

Гидромотор можно описать как насос, работающий в обратном направлении; он преобразует гидравлическую энергию рабочей жидкости в механическую энергию вращения вала. Он может генерировать высокую удельную мощность, необходимую для работы агрегатов мобильной техники. Гидромоторы поворачивают барабан бетономешалки, перемещают стрелу экскаватора, приводят в движение режущий механизм траншеекопателя, обеспечивают колебания эксцентрика асфальтоукладчика и поднимают стрелу фронтального погрузчика.

В отличие от центробежных насосов, где расход и давление взаимосвязаны, в гидравлических системах используются объемные насосы и гидромоторы, в которых расход не зависит от давления. Конечно, в реальности ни один насос не имеет КПД 100%, поэтому некоторая степень взаимосвязи расхода и давления сохраняется.

Гидравлические системы вырабатывают кинетическую энергию в виде расхода и потенциальную энергию в виде давления. Таким образом, в гидросистеме необходимо поддерживать разделение между зонами высокого и низкого давления. Это требование лежит в основе многих конструктивных решений гидроприводов; движущиеся компоненты должны надежно уплотняться в зонах контакта, чтобы минимизировать перетечки.

Внутренние перетечки — это перемещение рабочей жидкости из зон высокого давления в зоны низкого давления внутри гидравлических компонентов, снижающие полезную мощность системы. По мере повышения давления и температуры в системе также возрастают утечки через соединения. Этот эффект более значителен в гидросистемах мобильной техники, поскольку наличие меньших по размеру масляных баков и теплообменников, необходимых для работы системы, подразумевает работу при более высоких температурах по сравнению с гидросистемами промышленного оборудования.

Как измерить КПД?

Полный КПД насоса или гидромотора представляет собой объемный КПД, умноженный на механический КПД. Объемный КПД соотносится с выходным расходом на один оборот входного вала насоса. Он определяет величину перетечек между областями высокого и низкого давления. Механический КПД относится к крутящему моменту на выходном валу гидромотора и отражает потери на трение.

При высоком давлении насоса и низкой частоте вращения гидромотора (наиболее важный режим работы) объемный КПД быстро увеличивается с увеличением частоты вращения насоса (или вязкости рабочей жидкости), а затем выравнивается. Между тем, механический КПД практически линейно снижается с увеличением частоты вращения насоса (или вязкости жидкости). Эта зависимость обычно иллюстрируется с помощью кривой Штрибека (см. рис. 1), которая отображает КПД как функцию от частоты вращения, вязкости и давления (нагрузки).

Рис. 1. Кривые Штрибека для гидравлической системы, выражающие КПД как функцию от Z (частота вращения), N (вязкость рабочей жидкости) и p (нагрузка или давление). Полный КПД вычисляется умножением объемного КПД на механический КПД. Данный график составлен на базе 1789 точек, снятых с 16 шестеренных насосов.

Рис. 1. Кривые Штрибека для гидравлической системы, выражающие КПД как функцию от Z (частота вращения), N (вязкость рабочей жидкости) и p (нагрузка или давление). Полный КПД вычисляется умножением объемного КПД на механический КПД. Данный график составлен на базе 1789 точек, снятых с 16 шестеренных насосов.

Требования к гидравлической жидкости

Надежность и эффективность работы системы требуют различных свойств гидравлической жидкости. Стандарты надежности четко определены и применяются ко всем производимым маслам. Эти стандарты учитывают такие параметры как вязкость, защита системы от износа, тепловая стабильность, ингибирование коррозии, стойкость к пенообразованию, деэмульгируемость, скорость окисления и чистота. Свойства гидравлической жидкости, зависящие от давления, к которым относятся модуль объемной упругости, плотность и трение, также могут оказывать значительное влияние на КПД гидросистемы, однако они редко встречаются в характеристиках, предоставляемых производителями масел.

Модуль объемной упругости представляет собой показатель изменения объема с изменением давления жидкости. Как показывает опыт, при повышении давления на 70 бар объем гидравлической жидкости уменьшается примерно на 0,5%. Модуль объемной упругости жидкости зависит от давления, температуры, химического состава и жесткости конструкции системы. Модуль объемной упругости может влиять на потери насоса (КПД), звуковые характеристики (уровень шума) и быстродействие системы (динамическая характеристика или скорость реакции системы при закрытии клапана). Модуль объемной упругости также влияет на величину перетечек в насосе и управляющих компонентах.

Плотность — это масса вещества на единицу объема. Ее величина определяется силами межмолекулярного взаимодействия и химическим составом вещества. Масло с высоким модулем объемной упругости является более плотным и, следовательно, менее сжимаемым, чем масло с низким модулем упругости. Плотность может влиять на перепад давления на клапанах и участках линий и, соответственно, на КПД системы.

Трение — это сдвиговое усилие, передаваемое через смазывающую пленку и являющееся результатом разности скоростей движения (в векторном виде) между условно «верхней» и «нижней» поверхностями пленки. Коэффициент трения жидкости представляет собой отношение силы трения к нормальной нагрузке. Если гидравлическая жидкость имеет низкий коэффициент трения, то для сдвига пленки этой жидкости между двумя поверхностями, движущимися относительно друг друга, требуется меньше энергии. Применение жидкости с низким коэффициентом трения может уменьшить потери крутящего момента гидромотора на низкой частоте вращения (разницу между теоретическим и фактическим крутящим моментом, вызванную трением).

КПД гидромотора

КПД гидромотора при низкой частоте вращения или при пуске зачастую определяет расчетное давление и типоразмер насоса, необходимого для работы гидравлической системы. Это особенно актуально для систем, запускаемых под нагрузкой, например, при копке грунта или подъеме транспортировочного контейнера.

Подобно тому, как двигатель автомобиля наименее эффективен на холостом ходу или при медленном движении, гидромоторы также имеют минимальный КПД на малых частотах вращения. Уменьшение трения гидромотора на низких частотах вращения позволяет повысить КПД за счет увеличения мощности, генерируемой для перемещения полезной нагрузки. Улучшение рабочих характеристик гидромотора может существенно повысить эффективность всей системы. Чтобы проиллюстрировать, как характеристики гидравлической жидкости могут влиять на КПД системы, мы сравнили пять гидравлических жидкостей. Каждая из этих жидкостей содержит беззольные противоизносные присадки.

  • HM46: высококачественное минеральное масло группы 1, предназначенное для использования в гидравлических системах высокого давления.
  • HV46: высоковязкое масло группы 3, предназначенное для использования в гидравлических системах, работающих под большой нагрузкой. Отличается высоким индексом вязкости и хорошими температурно-вязкостными характеристиками.
  • HEES46: биоразлагаемое масло на основе синтетических эфиров, особенно хорошо подходящее для применения в системах, где случайная утечка масла может вызвать загрязнение воды.
  • HBMO46: масло на основе фениловых эфиров группы 5 (ароматические соединения) с высоким модулем объемной упругости.
  • HBMO46+FM: масло HBMO46 с небольшим количеством антифрикционной присадки. Все свойства, за исключением коэффициента трения, аналогичны маслу HBMO46.

Эти гидравлические жидкости оценивались при работе в аксиально-поршневых, радиально-поршневых и героторных гидромоторах со схожими характеристиками в плане потерь крутящего момента в зависимости от частоты вращения. При малых частотах вращения жидкости с низким коэффициентом трения (HEES46 и HBMO46+FM) демонстрируют вдвое меньшие потери момента по сравнению с традиционными гидравлическими маслами. Потери крутящего момента для всех типов масел одинаковы при средних и высоких частотах вращения; они уменьшаются и выравниваются по мере повышения частоты вращения, а затем незначительно увеличивается на максимальных частотах вращения (см. рис. 2).

Рис. 2. Потери крутящего момента для радиально-поршневого гидромотора, работающего на различных частотах вращения. Планки погрешностей выражают усредненный доверительный интервал 95% для нескольких испытаний.

Рис. 2. Потери крутящего момента для радиально-поршневого гидромотора, работающего на различных частотах вращения. Планки погрешностей выражают усредненный доверительный интервал 95% для нескольких испытаний.

Различия в механическом КПД отражают потери крутящего момента. Гидравлические жидкости, не содержащие нефтяную основу или присадки, изменяющие характеристики трения, демонстрируют более низкий механический КПД при малых частотах вращения гидромотора. КПД повышается с увеличением частоты вращения до определенной величины и снижается при более высоких значениях (см. рис. 3). На высоких частотах вращения КПД при использовании различных гидравлических жидкостей аналогично, поскольку при этом задействуется гидродинамическая смазка, а вязкость жидкостей соответствует одному классу по ISO.

Рис. 3. График зависимости механического КПД радиально-поршневого гидромотора, показанного на рис. 2, от частоты вращения (Z) при постоянной вязкости гидравлической жидкости и нагрузке.

Рис. 3. График зависимости механического КПД радиально-поршневого гидромотора, показанного на рис. 2, от частоты вращения (Z) при постоянной вязкости гидравлической жидкости и нагрузке.

Гидравлические насосы

Поршневой насос в открытой гидросистеме: вал аксиально-поршневого насоса вращает блок цилиндров. При вращении вала, благодаря наклонной шайбе (или блоку цилиндров), создается возвратно-поступательное движение поршня, которое обеспечивает заполнение и опорожнение цилиндра, как показано на рис. 4. Жидкость, вытесняемая поршнем, подается в нагнетательный контур через отверстия в распределительном диске (окна). Основными местами утечек в аксиально-поршневом насосе являются стык блока цилиндров с распределительным диском, башмак, а также контактная поверхность поршня и цилиндра.

Рис. 4. Основные элементы и принцип работы аксиально-поршневого насоса, используемая для сравнения характеристик пяти гидравлических жидкостей.

Рис. 4. Основные элементы и принцип работы аксиально-поршневого насоса, используемая для сравнения характеристик пяти гидравлических жидкостей.

В аксиально-поршневом насосе с компенсацией давления угол наклонной шайбы относительно блока цилиндров автоматически регулируется для компенсации изменений давления на выходе насоса. Следует понимать, что компенсация давления снижает объемный КПД насоса, перенаправляя часть выходного расхода в компенсатор.

Мы сравнили объемные потери на компенсацию давления для пяти гидравлических жидкостей, описанных выше. В качестве эталонной жидкости использовалось масло HM46, которое оценивалось в начале, середине и конце цикла испытаний. Средний расход утечки при работе с маслом HBMO оказался на 20% меньше, чем с базовым маслом HM46 (см. рис. 5).

Рис. 5. Расход утечки через корпус и на компенсацию давления в литрах в минуту для пяти гидравлических жидкостей, измеренный в рамках сравнительных испытаний нерегулируемого поршневого насоса. В качестве эталона использовалось масло HM46; оно испытывалось в начале, в середине и в конце испытательного цикла.

Рис. 5. Расход утечки через корпус и на компенсацию давления в литрах в минуту для пяти гидравлических жидкостей, измеренный в рамках сравнительных испытаний нерегулируемого поршневого насоса. В качестве эталона использовалось масло HM46; оно испытывалось в начале, в середине и в конце испытательного цикла.

Объемные потери для масел HEES46 и HV46 оказались также меньше, чем для базового масла HM46. Объемные потери при работе с маслом HBMO46+FM были несколько выше, чем с базовым маслом HBMO46; возможно, это обусловлено добавлением антифрикционной присадки или другого изменения свойств жидкости. Масло с высоким модулем объемной упругости также позволило сократить потери мощности насоса, однако потери на перекачивание оказались непропорциональны объемным утечкам.

Поршневой насос в закрытой гидросистеме: в закрытой гидросистеме масло подается в гидравлический насос не самотеком, а подпиточным насосом. Закрытые гидросистемы используются главным образом в мобильной технике, поскольку подпитка предотвращает снижение КПД, обусловленное недостаточным количеством масла, поступающего в насос.

При испытании насосов в закрытых гидросистемах было установлено, что объемный КПД зависит от их расхода (см. рис. 6). Объемный КПД снизился примерно на 5%, когда расход утечки через корпус насоса увеличился с 0,55 до 1,05 гал/мин (с 2 до 4 л/мин). Расход утечки в 1 л/мин выглядит не таким уж большим, однако это означает снижение потерь мощности приблизительно на 0,5 кВт, что в результате дает экономию около 95 литров дизельного топлива или 5500 рублей на электрической энергии за 1000 часов наработки.

Рис. 6. Зависимость объемного КПД от утечек через корпус в гидравлической системе закрытого типа.

Рис. 6. Зависимость объемного КПД от утечек через корпус в гидравлической системе закрытого типа.

Шестеренный насос: в шестеренных насосах внешнего зацепления, наиболее широко применяемых объемных гидроприводах, перекачивание жидкости производится путем ее перемещения по периметру ведущей и ведомой шестерен, находящихся в зацеплении между собой (см. рис. 7). Мы сравнили средний КПД 16 шестеренных насосов внешнего зацепления от семи производителей, определяя его по всему диапазону номинального рабочего давления и частоты вращения. Средний объемный КПД 16 насосов был больше при 50 °С, чем при 80 °С для всех насосов (см. рис. 8), однако механический КПД насосов существенно различался в зависимости от модели (см. рис. 9).

Рис. 7. Основные элементы и принцип работы шестеренного насоса внешнего зацепления — наиболее широко используемой объемной гидромашины.

Рис. 7. Основные элементы и принцип работы шестеренного насоса внешнего зацепления — наиболее широко используемой объемной гидромашины.

Рис. 8. Средний механический КПД 16 различных шестеренных насосов (от семи производителей), измеренный при 50 и 80 °С во всем диапазоне номинального рабочего давления и частоты вращения.

Рис. 8. Средний механический КПД 16 различных шестеренных насосов (от семи производителей), измеренный при 50 и 80 °С во всем диапазоне номинального рабочего давления и частоты вращения.

Рис. 9. Средний объемный КПД 16 различных шестеренных насосов (от семи производителей), измеренный при 50 и 80 °С во всем диапазоне номинального рабочего давления и частоты вращения.

Рис. 9. Средний объемный КПД 16 различных шестеренных насосов (от семи производителей), измеренный при 50 и 80 °С во всем диапазоне номинального рабочего давления и частоты вращения.

Измерение крутящего момента при различной частоте вращения дало неожиданные результаты. При низком давлении (следовательно, при низком крутящем моменте) гидросистемы работали примерно одинаково при 50 и 80 °С. Однако, при более высоком давлении при температуре 50°С крутящий момент был меньше, чем при 80 °С на всех частотах вращения, вопреки заявлением большинства учебных пособий. Расход насоса в зависимости от давления на выходе был больше при 50 °С, чем при 80 °С, при этом разница была максимальной на более высоком расходе и при более высоком давлении, что соответствует информации из учебников. Все шестеренные насосы имели больший полный КПД при меньшей температуре.

Выводы

Выбор наиболее оптимальной гидравлической жидкости требует оценки нескольких взаимозависимых факторов, включая типоразмер оборудования и условия эксплуатации, такие как температура, давление и максимальная нагрузка. По некоторым параметрам необходим компромисс, позволяющий достигнуть оптимального баланса между надежностью и КПД, а также между механическим и объемным КПД. Различия между исследованными гидравлическими жидкостями в эффективности передачи мощности наиболее выражены при низких частотах вращения, характерных для траншейного или подъемного оборудования, где мощность является наиболее важным фактором.

Добавить комментарий