Как найти крутящий момент электродвигателя

  • 1.  Принцип работы электродвигателей
  • 2.  Однофазные электродвигатели
  • 3.  Мощность и вращающий момент электродвигателя
  • 4.  Защита электродвигателя

Мощность и вращающий момент электродвигателя

Данная глава посвящена вращающему моменту: что это такое, для чего он нужен и др. Мы также разберём типы нагрузок в зависимости от моделей насосов и соответствие между электродвигателем и нагрузкой насоса.

Вы когда-нибудь пробовали провернуть вал пустого насоса руками? Теперь представьте, что вы поворачиваете его, когда насос заполнен водой. Вы почувствуете, что в этом случае, чтобы создать вращающий момент, требуется гораздо большее усилие.

Вращающий момент

А теперь представьте, что вам надо крутить вал насоса несколько часов подряд. Вы бы устали быстрее, если бы насос был заполнен водой, и почувствовали бы, что потратили намного больше сил за тот же период времени, чем при выполнении тех же манипуляций с пустым насосом. Ваши наблюдения абсолютно верны: требуется большая мощность, которая является мерой работы (потраченной энергии) в единицу времени. Как правило, мощность стандартного электродвигателя выражается в кВт.

Вращающий момент электродвигателя

Вращающий момент (T) – это произведение силы на плечо силы. В Европе он измеряется в Ньютонах на метр (Нм).

Как видно из формулы, вращающий момент увеличивается, если возрастает сила или плечо силы – или и то и другое. Например, если мы приложим к валу силу в 10 Н, эквивалентную 1 кг, при длине рычага (плече силы) 1 м, в результате, вращающий момент будет 10 Нм. При увеличении силы до 20 Н или 2 кг, вращающий момент будет 20 Нм. Таким же образом, вращающий момент был бы 20 Нм, если бы рычаг увеличился до 2 м, а сила составляла 10 Н. Или при вращающем моменте в 10 Нм с плечом силы 0,5 м сила должна быть 20 Н.

плечо силы

Работа и мощность

Теперь остановимся на таком понятии как «работа», которое в данном контексте имеет особое значение. Работа совершается всякий раз, когда сила – любая сила – вызывает движение. Работа равна силе, умноженной на расстояние. Для линейного движения мощность выражается как работа в определённый момент времени.

Если мы говорим о вращении, мощность выражается как вращающий момент (T), умноженный на частоту вращения (w).

мощность электродвигателя

Частота вращения объекта определяется измерением времени, за которое определённая точка вращающегося объекта совершит полный оборот. Обычно эта величина выражается в оборотах в минуту, т.е. мин-1 или об/мин. Например, если объект совершает 10 полных оборотов в минуту, это означает, что его частота вращения: 10 мин-1 или 10 об/мин.

Частота вращения электродвигателя

Итак, частота вращения измеряется в оборотах в минуту, т.е. мин-1.

Приведем единицы измерения к общему виду.

мощность электродвигателя

Для наглядности возьмём разные электродвигатели, чтобы более подробно проанализировать соотношение между мощностью, вращающим моментом и частотой вращения. Несмотря на то, что вращающий момент и частота вращения электродвигателей сильно различаются, они могут иметь одинаковую мощность.

Одинаковая мощность при различном вращающем моменте

Например, предположим, что у нас 2-полюсный электродвигатель (с частотой вращения 3000 мин-1) и 4-полюсной электродвигатель (с частотой вращения 1500 мин-1). Мощность обоих электродвигателей 3,0 кВт, но их вращающие моменты отличаются.

вращающий момент электродвигателя

Таким образом, вращающий момент 4-полюсного электродвигателя в два раза больше вращающего момента двухполюсного электродвигателя с той же мощностью.

Как образуется вращающий момент и частота вращения?

Теперь, после того, как мы изучили основы вращающего момента и скорости вращения, следует остановиться на том, как они создаются.

В электродвигателях переменного тока вращающий момент и частота вращения создаются в результате взаимодействия между ротором и вращающимся магнитным полем. Магнитное поле вокруг обмоток ротора будет стремиться к магнитному полю статора. В реальных рабочих условиях частота вращения ротора всегда отстаёт от магнитного поля. Таким образом, магнитное поле ротора пересекает магнитное поле статора и отстает от него и создаёт вращающий момент. Разницу в частоте вращения ротора и статора, которая измеряется в %, называют скоростью скольжения.

Скольжение ротора

Скольжение является основным параметром электродвигателя, характеризующий его режим работы и нагрузку. Чем больше нагрузка, с которой должен работать электродвигатель, тем больше скольжение.

Помня о том, что было сказано выше, разберём ещё несколько формул. Вращающий момент индукционного электродвигателя зависит от силы магнитных полей ротора и статора, а также от фазового соотношения между этими полями. Это соотношение показано в следующей формуле:

Сила магнитного поля, в первую очередь, зависит от конструкции статора и материалов, из которых статор изготовлен. Однако напряжение и частота тока также играют важную роль. Отношение вращающих моментов пропорционально квадрату отношения напряжений, т.е. если подаваемое напряжение падает на 2%, вращающий момент, следовательно, уменьшается на 4%.

Изменение вращающего момента в зависимости от Изменения напряжения

Потребляемая мощность электродвигателя

Ток ротора индуцируется через источник питания, к которому подсоединён электродвигатель, а магнитное поле частично создаётся напряжением. Входную мощность можно вычислить, если нам известны данные источника питания электродвигателя, т.е. напряжение, коэффициент мощности, потребляемый ток и КПД.

Потребляемая мощность электродвигателя

В Европе мощность на валу обычно измеряется в киловаттах. В США мощность на валу измеряется в лошадиных силах (л.с.).

Если вам необходимо перевести лошадиные силы в киловатты, просто умножьте соответствующую величину (в лошадиных силах) на 0,746. Например, 20 л.с. равняется (20 • 0,746) = 14,92 кВт.

И наоборот, киловатты можно перевести в лошадиные силы умножением величины в киловаттах на 1,341. Это значит, что 15 кВт равняется 20,11 л.с.

Момент электродвигателя

Мощность [кВт или л.с.] связывает вращающий момент с частотой вращения, чтобы определить общий объём работы, который должен быть выполнен за определённый промежуток времени.

Рассмотрим взаимодействие между вращающим моментом, мощностью и частотой вращения, а также их связь с электрическим напряжением на примере электродвигателей Grundfos. Электродвигатели имеют одну и ту же номинальную мощность как при 50 Гц, так и при 60 Гц.

Табличка электродвигателя с одинаковой можностью 50 и 60 Гц

Это влечёт за собой резкое снижение вращающего момента при 60 Гц: частота 60 Гц вызывает 20%-ное увеличение числа оборотов, что приводит к 20%-ному уменьшению вращающего момента. Большинство производителей предпочитают указывать мощность электродвигателя при 60 Гц, таким образом, при снижении частоты тока в сети до 50 Гц электродвигатели будут обеспечивать меньшую мощность на валу и вращающий момент. Электродвигатели обеспечивают одинаковую мощность при 50 и 60 Гц.

Графическое представление вращающего момента электродвигателя изображено на рисунке.

Характеристика вращающий момент/ частота вращения для электродвигателя переменного тока

Иллюстрация представляет типичную характеристику вращающий момент/частота вращения. Ниже приведены термины, используемые для характеристики вращающего момента электродвигателя переменного тока.

Пусковой момент (Мп): Механический вращающий момент, развиваемый электродвигателем на валу при пуске, т.е. когда через электродвигатель пропускается ток при полном напряжении, при этом вал застопорен.

Минимальный пусковой момент (Ммин): Этот термин используется для обозначения самой низкой точки на кривой вращающий момент/частота вращения электродвигателя, нагрузка которого увеличивается до полной скорости вращения. Для большинства электродвигателей Grundfos величина минимального пускового момента отдельно не указывается, так как самая низкая точка находится в точке заторможенного ротора. В результате для большинства электродвигателей Grundfos минимальный пусковой момент такой же, как пусковой момент.

Блокировочный момент (Мблок): Максимальный вращающий момент – момент, который создаёт электродвигатель переменного тока с номинальным напряжением, подаваемым при номинальной частоте, без резких скачков скорости вращения. Его называют предельным перегрузочным моментом или максимальным вращающим моментом.

Вращающий момент при полной нагрузке (Мп.н.): Вращающий момент, необходимый для создания номинальной мощности при полной нагрузке.

Нагрузка насосов и типы нагрузки электродвигателя

Выделяют следующие типы нагрузок:

Постоянная мощность

Термин «постоянная мощность» используется для определённых типов нагрузки, в которых требуется меньший вращающий момент при увеличении скорости вращения, и наоборот. Нагрузки при постоянной мощности обычно применяются в металлообработке, например, сверлении, прокатке и т.п.

При увеличении скорости вращения уменьшается вращающий момент, при этом мощность остаётся постоянной

Постоянный вращающий момент

Как видно из названия – «постоянный вращающий момент» – подразумевается, что величина вращающего момента, необходимого для приведения в действие какого- либо механизма, постоянна, независимо от скорости вращения. Примером такого режима работы могут служить конвейеры.

Постоянный вращающий момент независимо от скорости вращения

Переменный вращающий момент и мощность

«Переменный вращающий момент» – эта категория представляет для нас наибольший интерес. Этот момент имеет отношение к нагрузкам, для которых требуется низкий вращающий момент при низкой частоте вращения, а при увеличении скорости вращения требуется более высокий вращающий момент. Типичным примером являются центробежные насосы.

Вся остальная часть данного раздела будет посвящена исключительно переменному вращающему моменту и мощности.

Определив, что для центробежных насосов типичным является переменный вращающий момент, мы должны проанализировать и оценить некоторые характеристики центробежного насоса. Использование приводов с переменной частотой вращения обусловлено особыми законами физики. В данном случае это законы подобия, которые описывают соотношение между разностями давления и расходами.

Законы подобия для центробежных насосов

Во-первых, подача насоса прямо пропорциональна частоте вращения. Это означает, что если насос будет работать с частотой вращения на 25% больше, подача увеличится на 25%.

Во-вторых, напор насоса будет меняться пропорционально квадрату изменения скорости вращения. Если частота вращения увеличивается на 25%, напор возрастает на 56%.

В-третьих, что особенно интересно, мощность пропорциональна кубу изменения скорости вращения. Это означает, что если требуемая частота вращения уменьшается на 50%, это равняется 87,5%-ному уменьшению потребляемой мощности.

Итак, законы подобия объясняют, почему использование приводов с переменной частотой вращения более целесообразно в тех областях применения, где требуются переменные значения расхода и давления. Grundfos предлагает ряд электродвигателей со встроенным частотным преобразователем, который регулирует частоту вращения для достижения именно этой цели.

Так же как подача, давление и мощность, потребная величина вращающего момента зависит от скорости вращения.

Центробежный насос, поперечный разрез

На рисунке показан центробежный насос в разрезе. Требования к вращающему моменту для такого типа нагрузки почти противоположны требованиям при «постоянной мощности». Для нагрузок при переменном вращающем моменте потребный вращающий момент при низкой частоте вращения – мал, а потребный вращающий момент при высокой частоте вращения – велик. В математическом выражении вращающий момент пропорционален квадрату скорости вращения, а мощность – кубу скорости вращения.

Вращающий момент пропорционален квадрату скорости вращения, а мощность – кубу скорости вращения

Это можно проиллюстрировать на примере характеристики вращающий момент/частота вращения, которую мы использовали ранее, когда рассказывали о вращающем моменте электродвигателя:

Когда электродвигатель набирает скорость от нуля до номинальной скорости, вращающий момент может значительно меняться. Величина вращающего момента, необходимая при определённой нагрузке, также изменяется с частотой вращения. Чтобы электродвигатель подходил для определённой нагрузки, необходимо чтобы величина вращающего момента электродвигателя всегда превышала вращающий момент, необходимый для данной нагрузки.

Вращающий момент/синхронная частота вращения

В примере, центробежный насос при номинальной нагрузке имеет вращающий момент, равный 70 Нм, что соответствует 22 кВт при номинальной частоте вращения 3000 мин-1. В данном случае насосу при пуске требуется 20% вращающего момента при номинальной нагрузке, т.е. приблизительно 14 Нм. После пуска вращающий момент немного падает, а затем, по мере того, как насос набирает скорость, увеличивается до величины полной нагрузки.

Очевидно, что нам необходим насос, который будет обеспечивать требуемые значения расход/напор (Q/H). Это значит, что нельзя допускать остановок электродвигателя, кроме того, электродвигатель должен постоянно ускоряться до тех пор, пока не достигнет номинальной скорости. Следовательно, необходимо, чтобы характеристика вращающего момента совпадала или превышала характеристику нагрузки на всём диапазоне от 0% до 100% скорости вращения. Любой «избыточный» момент, т.е. разница между кривой нагрузки и кривой электродвигателя, используется как ускорение вращения.

Соответствие электродвигателя нагрузке

Если нужно определить, отвечает ли вращающий момент определённого электродвигателя требованиям нагрузки, Вы можете сравнить характеристики скорости вращения/вращающего момента электродвигателя с характеристикой скорости вращения/ вращающего момента нагрузки. Вращающий момент, создаваемый электродвигателем, должен превышать потребный для нагрузки вращающий момент, включая периоды ускорения и полной скорости вращения.

Характеристика зависимости вращающего момента от скорости вращения стандартного электродвигателя и центробежного насоса.

Вращающий момент/синхронная частота вращения

Если мы посмотрим на характеристику , то увидим, что при ускорении электродвигателя его пуск производится при токе, соответствующем 550% тока полной нагрузки.

Номинальный ток электродвигателя при ускорении

Когда двигатель приближается к своему номинальному значению скорости вращения, ток снижается. Как и следовало ожидать, во время начального периода пуска потери на электродвигателе высоки, поэтому этот период не должен быть продолжительным, чтобы не допустить перегрева.

Очень важно, чтобы максимальная скорость вращения достигалась как можно точнее. Это связано с потребляемой мощностью: например, увеличение скорости вращения на 1% по сравнению со стандартным максимумом приводит к 3%-ному увеличению потребляемой мощности.

Потребляемая мощность пропорциональна диаметру рабочего колеса насоса в четвертой степени.

Мощность/диаметр рабочего колеса

Уменьшение диаметра рабочего колеса насоса на 10% приводит к уменьшению потребляемой мощности на (1- (0.9 * 0.9 * 0.9 * 0.9)) * 100 = 34%, что равно 66% номинальной мощности. Эта зависимость определяется исключительно на практике, так как зависит от типа насоса, конструкции рабочего колеса и от того, насколько вы уменьшаете диаметр рабочего колеса.

Время пуска электрдвигателя

Если нам необходимо подобрать типоразмер электродвигателя для определённой нагрузки, например для центробежных насосов, основная наша задача состоит в том, чтобы обеспечить соответствующий вращающий момент и мощность в номинальной рабочей точке, потому что пусковой момент для центробежных насосов довольно низкий. Время пуска достаточно ограниченно, так как вращающий момент довольно высокий.

Пусковой ток

Нередко для сложных систем защиты и контроля электродвигателей требуется некоторое время для их пуска, чтобы они могли замерить пусковой ток электродвигателя. Время пуска электродвигателя и насоса рассчитывается с помощью следующей формулы:

Время пуска электродвигателя

tпуск = время, необходимое электродвигателю насоса, чтобы достичь частоты вращения при полной нагрузке

n = частота вращения электродвигателя при полной нагрузке

Iобщ = инерция, которая требует ускорения, т.е. инерция вала электродвигателя, ротора, вала насоса и рабочих колёс.

Момент инерции для насосов и электродвигателей можно найти в соответствующих технических данных.

Избыточный момент

Мизб = избыточный момент, ускоряющий вращение. Избыточный момент равен вращающему моменту электродвигателя минус вращающий момент насоса при различных частотах вращения.

Мизб можно рассчитать по следующим формулам:

избыточный момент

Расчетный избыточный момент

расчет электродвигателя

Как видно из приведённых вычислений, выполненных для данного примера с электродвигателем мощностью 4 кВт насоса CR, время пуска составляет 0,11 секунды.

Число пусков электродвигателя в час

Современные сложные системы управления электродвигателями могут контролировать число пусков в час каждого конкретного насоса и электродвигателя. Необходимость контроля этого параметра состоит в том, что каждый раз, когда осуществляется пуск электродвигателя с последующим ускорением, отмечается высокое потребление пускового тока. Пусковой ток нагревает электродвигатель. Если электродвигатель не остывает, продолжительная нагрузка от пускового тока значительно нагревает обмотки статора электродвигателя, что приводит к выходу из строя электродвигателя или сокращению срока службы изоляции.

Обычно за количество пусков, которое может выполнить электродвигатель в час, отвечает поставщик электродвигателя. Например, Grundfos указывает максимальное число пусков в час в технических данных на насос, так как максимальное количество пусков зависит от момента инерции насоса.

Мощность и КПД (eta) электродвигателя

Существует прямая связь между мощностью, потребляемой электродвигателем от сети, мощностью на валу электродвигателя и гидравлической мощностью, развиваемой насосом.

При производстве насосов используются следующие обозначения этих трёх различных типов мощности.

Мощность и КПД электродвигателя

P1 (кВт) Входная электрическая мощность насосов – это мощность, которую электродвигатель насоса получает от источника электрического питания. Мощность P! равна мощности P2, разделённой на КПД электродвигателя.

P2 (кВт) Мощность на валу электродвигателя – это мощность, которую электродвигатель передает на вал насоса.

Р3 (кВт) Входная мощность насоса = P2, при условии, что соединительная муфта между валами насоса и электродвигателя не рассеивает энергию.

Р4 (кВт) Гидравлическая мощность насоса.

Вращающий момент электродвигателя – это сила вращения его вала. Именно крутящий момент определяет выходную мощность вашего двигателя. Она измеряется в Ньютонах на метр Н*м или килограммах силы на метр кгс*м.

Расчет крутящего момента двигателя

Расчет крутящего момента двигателя

Крутящий момент электродвигателя – это сила вращения его вала. Именно крутящий момент определяет выходную мощность вашего двигателя. Она измеряется в Ньютонах на метр Н*м или килограммах силы на метр кгс*м.

Виды крутящего момента:

  • Номинальный – Значение крутящего момента для стандартного режима работы и стандартной номинальной нагрузки двигателя.
  • Крутящий момент при запуске – Является табличным значением. Сила вращения, которую способен развить электродвигатель после запуска. При выборе электродвигателя необходимо следить за тем, чтобы это значение было больше статического момента устройства – насоса, вентилятора и т.д. В противном случае двигатель не сможет запуститься, а обмотка может перегреться и сгореть.
  • Максимальный – это предел, при котором нагрузка выравнивается и останавливает двигатель.

Высокий крутящий момент двигателя обеспечивает автомобилю лучшую динамику разгона даже при низкой частоте вращения коленчатого вала и значительно повышает тяговую способность двигателя и способность к движению по пересеченной местности.

Крутящий момент и мощность

Водители часто спорят между собой о том, какой двигатель мощнее. Но иногда они понятия не имеют, из чего состоит этот параметр. Общепринятый термин “лошадиная сила” был введен изобретателем Джеймсом Уаттом в 18 веке. Он придумал его, наблюдая, как лошадь запрягают для подъема угля из шахты. Он подсчитал, что одна лошадь может поднять 150 кг угля на высоту 30 метров за одну минуту. Одна лошадиная сила эквивалентна 735,5 Вт, поэтому 1 кВт равен 1,36 л.с.

Прежде всего, мощность каждого двигателя указывается в лошадиных силах, и только потом упоминается крутящий момент. Однако эта тяговая характеристика также дает представление о конкретных буксировочных и ходовых возможностях автомобиля. Крутящий момент – это мера производительности двигателя, а мощность – ключевой параметр его работы. Эти показатели тесно связаны между собой. Чем больше лошадиных сил производит двигатель, тем больше потенциал крутящего момента. Этот потенциал реализуется в реальном мире через трансмиссию и оси машины. Сочетание этих элементов вместе определяет, сколько именно мощности может быть преобразовано в крутящий момент.

Самый простой пример – сравнить трактор с гоночным автомобилем. Гоночный автомобиль имеет много лошадиных сил, но ему необходим крутящий момент для увеличения скорости через коробку передач. Такой машине требуется очень мало работы для движения вперед, поскольку большая часть энергии используется для развития скорости.

Что касается трактора, то он может иметь двигатель такого же рабочего объема, который производит такое же количество лошадиных сил. Однако в этом случае мощность используется не для развития скорости, а для создания тяги (см. тяговый класс). Для этого он приводится в движение многоступенчатой трансмиссией. Поэтому трактор не развивает высоких скоростей, но может тянуть большие грузы, пахать и обрабатывать землю и т.д.

В двигателе внутреннего сгорания мощность передается от выхлопных газов к поршню и от поршня к кривошипно-шатунному механизму, а затем к коленчатому валу. А коленчатый вал, через коробку передач и трансмиссию, вращает колеса.

Конечно, крутящий момент двигателя не является постоянным. Она становится сильнее, когда на руку действует большая сила, и слабее, когда сила ослабевает или прекращается. Это означает, что когда водитель нажимает на педаль акселератора, сила, действующая на рычаг, увеличивается, и соответственно увеличивается крутящий момент двигателя.

Крутящий момент и мощность

Эта сила обеспечивает преодоление любых сил, мешающих движению автомобиля. К ним относятся силы трения в двигателе, коробке передач и трансмиссии, аэродинамические силы, силы качения и т.д. Чем больше мощность, тем большую силу сопротивления сможет преодолеть автомобиль и тем больше будет скорость. Однако мощность не является постоянной силой, а зависит от оборотов двигателя. На холостом ходу мощность одинаковая, но на максимальной скорости она совершенно разная. Многие производители автомобилей указывают, при каких оборотах двигателя достигается максимальная мощность.

Водители часто сталкиваются с ситуациями, когда им необходимо значительно ускорить свой автомобиль, чтобы выполнить необходимый маневр. Когда он нажимает акселератор до пола, он чувствует, что автомобиль разгоняется плохо. Быстрый разгон требует большого крутящего момента. Именно это характеризует быстрый разгон автомобиля.

Основная сила в двигателе внутреннего сгорания создается в камере сгорания, где происходит воспламенение топливно-воздушной смеси. Именно это приводит в движение кривошипно-шатунный механизм, а через него – коленчатый вал. Шатун – это длина кривошипа, а значит, если длина больше, то и крутящий момент увеличится.

Однако увеличить шатун до бесконечности невозможно. Если да, то ход поршня придется увеличить, а вместе с ним и размер двигателя. Также необходимо снизить обороты двигателя. Двигатели с большим коленчатым рычагом можно использовать только на больших лодках. Однако в легковых автомобилях небольшие размеры коленчатого вала не позволяют проводить какие-либо эксперименты.

Например, мы часто получаем запросы: “Нам нужно измерить двигатель мощностью 200 л.с.” или “Какой гидравлический тормоз вы бы порекомендовали для 140 кВт?”.

Что это означает на практике?

Если отойти от теории, то графики мощности и крутящего момента являются основными характеристиками двигателя. Когда вы ведете автомобиль в гору и пытаетесь сохранить прежнюю скорость, вам приходится сильнее нажимать на акселератор. Многие люди думают, что мощность останется прежней, потому что скорость не изменится. Но это не так!

При движении в гору двигатель получает больше мощности при тех же оборотах.
(В той же передаче). Вы можете легко проверить это, посмотрев на текущий расход топлива.

Это также объясняет, почему двигателю нужна коробка передач, поскольку нам необходимо поддерживать обороты в пределах максимального диапазона мощности двигателя, чтобы эффективно ускоряться и преодолевать подъемы в гору.

С другой стороны, электромобили обходятся без него. Кривая крутящего момента и мощности электродвигателя гораздо более линейна, и электродвигатель производит гораздо больше мощности на низких скоростях.

Обе эти единицы измерения мощности (лошадиные силы и ватты, причем термин киловатт обычно используется для увеличения числовых значений последней единицы) были изобретены Дж. Уаттом, но именно крутящий момент, измеряемый в ньютон-метрах, приводит в движение автомобиль. Почему не мощность двигателя определяет способность автомобиля двигаться?

Крутящий момент, его соотношение с мощностью

Дж. Уатт изобрел обе вышеупомянутые единицы измерения мощности (лошадиные силы и ватты, причем термин киловатт обычно используется для увеличения показателей последнего), но именно крутящий момент, выраженный в ньютон-метрах, приводит автомобиль в движение. Почему не мощность двигателя автомобиля определяет его способность двигаться?

Мощность и крутящий момент тесно связаны: мощность, измеряемая в ваттах, является примером крутящего момента, умноженного на 0,1047 и число оборотов в минуту.

Другими словами, мощность указывает на количество работы, выполненной за определенный период времени. Крутящий момент – это показатель способности двигателя выполнять работу.

Например, если автомобиль застрял в болоте и перестал двигаться, лошадиная сила двигателя равна нулю, потому что работа не выполняется, в то время как крутящий момент присутствует, хотя его величина минимальна, недостаточна для начала движения. Таким образом, крутящий момент возникает без мощности, но не наоборот.

На практике мощность напрямую влияет на скорость автомобиля: чем она выше, тем быстрее автомобиль может ехать. Крутящий момент (также называемый “крутящий момент”) – это мера силы, действующей на коленчатый вал, и его способность сопротивляться вращению. Высокий крутящий момент двигателя наиболее заметен при разгоне или при движении в сложных условиях, когда двигатель подвергается критическим нагрузкам.

Другим важным показателем возможностей двигателя является диапазон скоростей, в котором он достигает наибольшей тяги. Не менее важна гибкость двигателя, т.е. его способность достигать высоких оборотов при большой нагрузке. Это соотношение между количеством оборотов для получения наибольшей мощности и максимально возможного крутящего момента.

Это влияет на управление скоростью с помощью педалей акселератора и тормоза без использования коробки передач, а также на возможность движения на низкой скорости на высших передачах.

Например, благодаря хорошей эластичности двигателя автомобиль разгонится с 75-80 км/ч до 120 км/ч на 5-й передаче, и это произойдет тем быстрее, чем более эластичен силовой агрегат. Если у вас есть выбор между двумя двигателями одинакового рабочего объема и мощности, лучше выбрать более гибкий, так как он экономичнее, работает тише и имеет больший срок службы.

Чтобы решить эту дилемму, необходимо понять несколько фактов:

Мощность или крутящий момент – что важнее?

Чтобы решить эту дилемму, важно понять несколько фактов:

  • Мощность линейно связана с частотой вращения коленчатого вала: более высокие обороты равны более высокой производительности;
  • Мощность является производной от hp;
  • До определенного значения мощность зависит от числа оборотов в минуту: более высокие обороты соответствуют большему километражу. Но после пика она снижается.

Из этого можно сделать вывод, что крутящий момент является приоритетным параметром, характеризующим возможности двигателя. В то же время нельзя пренебрегать мощностью: это означает, что производители автомобилей должны адаптировать характеристики машины таким образом, чтобы поддерживать баланс между этими величинами.

Момент нагрузки – это вращающий момент, создаваемый вращающейся механической системой, соединенной с валом асинхронного двигателя. В качестве синонима в литературе можно встретить термин “момент сопротивления”. Момент нагрузки зависит от геометрических и физических параметров тела в кинематической системе, соединенной с валом двигателя. Как правило, при расчетах предполагается, что момент сопротивления приложен к валу двигателя.

Как определить крутящий момент двигателя

Преобразователи частоты />Теория АЭД />Торки

В этом разделе мы собрали подборку статей о понятии крутящего момента, которое так важно в теории асинхронного привода. Здесь вы найдете материал, раскрывающий значение некоторых терминов, связанных с понятием крутящего момента. Кроме того, мы включили подборку статей с формулами, которые можно использовать для расчета конкретных значений крутящего момента или построения графиков их зависимости. Для наглядности здесь также приведены примеры, иллюстрирующие, как формулы могут быть использованы для расчета того или иного значения.

Пример расчета номинального крутящего момента для асинхронных двигателей

Асинхронные двигатели – теория – понятие крутящего момента
26.10.2012 22:10

Из теории мы знаем, что номинальный крутящий момент двигателя – это крутящий момент, развиваемый при номинальной мощности и номинальных оборотах в минуту.

Формула для расчета номинального крутящего момента в зависимости от мощности вала и оборотов в минуту

Как мы объясняли ранее, номинальный крутящий момент – это крутящий момент на валу двигателя, значение которого постоянно при постоянной номинальной скорости вращения вала.

Пример расчета пускового момента асинхронного двигателя

Ранее мы подробно рассмотрели, что такое пусковой момент асинхронного электродвигателя и какие формулы используются для расчета пускового момента (новая статья). В этой статье мы приведем пример расчета пускового момента для различных асинхронных двигателей. Для расчета мы будем использовать данные, имеющиеся в техническом паспорте двигателя: номинальный крутящий момент и пусковой момент, умноженный на номинальный крутящий момент. Расчет будет произведен в соответствии с формулой:

М старт = Мн*К старт
где Мн – пусковой момент,
Мн – номинальный крутящий момент,
K release – коэффициент умножения пускового момента.
Исходные данные и результаты расчетов представлены в таблице. Первая колонка таблицы содержит обозначение двигателей, для которых проводились расчеты. Вторая колонка содержит данные о номинальном значении крутящего момента. Третий столбец содержит коэффициент умножения начального крутящего момента. В четвертой колонке приведены результаты расчетов пускового момента.
Таблица Результаты расчетов пускового момента для асинхронных двигателей на основе технических паспортов

Как рассчитать пусковой момент асинхронного двигателя?

Прежде чем разрабатывать и анализировать формулы для расчета пускового момента, важно напомнить, что такое пусковой момент. Пусковой момент – это крутящий момент на валу двигателя при определенных условиях. Ключевыми условиями являются нулевая скорость вращения ротора, установившийся ток и номинальное напряжение на обмотках двигателя.

Для начала вспомним, что означает термин “критический момент” в теории двигателей. Критический момент – это максимально возможный крутящий момент на валу двигателя при его остановке.
Подробнее о критическом моменте асинхронных двигателей..
Эта формула может быть использована для определения численного значения критического момента:
Mcr = Mn*P

В некоторых машинах необходимо обеспечить максимальный пусковой момент на начальном этапе запуска привода. Для этой задачи хорошо подходит двигатель с фазированным асинхронным ротором. Давайте вкратце опишем, что это такое. Асинхронный двигатель с фазным ротором имеет ротор с пазовыми обмотками. Обмотка ротора соединена в звезду. Фазные концы обмотки ротора соединены со специальными контактными кольцами. Кольца вращаются вместе с валом двигателя. Для запуска и регулировки обмотки ротора можно включить реостат. Реостат подключается с помощью щеточного контакта, который скользит по кольцам. Этот реостат является дополнительным активным резистором. Это сопротивление одинаково для каждой фазы обмотки.
Благодаря возможности интегрировать реостат в обмотку ротора в этих двигателях, можно максимизировать пусковой момент уже на этапе запуска двигателя. Таким образом, можно уменьшить пусковые токи. Эти двигатели используются для привода приложений с высокими требованиями к пусковому моменту (например, пуск под нагрузкой).
Дополнительная информация о пусковом моменте асинхронного двигателя

Важным понятием в области физики твердого тела является крутящий момент. Эта концепция имеет особое значение в области электроприводов. В этой статье мы обсудим основные понятия, связанные с крутящим моментом.
Для начала следует отметить, что крутящий момент часто также называют моментом силы, крутящим моментом, крутящим моментом и моментом кручения. Все эти термины являются синонимами. Хотя в некоторых практических приложениях их необходимо различать. Например, в технических приложениях “крутящий момент” относится к внешней силе, приложенной к объекту, а “вращающий момент” относится к внутренним силам, которые возникают в объекте из-за приложенных нагрузок. В нашей статье мы будем использовать понятие крутящего момента.

Момент нагрузки – это вращающий момент, создаваемый вращающейся механической системой, соединенной с валом асинхронного двигателя. Термин “момент сопротивления” встречается в литературе как синоним. Нагрузочный момент зависит от геометрических и физических параметров тел в кинематической цепи, соединенной с валом двигателя. Как правило, при расчете момента нагрузки на валу двигателя принято использовать момент сопротивления.

Тормозной момент – момент, развиваемый асинхронной машиной при торможении. В литературе можно найти синоним тормозного момента. В теории асинхронных двигателей рассматриваются три режима торможения: рекуперативное торможение, динамическое торможение и антиконденсатное торможение.

Каков критический момент для асинхронного двигателя

Критический момент для асинхронных двигателей – Максимальное значение крутящего момента, развиваемого двигателем. Крутящий момент достигает этого значения при критическом скольжении. Если момент нагрузки на валу двигателя превышает критический момент, двигатель останавливается.

Определение и отличительные особенности номинального крутящего момента

Номинальный крутящий момент асинхронного двигателя – Крутящий момент, возникающий на валу двигателя при номинальной мощности и номинальной скорости. Номинальные данные относятся к данным, которые определяются при работе двигателя в режиме, для которого он был разработан и изготовлен.

Каков начальный крутящий момент. Как она определяется. Каково значение пускового момента?

Пусковой момент на валу асинхронного двигателя – это момент, действующий на вал асинхронного двигателя при следующих условиях: скорость вращения ротора равна нулю (ротор неподвижен), ток установившийся, в обмотки двигателя подается ток номинальной частоты и напряжения, а соединение обмоток соответствует номинальному режиму работы двигателя.

Общая информация об электромагнитном моменте асинхронных двигателей

Электромагнитный крутящий момент – крутящий момент, приложенный к валу двигателя при протекании тока через обмотки. В литературе можно найти синонимы этого термина: крутящий момент двигателя или крутящий момент мотора. Также часто встречаются варианты с более конкретной формулировкой: электромагнитный момент или электромагнитный момент.

Обзор значений крутящего момента, которые исследуются при анализе асинхронного двигателя

В современной теории асинхронных электрических машин используется множество терминов, связанных с понятием крутящего момента. Некоторые из этих терминов относятся к крутящему моменту, возникающему на валу (роторе) электродвигателя. Другая группа терминов относится к крутящему моменту, создаваемому механической нагрузкой, подключенной к валу электродвигателя.

Эти термины определяют как крутящий момент, развиваемый самим двигателем, так и различные состояния крутящего момента на выходном валу двигателя. Под состоянием понимается значение крутящего момента в критических точках. Например, номинальный крутящий момент или пусковой момент.

  • Шаговые двигатели: свойства и практические схемы управления. Часть 2.
  • Рабочие характеристики асинхронного двигателя; Школа для электриков: электротехника и электроника.
  • Векторное и скалярное управление преобразователями частоты – принцип работы, система управления.
  • Асинхронный электродвигатель – конструкция, принцип работы, типы асинхронных двигателей.
  • Как найти начало и конец обмотки электродвигателя – ООО “СЗЭМО Электродвигатель”.
  • Векторное управление вентильным двигателем в безредукторном сервоприводе – темы научных работ по электротехнике, электронике, информатике читайте бесплатно тексты научных работ в электронной библиотеке КиберЛенинка.
  • Мягкие пускатели (устройства плавного пуска). Типы и функции.

Расчет крутящего момента электродвигателя

Расчет крутящего момента электродвигателя

Крутящий момент электродвигателя – это сила вращения его вала. Именно момент вращения определяет мощность Вашего двигателя. Измеряется в ньютонах на метр Н*м или в килограмм-силах на метр кгс*м.

Виды крутящих моментов:

  • Номинальный – значение момента при стандартном режиме работы и стандартной номинальной нагрузке на двигатель.
  • Пусковой – это табличное значение. Сила вращения, которую в состоянии развивать электродвигатель при пуске. При подборе электродвигателя убедитесь, что данный параметр выше, чем статический момент Вашего оборудования – насоса, либо вентилятора и т.д. В противном случае электродвигатель не сможет запуститься, что чревато перегревом и перегоранием обмотки.
  • Максимальный – предельное значение, по достижении которого нагрузка уравновесит двигатель и остановит его.

Таблица крутящих моментов электродвигателей

В данной таблице собраны крутящие моменты наиболее распространенных в Украине электродвигателей АИР, а также требуемый при пуске – пусковой, максимально допустимый для данного типа электродвигателя – максимальный крутящий момент и момент инерции двигателей АИР (усилие важное при подборе электромагнитного тормоза, например)

Мощности асинхронных электродвигателей:

Двигатель кВт/об Мном, Нм Мпуск, Нм Ммакс, Нм Минн, Нм
АИР56А2 0,18/2730 0,630 1,385 1,385 1,133
АИР56В2 0,25/2700 0,884 1,945 1,945 1,592
АИР56А4 0,12/1350 0,849 1,868 1,868 1,528
АИР56В4 0,18/1350 1,273 2,801 2,801 2,292
АИР63А2 0,37/2730 1,294 2,848 2,848 2,330
АИР63В2 0,55/2730 1,924 4,233 4,233 3,463
АИР63А4 0,25/1320 1,809 3,979 3,979 3,256
АИР63В4 0,37/1320 2,677 5,889 5,889 4,818
АИР63А6 0,18/860 1,999 4,397 4,397 3,198
АИР63В6 0,25/860 2,776 6,108 6,108 4,442
АИР71А2 0,75/2820 2,540 6,604 6,858 4,064
АИР71В2 1,1/2800 3,752 8,254 9,004 6,003
АИР71А4 0,55/1360 3,862 8,883 9,269 6,952
АИР71В4 0,75/1350 5,306 13,264 13,794 12,733
АИР71А6 0,37/900 3,926 8,245 8,637 6,282
АИР71В6 0,55/920 5,709 10,848 12,560 9,135
АИР71В8 0,25/680 3,511 5,618 6,671 4,915
АИР80А2 1,5/2880 4,974 10,943 12,932 8,953
АИР80В2 2,2/2860 7,346 15,427 19,100 13,223
АИР80А4 1,1/1420 7,398 16,275 17,755 12,576
АИР80В4 1,5/1410 10,160 22,351 24,383 17,271
АИР80А6 0,75/920 7,785 16,349 17,128 12,457
АИР80В6 1,1/920 11,418 25,121 26,263 20,553
АИР80А8 0,37/680 5,196 10,393 11,952 7,275
АИР80В8 0,55/680 7,724 15,449 16,221 10,814
АИР90L2 3/2860 10,017 23,040 26,045 17,030
АИР90L4 2,2/1430 14,692 29,385 35,262 29,385
АИР90L6 1,5/940 15,239 30,479 35,051 28,955
АИР90LА8 0,75/700 10,232 15,348 20,464 15,348
АИР90LВ8 1,1/710 14,796 22,194 32,551 22,194
АИР100S2 4/2850 13,404 26,807 32,168 21,446
АИР100L2 5,5/2850 18,430 38,703 44,232 29,488
АИР100S4 3/1410 20,319 40,638 44,702 32,511
АИР100L4 4/1410 27,092 56,894 65,021 43,348
АИР100L6 2,2/940 22,351 42,467 49,172 35,762
АИР100L8 1,5/710 20,176 32,282 40,352 30,264
АИР112М2 7,5/2900 24,698 49,397 54,336 39,517
АИР112М4 5,5/1430 36,731 73,462 91,827 58,769
АИР112МА6 3/950 30,158 60,316 66,347 48,253
АИР112МВ6 4/950 40,211 80,421 88,463 64,337
АИР112МА8 2,2/700 30,014 54,026 66,031 42,020
АИР112МВ8 3/700 40,929 73,671 90,043 57,300
АИР132М2 11/2910 36,100 57,759 79,419 43,320
АИР132S4 7,5/1440 49,740 99,479 124,349 79,583
АИР132М4 11/1450 72,448 173,876 210,100 159,386
АИР132S6 5,5/960 54,714 109,427 120,370 87,542
АИР132М6 7,5/950 75,395 150,789 165,868 120,632
АИР132S8 4/700 54,571 98,229 120,057 76,400
АИР132М8 5,5/700 75,036 135,064 165,079 105,050
АИР160S2 15/2940 48,724 97,449 155,918 2,046
АИР160М2 18,5/2940 60,094 120,187 192,299 2,884
АИР180S2 22/2940 71,463 150,071 250,119 4,288
АИР180М2 30/2940 97,449 214,388 341,071 6,821
АИР200М2 37/2950 119,780 275,493 383,295 16,769
АИР200L2 45/2940 146,173 380,051 584,694 19,003
АИР225М2 55/2955 177,750 408,824 710,998 35,550
АИР250S2 75/2965 241,568 628,078 966,273 84,549
АИР250М2 90/2960 290,372 784,003 1161,486 116,149
АИР280S2 110/2960 354,899 887,247 1171,166 212,939
АИР280М2 132/2964 425,304 1233,381 1488,563 297,713
АИР315S2 160/2977 513,268 1231,844 1693,786 590,259
АИР315М2 200/2978 641,370 1603,425 2116,521 962,055
АИР355SMA2 250/2980 801,174 1281,879 2403,523 2163,171
АИР160S4 15/1460 98,116 186,421 284,538 7,457
АИР160М4 18,5/1460 121,010 229,920 350,930 11,375
АИР180S4 22/1460 143,904 302,199 402,932 15,110
АИР180М2 30/1460 196,233 470,959 588,699 27,276
АИР200М4 37/1460 242,021 532,445 847,072 46,952
АИР200L4 45/1460 294,349 647,568 941,918 66,229
АИР225М4 55/1475 356,102 997,085 1317,576 145,289
АИР250S4 75/1470 487,245 1218,112 1559,184 301,605
АИР250М4 90/1470 584,694 1461,735 1871,020 467,755
АИР280S4 110/1470 714,626 2072,415 2429,728 578,847
АИР280М4 132/1485 848,889 1697,778 2886,222 1612,889
АИР315S4 160/1487 1027,572 2568,931 3802,017 2363,416
АИР315М4 200/1484 1287,062 3217,655 4247,305 3603,774
АИР355SMA4 250/1488 1604,503 3690,356 4492,608 8985,215
АИР355SMВ4 315/1488 2021,673 5054,183 5862,853 12534,375
АИР355SMС4 355/1488 2278,394 5012,466 6151,663 15493,078
АИР160S6 11/970 108,299 205,768 314,067 12,021
АИР160М6 15/970 147,680 339,665 443,041 20,675
АИР180М6 18,5/970 182,139 400,706 546,418 29,324
АИР200М6 22/975 215,487 517,169 711,108 50,209
АИР200L6 30/975 293,846 617,077 881,538 102,846
АИР225М6 37/980 360,561 721,122 1081,684 186,050
АИР250S6 45/986 435,852 784,533 1307,556 440,210
АИР250М6 55/986 532,708 1012,145 1811,207 633,922
АИР280S6 75/985 727,157 1454,315 2326,904 1090,736
АИР280М6 90/985 872,589 1745,178 2792,284 1657,919
АИР315S6 110/987 1064,336 1809,372 2873,708 4044,478
АИР315М6 132/989 1274,621 2166,855 3696,400 5735,794
АИР355МА6 160/993 1538,771 2923,666 3539,174 11848,540
АИР355МВ6 200/993 1923,464 3654,582 4423,968 17118,832
АИР355MLA6 250/993 2404,330 4568,228 5529,960 25485,901
AИР355MLB6 315/992 3032,510 6065,020 7278,024 40029,133
АИР160S8 7,5/730 98,116 156,986 235,479 13,246
АИР160М8 11/730 1007,329 1712,459 2417,589 181,319
АИР180М8 15/730 196,233 333,596 529,829 41,994
АИР200М8 18,5/728 242,685 509,639 606,714 67,952
АИР200L8 22/725 289,793 579,586 724,483 88,966
АИР225М8 30/735 389,796 701,633 1052,449 214,388
АИР250S8 37/738 478,794 861,829 1196,985 481,188
АИР250М8 45/735 584,694 1052,449 1520,204 695,786
АИР280S8 55/735 714,626 1357,789 2143,878 1071,939
АИР280М8 75/735 974,490 1754,082 2728,571 1851,531
АИР315S8 90/740 1161,486 1509,932 2671,419 4413,649
АИР315М8 110/742 1415,768 2265,229 3964,151 6370,957
АИР355SMA8 132/743 1696,635 2714,616 3902,261 12215,774
AИР355SMB8 160/743 2056,528 3496,097 4935,666 18097,443
AИР355MLA8 200/743 2570,659 4627,187 6940,781 26991,925
AИР355MLB8 250/743 4498,654 7647,712 10796,770 58032,638

Расчет крутящего момента – формула

Габариты электродвигателей АИР:

Примечание: при расчете стоит учесть коэффициент проскальзывания асинхронного двигателя. Номинальное количество оборотов двигателя не совпадает с реальным. Точное количество оборотов вы сможете найти, зная маркировку, в таблице выше.

Формула расчета крутящего момента

Где, Р – мощность электродвигателя в киловаттах (кВт). N – количество оборотов вала в минуту.


8.1 Расчет крутящего момента
на валу электродвигателя

Для
определения крутящего момента на валу
электродвигателя привода главного
движения используется номинальная
мощность и номинальная частота вращения:

где
– мощность электродвигателя, кВт:

–номинальная
частота вращения электродвигателя,
мин-1:

.

.

8.2 Расчет крутящего момента на валах
привода

Крутящий
момент на валах привода рассчитывается
по формуле:

где


– мощность электродвигателя, кВт:

–КПД
участка привода от электродвигателя
до соответствующего вала;

–расчетная
частота вращения соответствующего
вала, принимается по графику частот,
мин-1.

8.3 Расчет крутящего момента на первом
валу привода

Крутящий
момент на первом валу привода рассчитывается
по формуле:

где
– мощность электродвигателя, кВт:

–КПД
участка привода от электродвигателя
до 1-го вала;

–расчетная
частота вращения на 1-ом валу, принимаем
по графику частот, мин-1:
= 2850 мин-1.

КПД
участка привода до первого вала
рассчитывается по формуле:

где
– КПД зубчатой муфты;

–КПД
пары подшипников;

8.4 Расчет крутящего момента на втором
валу привода

Крутящий
момент на втором валу привода рассчитывается
по формуле:

где
– мощность электродвигателя, кВт:

–КПД
участка привода от электродвигателя
до 2-го вала;

–расчетная
частота вращения на 1-ом валу, принимаем
по графику частот, мин-1:
= 630 мин-1.

КПД
участка привода до второго вала
рассчитывается по формуле:

где

КПД зубчатой муфты;

–КПД
пары подшипников;


КПД зацепления зубчатых колес;
.

8.5 Расчет крутящего момента на третьем
валу привода

Крутящий
момент на третьем валу привода
рассчитывается по формуле:

где
– мощность электродвигателя, кВт:

–КПД
участка привода от электродвигателя
до 3-го вала;

–расчетная
частота вращения на 1-ом валу, принимаем
по графику частот, мин-1:
= 160 мин-1.

КПД
участка привода до третьего вала
рассчитывается по формуле:

где

КПД зубчатой муфты;

–КПД
пары подшипников;


КПД зацепления зубчатых колес;
.

8.6 Расчет крутящего момента на четвертом
валу привода

Крутящий
момент на четвертом валу привода
рассчитывается по формуле:

где
– мощность электродвигателя, кВт:

–КПД
участка привода от электродвигателя
до 4-го вала;

–расчетная
частота вращения на 4-ом валу, определяется
по формуле:

где
– минимальная частота вращения четвертого
вала, мин-1:

мин-1;

–максимальная
частота вращения четвертого вала, мин-1:

мин-1.

КПД
участка привода до четвертого вала
рассчитывается по формуле:

где

КПД зубчатой муфты;

–КПД
пары подшипников;

–КПД
зацепления зубчатых колес;
.

8.7 Расчет крутящего момента на шпинделе

Крутящий
момент на шпинделе рассчитывается по
формуле:

где
– мощность электродвигателя, кВт:

–КПД
участка привода от электродвигателя
до шпинделя;

–расчетная
частота вращения шпинделя, определяется
по формуле:

где
– минимальная частота вращения четвертого
вала, мин-1:

мин-1;

–диапазон
регулирования частот вращения шпинделя:

КПД
участка привода до шпинделя рассчитывается
по формуле:

где

КПД зубчатой муфты;

–КПД
пары подшипников;

–КПД
зацепления зубчатых колес;
.

9 Проектный расчет передач

9.1 Расчет цилиндрической прямозубой
постоянной передачиz1–z2

9.1.1
Исходные данные

1.
Расчетный крутящий момент на первом
валу привода, H·м:

Т1
=
13 Н·м;

2.
Число зубьев шестерни: z1
=
18;

3.
Число зубьев колеса: z2
=
83;

4.
Передаточное число передачи: u1
=
4,76.

9.1.2
Выбор материала и термической обработки
зубчатых

колес

В
качестве материала для зубчатых колес
передачи выбираем сталь 40Х, которая
отвечает необходимым техническим и
эксплуатационным требованиям. В качестве
термической обработки выбираем объемную
закалку, позволяющую получить твердость
зубьев 40..50HRCэ.

9.1.3
Проектный расчет постоянной прямозубой
зубчатой передачи
на контактную выносливость

Диаметр
начальной окружности шестерни
рассчитывается по формуле:

где

вспомогательный
коэффициент: для прямозубых передач


расчётный крутящий момент на первом
валу, Н·м: Т1=13
Н·м;

коэффициент
нагрузки для шестерни, равный 1,3..1,5:
принимаем


передаточное число:

отношение
рабочей ширины венца передачи к начальному
диаметру шестерни:


допускаемое
контактное напряжение, МПа.

Допускаемое
контактное напряжение для прямозубых
передач рассчитывается по формуле:

где

базовый
предел контактной выносливости
поверхностей зубьев, соответствующий
базовому числу циклов перемены напряжений,
МПа;


МПа;

SH
– коэффициент безопасности: SH
= 1,1.

Коэффициент
отношения рабочей ширины венца передачи
к начальному диаметру шестерни может
приниматься в пределах

или
определяется
по формуле:

отношение
рабочей ширины венца передачи к модулю:
принимаем

число
зубьев шестерни: z1
= 18.

что
находится в допустимых пределах
.

Таким
образом, диаметр начальной окружности
шестерни равен:

Модуль
постоянной прямозубой передачи
определяется из условия расчета на
контактную выносливость зубьев по
рассчитанному значению диаметра
начальной окружности шестерни по
формуле:

где

диаметр
начальной окружности шестерни, мм:dw1
=
38,75 мм;

число
зубьев шестерни: z1
= 18.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Как определить крутящий момент электродвигателя

В данной статье осветим тему механических и электрических характеристик электродвигателей. На примере асинхронного двигателя рассмотрим такие параметры как мощность, работа, КПД, косинус фи, вращающий момент, угловая скорость, линейная скорость и частота. Все эти характеристики оказываются важными при проектировании оборудования, в котором электродвигатели служат в качестве приводных. Сегодня особенно широко распространены в промышленности именно асинхронные электродвигатели, поэтому на их характеристиках и остановимся. Для примера рассмотрим АИР80В2У3. Номинальная механическая мощность асинхронного электродвигателя
На шильдике (на паспортной табличке) электродвигателя указывается всегда номинальная механическая мощность на валу данного двигателя. Это не та электрическая мощность, которую данный электродвигатель потребляет из сети.

Так, например, для двигателя АИР80В2У3, номинал в 2200 ватт соответствует именно механической мощности на валу. То есть в оптимальном рабочем режиме данный двигатель способен выполнять механическую работу 2200 джоулей каждую секунду. Обозначим эту мощность как P1 = 2200 Вт.

Номинальная активная электрическая мощность асинхронного электродвигателя

Чтобы определить номинальную активную электрическую мощность асинхронного электродвигателя, опираясь на данные с шильдика, необходимо принять в расчет КПД. Так, для данного электродвигателя КПД составляет 83%.

Что это значит? Это значит, что только часть активной мощности, подаваемой из сети на обмотки статора двигателя, и безвозвратно потребляемой двигателем, преобразуется в механическую мощность на валу. Активная мощность равна P = P1/КПД. Для нашего примера, по представленному шильдику видим, что P1 = 2200, КПД = 83%. Значит P = 2200/0,83 = 2650 Вт.

Номинальная полная электрическая мощность асинхронного электродвигателя

Полная электрическая мощность, подаваемая на статор электродвигателя от сети всегда больше механической мощности на валу и больше активной мощности, безвозвратно потребляемой электродвигателем.

Для нахождения полной мощности достаточно активную мощность разделить на косинус фи. Таким образом, полная мощность S = P/Cosφ. Для нашего примера P = 2650 Вт, Cosφ = 0,87. Следовательно полная мощность S = 2650/0,87 = 3046 ВА.

Номинальная реактивная электрическая мощность асинхронного электродвигателя

Часть полной мощности, подаваемой на обмотки статора асинхронного электродвигателя, возвращается в сеть. Это реактивная мощность Q.

Реактивная мощность связана с полной мощностью через sinφ, и связана с активной и с полной мощностью через квадратный корень. Для нашего примера:

Q = √( 3046 2 – 2650 2 ) = 1502 ВАР

Реактивная мощность Q измеряется в ВАР — в вольт-амперах реактивных.

Теперь давайте рассмотрим механические характеристики нашего асинхронного двигателя: номинальный рабочий момент на валу, угловую скорость, линейную скорость, частоту вращения ротора и ее связь с частотой питания электродвигателя.

Частота вращения ротора асинхронного электродвигателя

На шильдике мы видим, что при питании переменным током частотой в 50 Гц, ротор двигателя совершает при номинальной нагрузке 2870 оборотов в минуту, обозначим эту частоту как n1.

Что это значит? Поскольку магнитное поле в обмотках статора создается переменным током частотой 50 Гц, то для двигателя с одной парой полюсов (коим является АИР80В2У3) частота «вращения» магнитного поля, синхронная частота n, оказывается равной 3000 оборотов в минуту, что тождественно 50 оборотам в секунду. Но поскольку двигатель асинхронный, то ротор вращается с отставанием на величину скольжения s.

Значение s можно определить, разделив разность синхронной и асинхронной частот на синхронную частоту, и выразив это значение в процентах:

s = ( ( n – n1 )/ n) *100%

Для нашего примера s = ( (3000 – 2870)/3000 ) *100% = 4,3%.

Угловая скорость асинхронного двигателя

Угловая скорость ω выражается в радианах в секунду. Для определения угловой скорости достаточно частоту вращения ротора n1 перевести в обороты в секунду (f), и умножить на 2 Пи, поскольку один полный оборот составляет 2 Пи или 2*3,14159 радиан. Для двигателя АИР80В2У3 асинхронная частота n1 составляет 2870 оборотов в минуту, что соответствует 2870/60 = 47,833 оборотам в секунду.

Умножая на 2 Пи, имеем: 47,833*2*3,14159 = 300,543 рад/с. Можно перевести в градусы, для этого вместо 2 Пи подставить 360 градусов, тогда для нашего примера получится 360*47,833 = 17220 градусов в секунду. Однако подобные расчеты обычно ведут именно в радианах в секунду. Поэтому угловая скорость ω = 2*Пи*f, где f = n1/60.

Линейная скорость асинхронного электродвигателя

Линейная скорость v относится к оборудованию, на котором асинхронный двигатель установлен в качестве привода. Так, если на вал двигателя установлен шкив или, скажем, наждачный диск, известного радиуса R, то линейная скорость точки на краю шкива или диска может быть найдена по формуле:

Номинальный вращающий момент асинхронного двигателя

Каждый асинхронный электродвигатель характеризуется номинальным вращающим моментом Мн. Вращающий момент М связан с механической мощностью P1 через угловую скорость следующим образом:

Вращающий момент или момент силы, действующей на определенном расстоянии от центра вращения, для двигателя сохраняется, причем с ростом радиуса уменьшается сила, а чем радиус меньше, тем больше сила, поскольку:

Так, чем больше радиус шкива, тем меньшая сила действует на его краю, а наибольшая сила действует непосредственно на валу электродвигателя.

Для приведенного в качестве примера двигателя АИР80В2У3 мощность P1 равна 2200 Вт, а частота n1 равна 2870 оборотов в минуту или f = 47,833 оборота в секунду. Следовательно угловая скорость составляет 2*Пи*f, то есть 300,543 рад/с, и номинальный вращающий момент Мн равен P1/(2*Пи*f). Мн = 2200/(2*3,14159*47,833) = 7,32 Н*м.

Таким образом, исходя из данных, указанных на шильдике асинхронного электродвигателя, можно найти все основные электрические и механические его параметры.

Надеемся, что данная статья помогла вам разобраться в том, как связаны между собой угловая скорость, частота, вращающий момент, активная, полезная и полная мощность, а также КПД электродвигателя.

Этот калькулятор позволяет перевести мощность и момент силы и обратно для заданной угловой скорости

Пусковой ток и его кратность

Чтобы тронуть с места (пустить) двигатель, нужен громадный пусковой ток (Iп). Громадный – по сравнению с номинальным (рабочим) током Iн на установившейся скорости. В статьях обычно указывают, что пусковой ток превышает рабочий в 5-8 раз. Это число называется “Кратность пускового тока” и обозначается как коэффициент Кп = Iп / Iн.

Пусковой ток – это ток, который потребляет электродвигатель во время пуска. Узнать пусковой ток можно, зная номинальный ток и коэффициент Кп:

Iп = Кп · Iн

Номинальный ток всегда указан на шильдике двигателя:

Номинальный ток двигателя для разных напряжений и схем включения

Кп – рабочий параметр, который указан в характеристиках двигателя, но на корпусе двигателя он никогда не указывается.

Замечу, что не надо путать номинальный и рабочий токи. Номинальный ток – это ток, на котором двигатель может работать продолжительное время, он ограничен только нагревом обмотки статора. Рабочий ток – это реальный ток в данном агрегате, он всегда меньше либо равен номинальному. На практике рабочий ток измеряется токоизмерительными клещами, амперметром или трансформатором тока.

Если рабочий ток больше номинального – жди беды. Читайте мою статью про то, как защитить электродвигатель от перегрузки и перегрева.

Кратность пускового тока . На шильдике его обычно нет, а в документации и на сайтах производителей он присутствует:

Параметры двигателей. Кратность пускового тока

Пример из первой строчки на картинке: конкретный двигатель мощностью 1,5 кВт имеет номинальный ток 3,4 А. Значит, пусковой ток в какой-то момент (сколько длится этот “момент” – рассмотрим ниже) может достигать значения 3,4 х 6,5 = 22,1 А!

Судя по каталогам (их можно будет скачать в конце статьи, как обычно у меня), пусковой ток превышает номинальный в пределах от 3,5 до 8,5 раз. Кратность пускового тока зависит прежде всего от мощности двигателя и от количества пар полюсов. Чем меньше мощность, тем меньше пусковой ток. А чем меньше пар полюсов (больше номинальные обороты) – тем больше пусковой ток.

То есть, самым большим током при пуске (7 – 8,5 от номинала) обладают высокооборотистые двигатели (3000 об/мин, 2 пары полюсов) сравнительно большой мощности (более 10 кВт).

Так происходит потому, что потребляемый ток и момент инерции при пуске зависит от конструкции двигателя и способа намотки. Мало полюсов – низкое сопротивление обмоток. Низкое сопротивление – большой ток. Кроме того, высокооборотистым движкам для полной раскрутки требуется больше времени, а это опять же тяжелый пуск.

Если объяснить более научным языком, то дело происходит так. Когда двигатель стоит, его степень скольжения S = 1. При раскручивании (или, как любят говорить спецы, разворачивании) S стремится к нулю, но никогда его не достигает – на то двигатель и называют асинхронным, ведь вращение ротора никогда не догонит вращение поля статора из-за потерь. Одновременно сердечник ротора насыщается магнитным полем, увеличивается ЭДС самоиндукции и индукционное сопротивление. А значит, уменьшается ток.

Кому хочется узнать подробнее – в конце статьи я выложил несколько хороших книг по теме.

На самом деле не так всё просто, начинаем копать глубже.

Выбираем электродвигатель по крутящему моменту

Для выбора, требуемого к выполнению тех или иных задач электродвигателя, берут в учёт практически все его характеристики, начиная от показателей мощности и заканчивая массогабаритными параметрами. Каждый из элементов по-своему важен в решении нюансов. Не меньшее значение припадает и на крутящий момент. Благодаря тому, что момент кручения напрямую связан с оборотами в соотношении: чем больше сами обороты, тем меньше будет момент, выбор электродвигателя будет исходить из следующих нюансов:

  • из скоростных требований. В этом случае, более полезным будет выбор двигателя по малому моменту для работающих со слабыми усилиями и на большой скорости, и со средними либо высокими показателями моментов пуска для работающих в усиленных режимах. На малых скоростях;
  • по пусковым напряжениям. Здесь учитывается первичное усилие, например, для управления лифтом следует подбирать двигатели высокого пускового момента, способного поднимать большие грузы со старта. Хотя, многие статьи про электродвигатели рекомендуют так же применять устройства плавного пуска, умеющие обезопасить от нежелательных перегрузов.

Стоит помнить, что выбор осуществляется не по одному из показателей, даже при ориентировании относительно крутящего момента, ведь каждый из показателей ориентируется по рабочей предрасположенности электротехнического приводного устройства и его рабочих нагрузок в статистических и динамических эксплуатационных условиях, задаваемых самим предприятием.

Остались вопросы? Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы: 8-800-700-11-54

(8-18, Пн-Вт)

Нагрузка насосов и типы нагрузки электродвигателя

Выделяют следующие типы нагрузок:

Постоянная мощность

Термин «постоянная мощность» используется для определённых типов нагрузки, в которых требуется меньший вращающий момент при увеличении скорости вращения, и наоборот. Нагрузки при постоянной мощности обычно применяются в металлообработке, например, сверлении, прокатке и т.п.

Постоянный вращающий момент

Переменный вращающий момент и мощность

Вся остальная часть данного раздела будет посвящена исключительно переменному вращающему моменту и мощности.

Определив, что для центробежных насосов типичным является переменный вращающий момент, мы должны проанализировать и оценить некоторые характеристики центробежного насоса. Использование приводов с переменной частотой вращения обусловлено особыми законами физики. В данном случае это законы подобия, которые описывают соотношение между разностями давления и расходами.

Во-первых, подача насоса прямо пропорциональна частоте вращения. Это означает, что если насос будет работать с частотой вращения на 25% больше, подача увеличится на 25%.

Во-вторых, напор насоса будет меняться пропорционально квадрату изменения скорости вращения. Если частота вращения увеличивается на 25%, напор возрастает на 56%.

В-третьих, что особенно интересно, мощность пропорциональна кубу изменения скорости вращения. Это означает, что если требуемая частота вращения уменьшается на 50%, это равняется 87,5%-ному уменьшению потребляемой мощности.

Итак, законы подобия объясняют, почему использование приводов с переменной частотой вращения более целесообразно в тех областях применения, где требуются переменные значения расхода и давления. Grundfos предлагает ряд электродвигателей со встроенным частотным преобразователем, который регулирует частоту вращения для достижения именно этой цели.

Так же как подача, давление и мощность, потребная величина вращающего момента зависит от скорости вращения.

Это можно проиллюстрировать на примере характеристики вращающий момент/частота вращения, которую мы использовали ранее, когда рассказывали о вращающем моменте электродвигателя:

Когда электродвигатель набирает скорость от нуля до номинальной скорости, вращающий момент может значительно меняться. Величина вращающего момента, необходимая при определённой нагрузке, также изменяется с частотой вращения. Чтобы электродвигатель подходил для определённой нагрузки, необходимо чтобы величина вращающего момента электродвигателя всегда превышала вращающий момент, необходимый для данной нагрузки.

В примере, центробежный насос при номинальной нагрузке имеет вращающий момент, равный 70 Нм, что соответствует 22 кВт при номинальной частоте вращения 3000 мин-1. В данном случае насосу при пуске требуется 20% вращающего момента при номинальной нагрузке, т.е. приблизительно 14 Нм. После пуска вращающий момент немного падает, а затем, по мере того, как насос набирает скорость, увеличивается до величины полной нагрузки.

Очевидно, что нам необходим насос, который будет обеспечивать требуемые значения расход/напор (Q/H). Это значит, что нельзя допускать остановок электродвигателя, кроме того, электродвигатель должен постоянно ускоряться до тех пор, пока не достигнет номинальной скорости. Следовательно, необходимо, чтобы характеристика вращающего момента совпадала или превышала характеристику нагрузки на всём диапазоне от 0% до 100% скорости вращения. Любой «избыточный» момент, т.е. разница между кривой нагрузки и кривой электродвигателя, используется как ускорение вращения.

Что такое крутящий момент электродвигателя

Одним из важных параметров электродвигателя, который так же важен при его выборе, является крутящий момент. Эта величина определяется произведением приложенной к плечу рычага силы и зависит исключительно от степени нагрузки. Если в двигателях внутреннего сгорания данную нагрузку задаётся коленчатым валом, то асинхронные электродвигатели получают величину крутящего момента от токов возбуждения. При этом величина этого момента будет зависеть от скорости вращающегося в магнитном поле статора устройства, называемого ротор. В зависимости от периода и способа определения, крутящий момент разделяют на:

  • статический (пусковой) – минимальный момент холостого хода;
  • промежуточный – развивает значение при работе двигателя от 0 величины оборотов до максимального значения в номинальной величине напряжения;
  • максимальный – развивающийся при эксплуатации двигателя;
  • номинальный – соответствует номинальным значениям мощности и оборотов.

Для вычисления величины крутящего момента, определяющегося в «кгм» (килограмм на метр) или «Нм» (ньютон на метр), многие электротехнические пособия предлагают специальные формулы, учитывающие кроме основного действия вращающегося магнитного поля ряд всевозможных факторов, например:

  • напряжения сети;
  • величину индуктивного и активного сопротивления;
  • зависимость от увеличения скольжения.

Но, рост скольжения не всегда приносит высокий момент. Зачастую, при достижении критических значений, наблюдается его резкое снижение. Такое явление обозначается как опрокидывающий момент. Одним из устройств, стабилизирующих скорость вращения ротора, а значит и величину момента кручения является частотный преобразователь, применение которого сейчас очень распространено во всех сферах, где от контроля работы двигателя зависит и успешность выполнения множественных производственных задач.

Способы измерения

Существует несколько способов измерения скольжения асинхронного двигателя. Если частота вращения значительно отличается от синхронной, то ее можно измерить с помощью тахометра или тахогенератора, подключенного на валу ЭД.

Вариант измерения стробоскопическим методом с помощью неоновой лампы подходит при величине скольжения не более 5%. Для этого на валу двигателя либо наносят мелом специальную черту, либо устанавливают специальный стробоскопический диск. Освещают их неоновой лампой, и отсчитывают вращение за определенное время, потом, по специальным формулам производят вычисления. Также возможно использование полноценного стробоскопа, подобно тому что показано ниже.

Выбираем электродвигатель по крутящему моменту

Для выбора, требуемого к выполнению тех или иных задач электродвигателя, берут в учёт практически все его характеристики, начиная от показателей мощности и заканчивая массогабаритными параметрами. Каждый из элементов по-своему важен в решении нюансов. Не меньшее значение припадает и на крутящий момент. Благодаря тому, что момент кручения напрямую связан с оборотами в соотношении: чем больше сами обороты, тем меньше будет момент, выбор электродвигателя будет исходить из следующих нюансов:

  • из скоростных требований. В этом случае, более полезным будет выбор двигателя по малому моменту для работающих со слабыми усилиями и на большой скорости, и со средними либо высокими показателями моментов пуска для работающих в усиленных режимах. На малых скоростях;
  • по пусковым напряжениям. Здесь учитывается первичное усилие, например, для управления лифтом следует подбирать двигатели высокого пускового момента, способного поднимать большие грузы со старта. Хотя, многие статьи про электродвигатели рекомендуют так же применять устройства плавного пуска, умеющие обезопасить от нежелательных перегрузов.

Соответствие электродвигателя нагрузке

Если нужно определить, отвечает ли вращающий момент определённого электродвигателя требованиям нагрузки, Вы можете сравнить характеристики скорости вращения/вращающего момента электродвигателя с характеристикой скорости вращения/ вращающего момента нагрузки. Вращающий момент, создаваемый электродвигателем, должен превышать потребный для нагрузки вращающий момент, включая периоды ускорения и полной скорости вращения.

Характеристика зависимости вращающего момента от скорости вращения стандартного электродвигателя и центробежного насоса.

Когда двигатель приближается к своему номинальному значению скорости вращения, ток снижается. Как и следовало ожидать, во время начального периода пуска потери на электродвигателе высоки, поэтому этот период не должен быть продолжительным, чтобы не допустить перегрева.

Очень важно, чтобы максимальная скорость вращения достигалась как можно точнее. Это связано с потребляемой мощностью: например, увеличение скорости вращения на 1% по сравнению со стандартным максимумом приводит к 3%-ному увеличению потребляемой мощности.

Потребляемая мощность пропорциональна диаметру рабочего колеса насоса в четвертой степени.

Уменьшение диаметра рабочего колеса насоса на 10% приводит к уменьшению потребляемой мощности на (1- (0.9 * 0.9 * 0.9 * 0.9)) * 100 = 34%, что равно 66% номинальной мощности. Эта зависимость определяется исключительно на практике, так как зависит от типа насоса, конструкции рабочего колеса и от того, насколько вы уменьшаете диаметр рабочего колеса.

Какой максимальный вращающий момент и как его можно увеличить?

Мощность двигателя – важнейший его показатель. Как в плане эксплуатации, так и в плане начисления налогов на авто. Крутящий момент нередко путают с мощностью или упускают его из виду в процессе оценки ходовых качеств авто. Многие упрощают автомобиль, считая, что большое количество лошадиных сил – главное преимущество любого мотора. Однако, вращающий момент – более важный показатель. Особенно, если автомобиль не предполагается использовать в качестве спортивного.

Что такое крутящий момент

Крутящим моментом называют единицу силы, которая необходима для поворота коленчатого вала ДВС. Эта не «лошадиная сила», которой должна обозначаться мощность.

ДВС вырабатывает кинетическую энергию, вращая таким образом коленвал. Показатель мощности двигателя (сила давления) зависит от скорости сгорания топлива. Крутящий момент – результат от действия силы на рычаг. Эта сила в физике считается в ньютонах. Длина плеча коленвала считается в метрах. Поэтому обозначение крутящего момента – ньютон-метр.

Технически, крутящий момент – это усилие, которое должно осуществляться двигателем для разгона и движения машины. При этом сила, оказывающая действие на поршень, пропорциональна объему двигателя.

Маховик – одна из важнейших деталей, которая должна через редуктор передавать вращательный момент от мотора к коробке передач, от стартера на коленвал, от коленвала на нажимной диск. Собственно, крутящий момент – итог давления на шатун.

Потребляемая мощность электродвигателя

Ток ротора индуцируется через источник питания, к которому подсоединён электродвигатель, а магнитное поле частично создаётся напряжением. Входную мощность можно вычислить, если нам известны данные источника питания электродвигателя, т.е. напряжение, коэффициент мощности, потребляемый ток и КПД.

Потребляемая мощность электродвигателя

В Европе мощность на валу обычно измеряется в киловаттах. В США мощность на валу измеряется в лошадиных силах (л.с.).

Если вам необходимо перевести лошадиные силы в киловатты, просто умножьте соответствующую величину (в лошадиных силах) на 0,746. Например, 20 л.с. равняется (20 • 0,746) = 14,92 кВт.

И наоборот, киловатты можно перевести в лошадиные силы умножением величины в киловаттах на 1,341. Это значит, что 15 кВт равняется 20,11 л.с.

Формула расчета крутящего момента

Показатель КМ рассчитывается так: мощность (в л. с.) равно крутящий момент (в Нм) умножить на обороты в минуту и разделить на 5,252. При меньших чем 5,252 значениях крутящий момент будет выше мощности, при больших – ниже.

В пересчете на принятую в России систему (кгм – килограмм на метр) – 1кг = 10Н, 1 см = 0,01м. Таким образом 1 кг х см = 0,1 Н х м. Посчитать вращательный момент в разных системах измерений ньютоны/килограммы и т.д. поможет конвертер – в практически неизменном виде он доступен на множестве сайтов, с его помощью можно определять данные по практически любому мотору.

График:

На графике изображена зависимость крутящего момента двигателя от его оборотов

От чего зависит крутящий момент

На КМ будут влиять:

  • Объем двигателя.
  • Давление в цилиндрах.
  • Площадь поршней.
  • Радиус кривошипа коленвала.

Основная механика образования КМ заключается в том, что чем больше двигатель по объему, тем сильней он будет нагружать поршень. То есть – будет выше значение КМ. Аналогична взаимосвязь с радиусом кривошипа коленвала, но это вторично: в современных двигателях этот радиус сильно изменить нельзя.

Давление в камере сгорания – не менее важный фактор. От него напрямую зависит сила, давящая на поршень.

Для снижения потерь крутящего момента при тряске машины во время резкого газа можно использовать компенсатор. Это специальный (собранный вручную) демпфер, компенсация которого позволит сохранить вращающий момент и повысить срок эксплуатации деталей.

Число пусков электродвигателя в час

Современные сложные системы управления электродвигателями могут контролировать число пусков в час каждого конкретного насоса и электродвигателя. Необходимость контроля этого параметра состоит в том, что каждый раз, когда осуществляется пуск электродвигателя с последующим ускорением, отмечается высокое потребление пускового тока. Пусковой ток нагревает электродвигатель. Если электродвигатель не остывает, продолжительная нагрузка от пускового тока значительно нагревает обмотки статора электродвигателя, что приводит к выходу из строя электродвигателя или сокращению срока службы изоляции.

Обычно за количество пусков, которое может выполнить электродвигатель в час, отвечает поставщик электродвигателя. Например, Grundfos указывает максимальное число пусков в час в технических данных на насос, так как максимальное количество пусков зависит от момента инерции насоса.

На что влияет крутящий момент

Главная цель КМ – набор мощности. Часто мощные моторы обладают низким показателем КМ, поэтому не способны разогнать машину достаточно быстро. Особенно это касается бензиновых двигателей.

ВАЖНО! При выборе авто стоит рассчитать оптимальное соотношение вращательного момента с количеством оборотов, на которых чаще всего мотор будет работать. Если держать вращательный момент на соответствующем уровне, это позволит оптимально реализовать потенциал двигателя.

Высокий КМ также может влиять на управляемость машины, поэтому при резком увеличении скорости не лишним будет использование системы TSC. Она позволяет точнее направлять авто при резком разгоне.

Широко распространенный 8-клапанный двигатель ВАЗ выдает вращательный момент 120 (при 2500-2700 оборотах). Ручная коробка или АКПП стоит на машине – не принципиально. При использовании КПП немаловажен опыт водителя, на автоматической коробке плавный старт обеспечивает преобразователь.

Как увеличить крутящий момент

Увеличение рабочего объема. Чтобы повышать КМ используются разные методы: замена установленного коленвала на вал с увеличенным эксцентриситетом (редко встречающаяся запчасть, которую трудно находить) или расточка цилиндров под больший диаметр поршней. Оба способа имеют свои плюсы и минусы. Первый требует много времени на подбор деталей и снижает долговечность двигателя. Второй, увеличение диаметра цилиндров с помощью расточки, более популярен. Это может сделать практически любой автосервис. Там же можно настроить карбюратор для повышения КМ.

Изменение величины наддува. Турбированные двигатели позволяют достичь более высокого показателя КМ благодаря особенностям конструкции – возможности отключить ограничения в блоке управления компрессором, который отвечает за наддув. Манипуляции с блоком позволят повысить объем давления выше максимума, указанного производителем при сборке автомобиля. Способ можно назвать опасным, поскольку у каждого двигателя есть лимитированный запас нагрузок. Кроме того, часто требуются дополнительные усовершенствования: увеличение камеры сгорания, приведение охлаждения в соответствие повышенной мощности. Иногда требуется отрегулировать впускной клапан, иногда – сменить распредвал. Может потребоваться замена чугунного коленвала на стальной, замена поршней.

Измеритель крутящего момента

Главная сложность в измерителе крутящего момента, использующего тензометры, является точность передачи данных. Применявшиеся ранее контактные, индукционные и светотехнические устройства не гарантировали необходимой эффективности. Сейчас данные передаются по цифровым радиоканалам. Измеритель представляет собой компактный радиопередатчик, который крепится на вал и передает данные на приемник.

Сейчас такие устройства доступны по стоимости и просты в эксплуатации. Применяются в основном в СТО.

Мощность и КПД (eta) электродвигателя

Существует прямая связь между мощностью, потребляемой электродвигателем от сети, мощностью на валу электродвигателя и гидравлической мощностью, развиваемой насосом.

При производстве насосов используются следующие обозначения этих трёх различных типов мощности.

Р3 (кВт) Входная мощность насоса = P2, при условии, что соединительная муфта между валами насоса и электродвигателя не рассеивает энергию.

Источник

Максимальный крутящий момент

Максимальным называется крутящий момент, представляющий пик, после которого момент не растет, несмотря на количество оборотов. На малых оборотах в цилиндре скапливается большой объем остаточных газов, в результате чего показатель КМ значительно ниже пикового. На средних оборотах в цилиндры поступает больше воздуха, процент газов снижается, крутящий момент продолжает расти.

При высоких оборотах растут потери эффективности: от трения поршней, инерционных потерь в ГРМ, разогрева масла и т.д. будет зависеть работа мотора. Поэтому рост качества работы двигателя прекращается или само качество начинает снижаться. Максимальный крутящий момент достигнут и начинает снижаться.

В электродвигателях максимальный вращательный момент называется «критический».

Таблица марок автомобилей с указанием крутящего момента:

650-2000+

Модели автомобиля ВАЗ Крутящий момент (Нм, разные марки двигателей)
2107 93 – 176
2108 79-186
2109 78-118
2110 104-196
2112 104-162
2114 115-145
2121 (Нива) 116-129
2115 103-132
2106 92-116
2101 85-92
2105 85-186
Двигатели ЗМЗ
406 181,5-230
409 230
Других популярные в России марки автомобилей
Ауди А6 500-750
БМВ 5 290-760
Бугатти Вейрон 1250-1500
Дэу Нексия 123-150
КАМАЗ
Киа Рио 132-151
Лада Калина 127-148
Мазда 6 165-420
Мицубиси Лансер 143-343
УАЗ Патриот 217-235
Рено Логан 112-152
Рено Дастер 156-240
Тойота Королла 128-173
Хендай Акцент 106-235
Хендай Солярис 132-151
Шевроле Каптив 220-400
Шевроле Круз 118-200

Какому двигателю отдать предпочтение

Сегодня множество моделей производители оснащают разными типами моторов: бензиновым или дизельным. Эти модели идентичны только по цене и другим характеристикам.

Из-за разных типов мотора одна и та же модель может отличаться по показателям мощности мотора и крутящему моменту, при этом разница может быть значительной.

Бензиновый двигатель

Бензиновый двигатель формирует воздушно-топливную смесь, заполняющую цилиндр. Температура внутри него поднимается до примерно 500 градусов. У таких моторов номинальный коэффициент сжатия составляет порядка 9-10, реже 11 единиц. Поэтому, когда происходит впрыск необходимо использование свечей зажигания.

Дизельный двигатель

В цилиндрах работающего на дизеле движка коэффициент сжатия смеси может достигать показателя в 25 единиц, температура – 900 градусов. Поэтому смесь зажигается без использования свечи.

Электродвигатель

Автомобильный трехфазный асинхронный электродвигатель работает по совершенно другим законам, поэтому его мощность и КМ отличаются от традиционных кардинально. Электромотор состоит из ротора и статора, кратность которых позволяет выдавать пиковый КМ (600 Нм) на любой скорости. При этом мощность электродвигателя, например, у Теслы, составляет 416 л. с.

Чтобы ответить на вопрос – дизельный, бензиновый или электродвигатель лучше, надо сначала исключить третий вариант, поскольку электродвигатели пока не так распространены, как первые два типа.

ВАЖНО! Что касается выбора между бензиновым и дизельным двигателями, они в первую очередь отличаются мощностью и крутящим моментом. На практике это означает, что при одинаковом объеме двигателя дизельный быстрее разгоняется, а бензиновый позволяет давать более высокую скорость.

Кроме того, благодаря большему крутящему момент автомобиль, использующийся как грузовой, обладает большей грузоподъемностью за счет двигателя. Особенно если двигатель дизель-генераторный.

Работа и мощность

Если мы говорим о вращении, мощность выражается как вращающий момент (T), умноженный на частоту вращения (w).

Частота вращения объекта определяется измерением времени, за которое определённая точка вращающегося объекта совершит полный оборот. Обычно эта величина выражается в оборотах в минуту, т.е. мин-1 или об/мин. Например, если объект совершает 10 полных оборотов в минуту, это означает, что его частота вращения: 10 мин-1 или 10 об/мин.

Итак, частота вращения измеряется в оборотах в минуту, т.е. мин-1.

Приведем единицы измерения к общему виду.

Для наглядности возьмём разные электродвигатели, чтобы более подробно проанализировать соотношение между мощностью, вращающим моментом и частотой вращения. Несмотря на то, что вращающий момент и частота вращения электродвигателей сильно различаются, они могут иметь одинаковую мощность.

Например, предположим, что у нас 2-полюсный электродвигатель (с частотой вращения 3000 мин-1) и 4-полюсной электродвигатель (с частотой вращения 1500 мин-1). Мощность обоих электродвигателей 3,0 кВт, но их вращающие моменты отличаются.

Таким образом, вращающий момент 4-полюсного электродвигателя в два раза больше вращающего момента двухполюсного электродвигателя с той же мощностью.

Как образуется вращающий момент и частота вращения?

Теперь, после того, как мы изучили основы вращающего момента и скорости вращения, следует остановиться на том, как они создаются.

В электродвигателях переменного тока вращающий момент и частота вращения создаются в результате взаимодействия между ротором и вращающимся магнитным полем. Магнитное поле вокруг обмоток ротора будет стремиться к магнитному полю статора. В реальных рабочих условиях частота вращения ротора всегда отстаёт от магнитного поля. Таким образом, магнитное поле ротора пересекает магнитное поле статора и отстает от него и создаёт вращающий момент. Разницу в частоте вращения ротора и статора, которая измеряется в %, называют скоростью скольжения.

Скольжение является основным параметром электродвигателя, характеризующий его режим работы и нагрузку. Чем больше нагрузка, с которой должен работать электродвигатель, тем больше скольжение.

Помня о том, что было сказано выше, разберём ещё несколько формул. Вращающий момент индукционного электродвигателя зависит от силы магнитных полей ротора и статора, а также от фазового соотношения между этими полями. Это соотношение показано в следующей формуле:

Сила магнитного поля, в первую очередь, зависит от конструкции статора и материалов, из которых статор изготовлен. Однако напряжение и частота тока также играют важную роль. Отношение вращающих моментов пропорционально квадрату отношения напряжений, т.е. если подаваемое напряжение падает на 2%, вращающий момент, следовательно, уменьшается на 4%.

Добавить комментарий