Как найти куба через вписанную окружность

Факт 1.
(bullet) Куб – это прямоугольный параллелепипед, все грани которого – равные квадраты.
(bullet) Следовательно:

({color{red}{{small{объем куба}}}}) ищется по следующей формуле (где (a) – ребро куба): [{color{red}{{large{V=a^3}}}}]({color{red}{{small{диагональ куба}}}}) [{color{red}{{large{d^{,2}=3a^2}}}}]({color{red}{{small{площадь поверхности куба}}}}) равна сумме площадей шести одинаковых квадратов, т.е. [{color{red}{{large{S_{text{пов.куб}}=6a^2}}}}]

Факт 2.
(bullet) Если сфера вписана в куб (то есть касается всех его граней), то ее радиус равен (0,5a), где (a) – ребро куба.
(bullet) Если сфера описана около куба (то есть все вершины куба лежат на сфере), то ее радиус равен (0,5d), где (d) – диагональ куба.
(bullet) Центр сферы, вписанной в куб или описанной около куба, лежит в точке пересечения диагоналей куба.

Радиус вписанной сферы куба представляет собой половину ребра куба, так как диаметр такой сферы точно совпадает с самим ребром. Поэтому чтобы найти ребро куба через радиус вписанной сферы, нужно умножить последний на два. (рис.2.2)
a=2r

Найти площадь стороны куба можно как площадь квадрата, стороной которого является ребро куба. Тогда, вместо того чтобы возводить во вторую степень ребро, нужно возвести удвоенный радиус вписанной в куб сферы. Площадь боковой поверхности куба и площадь полной поверхности куба будут равны четырем и шести таким площадям соответственно, так как они представлены эти количеством граней куба.
S=a^2=4r^2
S_(б.п.)=4S=16r^2
S_(п.п.)=6S=24r^2

Чтобы вычислить объем, необходимо возвести в куб ребро a или удвоенный радиус вписанной сферы. Таким образом, мы получим, что объем куба через радиус сферы, вписанной в него, равен кубу этого радиуса, умноженному на 8.
V=a^3=8r^3

Периметр куба, как сумма длин всех ребер по одной стороне, равен произведению длины одного ребра и двенадцать. Периметр, выраженный через радиус вписанной окружности, равен 24 таким радиусам.
P=12a=24r

Диагональ стороны куба, то есть диагональ квадрата, вычисляется как произведение ребра куба на корень из двух, в данном случае она будет выглядеть как произведение радиуса вписанной сферы на 2 корня из двух.
d=a√2=2√2 r

Чтобы найти диагональ куба через радиус вписанной сферы, воспользуемся готовой формулой для диагонали куба через ребро и подставим вместо него удвоенный радиус. (рис.2.1.)
D=a√3=2√3 r

Радиус окружности, описанной вокруг куба, равен половине диагонали, как видно из рисунка. Так как диагональ куба равна удвоенному произведению радиуса и корня из трех, то разделив это выражение на два, коэффициенты сократятся, и останется только радиус, умноженный на корень из трех. (рис.2.3.)
R=D/2=(2√3 r)/2=√3 r

Куб — удивительная фигура. Он одинаковый со всех сторон. Любая его грань может вмиг стать основанием или боковой. И от этого ничего не изменится. А формулы для него всегда легко запоминаются.

И неважно, что нужно найти — объем или площадь поверхности куба. В последнем случае даже не нужно учить что-то новое. Достаточно помнить только формулу площади квадрата.

Что такое площадь?

Площадь поверхности куба, формулы и примеры

Эту величину принято обозначать латинской буквой S. Причем это справедливо для школьных предметов, таких как физика и математика. Измеряется она в квадратных единицах длины.

Все зависит от данных в задаче величин. Это могут быть мм, см, м или км в квадрате. Причем возможны случаи, когда единицы даже не указаны. Идет речь просто о числовом выражении площади без наименования.

Так что же такое площадь? Это величина, которая является числовой характеристикой рассматриваемой фигуры или объемного тела. Она показывает размер ее поверхности, которая ограничена сторонами фигуры.

Какая фигура называется кубом?

Площадь поверхности куба, формулы и примеры

Эта фигура является многогранником. Причем непростым. Он правильный, то есть у него все элементы равны друг другу. Будь то стороны или грани. Каждая поверхность куба представляет собой квадрат.

Другое название куба — правильный гексаэдр, если по-русски, то шестигранник. Он может быть образован из четырехугольной призмы или параллелепипеда. При соблюдении условия, когда все ребра равны и углы образуют 90 градусов.

Эта фигура настолько гармонична, что часто используется в быту. Например, первые игрушки малыша — кубики. А забава для тех, кто постарше, — кубик Рубика.

Как связан куб с другими фигурами и телами?

Площадь поверхности куба, формулы и примеры

Если начертить сечение куба, которое проходит через три его грани, то оно будет иметь вид треугольника. По мере удаления от вершины сечение будет все больше.

Настанет момент, когда пересекаться будут уже 4 грани, и фигура в сечении станет четырехугольником.

Если провести сечение через центр куба так, чтобы оно было перпендикулярно его главным диагоналям, то получится правильный шестиугольник.

Внутри куба можно начертить тетраэдр (треугольную пирамиду). За вершину тетраэдра берется один из его углов. Остальные три совпадут с вершинами, которые лежат на противоположных концах ребер выбранного угла куба.

В него можно вписать октаэдр (выпуклый правильный многогранник, который похож на две соединенные пирамиды). Для этого нужно найти центры всех граней куба. Они будут вершинами октаэдра.

Возможна и обратная операция, то есть внутрь октаэдра реально вписать куб. Только теперь центры граней первого станут вершинами для второго.

Метод 1: вычисление площади куба по его ребру

Для того чтобы вычислить всю площадь поверхности куба, потребуется знание одного из его элементов. Самый простой способ решения, когда известно его ребро или, другими словами, сторона квадрата, из которого он состоит. Обычно эта величина обозначается латинской буквой «а».

Теперь нужно вспомнить формулу, по которой вычисляется площадь квадрата. Чтобы не запутаться, введено ее обозначение буквой S1.

Площадь поверхности куба, формулы и примеры

Для удобства лучше задать номера всем формулам. Эта будет первой. Но это площадь только одного квадратика. Всего их шесть: 4 по бокам и 2 снизу и сверху. Тогда площадь поверхности куба вычисляется по такой формуле: S = 6 * a2. Ее номер 2.

Площадь поверхности куба, формулы и примерыПлощадь поверхности куба, формулы и примеры

Метод 2: как вычислить площадь, если известен объем тела

Этот способ сводится к тому, чтобы сосчитать длину ребра по известному объему. И потом уже воспользоваться известной формулой, которая здесь обозначена цифрой 2.

Из математического выражения для объема гексаэдра выводится то, по которому можно сосчитать длину ребра. Вот она:

Площадь поверхности куба, формулы и примеры

  • Нумерация продолжается, и здесь уже цифра 3.
  • Теперь его можно вычислить и подставить во вторую формулу. Если действовать по нормам математики, то нужно вывести такое выражение:

Площадь поверхности куба, формулы и примеры

Это формула площади всей поверхности куба, которой можно воспользоваться, если известен объем. Номер этой записи 4.

Метод 3: расчет площади по диагонали куба

Для того чтобы рассчитать площадь полной поверхности куба, также потребуется вывести ребро через известную диагональ. Здесь используется формула для главной диагонали гексаэдра:

Площадь поверхности куба, формулы и примеры

  1. Это формула №5.
  2. Из нее легко вывести выражение для ребра куба:

Площадь поверхности куба, формулы и примеры

Это шестая формула. После его вычисления можно снова воспользоваться формулой под вторым номером. Но лучше записать такую:

Она оказывается пронумерованной цифрой 7. Если внимательно посмотреть, то можно заметить, что последняя формула удобнее, чем поэтапный расчет.

Метод 4: как воспользоваться радиусом вписанной или описанной окружности для вычисления площади куба

Если обозначить радиус описанной около гексаэдра окружности буквой R, то площадь поверхности куба будет легко вычислить по такой формуле:

Ее порядковый номер 8. Она легко получается благодаря тому, что диаметр окружности полностью совпадает с главной диагональю.

Несколько слов о боковой поверхности гексаэдра

Если в задаче требуется найти площадь боковой поверхности куба, то нужно воспользоваться уже описанным выше приемом. Когда уже дано ребро тела, то просто площадь квадрата нужно умножить на 4. Эта цифра появилась из-за того, что боковых граней у куба всего 4. Математическая запись этого выражения такая:

Ее номер 10. Если даны какие-то другие величины, то поступают аналогично описанным выше методам.

Примеры задач

Условие первой. Известна площадь поверхности куба. Она равна 200 см². Необходимо вычислить главную диагональ куба.

Решение:

1 способ. Нужно воспользоваться формулой, которая обозначена цифрой 2. Из нее будет несложно вывести «а». Эта математическая запись будет выглядеть как квадратный корень из частного, равного S на 6. После подстановки чисел получается:

а = √ (200/6) = √ (100/3) = 10 √3 (см).

Пятая формула позволяет сразу вычислить главную диагональ куба. Для этого нужно значение ребра умножить на √3. Это просто. В ответе получается, что диагональ равна 10 см.

2 способ. На случай если забылась формула для диагонали, но помнится теорема Пифагора.

Аналогично тому, как было в первом способе, найти ребро. Потом нужно записать теорему для гипотенузы два раза: первую для треугольника на грани, вторую для того, который содержит искомую диагональ.

х² = а² + а², где х — диагональ квадрата.

d² = х² + а² = а² + а² + а² = 3 а². Из этой записи легко видно, как получается формула для диагонали. А дальше все расчеты будут, как в первом способе. Он немножко длиннее, но позволяет не запоминать формулу, а получить ее самостоятельно.

Ответ: диагональ куба равна 10 см.

Условие второй. По известной площади поверхности, которая равна 54 см2, вычислить объем куба.

Решение:

Пользуясь формулой под вторым номером, нужно узнать значение ребра куба. То, как это делается, подробно описано в первом способе решения предыдущей задачи. Проведя все вычисления, получим, что а = 3 см.

Теперь нужно воспользоваться формулой для объема куба, в которой длина ребра возводится в третью степень. Значит, объем будет считаться так: V = 33 = 27 см3.

Ответ: объем куба равен 27 см3.

Условие третьей. Требуется найти ребро куба, для которого выполняется следующее условие. При увеличении ребра на 9 единиц площадь всей поверхности увеличивается на 594.

Решение:

Поскольку явных чисел в задаче не дано, только разности между тем, что было, и тем, что стало, то нужно ввести дополнительные обозначения. Это несложно. Пусть искомая величина будет равна «а». Тогда увеличенное ребро куба будет равно (а + 9).

Зная это, нужно записать формулу для площади поверхности куба два раза. Первая — для начального значения ребра — совпадет с той, которая пронумерована цифрой 2. Вторая будет немного отличаться. В ней вместо «а» нужно записать сумму (а + 9). Так как в задаче идет речь о разности площадей, то нужно вычесть из большей площади меньшую:

6 * (а + 9)2 — 6 * а2 = 594.

Нужно провести преобразования. Сначала вынести за скобку 6 в левой части равенства, а потом упростить то, что останется в скобках. А именно (а + 9)2 — а2. Здесь записана разность квадратов, которую можно преобразовать так: (а + 9 — а)(а + 9 + а). После упрощения выражения получается 9(2а + 9).

Теперь его нужно умножить на 6, то есть то число, что было перед скобкой, и приравнять к 594: 54(2а + 9) = 594. Это линейное уравнение с одной неизвестной. Его легко решить.

Сначала нужно раскрыть скобки, а потом перенести в левую часть равенства слагаемое с неизвестной величиной, а числа — в правую. Получится уравнение: 2а = 2. Из него видно, что искомая величина равна 1.

Ответ: а = 1.

Источник: https://www.syl.ru/article/181412/mod_nemnogo-informatsii-o-kube-i-o-sposobah-togo-kak-vyichislit-ploschad-poverhnosti-kuba

Формулы объема и площади поверхности. Призма, пирамида — материалы для подготовки к ЕГЭ по Математике

Изучение стереометрии начинается со знания формул. Для решения задач ЕГЭ по стереометрии нужны всего две вещи:

  1. Формулы объёма — например, объём куба, объём призмы, объем пирамиды — и формулы площади поверхности.
  2. Элементарная логика.

Все формулы объёма и формулы площади поверхности многогранников есть в нашей таблице.

Площадь поверхности куба, формулы и примеры

Проще всего найти объём куба — это куб его стороны. Вот, оказывается, откуда берётся выражение «возвести в куб».

Объём параллелепипеда тоже легко найти. Надо просто перемножить длину, ширину и высоту.

Объём призмы — это произведение площади её основания на высоту. Если в основании треугольник — находите площадь треугольника. Если квадрат — ищите площадь квадрата. Напомним, что высота — это перпендикуляр к основаниям призмы.

Объём пирамиды — это треть произведения площади основания на высоту. Высота пирамиды — это перпендикуляр, проведенный из её вершины к основанию.

Некоторые задачи по стереометрии решаются вообще без формул! Например, эта.

Объём куба равен . Найдите объём четырёхугольной пирамиды, основанием которой является грань куба, а вершиной — центр куба.

Обойдёмся без формул! Просто посчитайте, сколько нужно таких четырёхугольных пирамидок, чтобы сложить из них этот куб 🙂

Очевидно, их 6, поскольку у куба 6 граней.

Иногда в задаче  надо посчитать площадь поверхности куба или призмы.

Напомним, что площадь поверхности многогранника — это сумма площадей всех его граней.

В некоторых задачах каждое ребро многогранника увеличили, например, в три раза. Очевидно, что при этом площадь поверхности увеличится в девять раз, а объём — в раз.

Стереометрия — это просто! Для начала выучите формулы объёма и площади поверхности многогранников и тел вращения. А дальше — читайте о приемах решения задач по стереометрии.

Источник: https://ege-study.ru/ru/ege/materialy/matematika/formuly-obema/

Калькулятор площади куба

Куб — это правильный шестигранник, каждая грань которого является квадратом. Кубические фигуры часто встречаются в реальной жизни, поэтому на работе или в быту вам может понадобиться вычислить объем или площадь поверхности объекта, который имеет форму кубика.

Геометрия куба

Куб или правильный гексаэдр — это частный случай шестигранной прямоугольной призмы, все грани которой представляют собой квадраты. Кроме того, куб — это и частный случай прямоугольного параллелепипеда, у которого длина, ширина и высота абсолютно равны.

Куб — уникальная фигура, существующая в разных многомерных пространствах. К примеру, нульмерный куб — это точка, одномерный — отрезок, двухмерный — квадрат, а четырехмерный — тессеракт.

В нашем родном трехмерном пространстве куб встречается повсеместно, к примеру, в форме детских кубиков, рафинированного сахара, картонных коробок, газетных киосков или предметов интерьера.

Кубы широко используются в программировании, аналитике, научных изысканиях и прочих высоких материях.

Идеальная форма геометрической фигуры позволяет при помощи разномерных кубов выражать массивы данных, измерять объемы или визуализировать данные.

Кубические фигуры часто встречаются в реальности и абстрактных задачах, поэтому вам может понадобиться рассчитать объем или площадь поверхности кубика для решения самых разных проблем.

Площадь поверхности куба

Площадь кубической фигуры — это сумма площадей всех граней. Каждая грань куба — это квадрат. Площадь квадрата, то есть одной грани, определяется по простой формуле как:

  • Sg = a2

Куб — это гексаэдр, то есть шестигранник. Таким образом, площадь поверхности кубической фигуры представляет собой сумму шести квадратов:

  • S = 6 Sg = 6 a2

Определить площадь куба можно не только при помощи длины его ребра: для расчета площади поверхности вы можете использовать диагональ самого куба или диагональ одной грани.

Диагональ куба — это отрезок, который находится внутри пространства куба и соединяет две противоположные вершины. Проведенная диагональ разделяет куб на два прямоугольных треугольника. Согласно теореме Пифагора квадрат ребра куба равен одной трети от квадрата диагонали D, следовательно, формула площади полной поверхности приобретает вид:

  1. S = 2 D2

Площадь поверхности куба легко определить и с помощью диагонали одной грани. Площадь квадрата через диагональ равна:

  1. S = 0,5 d2.

Так как у куба 6 граней, общая площадь поверхности составит сумму шести граней куба, то есть:

  1. S = 6 × 0,5 d2 = 3 d2

Таким образом, чтобы определить площадь поверхности кубической фигуры вам достаточно ввести в форму-онлайн калькулятора всего один параметр на выбор:

  • длину ребра;
  • диагональ куба;
  • диагональ квадрата.

Рассмотрим примеры использования данных формул в реальной жизни.

Примеры из жизни

Ящик

Представьте, что вы хотите соорудить из листов ДСП ящик для хранения инструментов в форме куба. Вы знаете, что он отлично впишется в пространство на чердаке высотой 50 см.

Сколько же квадратных метров ДСП вам понадобится для создания такого контейнера? Зная высоту, равную a = 0,5 м вы можете легко подсчитать площадь общей поверхности куба, введя данный параметр в онлайн-калькулятор. Вы получите ответ в виде:

S = 1,5

Таким образом, вам понадобится всего 1,5 квадратных метра ДСП для создания ящика для инструментов. Зная всего один параметр, вы без труда порежете листы на грани куба и соорудите нужную конструкцию.

Контейнер

Допустим, вы хотите обработать антикоррозионным покрытием грузовые контейнеры, которые имеют кубическую форму. Для правильного расчета параметров покрытия вам необходимо знать площадь обрабатываемой поверхности. Вы знаете, что диагональ грани стандартного контейнера равняется d = 3 м. Зная этот параметр, вы легко рассчитаете площадь кубической поверхности, которая равна:

S = 18

Зная общую площадь покрытия, вы без проблем определите необходимое количество антикоррозионной жидкости.

Заключение

Куб встречается в реальной жизни не так часто, как призматические фигуры или параллелепипеды, однако в любом случае вам может понадобиться удобный калькулятор, при помощи которого вы определите площадь полной поверхности кубического объекта. Наш сервис поможет решить вам бытовые, производственные или школьные задачи мгновенно и без ошибок.

Источник: https://BBF.ru/calculators/153/

Площадь поверхности куба через ребро

{S_{полн}=6a^2}

На этой странице мы собрали формулы, которые помогут найти площадь полной и боковой поверхности куба. А чтобы упростить расчет у нас есть калькулятор, который сделает это быстро и точно.

В дополнение на сайте можно найти объем куба.

Куб – фигура, представляющая собой правильный многогранник, все грани которого являются квадратами. Все ребра (стороны) куба равны между собой.

Содержание:
  1. калькулятор площади поверхности куба
  2. площадь полной поверхности куба
  3. формула площади полной поверхности куба через ребро
  4. формула площади полной поверхности куба через диагональ грани
  5. формула площади полной поверхности куба через диагональ куба
  6. формула площади полной поверхности куба через периметр грани
  7. формула площади полной поверхности куба через периметр куба
  8. формула площади полной поверхности куба через объем
  9. формула площади полной поверхности куба через площадь вписанного шара
  10. площадь боковой поверхности куба
  11. формула площади боковой поверхности куба через ребро
  12. формула площади боковой поверхности куба через диагональ грани
  13. формула площади боковой поверхности куба через диагональ куба
  14. формула площади боковой поверхности куба через периметр грани
  15. формула площади боковой поверхности куба через периметр куба
  16. формула площади боковой поверхности куба через объем
  17. примеры задач

Что такое площадь полной поверхности куба

Куб состоит из сторон, которые называют гранями. Каждая такая грань представляет собой квадрат, а всего у куба 6 граней. Площади всех этих граней равны между собой и сложив все площади всех шести граней куба мы получим площадь полной поверхности куба.

Площадь полной поверхности куба – это сумма площадей всех его граней.

Площадь полной поверхности удобно представить, если посмотреть на развертку куба.

Площадь полной поверхности куба

Формула площади полной поверхности куба через ребро

Площадь полной поверхности куба через ребро

{S_{полн}=6a^2}

a – ребро куба

Формула площади полной поверхности куба через диагональ грани

Площадь полной поверхности куба через диагональ грани

{S_{полн}=3d , ^2}

d – диагональ грани куба

Формула площади полной поверхности куба через диагональ куба

Площадь полной поверхности куба через диагональ куба

{S_{полн}=2D^2}

D – диагональ куба

Формула площади полной поверхности куба через периметр грани

Площадь полной поверхности куба через периметр грани

{S_{полн}= dfrac{3}{8}P^2}

P – периметр грани куба

Формула площади полной поверхности куба через периметр куба

Площадь полной поверхности куба через периметр куба

{S_{полн}= dfrac{P^2}{24}}

P – периметр куба

Формула площади полной поверхности куба через объем

Площадь полной поверхности куба через объем

{S_{полн}= 6{(sqrt[3]{V})}^2}

V – объем куба

Формула площади полной поверхности куба через площадь вписанного шара

Площадь полной поверхности куба через площадь вписанного шара

{S_{полн}= 6 dfrac{S}{pi}}

S – площадь вписанного в куб шара

Что такое площадь боковой поверхности куба

Боковая поверхность куба – сумма площадей всех его боковых граней, которых у куба четыре.

Площадь боковой поверхности куба

Формула площади боковой поверхности куба через ребро

Площадь боковой поверхности куба через ребро

{S_{бок} = 4a^2}

a – ребро куба

Формула площади боковой поверхности куба через диагональ грани

Площадь боковой поверхности куба через диагональ грани

{S_{бок}=2d , ^2}

d – диагональ грани куба

Формула площади боковой поверхности куба через диагональ куба

Площадь боковой поверхности куба через диагональ куба

{S_{бок}=dfrac{4}{3}D^2}

D – диагональ куба

Формула площади боковой поверхности куба через периметр грани

Площадь боковой поверхности куба через периметр грани

{S_{бок}= dfrac{P^2}{4}}

P – периметр грани куба

Формула площади боковой поверхности куба через периметр куба

Площадь боковой поверхности куба через периметр куба

{S_{бок}= dfrac{P^2}{36}}

P – периметр куба

Формула площади боковой поверхности куба через объем

Площадь боковой поверхности куба через объем

{S_{бок}= 4{(sqrt[3]{V})}^2}

V – объем куба

Примеры задач на нахождение площади поверхности куба

Задача 1

Найдите площадь поверхности куба, если его объем равен 125см³.

Решение

Для нахождения площади полной поверхности куба через его объем, нам поможет эта формула.

S_{полн} = 6{(sqrt[3]{V})}^2 = 6{(sqrt[3]{125})}^2 = 6{(5)}^2 = 6 cdot 25 = 150 : см²

Ответ: 150 см²

Проверить ответ нам поможет калькулятор .

Задача 1

Найдите площадь боковой поверхности куба с ребром 4см.

Решение

Для нахождения площади боковой поверхности куба с известной длиной ребра используем эту формулу.

S_{бок} = 4a^2 = 4 cdot 4^2 = 4 cdot 16 = 64 : см²

Ответ: 64 см²

Проверка .

В данной публикации мы рассмотрим, как можно найти радиус вписанного в куб шара (сферы), если известна длина ребра куба или его диагональ.

Примечание: Напомним, что в любой куб можно вписать шар.

Для начала выполним чертеж.

Куб со вписанным в него шаром

  • шар касается всех 6 граней куба (на рисунке показаны только 4 точки касания);
  • центр шара – точка O, которая также является центром куба.

Радиус шара (R), вписанного в куб, равняется половине его ребра, т.е.:

R = a/2, где “a” – ребро куба (является стороной его грани).

Чтобы было понятнее, выполним сечение, параллельное одной из граней куба и проходящее через точки касания шара двух других параллельных друг другу граней. Это сечение, в том числе, проходит через середины соответствующих сторон.

Квадрат со вписанной в него окружностью

Таким образом, мы получим квадрат со вписанной окружностью, радиус которой равняется половине его стороны, которая в свою очередь равна ребру куба.

Радиус вписанного шара через диагональ куба

Если известна длина диагонали куба (примем ее за “d”), радиус вписанного в него шара (R) можно вычислить так:

Радиус вписанного в куб шара (формула)

Добавить комментарий