Как найти квадратный корень треугольника

Как найти площадь треугольника – все способы от самых простых до самых сложных

Зависит от того, какой треугольник.

Чтобы найти площадь треугольника, надо сначала определить тип треугольника: прямоугольный, равнобедренный, равносторонний. Если он у вас не такой – отталкивайтесь от других данных: высоты, вписанной или описанной окружности, длин сторон. Привожу все формулы ниже.

Если треугольник прямоугольный

То есть один из его углов равен 90 градусам.

Надо перемножить катеты и поделить на два. Катеты – это две меньшие стороны, в сравнении с гипотенузой. Гипотенуза – это самая длинная сторона, она всегда находится напротив угла в 90 градусов.

Если он равнобедренный

То есть у него равны боковые стороны. В таком случае надо провести высоту к основанию (той стороне, которая не равна «бедрам»), перемножить высоту с основанием и поделить результат на два.

Если он равносторонний

То есть все три стороны равны. Ваши действия такие:

  1. Найдите квадрат стороны – умножьте эту сторону на нее же. Если у вас сторона равна 4, умножьте 4 на 4, будет 16.
  2. Умножьте полученное значение на корень из 3. Это примерно 1,732050807568877293527.
  3. Поделите все на 4.

Если известна сторона и высота

Площадь любого треугольника равна половине произведения стороны на высоту, которая к этой стороне проведена. Именно к этой, а не к какой-то другой.

Чтобы провести высоту к стороне, надо найти вершину (угол), которая противоположна этой стороне, а потом опустить из нее на сторону прямую линию под углом в 90 градусов. На картинке высота обозначена синим цветом и буквой h, а линия, на которую она опускается, красным цветом и буквой a.

Если известны две стороны и градус угла между ними

Если вы знаете, чему равны две стороны и угол между ними, то надо найти синус этого угла, умножить его на первую сторону, умножить на вторую и еще умножить на ½:

Если известны длины трех сторон

  1. Найдите периметр. Для этого сложите все три стороны.
  2. Найдите полупериметр – разделите периметр на два. Запомните значение.
  3. Отнимите от полупериметра длину первой стороны. Запомните.
  4. Отнимите от полупериметра длину второй стороны. Тоже запомните.
  5. Отнимите от полупериметра длину третьей стороны. И ее запомните.
  6. Умножьте полупериметр на каждое из этих чисел (разницу с первой, второй и третьей стороной).
  7. Найдите квадратный корень.

Эта формула еще называется формулой Герона. Возьмите на заметку, если вдруг учитель спросит.

Если известны три стороны и радиус описанной окружности

Окружность вы можете описать вокруг любого треугольника. Чтобы найти площадь «вписанного» треугольника – того, который «вписался» в окружность, надо перемножить три его стороны и поделить их на четыре радиуса. Смотрите картинку.

Если известны три стороны и радиус вписанной окружности

Если вам удалось вписать в треугольник окружность, значит она обязательно касается каждой из его сторон. Следовательно, расстояние от центра окружности до каждой из сторон треугольника – ее радиус.

Чтобы найти площадь, посчитайте сначала полупериметр – сложите все стороны и поделите на два. А потом умножьте его на радиус.

Это были все способы найти площадь треугольника. Спасибо, что дочитали статью до конца. Лайкните, если не трудно.

Стороны треугольника

Свойства

Зная стороны треугольника, можно найти все остальные его параметры по выведенным для треугольника формулам, просто подставив их значения. Периметр треугольник будет представлять собой сумму всех его сторон, а площадь выводится по формуле Герона, как квадратный корень из произведения полупериметра на его разность с каждой стороной по очереди, и деленному на два. P=a+b+c S=√(p(p-a)(p-b)(p-c)/2)

Все углы в треугольнике, зная стороны, можно найти через теорему косинусов. (рис.75) cos⁡α=(b^2+c^2-a^2)/2bc

В произвольном треугольнике также есть три медианы m (делящие противоположную сторону пополам), три биссектрисы l (делящие угол пополам) и три высоты h (перпендикуляры из угла к стороне или ее проекции). Все их можно вычислить, имея в распоряжении значения трех сторон. Формула медианы, которая опущена на сторону c.(рис.75.1) m_c=√(2a^2+2b^2-c^2 )/2

Найти медиану, опущенную на сторону a или b, можно заменив необходимые стороны в формуле так, чтобы сторона, поделенная медианой пополам, была со знаком «–». m_a=√(2b^2+2c^2-a^2 )/2 m_b=√(2a^2+2c^2-b^2 )/2

Формула биссектрисы, которая выходит из угла γ и опущена на сторону с. (рис.75.2) l_c=√(ab(a+b+c)(a+b-c))/(a+b)

Чтобы найти биссектрисы, которые выходят из двух других углов, нужно преобразовать формулу аналогично формуле медианы, где противоположная сторона со знаком «–». l_b=√(ac(a+b+c)(a+c-b))/(a+c) l_a=√(bc(a+b+c)(b+c-a))/(b+c)

Формула высоты, которая опущена на сторону a, b или c видоизменяется таким образом, чтобы в знаменателе была нужная сторона.(рис.75.3) h_a=(2√(p(p-a)(p-b)(p-c) ))/a h_b=(2√(p(p-a)(p-b)(p-c) ))/b h_c=(2√(p(p-a)(p-b)(p-c) ))/c

Также в любом треугольнике можно провести среднюю линию, которая также как медиана обозначается буквой m, поэтому для их разделения, будем использовать заглавную M для средней линии. Средняя линия параллельна той стороне, которая выбрана основанием треугольника, и равна ее половине. Среди свойств средней линии можно отметить, что боковые стороны она делит на две равные части, поэтому если начертить все три средние линии в треугольнике, то получится еще один треугольник, подобный первому, в два раза меньше. (рис. 75.7) M_a=a/2 M_b=b/2 M_c=c/2

В каждый треугольник можно вписать окружность и описать ее вокруг него. Центр вписанной в треугольник окружности будет находиться на пересечении его биссектрис, а радиус будет опущен под прямым углом к любой стороне и его формула выводится также по Герону. (рис.75.5) r=√(((p-a)(p-b)(p-c))/p)

Центр описанной вокруг произвольного треугольника окружности находится на пересечении его медиатрисс (срединных перпендикуляров, радиус опущен в любую вершину или угол, и вычисляется по следующей формуле. (рис.75.6) R=abc/(4√(p(p-a)(p-b)(p-c)))

Алгоритм извлечения квадратного корня

Квадратный корень легко извлекается с помощью калькулятора. Для этого достаточно набрать на нём исходное число и нажать клавишу корня

Если калькулятора под рукой нет, то квадратный корень извлекают пользуясь алгоритмом извлечения квадратного корня.

Применение алгоритма может оказаться весьма полезным на контрольных и экзаменах. Ведь чаще всего на таких мероприятиях использовать калькулятор запрещено.

Как пользоваться алгоритмом

Рассмотрим применение алгоритма извлечения квадратного корня на конкретных примерах. О том, почему алгоритм следует применять именно так, поговорим позже.

Пример 1. Извлечём квадратный корень из числа 4096 с помощью алгоритма извлечения квадратного корня.

Прежде всего сгруппируем число 4096 по две цифры. Двигаясь с конца влево сделаем небольшую мéтку:

Сгруппированные цифры исходного числа называют грáнями, а саму группировку по две цифры разделением на грáни. Количество грáней позволяет предположить сколько цифр будет содержаться в извлечённом корне. В нашем примере извлечённый корень будет содержать две цифры, поскольку исходное число содержит две грани.

Теперь нужно извлечь квадратный корень из числа 40 с точностью до целых, получаем 6. Записываем 6 после знака равенства:

Далее возвóдим число 6 в квадрат и полученный результат записываем под числом 40

Далее вычитаем из числа 40 число 36, получаем 4. Записываем это число под 36

Снóсим оставшиеся цифры из под корня, а именно 96. Получаем остаток 496

Теперь нужно найти следующую цифру корня. Её находят так. Первую найденную цифру корня, а именно 6 умножаем на 2, получаем 12. К числу 12 в конце нужно дописáть ещё одну цифру (эта цифра впоследствии и станет следующей цифрой корня) и умножить образовавшееся число на ту же самую дописанную цифру. Полученное произведение должно быть равно остатку 496 или хотя бы максимально близким к нему, но не превосходящим его.

Итак, проверим например цифру 5. Допишем её к числу 12 и умножим образовавшееся число 125 на 5

Получилось число 625, которое больше остатка 496. Значит цифра 5 не годится в качестве следующей цифры корня. Проверим тогда цифру 4. Допишем ее к числу 12 и умножим образовавшееся число 124 на 4

Получилось число 496, которое в точности является нашим остатком. Значит дописанная к числу 12 цифра 4 является следующей цифрой корня. Возвращаемся к исходному примеру и записываем цифру 4 в ответе после цифры 6

А число 496, которое получилось в результате умножения 124 на 4 записываем под остатком 496

Выполняем вычитание 496 − 496 = 0 . Ноль в остатке говорит о том, что решение окончено:

Для удобства поиска второй цифры, слева от остатка проводят вертикáльную линию и уже за этой линией записывают умножение. В нашем случае умножение 124 на 4. Результат умножение сразу записывают под остатком:

Итак, квадратный корень из числа 4096 равен 64

Пример 2. Извлечём квадрáтный корень из числа 441 с помощью алгоритма извлечения квадратного корня.

Прежде всего сгруппируем число 441 по две цифры. Двигаясь с конца влево сделаем небольшую мéтку. В данном случае в числе 441 только три цифры. Поэтому группируем цифры 4 и 1. Крайняя четвёрка слева будет сама по себе:

Теперь нужно извлечь квадратный корень из числа 4 с точностью до целых, получаем 2. Записываем 2 после знака равенства:

Далее возвóдим число 2 в квадрат и полученный результат записываем под числом 4

Вычитаем из числа 4 число 4, получаем 0. Ноль принято не записывать. Снóсим оставшиеся цифры корня, а именно 41

Теперь нахóдим следующую цифру корня. Первую найденную цифру корня, а именно 2 умножаем на 2, получаем 4. К числу 4 в конце нужно дописáть ещё одну цифру (эта цифра впоследствии и станет следующей цифрой корня) и умножить получившееся число на ту же самую дописанную цифру. Полученное произведение должно быть равно остатку 41 или хотя бы максимально близким ему, но не превосходящим его.

Итак, проверим например цифру 2. Допишем её к числу 4 и умножим получившееся число 42 на ту же самую дописанную цифру 2. Результат умножения будем записывать сразу под остатком 41

Получилось число 84 , которое больше остатка 41. Значит цифра 2 не годится в качестве следующей цифры корня. Проверим тогда цифру 1. Допишем ее к числу 4 и умножим получившееся число 41 на на ту же самую дописанную цифру 1

Получилось число 41, которое в точности является нашим остатком. Значит дописанная к числу 4 цифра 1 является следующей цифрой корня. Записываем цифру 1 после цифры 2

А число 41, которое получилось в результате умножения 41 на 1, записываем под остатком 41

Выполняем вычитание 41 − 41 = 0 . Ноль в остатке говорит о том, что решение окончено:

Пример 3. Извлечём квадратный корень из числа 101761 с помощью алгоритма извлечения квадратного корня.

Разбиваем число 101761 на грани:

Получилось три грани. Значит корень будет состоять из трёх цифр.

Извлекáем квадратный корень из первой грани (из числа 10) с точностью до целых, получаем 3. Записываем 3 после знака равенства:

Далее возвóдим число 3 в квадрат и полученный результат записываем под первой гранью (под числом 10)

Вычитаем из числа 10 число 9, получаем 1. Снóсим следующую грань, а именно число 17. Получаем остаток 117

Теперь нахóдим вторую цифру корня. Первую найденную цифру корня, а именно 3 умножаем на 2, получаем 6. К числу 6 в конце нужно дописать ещё одну цифру (эта цифра впоследствии и станет второй цифрой корня) и умножить образовавшееся число на ту же самую дописанную цифру. Полученное произведение должно быть равно остатку 117 или хотя бы максимально близким к нему, но не превосходящим его.

Итак, проверим например цифру 2. Допишем её к числу 6 и умножим образовавшееся число 62 на ту же самую дописанную цифру 2. Результат умножения будем записывать сразу под остатком 117

Получилось число 124 , которое больше остатка 117. Значит цифра 2 не годится в качестве второй цифры корня. Проверим тогда цифру 1. Допишем ее к числу 6 и умножим образовавшееся число 61 на на ту же самую дописанную цифру 1

Получилось число 61, которое не превосходит остатка 117. Значит дописанная к числу 6 цифра 1 является второй цифрой корня. Записываем её в ответе после цифры 3

Теперь выполняем вычитание 117 − 61 = 56 .

Снóсим следующую грань, а именно число 61. Получаем новый остаток 5661

Теперь нахóдим третью цифру корня. Первые две найденные цифры корня, а именно число 31 умножаем на 2, получаем 62. К числу 62 в конце нужно дописать ещё одну цифру (эта цифра впоследствии и станет третьей цифрой корня) и умножить образовавшееся число на ту же самую дописанную цифру. Полученное произведение должно быть равно остатку 5661 или хотя бы максимально близким к нему, но не превосходящим его.

Итак, проверим например цифру 9. Допишем её к числу 62 и умножим образовавшееся число 629 на ту же самую дописанную цифру 9. Результат умножения будем записывать сразу под остатком 5661

Получилось число 5661, которое в точности является нашим остатком. Значит дописанная к числу 62 цифра 9 является третьей цифрой корня. Записываем цифру 9 в ответе после цифры 1

Выполняем вычитание 5661 − 5661 = 0 . Ноль в остатке говорит о том, что решение окончено:

Пример 4. Извлечём квадратный корень из числа 30,25 с помощью алгоритма извлечения квадратного корня.

Данное число является десятичной дробью. В данном случае на грани следует разбить целую и дробную часть. Целую часть на грани следует разбить, двигаясь влево от запятой. А дробную — двигаясь вправо от запятой:

Получилось по одной грани в каждой части. Это значит, что корень будет состоять из двух цифр: одна цифра будет в целой части корня и одна цифра в дробной.

Извлечём квадратный корень из первой грани (из числа 30) с точностью до целых, получаем 5. Записываем 5 после знака равенства:

Далее возвóдим число 5 в квадрат и полученный результат записываем под первой гранью (под числом 30)

Вычитаем из числа 30 число 25, получаем 5.

Извлечение корня из целой части подкоренного выражения завершено. На данный момент мы извлекли корень из числа 30,25 с точностью до целых, получили ответ 5. Последний остаток 5 показывает, что целая часть 30 превосходит квадрат 5 2 на 5 квадратных единиц.

Чтобы дальше извлечь корень (с точностью до десятых), снесём следующую грань, а именно число 25, получим остаток 525. А в ответе после числа 5 следует поставить запятую, поскольку сейчас мы будем искать дробную часть корня.

Затем снóсим следующую грань, а именно число 25. Получаем остаток 525

Далее работаем по тому же принципу, что и раньше. Нахóдим следующую цифру корня. Для этого уже найденный корень, а именно число 5 умножим на 2 получим 10. К числу 10 в конце нужно дописать ещё одну цифру (эта цифра впоследствии и станет следующей цифрой корня) и умножить образовавшееся число на ту же самую дописанную цифру. Полученное произведение должно быть равно остатку 525 или хотя бы максимально близким к нему, но не превосходящим его.

Итак, проверим например цифру 5. Допишем её к числу 10 и умножим получившееся число 105 на ту же самую дописанную цифру 5

Получилось число 525, которое в точности является нашим остатком. Значит дописанная к числу 10 цифра 5 является следующей цифрой корня. Возвращаемся к исходному примеру и записываем цифру 5 после в ответе после запятой:

Выполняем вычитание 525 − 525 = 0 . Ноль в остатке говорит о том, что решение окончено:

В подкоренном выражении можно было использовать следующий прием: умножить подкоренное число на 100 и получить под корнем число 3025. Далее извлечь из него квадратный корень, как из обычного целого числа. Тогда получился бы ответ 55

Затем можно обратно разделить 3025 на 100 (или сдвинуть запятую влево на две цифры). В результате под корнем полýчится прежнее число 30,25, а правая часть уменьшится в десять раз и полýчится квадратный корень из числа 30,25.

Пример 5. Извлечём квадратный корень из числа 632,5225 с помощью алгоритма извлечения квадратного корня.

Данное число является десятичной дробью. Разбиваем число на грани. На грани следует разбить целую и дробную часть. Целую часть на грани следует разбить, двигаясь влево от запятой. А дробную — двигаясь вправо от запятой:

Получилось четыре грани. При этом две грани в целой части, и две грани в дробной. Это значит, что корень будет состоять из четырёх цифр: две цифры будет в целой части корня, и две цифры после запятой.

Извлечём квадратный корень из первой грани (из числа 6) с точностью до целых, получаем 2. Записываем 2 после знака равенства:

Далее возвóдим число 2 в квадрат и полученный результат записываем под первой гранью (под числом 6)

Вычитаем из числа 6 число 4, получаем 2. Затем снóсим следующую грань, а именно число 32. Получаем остаток 232

Теперь нахóдим вторую цифру корня. Первую уже найденную цифру корня, а именно 2 умножаем на 2, получаем 4. К числу 4 в конце нужно дописáть ещё одну цифру (эта цифра впоследствии и станет второй цифрой корня) и умножить получившееся число на ту же самую дописанную цифру. Полученное произведение должно быть равно остатку 232 или хотя бы максимально близким к нему, но не превосходящим его.

Итак, проверим например цифру 6. Допишем её к числу 4 и умножим получившееся число 46 на ту же самую дописанную цифру 6. Результат умножения будем записывать сразу под остатком 232

Получилось число 276 , которое больше остатка 232. Значит цифра 6 не годится в качестве второй цифры корня. Проверим тогда цифру 5. Допишем ее к числу 4 и умножим получившееся число 45 на на ту же самую дописанную цифру 5

Получилось число 225, которое не превосходит остатка 232. Значит дописанная к числу 4 цифра 5 является второй цифрой корня. Записываем её в ответе после цифры 2

Теперь выполняем вычитание 232 − 225 = 7 .

Извлечение корня из целой части подкоренного выражения завершено. На данный момент мы извлекли корень из числа 632,5225 с точностью до целых, получили ответ 25 . Последний остаток 7 показывает, что целая часть 632 превосходит квадрат 25 2 на 7 квадратных единиц.

Чтобы дальше извлечь корень (с точностью до десятых и сотых), снесём следующую грань, а именно число 52, получим остаток 752. А в ответе после числа 25 поставим запятую, поскольку сейчас мы будем искать дробные части корня:

Далее работаем по тому же принципу, что и раньше. Нахóдим первую цифру корня после запятой. Для этого уже найденные цифры, а именно 25 умножим на 2 получим 50. К числу 50 в конце нужно дописáть ещё одну цифру (эта цифра впоследствии и станет первой цифрой корня после запятой) и умножить образовавшееся число на ту же самую дописанную цифру. Полученное произведение должно быть равно остатку 752 или хотя бы максимально близким к нему, но не превосходящим его.

Итак, проверим например цифру 2. Допишем её к числу 50 и умножим получившееся число 502 на ту же самую дописанную цифру 2. Можно интуитивно понять, что цифра 2 великá, поскольку 502 × 2 = 1004 . А число 1004 больше остатка 752. Тогда очевидно, что первой цифрой после запятой будет цифра 1

Теперь выполняем вычитание 752 − 501 = 251 . Сразу снóсим следующую грань 25. Полýчим остаток 25125

Теперь нахóдим вторую цифру корня после запятой. Не обращая внимания на запятую, найденные цифры корня умнóжим на 2. Полýчим 502.

К числу 502 в конце нужно дописáть ещё одну цифру (эта цифра впоследствии и станет второй цифрой корня после запятой) и умножить образовавшееся число на ту же самую дописанную цифру. Полученное произведение должно быть равно остатку 25125 или хотя бы максимально близким к нему, но не превосходящим его.

Итак, проверим например цифру 6. Допишем её к числу 502 и умнóжим образовавшееся число 5026 на ту же самую дописанную цифру 6. Результат умножения будем записывать сразу под остатком 25125

Получилось число 30156 , которое больше остатка 25125. Значит цифра 6 не годится в качестве второй цифры корня после запятой. Проверим тогда цифру 5. Допишем ее к числу 502 и умножим получившееся число 5025 на на ту же самую дописанную цифру 5

Получилось число 25125, которое в точности является нашим остатком. Значит дописанная к числу 502 цифра 5 является второй цифрой корня после запятой. Записываем цифру 5 в ответе после цифры 1

Теперь выполняем вычитание 25125 − 25125 = 0 . Ноль в остатке говорит о том, что решение окончено:

В этом примере можно было воспользоваться методом умножения подкоренного выражения на 10000 . Тогда подкоренное число приняло бы вид 6325225 . Его можно разделить на грани, двигаясь справа налево. В результате получился бы корень 2515

Затем подкоренное число 6325225 делят на 10000 , чтобы вернуться к изначальному числу 632,5225 . В результате этого деления ответ умéньшится в 100 раз и обратится в число 25,15 .

Пример 4. Используя алгоритм извлечения квадратного корня, извлечь квадратный корень из числа 11 с точностью до тысячных:

В данном числе только одна грань 11. Извлечём из неё корень с точностью до целых, получим 3

Теперь возвóдим число 3 в квадрат и полученный результат записываем под первой гранью (под числом 11)

Выполним вычитание 11 − 9 = 2

Извлечение корня из целой части подкоренного выражения завершено. На данный момент мы извлекли корень из числа 11 с точностью до целых, получили ответ 3. Последний остаток 2 показывает, что целая часть 11 превосходит квадрат 3 2 на две квадратные единицы.

Наша задача была извлечь корень из числа 11 с точностью до тысячных. Значит нужно снести следующую грань, но её в данном случае нет.

Если после целого числа поставить запятую и написать сколько угодно нулей, то значение этого числа не измéнится. Так, после 11 можно поставить запятую и написать несколько нулей (несколько граней), которые в последствии можно будет снóсить к остаткам.

Если корень извлекáется с точностью до тысячных, то в ответе после запятой должно быть три цифры. Поэтому в подкоренном выражении поставим запятую и запишем три грани, состоящие из нулей:

Теперь можно снести следующую грань, а именно два нуля. Получим остаток 200. А в ответе после числа 3 поставим запятую, поскольку сейчас мы будем искать дробные части корня:

Теперь нахóдим первую цифру после запятой в ответе. Первую найденную цифру корня, а именно число 3 умножаем на 2, получаем 6. К числу 6 нужно дописáть ещё одну цифру (эта цифра впоследствии и станет первой цифрой после запятой) и умножить образовавшееся число на ту же самую дописанную цифру. Полученное произведение должно быть равно остатку 200 или хотя бы максимально близким к нему, но не превосходящим его.

В данном случае подойдёт цифра 3

Выполним вычитание 200 − 189 и снесём следующую грань 00

Нахóдим вторую цифру корня после запятой. Не обращая внимания на запятую, найденные цифры корня умнóжим на 2. Полýчим 66.

К числу 66 в конце нужно дописáть ещё одну цифру (эта цифра впоследствии и станет второй цифрой корня после запятой) и умножить образовавшееся число на ту же самую дописанную цифру. Полученное произведение должно быть равно остатку 1100 или хотя бы максимально близким к нему, но не превосходящим его.

В данном случае подойдёт цифра 1

Выполним вычитание 1100−661 и снесём следующую грань 00

Нахóдим третью цифру корня после запятой. Не обращая внимания на запятую, найденные цифры корня умножим на 2. Получим 662.

К числу 662 нужно дописáть ещё одну цифру (эта цифра впоследствии и станет третьей цифрой корня после запятой) и умножить образовавшееся число на ту же самую дописанную цифру. Полученное произведение должно быть равно остатку 43900 или хотя бы максимально близким к нему, но не превосходящим его.

Проверим цифру 7

Получилось число 46389 , которое больше остатка 43900. Значит цифра 7 не годится в качестве третьей цифры корня после запятой. Проверим тогда цифру 6. Допишем ее к числу 662 и умножим получившееся число 6626 на на ту же самую дописанную цифру 6

Получилось число 39756, которое не превосходит остатка 43900. Значит дописанная к числу 662 цифра 6 является третьей цифрой корня после запятой. Записываем цифру 6 в ответе после цифры 1

Выполним вычитание 43900 − 39756 = 4144

Дальнейшее вычисление не требуется, поскольку корень нужно было извлечь с точностью до тысячных.

Но в таких примерах как этот, цифры после запятой можно находить бесконечно. Например, так можно продолжить данный пример, найдя значение корня с точностью до десятитысячных:

Как работает алгоритм

Алгоритм извлечения квадратного корня основан на формуле квадрата суммы двух выражений:

Геометрически эту формулу можно представить так:

То есть сторона a увеличивается на b . Это приводит к увеличению изначального квадрата. Чтобы вычислить площадь такого квадрата, нужно по отдельности вычислить площади квадратов и прямоугольников, входящих в этот квадрат и сложить полученные результаты. Важно хорошо понимать данный рисунок. Без его понимания невозможно понять как работает алгоритм извлечения квадратного корня.

Отметим, что формула квадрата суммы двух выражений позволяет возвести в квадрат любое число. Используя разряды, исходное число представляют в виде суммы чисел и далее эту сумму возвóдят в квадрат.

Например, так можно возвести число 21 в квадрат: представить данное число в виде суммы двух десятков и одной единицы, и далее эту сумму возвести в квадрат :

21 2 = (20 + 1) 2 = 20 2 + 2 × 20 × 1 + 1 2 = 400 + 40 + 1 = 441

Геометрически это будет выглядеть так: сторона квадрата равная 21 разбивается на две составляющие: 20 и 1 .

Затем по отдельности вычисляются площади квадратов и прямоугольников, входящих в большой квадрат. А именно: один квадрат со стороной 20 (получается площадь, равная 400), два прямоугольника со сторонами 20 и 1 (получается две площади по 20), один квадрат со стороной 1 (получается площадь, равная 1). Результаты вычисления площадей складываются и получается итоговое значение 441.

Заметим также, что при возведéнии десятков в квадрат получились сотни. В данном случае при возведéнии числа 20 в квадрат получилось число 400. Это позволяет предположить, что если корень является двузначным числом, то десятки этого корня следует искать в сотнях подкоренного числа. Действительно, . Десятки корня это цифра 2, является корнем числа 4, которое отвечает за сотни числа 441.

А при возведéнии сóтен в квадрат получаются десятки тысяч. Например, возведём в квадрат число 123, используя формулу квадрата суммы двух выражений. Число 123 это одна сотня, два десятка и три единицы:

123 2 = (100 + 20 + 3) 2

При изучении многочленов мы выяснили, что если многочлен содержит более двух членов и возникла необходимость применить формулу квадрата суммы, то некоторые из членов можно взять в скобки, чтобы получилось выражение вида (a + b) 2

Рассмотрим подробное извлечение квадратного корня из числа 4096. Заодно пройдёмся по основным этапам алгоритма извлечения квадратного корня, рассмотренного в предыдущей теме.

Допустим, что число 4096 это площадь следующего квадрата:

Извлечь корень из числа 4096 означает найти длину стороны данного квадрата:

Для начала узнáем из скольких цифр будет состоять корень. Ближáйшие от 4096 известные нам квадраты это 3600 и 4900 . Между ними располагается квадрат 4096. Запишем это в виде неравенства:

Запишем каждое число под знáком корня:

Квадратные корни из чисел 3600 и 4900 нам известны. Это корни 60 и 70 соответственно:

Корни 60 и 70 являются двузначными числами. Если квадратный корень из числа 4096 располагается между числами 60 и 70, то этот корень тоже будет двузначным числом.

Двузначное число состоит из десятков и единиц. Это значит, что квадратный корень из числа 4096 можно представить в виде суммы a + b , где a — десятки корня, b — единицы корня. Сумма a + b во второй степени будет равна 4096

Тогда сторона квадрата будет разбита на две составляющие: a и b

Перепишем в равенстве (a + b) 2 = 4096 левую часть в виде a 2 + 2ab + b 2

Тогда рисунок, иллюстрирующий квадрат площадью 4096, можно представить так:

Если мы узнáем значения переменных a и b , то узнáем длину стороны данного квадрата. Проще говоря, узнáем сам корень.

Вернёмся к извлечению корня. Мы выяснили, что корнем будет двузначное число. Двузначное число состоит из десятков и единиц. При возведéнии десятков в квадрат, получаются сотни. Тогда десятки искомого корня следует искать в сотнях подкоренного числа. В подкоренном числе 40 сотен. Отделим их небольшой помéткой:

Извлечём корень из числа 40. Из числа 40 корень не извлекается. Поэтому извлечение следует выполнить приближённо с точностью до целых.

Ближáйший мéньший квадрат к числу 40 это 36. Извлечём корень из этого квадрата, получим 6. Тем сáмым полýчим первую цифру корня:

На самом деле корень извлечён не из числа 40, а из сорокá сотен. Метка, которая постáвлена после числа 40, отделяет разряды числа, находящегося под знáком корня. Нужно понимать, что в данном случае 40 это 4000.

Из 4000 как и из 40 корень не извлекается, поэтому его тоже следует извлекать приближённо. Для этого следует найти ближáйший мéньший квадрат к числу 4000. Но нужно принимать во внимание следующий момент. Десятки это числа с одним нулем на конце. Примеры:

10 — один десяток

30 — три десятка

120 — двенадцать десятков

При возведéнии таких чисел в квадрат, получаются числа с двумя нулями на конце:

Мы ищем десятки корня в сотнях числá 4096 , то есть в числе 4000 . Но нет такого числá с нулем на конце, вторая степень которого равна 4000 . Поэтому мы ищем ближáйший мéньший квадрат, но опять же с двумя нулями на конце. Таковым является квадрат 3600 . Корень следует извлекать из этого квадрата.

Вернемся к нашему рисунку. Большой квадрат со стороной a и площадью a 2 это тот самый квадрат 3600 . Укажем вместо a 2 значение 3600

Теперь извлечём квадратный корень из квадрата 3600 . Ранее мы говорили, что если число содержит уже знакомый нам квадрат и чётное количество нулей, то можно извлечь корень из этого числа. Для этого сначала следует извлечь корень из знакомого нам квадрата, а затем записать половину от количества нулей исходного числа:

Итак, мы нашли сторону квадрата, площадь которого 3600 . Подпишем сторону a как 60

Но ранее в ответе мы написали не 60, а 6. Это является сокращённым вариантом. Число 6 в данном случае означает шесть десятков:

Итак, десятки корня найдены. Их шесть. Теперь нужно найти единицы корня. Единицы корня это длина оставшейся маленькой стороны квадрата, то есть значение переменной b.

Чтобы найти b , нужно из общего квадрата, площадь которого 4096 вычесть квадрат, площадь которого 3600. В результате останется фигура, площадь которой 4096 − 3600 = 496

На рисунке видно как из квадрата, площадь которого 4096 отделился квадрат, площадь которого 3600. Осталась фигура, площадь которой 496.

Именно поэтому в процессе применения алгоритма первая найденная цифра корня возводится в квадрат, чтобы результат возведения вычесть из сотен подкоренного выражения.

Так, из 40 сотен вычитаются 36 сотен, остаётся 4 сотни плюс сносятся девяносто шесть единиц. Эти четыре сотни и девяносто шесть единиц вместе образуют 496 единиц:

Оставшаяся фигура есть ни что иное как удвоенное произведение первого выражение a плюс квадрат второго выражения b

Сумма площадей 2ab + b 2 должна вмещаться в число 496 . Запишем это в виде следующего равенства:

Значение a уже известно. Оно равно 60. Тогда равенство примет вид:

Теперь наша задача найти такое значение b , при котором левая часть станет равна 496 или хотя близкой к этому числу. Поскольку b является единицами искомого корня, то значение b является однозначным числом. То есть значение b это число от 1 до 9. Это число можно найти методом подбора. В данном случае очевидно, что числом b является 4

120 × 4 + 4 2 = 496

Но для удобства поиска этой цифры, переменную b выносят за скобки. Вернёмся к выражению 120b + b 2 = 496 и вынесем b за скобки:

Теперь правую часть можно понимать так: к 120 следует прибавить некоторое число b , которое при умножении с тем же сáмым b даст в результате 496.

Именно поэтому при использовании алгоритма, уже найденную цифру умножают на 2. Так, 6 мы умножили на 2 получили 12 и уже к 12 дописывали цифру и умножáли образовавшееся число на ту же дописанную цифру, пытаясь получить остаток 496.

Но это опять же упрощённый вариант. На самом деле на 2 умножается не просто 6, а найденные десятки (в нашем случае число 60), получается число 120. Затем следует нахождение числá вида b(120 + b) . То есть к 120 прибавляется число b , которое при перемножении с b даёт остаток 496 .

Итак, b = 4 . Тогда:

При подстановке числá 4 вместо b получается остаток 496. Это значит, что единицы корня найдены. Квадрат, площадь которого 4096, имеет сторону равную 60 + 4 , то есть 64.

Если из общей площади вычесть 3600, затем 496, полýчим 0. Остаток, равный нулю, говорит о том, что решение завершено:

4096 − 3600 − 496 = 0

Пример 2. Извлечь квадратный корень из числа 54756

Пусть число 54756 это площадь следующего квадрата:

Извлечь корень из числа 54756 означает найти длину стороны данного квадрата:

Пока неизвестно является ли квадратный корень из числа 54756 целым либо дробным числом. Узнáем для начала из скольких цифр будет состоять целый корень.

Число 54756 больше числá 10000 , но меньше числá 90000

Корни из 10000 и 90000 являются трёхзначными числами.

Тогда корень из 54756 тоже будет трёхзначным числом. А трёхзначное число состоит из сотен, десятков и единиц.

Квадратный корень из числа 54756 можно представить в виде суммы a + b + с , где a — сотни корня, b — десятки корня, с — единицы корня. Сумма a + b + с во второй степени будет равна 54756

(a + b + c) 2 = 54756

Тогда сторона квадрата будет разбита на три составляющие: a , b и c

Выполним в левой части равенства (a + b + c) 2 = 54756 возведéние в квадрат:

Тогда рисунок иллюстрирующий квадрат, площадью 54756 можно представить так:

Два прямоугольника площадью ab в приведённом ранее равенстве заменены на 2ab , а два прямоугольника площадью (a + b)c заменены на 2ac + 2bc , поскольку (a + b)c = ac + bc . Если повторить выражение ac + bc дважды, то полýчится 2ac + 2bc

Если мы узнáем значения переменных a , b и c , то узнáем длину стороны данного квадрата. Проще говоря, узнáем сам корень.

Вернёмся к извлечению корня. Мы выяснили, что корнем будет трёхзначное число. Трёхзначное число состоит из сотен, десятков и единиц.

При возведéнии сотен в квадрат, получаются десятки тысяч. Тогда сотни искомого корня следует искать в десятках тысяч подкоренного числа. В подкоренном числе 5 десятков тысяч. Отделим их мéткой:

Извлечём корень из числа 5. Из числа 5 корень не извлекается. Поэтому извлечение следует выполнить приближённо с точностью до целых Ближáйший мéньший квадрат к 5 это 4. Извлечём корень из этого квадрата, получим 2. Тем самым полýчим первую цифру корня:

На самом деле корень извлечён не из числа 5, а из пяти десятков тысяч. Метка, которая поставлена после числá 5, отделяет разряды числá, находящегося под знáком корня. Нужно понимать, что в данном случае 5 это 50000.

Из 50000 как и 5 корень не извлекается, поэтому его тоже следует извлекать приближённо. Для этого следует найти ближáйший мéньший квадрат к числу 50000. Но нужно принимать во внимание, что сотни это числа с двумя нулями на конце. Примеры:

100 — одна сотня

500 — пять сотен

900 — девять сотен

При возведéнии таких чисел в квадрат, получаются числа, у которых четыре нуля на конце:

Мы ищем сотни корня в десятках тысяч числа 54756, то есть в числе 50000. Но нет такого числá с двумя нулями на конце, вторая степень которого равна 50000. Поэтому мы ищем ближáйший мéньший квадрат, но опять же с четырьмя нулями на конце. Таковым является квадрат 40000.

Вернёмся к нашему рисунку. Большой квадрат со стороной a и площадью a 2 это тот самый квадрат 40000 . Укажем вместо a 2 значение 40000

Теперь извлечём корень из квадрата 40000

Итак, мы нашли сторону квадрата, площадь которого 40000. Подпишем сторону a как 200

Но ранее в ответе мы написали не 200 , а 2 . Это является сокращённым вариантом. Число 2 в данном случае означает две сотни:

Теперь вытаскиваем остаток. Из пяти десятков тысяч корень извлечён только из четырёх десятков тысяч. Значит в остатке остался один десяток тысяч. Вытащим его:

Опять же надо понимать, что 4 это 40000 , а 1 это 10000 . С помощью рисунка это можно пояснить так: квадрат, площадь которого 40000, вычитается от общего квадрата, площадь которого 54756 . Остаётся фигура, площадь которой 54756 − 40000 = 14756

Теперь нужно найти десятки корня. Рассмотрим на рисунке сумму площадей ab + ab + b 2 (или 2ab + b 2 ). В эту сумму будет входить один десяток тысяч, который остался в результате нахождения сóтен корня, удвоенное произведение сотен и десятков корня 2ab , а также десятки корня в квадрате b 2 .

Десятки в квадрате составляют сотни. Поэтому десятки корня следует искать в сотнях подкоренного числа. Под корнем сейчас 47 сотен. Снесём их к остатку 1, предварительно отделив их под корнем мéткой:

Один десяток тысяч это сто сотен, плюс снесено 47 сотен. Итого 100 + 47 = 147 сотен. В эти 147 сотен должна входить сумма 2ab + b 2

2ab + b 2 = 14700

Переменная a уже известна, она равна 200. Подставим это значение в данное равенство:

2 × 200 × b + b 2 = 14700
400b + b 2 = 14700

Теперь наша задача найти такое значение b, при котором левая часть станет равна 14700 или хотя близкой к этому числу, но не превосходящей его. Поскольку b является десятками искомого корня, то значение b является двузначным числом с одним нулём на конце. Такое число можно найти методом подбора. Для удобства вынесем в левой части за скобки b

Теперь левую часть можно понимать так: к 400 следует прибавить некоторое число b, которое при умножении с тем же самым b даст в результате 14700 или близкое к 14700 число, не превосходящее его. Подставим например 40

40(400 + 40) = 14700

17600 14700

Получается 17600, которое превосходит число 14700. Значит число 40 не годится в качестве десятков корня. Проверим тогда число 30

30(400 + 30) = 14700

Получилось число 12900 , которое не превосходит 14700 . Значит число 30 подходит в качестве десятков корня. Числа, расположенные между 30 до 40 проверять не нужно, поскольку сейчас нас интересуют только двузначные числа с одним нулем на конце:

Вернемся к нашему рисунку. Сторона b это десятки корня. Укажем вместо b найденные десятки 30. А квадрат, площадь которого b 2 это найденные десятки во второй степени, то есть число 900 . Также укажем площади прямоугольников ab . Они равны произведению сотен корня на десятки корня, то есть 200 × 30 = 6000

Ранее в ответе мы написали не 30 , а 3 . Это является сокращённым вариантом. Число 3 в данном случае означают три десятка.

Теперь вытаскиваем остаток. В 147 сотен вместилось только 129 сотен. Значит в остатке осталось 147 − 129 = 18 сотен плюс сносим число 56 из подкоренного выражения. В результате образýется новый остаток 1856

С помощью рисунка это можно пояснить так: от фигуры, площадь которой 14756 , вычитается площадь 12900 . Остаётся фигура, площадь которой 14756 − 12900 = 1856

Теперь нужно найти единицы корня. Рассмотрим на рисунке сумму площадей 2(a + b)c + c 2 . В эту сумму и должен входить последний остаток 1856

Переменные a и b уже известны, они равны 200 и 30 соответственно. Подставим эти значения в данное равенство:

2(200 + 30)c + c 2 = 1856

2 × 230c + c 2 = 1856

460c + c 2 = 1856

Теперь наша задача найти такое значение c , при котором левая часть станет равна 1856 или хотя близкой к этому числу, но не превосходящей его. Поскольку c является единицами искомого корня, то значение с является однозначным числом. То есть значение с это число от 1 до 9 . Это число можно найти методом подбора. Для удобства вынесем в левой части за скобки с

Теперь левую часть можно понимать так: к 460 следует прибавить нéкоторое число с , которое при умножении с тем же сáмым с даст в результате 1856 или близкое к 1856 число, не превосходящее его. Подставим, например, число 4

Именно поэтому при использовании алгоритма первые найденные цифры умножают на 2 . Так, 23 мы умнóжили на 2 , получили 46 и уже к 46 дописывали цифру и умножáли образовавшееся число на ту же самую дописанную цифру, пытаясь получить остаток 1856

Итак, с = 4 . При подстановке вместо с числá 4 получается остаток 1856 . Это значит, что единицы корня найдены.

Квадрат, площадь которого 54756 , имеет сторону равную 200 + 30 + 4 , то есть 234 .

Если из общей площади 54756 вычесть 40000, 6000, 6000, 900, 920, 920 и 16 , то получим 0 . Остаток равный нулю говорит о том, что решение завершено:

54756 − 40000 − 6000 − 6000 − 900 − 920 − 920 − 16 = 0

Пример 3. Извлечь квадратный корень из числа 3

Квадратный корень из числа 3 не извлекается. Ранее мы говорили, что квадратные корни из таких чисел можно извлекать только приближённо с определенной точностью.

Пусть 3 это площадь следующего квадрата:

Извлечь корень из числа 3 значит найти длину стороны данного квадрата:

Корень из 3 больше корня из 1, но меньше корня из 4

Корни из 1 и 4 являются целыми числами.

Между числами 1 и 2 нет целых чисел. Значит корень из числа 3 будет десятичной дробью. Найдём этот корень с точностью до десятых.

Квадратный корень из числа 3 можно представить в виде суммы a + b , где a — целая часть корня, b — дробная часть. Тогда сторону квадрата можно разбить на две составляющие: a и b

Сумма a + b во второй степени должна приближённо равняться 3 .

Выполним в левой части данного равенства возведéние в квадрат:

Тогда рисунок, иллюстрирующий квадрат площадью 3, можно представить так:

Найдём a . Извлечём корень из числа 3 с точностью до целых, получим 1

Если a 2 это 1, а площадь всего квадрата равна 3, то в остатке останется 2. В этот остаток должна вмещаться площадь оставшейся фигуры:

Найдём b . Для этого рассмотрим сумму площадей 2ab + b 2 . Эта сумма должна приближённо равняться остатку 2 , но не превосходить его

Значение a уже известно, оно равно единице:

Вынесем за скобки b

Теперь в левой части к 2 следует прибавить нéкоторое число b , которое при умножении с тем же b будет приближённо равняться 2.

Значение b является дробным числом, а именно десятой частью. Оно равно какому-нибудь числу из промежутка [0,1; 0,9] . Возьмём любое число из этого промежутка и подставим его в равенство. Подставим к примеру 0,8

Получилось 2,24 которое превосходит 2 . Значит 0,8 не годится в качестве значения b . Проверим тогда 0,7

Получилось 1,89 которое приближённо равно 2 и не превосходит его. Значит 0,7 является значением b

Значит квадратный корень из 3 с точностью до десятых приближённо равен 1 + 0,7

К сожалению, понять механизм алгоритма извлечения квадратного корня намного сложнее, чем использовать сам алгоритм. Решите несколько примеров на применение алгоритма, и понимание механизма его работы будет даваться вам значительно проще.

[spoiler title=”источники:”]

http://geleot.ru/education/math/geometry/calc/triangle/sides

[/spoiler]

Как найти площадь треугольника – все способы от самых простых до самых сложных

Зависит от того, какой треугольник.

32 987

Как найти площадь треугольника – все способы

Чтобы найти площадь треугольника, надо сначала определить тип треугольника: прямоугольный, равнобедренный, равносторонний. Если он у вас не такой – отталкивайтесь от других данных: высоты, вписанной или описанной окружности, длин сторон. Привожу все формулы ниже.

Если треугольник прямоугольный

То есть один из его углов равен 90 градусам.

Надо перемножить катеты и поделить на два. Катеты – это две меньшие стороны, в сравнении с гипотенузой. Гипотенуза – это самая длинная сторона, она всегда находится напротив угла в 90 градусов.

формула площади прямоугольного треугольника

Если он равнобедренный

То есть у него равны боковые стороны. В таком случае надо провести высоту к основанию (той стороне, которая не равна «бедрам»), перемножить высоту с основанием и поделить результат на два.

Формула площади равнобедренного треугольника

Если он равносторонний

То есть все три стороны равны. Ваши действия такие:

  1. Найдите квадрат стороны – умножьте эту сторону на нее же. Если у вас сторона равна 4, умножьте 4 на 4, будет 16.
  2. Умножьте полученное значение на корень из 3. Это примерно 1,732050807568877293527.
  3. Поделите все на 4.

Формула площади равностороннего треугольника

Если известна сторона и высота

Площадь любого треугольника равна половине произведения стороны на высоту, которая к этой стороне проведена. Именно к этой, а не к какой-то другой.

Формула площади треугольника по стороне и высоте

Чтобы провести высоту к стороне, надо найти вершину (угол), которая противоположна этой стороне, а потом опустить из нее на сторону прямую линию под углом в 90 градусов. На картинке высота обозначена синим цветом и буквой h, а линия, на которую она опускается, красным цветом и буквой a.

Если известны две стороны и градус угла между ними

Если вы знаете, чему равны две стороны и угол между ними, то надо найти синус этого угла, умножить его на первую сторону, умножить на вторую и еще умножить на ½:

Формула площади треугольника по сторонам и синусу угла

Если известны длины трех сторон

Делайте так:

  1. Найдите периметр. Для этого сложите все три стороны.
  2. Найдите полупериметр – разделите периметр на два. Запомните значение.
  3. Отнимите от полупериметра длину первой стороны. Запомните.
  4. Отнимите от полупериметра длину второй стороны. Тоже запомните.
  5. Отнимите от полупериметра длину третьей стороны. И ее запомните.
  6. Умножьте полупериметр на каждое из этих чисел (разницу с первой, второй и третьей стороной).
  7. Найдите квадратный корень.

Площадь треугольника по трем сторонам

Эта формула еще называется формулой Герона. Возьмите на заметку, если вдруг учитель спросит.

Если известны три стороны и радиус описанной окружности

Окружность вы можете описать вокруг любого треугольника. Чтобы найти площадь «вписанного» треугольника – того, который «вписался» в окружность, надо перемножить три его стороны и поделить их на четыре радиуса. Смотрите картинку.

По сторонам и радиусу описанной окружности

Если известны три стороны и радиус вписанной окружности

Если вам удалось вписать в треугольник окружность, значит она обязательно касается каждой из его сторон. Следовательно, расстояние от центра окружности до каждой из сторон треугольника – ее радиус.

Чтобы найти площадь, посчитайте сначала полупериметр – сложите все стороны и поделите на два. А потом умножьте его на радиус.

По сторонам и вписанной окружности

Это были все способы найти площадь треугольника. Спасибо, что дочитали статью до конца. Лайкните, если не трудно.

( 32 оценки, среднее 4.44 из 5 )

Оцените статью

ЕЖЕНЕДЕЛЬНАЯ РАССЫЛКА

Получайте самые интересные статьи по почте и подписывайтесь на наши социальные сети

ПОДПИСАТЬСЯ

Как найти площадь любого треугольника

Вспоминаем геометрию: формулы для произвольных, прямоугольных, равнобедренных и равносторонних фигур.

Как найти площадь любого треугольника

Как найти площадь любого треугольника

Посчитать площадь треугольника можно разными способами. Выбирайте формулу в зависимости от известных вам величин.

Зная сторону и высоту

  1. Умножьте сторону треугольника на высоту, проведённую к этой стороне.
  2. Поделите результат на два.
  • S — искомая площадь треугольника.
  • a — сторона треугольника.
  • h — высота треугольника. Это перпендикуляр, опущенный на сторону или её продолжение из противоположной вершины.

Зная две стороны и угол между ними

  1. Посчитайте произведение двух известных сторон треугольника.
  2. Найдите синус угла между выбранными сторонами.
  3. Перемножьте полученные числа.
  4. Поделите результат на два.
  • S — искомая площадь треугольника.
  • a и b — стороны треугольника.
  • α — угол между сторонами a и b.

Зная три стороны (формула Герона)

  1. Посчитайте разности полупериметра треугольника и каждой из его сторон.
  2. Найдите произведение полученных чисел.
  3. Умножьте результат на полупериметр.
  4. Найдите корень из полученного числа.
  • S — искомая площадь треугольника.
  • a, b, c — стороны треугольника.
  • p — полупериметр (равен половине от суммы всех сторон треугольника).

Зная три стороны и радиус описанной окружности

  1. Найдите произведение всех сторон треугольника.
  2. Поделите результат на четыре радиуса окружности, описанной вокруг прямоугольника.
  • S — искомая площадь треугольника.
  • R — радиус описанной окружности.
  • a, b, c — стороны треугольника.

Зная радиус вписанной окружности и полупериметр

Умножьте радиус окружности, вписанной в треугольник, на полупериметр.

  • S — искомая площадь треугольника.
  • r — радиус вписанной окружности.
  • p — полупериметр треугольника (равен половине от суммы всех сторон).

Как найти площадь прямоугольного треугольника

  1. Посчитайте произведение катетов треугольника.
  2. Поделите результат на два.
  • S — искомая площадь треугольника.
  • a, b — катеты треугольника, то есть стороны, которые пересекаются под прямым углом.

Как найти площадь равнобедренного треугольника

  1. Умножьте основание на высоту треугольника.
  2. Поделите результат на два.
  • S — искомая площадь треугольника.
  • a — основание треугольника. Это та сторона, которая не равняется двум другим. Напомним, в равнобедренном треугольнике две из трёх сторон имеют одинаковую длину.
  • h — высота треугольника. Это перпендикуляр, опущенный на основание из противоположной вершины.

Как найти площадь равностороннего треугольника

  1. Умножьте квадрат стороны треугольника на корень из трёх.
  2. Поделите результат на четыре.
  • S — искомая площадь треугольника.
  • a — сторона треугольника. Напомним, в равностороннем треугольнике все стороны имеют одинаковую длину.

Читайте также 🧠👨🏻‍🎓✍🏻

  • 7 причин полюбить математику
  • ТЕСТ: Помните ли вы геометрию?
  • 10 хитрых головоломок со спичками для тренировки воображения
  • Интересные математические факты для тех, кто хочет больше узнать о мире вокруг
  • ТЕСТ: Сможете ли вы решить простые математические примеры?

Avgust
Меня, иногда, поражает Ваша вера в собственную непогрешимость.

С чего вы взяли что верный ответ 14,48?
Может ошибка не в Википедии, а как раз в Вашей формуле?
У меня, например, расчеты показывают, что ответ 21,50
Причем по формуле Герона, по ее модификации и по стандартной [math]S=dfrac{1}{2}absin{gamma}[/math].

PS:
[math][sqrt {pleft( {p – a} right)left( {p – b} right)left( {p – c} right)} = sqrt {frac{{a + b + c}}{2} cdot frac{{a + b + c – 2a}}{2} cdot frac{{a + b + c – 2b}}{2} cdot frac{{a + b + c – 2c}}{2}} = frac{1}{4}sqrt {left( {a + b + c} right)left( { – a + b + c} right)left( {a – b + c} right)left( {a + b – c} right)} ][/math]

Сравним с Вашей формулой [math][frac{1}{4}sqrt {2aleft( { a + b – c} right)left( {a – b + c} right)left( {-a + b+ c} right)} ][/math]

Исходя из предположения, что Ваша формула верна, получаем
[math]2a=a+b+c[/math]
[math]a=b+c[/math]
Я думаю Вы слышали о неравенстве треугольника.

Вывод: Теперь я знаю кто портит статьи в Википедии. :wink:


Загрузить PDF


Загрузить PDF

Все прямоугольные треугольники имеют один прямой угол (90 градусов), а противоположная ему сторона называется гипотенузой.[1]
Гипотенуза — самая длинная сторона треугольника, и найти ее можно различными способами. В этой статье мы расскажем вам, как найти гипотенузу по теореме Пифагора (когда известны длины двух других сторон треугольника), по теореме синусов (когда известны длина катета и угол) и в некоторых частных случаях (часто такие задания встречаются на контрольных и тестах).

  1. Изображение с названием Find the Length of the Hypotenuse Step 1

    1

    Теорема Пифагора связывает все стороны прямоугольного треугольника.[2]
    Согласно данной теореме, в любом прямоугольном треугольнике с катетами «а» и «b» и гипотенузой «с»: a2 + b2 = c2.[3]

  2. Изображение с названием Find the Length of the Hypotenuse Step 2

    2

    Убедитесь, что данный вам треугольник является прямоугольным, так как теорема Пифагора применима только к прямоугольным треугольникам. В прямоугольных треугольниках один из трех углов всегда равен 90 градусам.

    • Прямой угол в прямоугольном треугольнике обозначается значком в виде квадрата.
  3. Изображение с названием Find the Length of the Hypotenuse Step 3

    3

    Обозначьте стороны треугольника. Катеты обозначьте как «а» и «b» (катеты — стороны, пересекающиеся под прямым углом), а гипотенузу — как «с» (гипотенуза — самая большая сторона прямоугольного треугольника, лежащая напротив прямого угла). Затем подставьте данные вам значения в формулу.

    • Например, катеты треугольника равны 3 и 4. В этом случае а = 3, b = 4, а формула выглядит так: 32 + 42 = c2.
  4. Изображение с названием Find the Length of the Hypotenuse Step 4

    4

    Возведите в квадрат значения катетов («a» и «b»). Для этого просто умножьте число само на себя:

    • Если a = 3, то a2 = 3 x 3 = 9. Если b = 4, то b2 = 4 x 4 = 16.
    • Подставьте эти значения в формулу: 9 + 16 = с2.
  5. Изображение с названием Find the Length of the Hypotenuse Step 5

    5

    Сложите найденные квадраты катетов (a2 и b2), чтобы вычислить квадрат значения гипотенузы (с2).

    • В нашем примере 9 + 16 = 25, поэтому с2 = 25.
  6. Изображение с названием Find the Length of the Hypotenuse Step 6

    6

    Найдите квадратный корень с2. Используйте калькулятор, чтобы извлечь квадратный корень из найденного значения. Так вы вычислите гипотенузу треугольника.

    • В нашем примере с2 = 25. Квадратный корень из 25 равен 5 (так как 5 х 5 = 25, поэтому √25 = 5). Это означает, что гипотенуза с = 5.

    Реклама

  1. Изображение с названием Find the Length of the Hypotenuse Step 7

    1

    Определение пифагоровой тройки. Пифагорова тройка — это три числа (длины трех сторон), которые удовлетворяют теореме Пифагора. Очень часто треугольники с такими сторонами приводятся в учебниках и на тестах. Если вы запомните первые несколько пифагоровых троек, вы сэкономите много времени на тестах или экзаменах, потому что сможете вычислить гипотенузу, просто взглянув на длины катетов.[4]

    • Первая пифагорова тройка: 3-4-5 (32 + 42 = 52, 9 + 16 = 25). Если дан треугольник с катетами 3 и 4, то вы можете с уверенностью заявить, что гипотенуза равна 5 (без необходимости делать какие-либо расчеты).
    • Пифагоровы тройки работают даже в том случае, когда числа умножены или разделены на один коэффициент. Например, если катеты равны 6 и 8, гипотенуза равна 10 (62 + 82 = 102, 36 + 64 = 100). То же самое верно для 9-12-15 и даже для 1,5-2-2,5.
    • Вторая пифагорова тройка: 5-12-13 (52 + 122 = 132, 25 + 144 = 169). Также к этой тройке относятся, например, числа 10-24-26 и 2,5-6-6,5.
  2. Изображение с названием Find the Length of the Hypotenuse Step 8

    2

    Равнобедренный прямоугольный треугольник. Это такой треугольник, углы которого равны 45,45 и 90 градусам. Соотношение между сторонами этого треугольника равно 1:1:√2. Это означает, что гипотенуза в таком треугольнике равна произведению катета и квадратного корня из 2.

    • Чтобы вычислить гипотенузу такого треугольника, просто умножьте длину любого катета на √2.[5]
    • Это соотношение особенно удобно, когда в задачах вместо числовых значений даются переменные.
  3. Изображение с названием Find the Length of the Hypotenuse Step 9

    3

    Половина равностороннего прямоугольного треугольника. Это такой треугольник, углы которого равны 30,60 и 90 градусам. Соотношение между сторонами этого треугольника равно 1:√3:2 или х:х√3:2х. Чтобы найти гипотенузу в таком треугольнике выполните одно из следующих действий:[6]

    • Если вам дан короткий катет (противолежащий углу в 30 градусов), просто умножьте длину этого катета на 2, чтобы найти длину гипотенузы. Например, если короткий катет равен 4, то гипотенуза равна 8.
    • Если вам дан длинный катет (противолежащий углу в 60 градусов), просто умножьте длину этого катета на 2/√3, чтобы найти длину гипотенузы. Например, если короткий катет равен 4, то гипотенуза равна 4,62.

    Реклама

  1. Изображение с названием Find the Length of the Hypotenuse Step 10

    1

    Поймите, что означает «синус». Синус, косинус и тангенс угла — это основные тригонометрические функции, связывающие углы и стороны в прямоугольном треугольнике. Синус угла равен отношению противолежащей стороны к гипотенузе. Обозначается синус как sin.[7]

  2. Изображение с названием Find the Length of the Hypotenuse Step 11

    2

    Научитесь вычислять синус. Чтобы вычислить синус, на калькуляторе найдите клавишу sin, нажмите ее, а затем введите значение угла. В некоторых калькуляторах сначала нужно нажать клавишу перехода к работе с функциями, а затем нажать клавишу sin. Поэтому поэкспериментируйте с калькулятором или проверьте его документацию.

    • Чтобы найти синус угла в 80 градусов, нажмите «sin», «8», «0», «=» или нажмите «8», «0», «sin», «=» (ответ: -0,9939).
    • Вы также можете найти онлайн-калькулятор, введя в поисковой системе «вычисление синуса» (без кавычек).[8]
  3. Изображение с названием Find the Length of the Hypotenuse Step 12

    3

    Запомните теорему синусов. Теорема синусов является полезным инструментом для вычисления углов и сторон любого треугольника. В частности, она поможет вам найти гипотенузу прямоугольного треугольника, если вам дан катет и угол, отличный от прямого. Согласно теореме синусов, в любом треугольнике со сторонами a, b, c и углами A, B, C верно равенство a / sin A = b / sin B = c / sin С.[9]

    • Теорема синусов применяется к любым треугольникам, а не только к прямоугольным (но только в прямоугольном треугольнике есть гипотенуза).
  4. Изображение с названием Find the Length of the Hypotenuse Step 13

    4

    Обозначьте стороны треугольника через «а» (известный катет), «b» (неизвестный катет), «с» (гипотенуза). Затем обозначьте углы треугольника через «А» (напротив катета «а»), «В» (напротив катета «b»), «С» (напротив гипотенузы).

  5. Изображение с названием Find the Length of the Hypotenuse Step 14

    5

    Найдите третий угол. Если вам дан один из острых углов прямоугольного треугольника (А или В), а второй угол всегда равен 90 градусам (С = 90), то третий угол вычисляется по формуле 180 – (90 + А) = B (помните, что сумма углов в любом треугольнике равна 180 градусам). При необходимости уравнение можно изменить и так: 180 – (90 + B) = A.

    • Например, если угол A = 40 градусам, то B = 180 – (90 + 40) = 180 – 130 = 50 градусов.
  6. Изображение с названием Find the Length of the Hypotenuse Step 15

    6

    На данном этапе вам известны значения всех трех углов и длина катета «а». Теперь вы можете подставить эти значения в формулу теоремы синусов, чтобы найти две другие стороны.

    • В нашем примере допустим, что катет а = 10, а углы равны C = 90˚, A = 40˚, В = 50˚.
  7. Изображение с названием Find the Length of the Hypotenuse Step 16

    7

    Подставьте данные и найденные значения в теорему синусов, чтобы найти гипотенузу: катет «а»/синус угла «A» = гипотенуза «с»/синус угла «С». При этом sin 90˚ = 1. Таким образом, уравнение упрощается до: а/sinA = с/1 или с = а/sinA.

  8. Изображение с названием Find the Length of the Hypotenuse Step 17

    8

    Разделите длину катета «а» на синус угла «А», чтобы найти длину гипотенузы. Для этого сначала найдите синус угла, а затем выполните деление. Или вы можете воспользоваться калькулятором, введя 10/(sin40) или 10/(40sin) (не забудьте про скобки).

    • В нашем примере sin 40 = 0,64278761, а с = 10/0,64278761 = 15,6.

    Реклама

Об этой статье

Эту страницу просматривали 312 249 раз.

Была ли эта статья полезной?

Добавить комментарий