В уроке «Степень числа»
мы проходили, что возвести в квадрат число означает умножить число на само себя.
Кратко запись числа в квадрате выглядит следующим образом:
3 · 3 = 32 = 9
Но как быть, если нам нужно получить обратный результат?
Например, узнать, какое число при возведении в квадрат дало бы число «9»?
Запомните!
Нахождение исходного числа, которое в квадрате дало бы требуемое, называется
извлечением квадратного корня.
Извлечение квадратного корня — это действие, обратное возведению в квадрат.
У квадратного корня есть специальный знак.
Исходя из вычислений выше, нетрудно догадаться, что число, которое в квадрате дает «9»,
это число «3». Запись извлечения квадратного корня из числа «9» выглядит так:
√9 = 3
Читаем запись: «Арифметический квадратный корень из девяти». Можно опустить слово «арифметический».
Словосочетания «арифметический квадратный корень» и «квадратный корень» полностью равнозначны.
Число под знаком корня называют подкоренным выражением.
Подкоренное выражение может быть представлено не только одним числом.
Всё, что находится под знаком корня, называют подкоренным выражением. Оно может сожержать как числа, так и буквы.
Запомните!
Извлекать квадратный корень можно только из положительного числа.
-
√−9
= … нельзя извлекать квадратный корень из отрицательного числа; -
√64 = 8
-
√−1,44
= … нельзя извлекать квадратный корень из отрицательного числа; -
√256 = 16
Квадратный корень из нуля
Запомните!
Квадратный корень из нуля равен нулю.
√0 = 0
Квадратный корень из единицы
Запомните!
Квадратный корень из единицы равен единице.
√1 = 1
Как найти квадратный корень из числа
Квадратные корни из целых чисел, чьи квадраты известны, вычислить довольно просто.
Для этого достаточно выучить таблицу квадратов.
Чаще всего в задачах школьного курса математики требуется найти квадратный корень из квадратов чисел от
1 до 20.
Решение примеров с квадратными корнями
Разбор примера
Вычислить арифметический квадратный корень из числа.
- √81 = 9
- √64 = 8
- √100 = 10
Как найти квадратный корень из десятичной дроби
Важно!
При нахождении квадратного корня из десятичной дроби нужно выполнить следующие действия:
- забыть про запятую в исходной десятичной дроби и представить её в виде целого числа;
- вычислить для целого числа квадратный корень;
- полученное целое число заменить на десятичную дробь (поставить запятую исходя из
правила умножения десятичных дробей).
Более подробно разберем на примере ниже.
Разбор примера
Вычислить квадратный корень из десятичной дроби «0,16».
√0,16 =
По первому пункту правила забудем про запятую в десятичной дроби и представим ее в виде целого числа «16».
Нетрудно вспомнить, какое число в квадрате дает «16». Это число
«4».
√16 = 4
√0,16 = …
Вспомним правило умножения десятичных дробей.
Количество знаков после запятой в результате умножения десятичных дробей равняется сумме количества знаков после запятой каждой
дроби.
Т.е., например, при умножении «0,15» на
«0,3» в полученном произведении будет десятичная дробь с тремя знаками после запятой.
0,15 · 0,3 = 0,045
Значит, при вычислении квадратного корня
√0,16
нам нужно найти десятичную дробь, у которой был бы только один знак после запятой.
Мы исходим из того, что в результате умножения десятичной дроби на саму себя в результате должно было получиться
два знака после запятой, как у десятичной дроби «0,16».
Получается, что ответ — десятичная дробь «0,4».
√0,16 = 0,4
Убедимся, что квадрат десятичной дроби
«0,42» дает
«0,16».
Умножим в столбик «0,4» на
«0,4».
Рассмотрим другой пример вычисления квадратного корня из десятичной дроби. Вычислить:
√1,44 =
Представим вместо десятичной дроби «1,44» целое число
«144». Какое число в квадрате даст «144»?
Ответ — число «12».
122 = 144
√144 = 12
√1,44 = …
Так как в десятичной дроби «1,44» — два знака после запятой, значит в десятичной дроби,
которая дала в квадрате «1,44» должен быть один знак после запятой.
√1,44 = 1,2
Убедимся, что «1,22» дает в квадрате «1,44».
1,22 = 1,2 · 1,2 = 1,44
Квадратные корни из чисел
√2,
√3,
√5,
√6,
и т.п.
Не из всех чисел удается легко извлечь квадратный корень. Например, совершенно неочевидно, чему равен
√2
или
√3
и т.п.
В самом деле, какое число в квадрате даст «2»? Или число «3»?
Такое число не будет целым. Более того, оно представляет из себя
непериодическую десятичную дробь
и входит в
множество иррациональных чисел.
Что делать, когда в ответе остаются подобные квадратные корни? Как, например, в примере ниже:
√15 − 2 · 4 =
√15 − 8 =
√7
Нет такого целого числа, которое бы дало в квадрате число «7».
Поэтому, перед завершением задачи внимательно читайте её условие.
Если в задаче дополнительно ничего не сказано об обязательном вычислении всех квадратных корней, тогда ответ можно
оставить с корнем.
√15 − 2 · 4 =
√15 − 8 =
√7
Если в задании сказано, что необходимо вычислить все квадратные корни с помощью микрокалькулятора,
то после вычисления квадратного корня на калькуляторе
округлите результат до необходимого количества знаков.
Текст задания в таком случае может быть написан следующим образом:
«Вычислить. Квадратные корни найти с помощью калькулятора и округлить с точностью до
«0,001».
√15 − 2 · 4 =
√15 − 8 =
√7 ≈ 2,646
Ваши комментарии
Важно!
Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи
«ВКонтакте».
Оставить комментарий:
14 июля 2016 в 18:32
Temur Uldashev
Профиль
Благодарили: 0
Сообщений: 2
Temur Uldashev
Профиль
Благодарили: 0
Сообщений: 2
Всем доброго времени суток! Прошу помочь с примером который я не могу решить, по теме «Квадратные корни. Задачи на вычесление» пример выглядит так:
??28-16?3 ( то есть выражение 28-16?3 еще под двумя корнями, не только 28, а все выражение!)
0
Спасибо
Ответить
15 июля 2016 в 0:04
Ответ для Temur Uldashev
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
?(28 ? 16?3) = 4 ? 2?3.
Скобки не знешь?
0
Спасибо
Ответить
15 июля 2016 в 6:53
Ответ для Temur Uldashev
Temur Uldashev
Профиль
Благодарили: 0
Сообщений: 2
Temur Uldashev
Профиль
Благодарили: 0
Сообщений: 2
Затупил. Но и вы не правильно подсказали. Я уже решил ответ ?3-1
0
Спасибо
Ответить
16 июля 2016 в 22:58
Ответ для Temur Uldashev
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
Чушь не пори.
Спасибо скажи, что тебе подсказали.
0
Спасибо
Ответить
21 июля 2016 в 13:24
Ответ для Temur Uldashev
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
Что не верно у меня, митрофанушка?
0
Спасибо
Ответить
23 ноября 2015 в 15:15
Ксюша Новикова
Профиль
Благодарили: 0
Сообщений: 1
Ксюша Новикова
Профиль
Благодарили: 0
Сообщений: 1
0
Спасибо
Ответить
16 сентября 2016 в 14:23
Ответ для Ксюша Новикова
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
1,38 · ?361 = 1,38 · 19 = 26,22
0
Спасибо
Ответить
16 сентября 2015 в 16:11
Макс Простов
Профиль
Благодарили: 0
Сообщений: 4
Макс Простов
Профиль
Благодарили: 0
Сообщений: 4
Расположите в порядке возрастания Корни:3V16, 7V19, 8V13 срочно)))))
0
Спасибо
Ответить
9 сентября 2016 в 9:41
Ответ для Макс Простов
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
?16 = 4
?19 ? 4,35
?13 ? 3,61
3 · 4 = 12
7 · 4,35 = 30,45
8 · 3,61 = 28,88
Ответ: 3?16, 8?13, 7?19
0
Спасибо
Ответить
Содержание:
Квадратные корни
Уравнение х2 = 9 имеет два решения: 3 и -3. Говорят, что 3 и -3 — квадратные корни из числа 9.
Квадратным корнем из числа а называют число, I квадрат которого равен а.
Примеры:
Квадратными корнями из числа:
- а) 1600 являются 40 и – 40, поскольку 402 = 1600 и (-40)2 = 1600;
- б) 0,49 являются 0,7 и 0,7, поскольку 0,72 = 0,49 и (-0,7)2 = 0,49.
Среди известных вам чисел нет такого, квадрат которого был бы равен отрицательному числу, поэтому квадратного корня из отрицательного числа не существует.
Квадратный корень из числа 0 равен нулю. Квадратный корень из положительного числа имеет два значения: одно из них положительное, другое — противоположное ему отрицательное число.
Неотрицательное значение квадратного корня называют арифметическим значением этого корня.
Арифметическое значение квадратного корня из числа a обозначают символом
Примечание. Символом обозначают только арифметическое значение квадратного корня из числа а, хотя читается оно короче: «квадратный корень из числа а».
Вычисление арифметического значения квадратного корня называют извлечением квадратного корня.
Из небольших чисел, являющихся точными квадратами чисел, извлекать квадратные корни желательно устно.
а | 1 | 4 | 9 | 16 | 25 | 36 | 49 | 64 | 81 | 100 | 121 | 144 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
Квадратные корни из больших натуральных чисел можно находить, пользуясь таблицей квадратов.
Например, , .
С помощью калькулятора можно извлекать квадратные корни с большей точностью. Например, чтобы извлечь квадратный корень из 1000, набираем это число, затем нажимаем клавишу . На экране высвечивается число 31,622776.
Следовательно, .
Если таким способом найти значение , то на некоторых калькуляторах высвечиваются два числа: 5,9160797 и -2. Число -2 здесь показывает порядок искомого значения, записанного в стандартном виде. Следовательно,
.
Хотите знать ещё больше?
Извлекать квадратные корни из натуральных чисел вавилонские учёные умели ещё 4 тыс. лет тому назад Они составили таблицу квадратов многих натуральных чисел и, пользуясь ею, находили квадратные корни. Если число m не было точным квадратом натурального числа, то они искали ближайшее приближённое значение а квадратного корня из m, представляли число m в виде m = а2 + b и применяли правило, которое сейчас можно записать в виде формулы Например, если m = 108, то .
Проверка. 10,42 = 108,16.
Это правило извлечения квадратных корней было известно и учёным Древней Греции.
Известны и другие алгоритмы извлечения квадратных корней, но теперь это удобнее делать с помощью калькулятора.
Квадратный корень из произведения, дроби, степени
Арифметический корень из а — неотрицательное значение квадратного корня из неотрицательного числа а. Поэтому для любого неотрицательного числа а выполняется тождество .
Примеры:
Верны и такие тождества:
- — для неотрицательных значений а и b;
- — для неотрицательного а и положительного b;
- – для неотрицательного а и натурального к.
Докажем эти тождества:
1. Если а и b — произвольные неотрицательные числа, то числа также неотрицательные. Кроме того,
Следовательно, — неотрицательное число, квадрат которого равен ab, то есть
2. Если , то числа неотрицательные, a — положительное. Кроме того,
Следовательно, неотрицательное число, квадрат которого равен , то есть
3. Если число а — неотрицательное, a k — натуральное, то числа — неотрицательные. Кроме того,. Следовательно, — неотрицательный квадратный корень из , то есть
Доказанные три теоремы кратко можно сформулировать так.
- Корень из произведения двух неотрицательных чисел равен произведению корней из этих чисел (теорема о корне из произведения).
- Корень из дроби, числитель которой неотрицательный, а знаменатель положительный, равен корню из числителя, делённому на корень из знаменателя (теорема о корне из дроби).
- Корень из степени a , в котором числа а — неотрицательное и k — натуральное, равен ст (теорема о корне из степени)
Примечание. Здесь под «корнем» понимают только квадратный арифметический корень.
Теорему о корне из произведения можно распространить на три множителя и более. Действительно, если числа а, b и с — неотрицательные, то Если в доказанных тождествах поменять местами их левые и правые части, то получим:
Эти тождества показывают, как можно умножать и делить корни. Например,
Из теоремы о корне из степени следует, что , если . Если а < 0, то равенство – а неверное, поскольку число неотрицательное и не может быть равным отрицательному числу а.
Равенство верное при каждом значении а, поскольку число — неотрицательное и его квадрат равен а2.
Примеры:
Хотите знать ещё больше?
В сформулированных выше теоремах представлены только простейшие случаи преобразования арифметических значений квадратных корней: если все числа под корнями положительные или неотрицательные Но бывают и такие выражения, в которых под знаком корня — произведение либо частное двух отрицательных чисел. В этом случае можно использовать определения квадратного корня, арифметического значения квадратного корня и т. д.
Например, .
Из теоремы 3 несложно получить такое следствие.
Если натуральное число — чётное, то для любых значений а выполняется тождество
Ведь обе части этого равенства — числа неотрицательные, их квадраты – равны.
Выполним вместе!
Пример:
Найдите значение выражения: а) ; б) ; в) ; г) .
Решение:
О т в е т. а) 35; б) 1,2; в) 6; г)
Преобразование выражений с корнями
Выражения с квадратными корнями можно складывать, вычитать, умножать, возводить в степень и делить (на делитель, отличный от нуля).
Примеры:
Рассмотрим и другие преобразования выражений с корнями.
Подобное преобразование называют вынесением множителя за знак корня. В последнем примере за знак корня вынесен множитель 10.
Преобразование, обратное вынесению множителя за знак корня, называют внесением множителя под знак корня.
В атом примере под знак корня вносим множитель 0,3. Рассмотренные преобразования осуществляются на основании теоремы о корне из произведения.
Если знак корня находится в знаменателе дроби, то такую дробь можно заменить тождественной, знаменатель которой не имеет корней. Достаточно умножить члены дроби на соответствующее выражение. Например,
Такие преобразования называют освобождением дроби от иррациональности в знаменателе.
Эти преобразования можно выполнять также с выражениями, содержащими переменные. Например,
Примечание. При вынесении переменной за знак корня необходимо помнить, что равенство верно только при неотрицательных значениях а и с. Если , то . При любых действительных значениях а и неотрицательных с верно тождество: .
Пример:
Вынесите множитель за знак корня: a)
Решение:
а) б) Ответ. a) ; б) .
При внесении переменной под знак корня следует помнить, что под корень можно вносить лишь положительные числа.
Пример:
Внесите множитель под знак корня: а) ; б)
Решение:
а) ; б) О т в е т. a) ; б)
Используя словосочетание «выражения с корнями», в этой главе мы будем говорить только о «выражениях с арифметическими квадратными корнями». Но в математике выражения с корнями имеют более широкий смысл поскольку корни бывают не только квадратные, но и кубические четвёртой, пятой …. n-й степеней. Корни из числа а таких степеней обозначают символами:
Выражения, содержащие любые из таких корней, называют выражениями с корнями, или иррациональными выражениями. Выражения с арифметическими квадратными корнями – это только часть иррациональных выражений (рис 45) .
Рис. 45 Раньше знаки корней …, называли радикалами, поэтому в некоторых публикациях иррациональные выражения до сих пор называют выражениями с радикалами.
Выполним вместе!
Пример:
Упростите выражение: а) ; б) ; в).
Решение:
a) . б) ;
в) . О т в е т. a) ; б)16; в) 9.
Пример:
Разложите на множители выражение: a) ; б) ; в) .
Решение:
а) ; б) ; в) если а — число положительное, то . Поэтому
Ответ, a) ; б) ; в) .
Пример:
Освободитесь от иррациональности в знаменателе дроби:
а) ; б) ;
Решение:
а) ; б)
Ответ. а) ; б) .
ИСТОРИЧЕСКИЕ СВЕДЕНИЯ
Квадратные корни из чисел вавилонские математики умели вычислять ещё 4 тыс. лет тому назад. Находили даже приближённые значения квадратных корней, пользуясь правилом, которое теперь можно записать (при небольших значениях с) в виде приближённого равенства:
В XIII в. европейские математики предложили сокращённое обозначение корня. Вместо нынешнего писали R12 (от латинского Radix — корень). Позднее вместо R стали писать знак V, например V7, V(a + b). Затем над многочленом за корнем добавили черту: . Р. Декарт (1596 -1650) соединил знак корня с чертой, после чего запись приобрела современный вид: . Действительные числа входили в математику непросто. Учёные античного мира не предполагали, что кроме целых и дробных могут быть и другие числа. Хотя Пифагор (VI в. до и. э.) и его ученики доказали: если длина стороны квадрата равна 1, то длину его диагонали нельзя выразить ни одним рациональным числом. Таким образом, они выяснили, что существуют отрезки, длины которых не выражаются рациональными числами, но при этом иррациональных чисел не ввели. Математики Индии и Среднего Востока пользовались иррациональными числами, но считали их ненастоящими, неправильными, «глухими». И только когда Р. Декарт предложил каждой точке координатной прямой поставить в соответствие число, иррациональные числа объединили с рациональными во множество действительных чисел. Строгая теория действительных чисел появилась лишь в XIX в. В 8 классе изучают не все действительные числа. Кроме квадратных существуют корни третьей, четвёртой и высших степеней, например , , . С такими действительными числами вы ознакомитесь в старших классах.
ОСНОВНОЕ В ГЛАВЕ
Квадратным корнем из числа а называют число, квадрат которого равен а. Например, число 16 имеет два квадратных корня: 4 и -4. Неотрицательное значение квадратного корня из числа а называют арифметическим значением корня я обозначают символом . Свойства квадратных корней. Если а > 0 и b > 0, то
Для любого действительного . Значения многих квадратных корней — числа не рациональные, а иррациональные. Числа целые и дробные, положительные, отрицательные и нуль вместе составляют множество рациональных чисел. Каждое рациональное число можно записать в виде дроби , где — число целое, а n— натуральное. Любое рациональное число можно представить в виде бесконечной периодической десятичной дроби. А любая бесконечная периодическая десятичная дробь изображает некоторое рациональное число. Примеры: = 0,6666…, =1,181818…. Числа, которые можно представить в виде бесконечных непериодических десятичных дробей, называют иррациональными. Примеры иррациональных чисел: = 1,4142136…, = 3,1415927… . Иррациональные числа вместе с рациональными образуют множество действительных чисел. Множества натуральных, целых, рациональных и действительных чисел обозначают соответственно буквами N, Z, Q, R (см. рис. 41). Действительные числа можно складывать, вычитать, умножать, возводить в степень и делить (на числа, отличные от нуля). Для сложения и умножения произвольных действительных чисел верны переместительный, сочетательный и распределительный законы: а + b = b + а, ab=ba, a + (b + c) = (a + b) + c, a . (bc) = (ab) . c, (a + b) с = ас +bс.
Квадратные корни. Арифметический квадратный корень
Рассмотрим квадрат, площадь которого равна 49 квадратным единицам. Пусть длина его стороны составляет единиц. Тогда уравнение можно рассматривать как математическую модель задачи о нахождении стороны квадрата, площадь которого равна 49 квадратным единицам.
Корнями этого уравнения являются числа 7 и —7. Говорят, что числа 7 и —7 являются квадратными корнями из числа 49.
Определение: Квадратным корнем из числа называют число, квадрат которого равен
Приведем несколько примеров.
Квадратными корнями из числа 9 являются числа 3 и —3. Действительно,
Квадратными корнями из числа являются числа и
Действительно,
Квадратным корнем из числа 0 является только число 0. Действительно, существует лишь одно число, квадрат которого равен нулю, — это число 0.
Поскольку не существует числа, квадрат которого равен отрицательному числу, то квадратного корня из отрицательного числа не существует.
Положительный корень уравнения число 7, является ответом в задаче о нахождении стороны квадрата, площадь которого равна 49 квадратным единицам. Это число называют арифметическим квадратным корнем из числа 49.
Определение: Арифметическим квадратным корнем из числа называют неотрицательное число, квадрат которого равен .
Арифметический квадратный корень из числа обозначают Знак называют знаком квадратного корня или радикалом (от лат. radix — корень).
Запись читают: «квадратный корень из », опуская при чтении слово «арифметический».
Выражение, стоящее под радикалом, называют подкоренным выражением. Например, в записи двучлен является подкоренным выражением. Из определения арифметического квадратного корня следует, что подкоренное выражение может принимать только неотрицательные значения.
Действие нахождения арифметического квадратного корня из числа называют извлечением квадратного корня.
Рассмотрим несколько примеров:
так как и
так как и
так как и
Вообще, равенство выполняется при условии, что и
Этот вывод можно представить в другой форме: для любого неотрицательного числа справедливо, что а
Например, и и и
Подчеркнем, что к понятию квадратного корня мы пришли, решая уравнение вида где Корни этого уравнения — числа, каждое из которых является квадратным корнем из числа
Поиск корней уравнения проиллюстрируем, решив графически уравнение
В одной системе координат построим графики функций и (рис. 17). Точки пересечения этих графиков имеют абсциссы 2 и —2, которые и являются корнями данного уравнения.
Уравнение при не имеет корней, что подтверждается графически: графики функций и при общих точек не имеют (рис. 18).
При уравнение имеет единственный корень что также подтверждается графически: графики функций и имеют только одну общую точку (рис. 18).
Графический метод также позволяет сделать следующий вывод: если то уравнение имеет два корня. Действительно, парабола и прямая где имеют две общие точки (рис. 18). При этом корнями уравнения являются числа и Действительно,
Например, уравнение имеет два корня: и
Пример:
Найдите значение выражения
Решение:
Применив правило возведения произведения в степень и тождество получим:
Пример:
Решите уравнение:
Решение:
1) Имеем: Тогда
Ответ: 36.
2)
Ответ: 7.
Пример:
Решите уравнение
Решение:
или или
Ответ: 1; 9. ▲
Пример:
Решите уравнение
Решение:
или
или
или
Ответ:
Пример:
При каких значениях имеет смысл выражение:
Решение:
1) Выражение имеет смысл, если подкоренное выражение принимает неотрицательные значения. Подкоренное выражение является произведением двух множителей, один из которых — отрицательное число. Следовательно, это произведение будет принимать неотрицательные значения, если другой множитель будет принимать неположительные значения.
Ответ: при
2) Данное выражение имеет смысл, если выполняются два условия: имеет смысл выражение и знаменатель отличен от нуля. Следовательно, должны одновременно выполняться два условия: и Отсюда и
Ответ: при и
Пример:
Решите уравнение:
Решение:
1) Левая часть данного уравнения имеет смысл, если подкоренные выражения и одновременно принимают неотрицательные значения. Из того, что первое подкоренное выражение должно быть неотрицательным, получаем: тогда Однако если то второе подкоренное выражение, принимает только отрицательные значения. Следовательно, левая часть данного уравнения не имеет смысла.
Ответ: корней нет.
2) Левая часть данного уравнения является суммой двух слагаемых, каждое из которых может принимать только неотрицательные значения. Тогда их сумма будет равна нулю, если каждое из слагаемых равно нулю. Следовательно, одновременно должны выполняться два условия: и Это означает, что надо найти общие корни полученных уравнений, то есть решить систему уравнений
Имеем,
Решением последней системы, а значит, и исходного уравнения, является число 2.
Ответ: 2.
3) Используя условие равенства произведения нулю, получаем:
или или
Однако при выражение не имеет смысла. Следовательно, данное уравнение имеет единственный корень — число 2.
Ответ: 2.
Свойства арифметического квадратного корня
Легко проверить, что Может показаться, что при любом значении а выполняется равенство Однако это не так. Например, равенство является ошибочным, поскольку На самом деле Также можно убедиться, что, например,
Вообще, справедлива следующая теорема.
Теорема: Для любого действительного числа а выполняется равенство
Доказательство: Для того чтобы доказать равенство надо показать, что и
Имеем: при любом
Также из определения модуля следует, что
Следующая теорема обобщает доказанный факт.
Теорема: (арифметический квадратный корень из степени). Для любого действительного числа и любого натурального числа выполняется равенство
Доказательство этой теоремы аналогично доказательству теоремы 15.1. Проведите это доказательство самостоятельно.
Теорема: (арифметический квадратный корень из произведения). Для любых действительных чисел и таких, что и выполняется равенство
Доказательство: Имеем: и Тогда Кроме того,
Следовательно, выражение принимает только неотрицательные значения, и его квадрат равен
Эту теорему можно обобщить для произведения трех и более множителей. Например, если и то
Теорема: (арифметический квадратный корень из дроби). Для любых действительных чисел и таких, что и выполняется равенство
Доказательство этой теоремы аналогично доказательству теоремы 15.3. Проведите это доказательство самостоятельно.
Понятно, что из двух квадратов с площадями и (рис. 27) большую сторону имеет тот, у которого площадь больше, то есть если то Это очевидное соображение иллюстрирует такое свойство арифметического квадратного корня: для любых неотрицательных чисел и таких, что выполняется неравенство
Пример:
Найдите значение выражения:
Решение:
Пример:
Найдите значение выражения:
Решение:
1) Заменив произведение корней корнем из произведения, получим:
2) Заменив частное корней корнем из частного (дроби), получим:
Пример:
Упростите выражение: если
если
Решение:
1) По теореме об арифметическом квадратном корне из степени имеем:
2) Имеем: Поскольку по условию то Тогда
3) Имеем: Поскольку по условию то Поскольку то Следовательно,
4) Имеем: Поскольку то
Пример:
Найдите значение выражения:
Решение:
1) Преобразовав подкоренное выражение по формуле разности квадратов, получаем:
Пример:
Постройте график функции
Решение:
Поскольку то
Если то
Если то
Следовательно,
График функции изображен на рисунке 28.
Тождественные преобразования выражений, содержащих квадратные корни
Пользуясь теоремой об арифметическом квадратном корне из произведения, преобразуем выражение Имеем: Выражение мы представили в виде произведения рационального числа 4 и иррационального числа Такое преобразование называют вынесением множителя из-под знака корня. В данном случае был вынесен из-под знака корня множитель 4. Рассмотрим выполненное преобразование в обратном порядке:
Такое преобразование называют внесением множителя под знак корня. В данном случае был внесен под знак корня множитель 4.
Пример:
Вынесите множитель из-под знака корня:
если
Решение:
1) Представим число, стоящее под знаком корня, в виде произведения двух чисел, одно из которых является квадратом рационального числа:
2)
3) Поскольку подкоренное выражение должно быть неотрицательным, то из условия следует, что Тогда
4) Из условия следует, что Тогда
5) Из условия следует, что Поскольку подкоренное выражение должно быть неотрицательным, то получаем, что Тогда
Пример:
Внесите множитель под знак корня:
Решение:
2) Если то если то
3) Из условия следует, что Тогда
4) Из условия следует, что Тогда
Пример:
Упростите выражение:
Решение:
1) Имеем:
2)
3) Применяя формулы сокращенного умножения (квадрат двучлена и произведение разности и суммы двух выражений), получим:
Пример:
Разложите на множители выражение:
если
Решение:
1) Представив данное выражение в виде разности квадратов, получим:
2) Поскольку по условию то
3) Применим формулу квадрата разности:
4) Имеем:
5)
6)
Пример:
Сократите дробь:
если
Решение:
1) Разложив числитель данной дроби на множители, получаем:
2)
3) Поскольку по условию и то числитель и знаменатель данной дроби можно разложить на множители и полученную дробь сократить:
Освободиться от иррациональности в знаменателе дроби означает преобразовать дробь так, чтобы ее знаменатель не содержал квадратного корня.
Пример:
Освободитесь от иррациональности в знаменателе дроби:
Решение:
1) Умножив числитель и знаменатель данной дроби на получаем:
2) Умножив числитель и знаменатель данной дроби на выражение получаем:
Пример:
Докажите тождество
Решение:
Пример:
Упростите выражение
Решение:
Представив подкоренное выражение в виде квадрата суммы, получаем:
Растут ли в огороде радикалы?
В Древней Греции действие извлечения корня отождествляли с поиском стороны квадрата по его площади, а сам квадратный корень называли «стороной».
В Древней Индии слово «мула» означало «начало», «основание», «корень дерева». Это же слово стали употреблять и по отношению к стороне квадрата, возможно, исходя из такой ассоциации: из стороны квадрата, как из корня, вырастает сам квадрат. Вероятно, поэтому в латинском языке понятия «сторона» и «корень» выражаются одним и тем же словом — radix. От этого слова произошел термин «радикал».
Слово radix можно также перевести как «редис», то есть корнеплод — часть растения — видоизмененный корень, который может являться съедобным.
В XIII-XV вв. европейские математики, сокращая слово radix, обозначали квадратный корень знаками Например, запись имела следующий вид: .
В XVI в. стали использовать знак Происхождение этого символа, по-видимому, связано с рукописным начертанием латинской буквы
В XVII в. выдающийся французский математик Рене Декарт, соединив знак с горизонтальной черточкой, получил символ Рене Декарт который мы и используем сегодня. (1596-1650)
Множество и его элементы. Подмножество
Мы часто говорим: стадо баранов, букет цветов, коллекция марок, косяк рыб, стая птиц, рой пчел, собрание картин, набор ручек, компания друзей.
Если в этих парах перемешать первые слова, то может получиться смешно: букет баранов, косяк картин, стадо друзей. В то же время такие словосочетания, как коллекция рыб, коллекция птиц, коллекция картин, коллекция ручек и т. д., вполне приемлемы. Дело в том, что слово «коллекция» достаточно универсальное. Однако в математике есть термин, которым можно заменить любое из первых слов в данных парах. Это слово множество.
Приведем еще несколько примеров множеств:
Отдельным важнейшим множествам присвоены общепринятые названия и обозначения:
Как правило, множества обозначают прописными буквами латинского алфавита: и т. д.
Объекты, составляющие данное множество, называют элементами этого множества. Обычно элементы обозначают строчными буквами латинского алфавита: и т. д.
Если — элемент множества то пишут: (читают: «принадлежит множеству »). Если не является элементом множества , то пишут: (читают: « не принадлежит множеству »).
Если множество состоит из трех элементов то пишут:
Если — множество натуральных делителей числа 6, то пишут: Множество делителей числа 6, являющихся составными числами, имеет следующий вид: {6}. Это пример одноэлементного множества.
Задавать множество с помощью фигурных скобок, в которых указан список его элементов, удобно в тех случаях, когда множество состоит из небольшого количества элементов.
Определение: Два множества и называют равными, если они состоят из одних и тех же элементов, то есть каждый элемент множества принадлежит множеству и, наоборот, каждый элемент множества В принадлежит множеству .
Если множества и равны, то пишут:
Из определения следует, что множество однозначно определяется своими элементами. Если множество записано с помощью фигурных скобок, то порядок, в котором выписаны его элементы, не имеет значения. Так, для множества, состоящего из трех элементов существует шесть вариантов его записи:
Поскольку из определения равных множеств следует, что, например, то в дальнейшем будем рассматривать множества, состоящие из разных элементов. Так, множество букв слова «космодром» имеет вид {к, о, с, м, д, р}.
Заметим, что Действительно, множество состоит из одного элемента и; множество состоит из одного элемента — множества .
Чаще всего множество задают одним из следующих двух способов.
Первый способ состоит в том, что множество задают указанием (перечислением) всех его элементов. Мы уже использовали этот способ, записывая множество с помощью фигурных скобок, в которых указывали список его элементов. Ясно, что не всякое множество можно задать таким способом. Например, множество четных чисел так задать невозможно.
Второй способ состоит в том, что указывают характеристическое свойство элементов множества, то есть свойство, которым обладают все элементы данного множества и только они. Например, свойство «натуральное число при делении на 2 дает в остатке 1» задает множество нечетных чисел.
Если задавать множество характеристическим свойством его элементов, то может оказаться, что ни один объект этим свойством не обладает.
Обратимся к примерам.
Приведенные примеры указывают на то, что удобно к совокупности множеств отнести еще одно особенное множество, не содержащее ни одного элемента. Его называют пустым множеством и обозначают символом
Заметим, что множество не является пустым. Оно содержит один элемент — пустое множество.
Рассмотрим множество цифр десятичной системы счисления: Выделим из множества его элементы, являющиеся четными цифрами. Получим множество все элементы которого являются элементами множества
Определение: Множество называют подмножеством множества если каждый элемент множества является элементом множества
Это записывают так: или (читают: «множество является подмножеством множества » или «множество содержит множество »).
Рассмотрим примеры:
Для иллюстрации соотношений между множествами пользуются схемами, которые называют диаграммами Эйлера.
На рисунке 20 изображены множество (больший круг) и множество (меньший круг, содержащийся в большем). Эта схема означает, что (или ).
Из определений подмножества и равенства множеств следует, что если и то
Если в множестве нет элемента, не принадлежащего множеству А, то множество является подмножеством множества . В силу этих соображений пустое множество считают подмножеством любого множества. Действительно, пустое множество не содержит ни одного элемента, следовательно, в нем нет элемента, который не принадлежит данному множеству . Поэтому для любого множества справедливо утверждение:
Любое множество является подмножеством самого себя, то есть
- Заказать решение задач по высшей математике
Пример:
Выпишите все подмножества множества
Решение:
Имеем:
Числовые множества
Натуральные числа — это первые числа, которыми начали пользоваться люди. С ними вы ознакомились в детстве, когда учились считать предметы. Все натуральные числа образуют множество натуральных чисел, которое обозначают буквой
Практические потребности людей привели к возникновению дробных чисел. Позже появилась необходимость рассматривать величины, для характеристики которых положительных чисел оказалось недостаточно. Так возникли отрицательные числа.
Все натуральные числа, противоположные им числа и число нуль образуют множество целых чисел, которое обозначают буквой
Например,
Множество натуральных чисел является подмножеством множества целых чисел, то есть
Целые и дробные (как положительные, так и отрицательные) числа образуют множество рациональных чисел, которое обозначают буквой Например,
Понятно, что Схема, изображенная на рисунке 21, показывает, как соотносятся множества и
Каждое рациональное число можно представить в виде отношения где — целое число, а — натуральное. Например,
С возможностью такого представления связано название «рациональное число»: одним из значений латинского слова ratio является «отношение».
В 6 классе вы узнали, что каждое рациональное число можно представить в виде конечной десятичной дроби или в виде бесконечной периодической десятичной дроби. Для дроби такое представление можно получить, выполнив деление числа на число уголком.
Например,
Число записано в виде конечной десятичной дроби, а число в виде бесконечной периодической десятичной дроби. В записи 0,454545… цифры 4 и 5 периодически повторяются. Повторяющуюся группу цифр называют периодом дроби и записывают в круглых скобках. В данном случае период дроби составляет 45, а дробь записывают так:
Заметим, что любую конечную десятичную дробь и любое целое число можно представить в виде бесконечной периодической десятичной дроби. Например,
Следовательно, каждое рациональное число можно представить в виде бесконечной периодической десятичной дроби.
Справедливо и такое утверждение: каждая бесконечная периодическая десятичная дробь является записью некоторого рационального числа.
В 9 классе вы научитесь записывать бесконечную периодическую десятичную дробь в виде обыкновенной дроби.
Сумма и произведение двух натуральных чисел являются натуральными числами. Однако разность натуральных чисел не всегда обладает таким свойством. Например,
Сумма, разность, произведение двух целых чисел являются целыми числами. Однако частное целых чисел не всегда обладает таким свойством. Например,
Сумма, разность, произведение и частное (кроме деления на нуль) двух рациональных чисел являются рациональными числами.
Итак, действие вычитания натуральных чисел может вывести результат за пределы множества действие деления целых чисел — за пределы множества однако выполнение любого из четырех арифметических действий с рациональными числами не выводит результат за пределы множества
Вы ознакомились с новым действием — извлечением квадратного корня. Возникает естественный вопрос: всегда ли квадратный корень из неотрицательного рационального числа является рациональным числом? Иными словами, может ли действие извлечения квадратного корня из рационального числа вывести результат за пределы множества
Рассмотрим уравнение Поскольку то это уравнение имеет два корня: и (рис. 22). Однако не существует рационального числа, квадрат которого равен 2 (доказательство этого факта вы можете найти в рубрике «Когда сделаны уроки» в рассказе «Открытие иррациональности»), то есть числа и не являются рациональными. Эти числа — примеры иррациональных чисел (приставка «ир» означает отрицание).
Следовательно, действие извлечения корня из рационального числа может вывести результат за пределы множества
Ни одно иррациональное число не может быть представлено в виде дроби где а следовательно, и в виде бесконечной периодической десятичной дроби.
Иррациональные числа могут быть представлены в виде бесконечных непериодических десятичных дробей.
Например, с помощью специальной компьютерной программы можно установить, что
Числа и — это не первые иррациональные числа, с которыми вы встречаетесь. Число равное отношению длины окружности к диаметру, также является иррациональным:
Иррациональные числа возникают не только в результате извлечения квадратных корней. Их можно конструировать, строя бесконечные непериодические десятичные дроби.
Например, число (после запятой записаны последовательно степени числа 10) является иррациональным. Действительно, если предположить, что у рассматриваемой десятичной дроби есть период, состоящий из цифр, то с некоторого места этот период будет полностью состоять из нулей. Иными словами, начиная с этого места в записи не должна встретиться ни одна единица, что противоречит конструкции числа.
Вместе множества иррациональных и рациональных чисел образуют множество действительных чисел. Его обозначают буквой (первой буквой латинского слова realis — «реальный», «существующий в действительности»).
Теперь «цепочку» можно продолжить:
Связь между числовыми множествами, рассмотренными в этом пункте, иллюстрирует схема, изображенная на рисунке 23.
Длину любого отрезка можно выразить действительным числом. Eh-от факт позволяет установить связь между множеством и множеством точек координатной прямой. Точке началу отсчета, поставим в соответствие число 0. Каждой точке координатной прямой, отличной от точки поставим в соответствие единственное число, равное длине отрезка если точка А расположена справа от точки и число, противоположное длине отрезка если точка расположена слева от точки . Также понятно, что каждое действительное число является соответствующим единственной точке координатной прямой.
Над действительными числами можно выполнять четыре арифметических действия: сложение, вычитание, умножение, деление (кроме деления на ноль), в результате будем получать действительное число. Эти действия обладают известными вам свойствами:
- Переместительное свойство сложения
- Переместительное свойство умножения
- Сочетательное свойство сложения
- Сочетательное свойство умножения
- Распределительное свойство умножения относительно сложения
Действительные числа можно сравнивать, используя правила сравнения десятичных дробей, то есть сравнивая цифры в соответствующих разрядах. Например,
Любое положительное действительное число больше нуля и любого отрицательного действительного числа. Любое отрицательное действительное число меньше нуля. Из двух отрицательных действительных чисел больше то, у которого модуль меньше.
Если отметить на координатной прямой два действительных числа, то меньшее из них будет расположено слева от большего.
Находя длину окружности и площадь круга, вы пользовались приближенным значением числа (например, ). Аналогично при решении практических задач, где нужно выполнить действия с действительными числами, при необходимости эти числа заменяют их приближенными значениями. Например, для числа можно воспользоваться такими приближенными равенствами: или Первое из них называют приближенным значением числа по недостатку с точностью до 0,001, второе — приближенным значением числа по избытку с точностью до 0,001. Более подробно о приближенных значениях вы узнаете в 9 классе.
В заключение подчеркнем, что из любого неотрицательного действительного числа можно извлечь квадратный корень и в результате этого действия получить действительное число. Следовательно, действие извлечения квадратного корня из неотрицательного действительного числа не выводит результат за пределы множества
Открытие иррациональности
Решая графически уравнение мы установили, что длина каждого из отрезков и равна (рис. 24). Покажем, что число иррациональное. Предположим, что число рациональное. Тогда его можно
представить в виде несократимой дроби где и — натуральные числа. Имеем:
Тогда
Из последнего равенства следует, что число четное. А это значит, что четным является и число Тогда где — некоторое натуральное число. Имеем: Отсюда следует, что число а следовательно, и число четные.
Таким образом, числитель и знаменатель дроби — четные числа. Следовательно, эта дробь является сократимой. Получили противоречие.
Приведенный пример показывает, что существуют отрезки (в нашем случае это отрезки и на рисунке 24), длины которых нельзя выразить рациональными числами, то есть для измерения отрезков рациональных чисел недостаточно.
Этот факт был открыт в школе великого древнегреческого ученого Пифагора.
Сначала пифагорейцы считали, что для любых отрезков и всегда можно найти такой отрезок который в каждом из них укладывается целое число раз. Отсюда следовало, что отношение длин любых двух отрезков выражается отношением целых чисел, то есть рациональным числом.
Например, на рисунке 25 имеем:
и . Отрезок называют общей мерой отрезков и
Если для отрезков существует общая мера, то их называют соизмеримыми. Например, отрезки и (рис. 25) являются соизмеримыми.
Итак, древнегреческие ученые считали, что любые два отрезка соизмеримы. А из этого следовало, что длину любого отрезка можно выразить рациональным числом.
Действительно, пусть некоторый отрезок выбран в качестве единичного. Тогда для отрезка и любого другого отрезка существует отрезок длиной являющийся их общей мерой. Получаем: где и — некоторые натуральные числа. Отсюда Поскольку то
Однако сами же пифагорейцы сделали выдающееся открытие. Они доказали, что диагональ и сторона квадрата несоизмеримы, то есть если сторону квадрата принять за единицу, то длину диагонали квадрата выразить рациональным числом нельзя.
Для доказательства рассмотрим произвольный квадрат и примем его сторону за единицу длины. Тогда его площадь равна На диагонали построим квадрат (рис. 26). Понятно, что площадь квадрата в 2 раза больше площади квадрата . Отсюда , то есть Следовательно, длина диагонали не может быть выражена рациональным числом.
Это открытие изменило один из фундаментальных постулатов древнегреческих ученых, заключавшийся в том, что отношение любых двух величин выражается отношением целых чисел.
Существует легенда о том, что пифагорейцы держали открытие иррациональных чисел в строжайшей тайне, а человека, разгласившего этот факт, покарали боги: он погиб при кораблекрушении.
ГЛАВНОЕ В ПАРАГРАФЕ 2
Свойства функции
Область определения:
Область значений: множество неотрицательных чисел.
График: парабола.
Нуль функции:
Свойство графика: если точка принадлежит графику функции, то точка также принадлежит графику.
Квадратный корень
Квадратным корнем из числа называют число, квадрат которого равен
Арифметический квадратный корень
Арифметическим квадратным корнем из числа называют неотрицательное число, квадрат которого равен
Равные множества
Два множества и называют равными, если они состоят из одних и тех же элементов, то есть каждый элемент множества принадлежит множеству и, наоборот, каждый элемент множества принадлежит множеству .
Подмножество
Множество называют подмножеством множества , если каждый элемент множества является элементом множества .
Обозначения числовых множеств
— множество натуральных чисел;
— множество целых чисел;
— множество рациональных чисел;
— множество действительных чисел.
Связь между числовыми множествами
Свойства арифметического квадратного корня
Для любого действительного числа выполняется равенство
Для любого действительного числа и любого натурального числа выполняется равенство
Для любых действительных чисел и таких, что и выполняется равенство
Для любых действительных чисел и таких, что и
выполняется равенство
Для любых неотрицательных чисел и таких, что выполняется неравенство
Свойства функции
Область определения: множество неотрицательных чисел.
Область значений: множество неотрицательных чисел.
График: ветвь параболы.
Нуль функции:
Большему значению аргумента соответствует большее значение функции.
———
Квадратные корни
Функция y=x2 её график и свойства
Функция её график и свойства
Пример №223
Пусть сторона квадрата равна см. Тогда его площадь (в можно найти но формуле В этой формуле каждому положительному значению переменной соответствует единственное значение переменной
Если обозначить независимую переменную через а зависимую – через то получим функцию, которую задают формулой В этой формуле переменная может принимать любые значения (положительные, отрицательные, значение нуль).
Составим таблицу значений функции для нескольких значений аргумента:
Отметим на координатной плоскости точки координаты которых записаны в таблице (рис. 8). Если на этой плоскости отметить больше точек, координаты которых удовлетворяют формуле а потом соединить их плавной линией, то получим график функции (рис. 9). График этой функции называют параболой, точку (0; 0) – вершиной параболы. Вершина делит параболу на две части, каждую из которых называют ветвью параболы.
Сформулируем некоторые свойства функции
1. Область определения функции состоит из всех чисел.
2. Область значений функции состоит из всех неотрицательных чисел, то есть
Действительно, так как для любого то
3. Графиком функции является парабола с вершиной в точке ветви которой направлены вверх. Все точки параболы, за исключением вершины, лежат выше оси абсцисс.
4. Противоположным значениям аргумента соответствует одно и то же значение функции.
Действительно, это следует из того, что при любом значении
Пример №224
Решите графически уравнение
Решение:
График функции – парабола, а функции – прямая, проходящая через точки (0; 3) и (2; -1). Построим эти графики в одной системе координат ( рис.10). Они пересекутся в двух точках с абсциссами
Убедимся, что числа 1 и -3 являются корнями уравнения:
1) для
2) для
Следовательно, 3 и -1 – корни уравнения
Ответ. -3; 1.
Пример №225
Между какими последовательными целыми числами лежит корень уравнения
Решение:
Решим уравнение графически, построив графики функций в одной системе координат. Так как для любого то в данном уравнении и
Откуда Поэтому рассмотрим графики функций только для Это ветвь гиперболы и ветвь параболы, лежащие в первой координатной четверти (рис. 11).
Графики пересекаются в одной точке, абсцисса которой является корнем уравнения и заключена между числами 1 и 2.
Таким образом, корень уравнения лежит между числами 1 и 2.
Ответ. Между числами 1 и 2.
Арифметический квадратный корень
Если известна сторона квадрата, можно легко найти его площадь. Но часто приходится решать и обратную задачу: по известной площади квадрата находить его сторону.
Пример №226
Площадь квадрата равна Чему равна длина его стороны?
Решение:
Пусть длина стороны квадрата равна см, тогда его площадь будет Имеем уравнение: корнями которого являются числа 4 и -4. Действительно, и Длина не может выражаться отрицательным числом, поэтому условию задачи удовлетворяет только один из корней уравнения – число 4. Следовательно, длина стороны квадрата равна 4 см.
Корни уравнения то есть числа, квадраты которых равны 16, называют квадратными корнями из числа 16.
Квадратным корнем из числа называют число, квадрат которого равен .
Например, квадратными корнями из числа 100 являются числа 10 и -10, потому что Квадратным корнем из числа 0 является число 0, потому что Квадратного корня из числа -16 мы не найдем, ведь среди известных нам чисел не существует числа, квадрат которого равнялся бы -16.
Число 4, являющееся неотрицательным корнем уравнения . называют арифметическим квадратным корнем из числа 16.
Арифметическим квадратным корнем из числа а называют неотрицательное число, квадрат которого равен
Арифметический квадратный корень из числа обозначают знак арифметического квадратного корня, или радикал). Выражение, стоящее под знаком корня, называют подкоренным выражением. Запись читают следующим образом: квадратный корень из (слово арифметический при чтении принято опускать, поскольку в школе рассматривают только арифметические корни).
Пример №227
1) так как
2) так как
Вообще равенство является верным, если выполняются два условия:
Так как для всех значений переменной
Выражение не имеет смысла, если
Например, не имеют смысла выражения
Действие нахождения значения арифметического квадратного корня называют извлечением квадратного корня. Из небольших чисел квадратный корень желательно извлекать устно. Извлекать квадратный корень из больших чисел поможет таблица квадратов двузначных натуральных чисел на форзаце или калькулятор.
Пример №228
Найдите значение корня
Решение:
По таблице квадратов двузначных натуральных чисел имеем: Поэтому
Пример №229
Вычислите
Решение:
Сначала нужно найти значение выражения а потом извлечь из него корень:
Ответ. 35.
Рассмотрим уравнение где – некоторое число. Если то по определению квадратного корня следует, что Если же то уравнение не имеет решений, так как по определению число – неотрицательное.
Систематизируем данные о решениях уравнения в виде схемы:
Пример №230
Решите уравнение:
Ответ. 1) 49; 2) решений нет; 3) 13.
Множество. Подмножество. Числовые множества. Рациональные числа. Иррациональные числа. Действительные числа
Понятие множества является одним из основных понятий математики. Под множеством будем понимать совокупность объектов, имеющих общую природу (или объединенных по общему признаку), сами объекты при этом будем называть элементами множества.
Как правило, множества обозначают большими латинскими буквами. Если, например, множество состоит из чисел 1, 2, 3, а множество – из знаков то это записывают так: Числа 1, 2, 3 – элементы множества а знаки – элементы множества Тот факт, что число 1 принадлежит множеству записывают с помощью уже известного нам символа а именно: Тот факт, что число 1 не принадлежит множеству записывают так:
Множества, количество элементов которых можно выразить натуральным числом, называют конечными.
Множество, не содержащее ни одного элемента, называют пустым множеством. Его обозначают символом Так, например, пустым множеством является множество корней уравнения
Множества, количество элементов которых нельзя выразить натуральным числом и которые не являются пустыми, называют бесконечными.
Если каждый элемент множества является элементом множества то говорят, что множество является подмножеством множества
Записывают это следующим образом: Схематическая иллюстрация этого факта представлена на рисунке 12.
Пример №231
Пусть Тогда множество является подмножеством множества то есть Множество не является подмножеством множества так как множество содержит элемент – число 5, которое не является элементом множества
Считают, что пустое множество является подмножеством любого множества, то есть
Целые числа и дробные числа образуют множество рациональных чисел.
Множество натуральных чисел обозначают буквой множество целых чисел – буквой множество рациональных чисел -буквой Они являются бесконечными множествами.
Можно утверждать, что
Любое рациональное число можно представить в виде где – целое число, – натуральное число.
Например
Рациональное число можно также представить и в виде десятичной дроби. Для этого достаточно числитель дроби разделить на ее знаменатель. Например,
В последнем случае мы получили бесконечную десятичную периодическую дробь. Дроби также можно представить в виде бесконечных десятичных периодических дробей, дописав справа в десятичной части бесконечное много нулей:
Таким образом, каждое рациональное число можно представить в виде бесконечной десятичной периодической дроби.
Справедливо и обратное утверждение:
Каждая бесконечная периодическая десятичная дробь является записью некоторого рационального числа.
Например,
В правильности этих равенств легко убедиться, выполнив соответствующее деление.
Но в математике существуют числа, которые нельзя записать в виде где – целое число, а – натуральное.
Числа, которые нельзя записать в виде где – целое число, a — натуральное, называют иррациональными числами.
Префикс «иp» означает отрицание, иррациональные значит не рациональные.
Например, иррациональными являются числа Приближенные значения таких чисел можно находить с определенной точностью (то есть округленными до определенного разряда) с помощью микрокалькулятора или компьютера:
Каждое иррациональное число можно представить в виде бесконечной десятичной непериодической дроби.
Рациональные числа вместе с иррациональными числами образуют множество действительных чисел.
Множество действительных чисел обозначают буквой
Так как каждое натуральное число является целым числом, то множество является подмножеством множества Аналогично, множество является подмножеством множества а множество подмножеством множества (рис. 13).
Действительные числа, записанные в виде бесконечных десятичных непериодических дробей, можно сравнивать по тем же правилам, что и конечные десятичные дроби. Например,
В задачах с практическим содержанием действительные числа (для выполнения арифметических действий) заменяют на их приближенные значения, округленные до определенного разряда.
Пример №232
Вычислите с точностью до тысячных.
Решение:
Заметим, что при сложении, вычитании, умножении, делении и возведении в степень действительных чисел справедливы те же свойства и ограничения, что и при действиях с рациональными числами.
Понятие числа появилось очень давно.
А еще раньше Оно является одним из самых общих понятий математики. Потребность в измерениях и подсчетах обусловила появление положительных рациональных чисел. Именно тогда возникли и использовались натуральные числа и дробные числа, которые рассматривались как отношение натуральных чисел.
Следующим этапом развития понятия числа является введение в практику отрицательных чисел. В Древнем Китае эти числа появились во II в. до н. э. Там умели складывать и вычитать отрицательные числа. Отрицательные числа толковали как долг, а положительные – как имущество. В Индии в VII в. эти числа воспринимали так же, но еще и умели их умножать и делить.
Уже древние вавилоняне около 4 тыс. лет назад знали ответ на вопрос: «Какова должна быть длина стороны квадрата, чтобы его площадь равнялась Ими были составлены таблицы квадратов чисел и квадратных корней. Вавилоняне использовали и метод нахождения приближенного значения квадратного корня из числа не являющегося квадратом натурального числа. Суть метода заключалась в том, что число записывали в виде было достаточно малым в сравнении с и применяли формулу
Например, с помощью этого метода:
Проверим точность результата:
Такой метод вычисления приближенного значения квадратного корня использовался и в Древней Греции. Его детально описал Герон Александрийский (I в. н. э.).
В эпоху Возрождения (XV – нач. XVII в.) европейские математики обозначали корень латинским словом Radix (корень), потом – сокращенно – буквой Так появился термин «радикал», которым называют знак корня. Впоследствии для обозначения корня стали использовать точку, а потом ромбик. Спустя некоторое время – уже знак и горизонтальную черточку над подкоренным выражением. Затем знак и черточка были объединены, и современные математики стали использовать знак квадратного корня в привычном нам виде:
Тождество (√a)2=a, a⩾0 уравнение x2=a
Тождество уравнение
Напомним, что для любых значений равенство является верным, если выполняются два условия: Подставив в последнее равенство вместо его запись в виде получим тождество
Для любого справедливо тождество
Пример №233
Вычислите:
Решение:
Ответ:
Рассмотрим уравнение где – некоторое число.
Так как квадрат числа не может быть отрицательным, то при уравнение не имеет решений, что можно записать следующим образом:
Если то единственным корнем уравнения является число 0.
Если то корни уравнения – числа Действительно, Для того чтобы убедиться, что уравнение при других корней не имеет, обратимся к графическому методу решения уравнения. Построим графики функций (рис. 14). Эти графики пересекутся дважды: в точках с абсциссами Систематизируем данные о решениях уравнения в виде схемы:
Пример №234
Решите уравнение:
Решение:
2) уравнение корней не имеет, то есть
Эти корни являются иррациональными числами;
4) Имеем:
Таким образом, получим два корня:
Ответ.
Свойства арифметического квадратного корня
Сравним значения выражений
Имеем: то есть корень из произведения двух чисел равен произведению их корней. Это свойство справедливо для произведения любых двух неотрицательных чисел.
Теорема (о корне из произведения). Корень из произведения двух неотрицательных чисел равен произведению корней из этих чисел, то есть при и
Доказательство: Так как то выражения имеют смысл, причем Поэтому Кроме того,
Имеем: Тогда по определению арифметического квадратного корня:
Доказанная теорема распространяется и на случай, когда множителей под знаком корня три и больше.
Следствие. Корень из произведения неотрицательных множителей равен произведению корней из этих множителей.
Доказательство: Докажем это следствие, например, для трех чисел
Имеем:
Пример №235
Замечание 1. Очевидно, что выражение имеет смысл при условии то есть когда переменные – одного знака, а значит и тогда, когда переменные одновременно отрицательны. В таком случае тождество, рассмотренное выше, принимает вид где и Учитывая оба случая, можно записать, что
Если в равенстве поменять местами левую и правую части, получим тождество:
Произведение корней из неотрицательных чисел равно корню из произведения этих чисел.
Пример №236
Рассмотрим квадратный корень из дроби.
Теорема (о корне из дроби). Корень из дроби, числитель которой неотрицателен, а знаменатель -положителен, равен корню из числителя, деленному на корень из знаменателя, то есть при
Доказательство: Так как то выражения имеют смысл и Поэтому
Кроме того,
Имеем: Тогда по определению квадратного корня:
Пример №237
Замечание 2. По аналогии с замечанием 1, тождество, только что рассмотренное нами, можно записать и так:
Если в равенстве поменять местами левую и правую части, получим тождество:
Частное, числитель которого является корнем из неотрицательного числа, а знаменатель — корнем из положительного числа, равно корню из частного этих чисел.
Пример №238
Рассмотрим, как извлечь квадратный корень из квадрата.
Теорема (о корне из квадрата). Для любого значения справедливо равенство
Доказательство: Так как для любого то по определению квадратного корня:
Пример №239
Рассмотрим квадратный корень из степени.
Теорема (о корне из степени). Для любого значения и натурального числа справедливо равенство
Доказательство: По теореме о корне из квадрата имеем Следовательно,
Пример №240
Вычислите:
Решение:
Пример №241
Упростите выражение:
Решение:
Так как для любого то Следовательно,
Так как поэтому Следовательно, если
Ответ.
Тождественные преобразования выражений, содержащих квадратные корни
Рассмотрим тождественные преобразования выражений, содержащих квадратные корни.
Вынесение множителя из-под знака корня
Воспользуемся теоремой о корне из произведения для преобразования выражения
Говорят, что множитель вынесли из-под знака корня. В данном случае из-под знака корня вынесли множитель 2.
Пример №242
Вынесите множитель из-под знака корня в выражении
Решение:
Выражение имеет смысл при поскольку если Представим выражение в виде произведения в котором является степенью с четным показателем. Тогда
Так как Поэтому
Следовательно,
Ответ.
Внесение множителя под знак корня
Рассмотрим тождественное преобразование, обратное к предыдущему. Воспользуемся правилом умножения корней:
Говорят, что множитель внесли под знак корня. В данном случае под знак корня внесли множитель 2.
Отметим, что под знак корня можно вносить только положительный множитель.
Пример №243
Внести множитель под знак корня:
Решение:
2) Множитель может принимать любые значения (быть положительным, нулем или отрицательным). Поэтому рассмотрим два случая:
– если
– если
Ответ.
Сложение, вычитание, умножение, деление и возведение в степень выражений, содержащих квадратные корни
Используя свойства умножения и деления корней, можно выполнять арифметические действия с выражениями, содержащими квадратные корни.
Пример №244
Используя тождество можно возводить в степень выражения, содержащие квадратные корни.
Пример №245
Рассмотрим примеры, где квадратные корни можно складывать.
Пример №246
Упростите выражение
Решение:
Слагаемые содержат общий множитель Вынесем его за скобки и выполним действие в скобках:
Обычно решение записывают короче:
Заметим, что выражения в данном примере называют подобными радикалами (по аналогии с подобными слагаемыми), мы их сложили по правилу приведения подобных слагаемых.
Пример №247
Упростите выражение
Решение:
В каждом из слагаемых можно вынести множитель из-под знака корня, в результате получим подобные радикалы и приведем их:
Ответ.
Пример №248
Упростите выражение:
Решение:
Применим формулы сокращенного умножения.
Ответ.
Сокращение дробей
Пример №249
Сократите дробь:
Решение:
1) Учитывая, что числитель дроби представим в виде разности квадратов, получим:
2) Учитывая, что в числителе и знаменателе вынесем за скобки общий множитель, получим:
Ответ.
Избавление от иррациональности в знаменателе дроби
Пример №250
Преобразуйте дробь так, чтобы она не содержала корня в знаменателе.
Решение:
Учитывая, что достаточно числитель и знаменатель дроби умножить на
Ответ.
В таких случаях говорят, что избавились от иррациональности в знаменателе дроби.
Пример №251
Избавьтесь от иррациональности в знаменателе дроби
Решение:
Умножим числитель и знаменатель дроби на чтобы в знаменателе получить формулу сокращенного умножения разности двух выражений на их сумму:
Ответ.
Заметим, что выражение называют сопряженным выражению Вообще-то, если в формулах сокращенного умножения в результате умножения скобок, содержащих радикалы, получается рациональное выражение, то выражения в скобках называют взаимно сопряженными. Так, и взаимно сопряженные выражения.
Взаимно сопряженными также являются выражения и им подобные.
Функция y= √x её график и свойства
Функция её график и свойства
Пример №252
Пусть – площадь квадрата, а см – длина его стороны. Так как то зависимость длины стороны квадрата от его площади можно задать формулой
Рассмотрим функцию Очевидно, что переменная принимает только неотрицательные значения, то есть
Составим таблицу значений функции для нескольких значений аргумента:
Отметим эти точки на координатной плоскости (рис. 15). Если бы мы отметили на этой плоскости больше точек, координаты которых удовлетворяют уравнению а потом соединили их плавной линией, то получили бы график функции (рис. 16).
Графиком этой функции является ветвь параболы.
Обобщим свойства функции
1. Областью определения функции является множество всех неотрицательных чисел:
2. Областью значений функции является множество всех неотрицательных чисел:
3. График функции – ветвь параболы, выходящая из точки все другие точки графика лежат в первой координатной четверти.
Большему значению аргумента соответствует большее значение функции
Последнее свойство дает возможность сравнивать значения выражении, содержащих корни.
Пример №253
Сравните числа:
Решение:
1) Так как
поэтому значит,
3) Внесем множитель в обоих выражениях под знак корня:
Так как поэтому
Пример №254
Решите графически уравнение
Решение:
Поскольку мы пока не умеем строить график функции разделим обе части уравнения на число 5. Получим уравнение:
Построим графики функций в одной системе координат (рис. 17). Они пересекаются в точке с абсциссой 4. Проверкой убеждаемся, что число 4 – корень уравнения. Действительно,
Ответ. 4.
Пример №255
Постройте график функции
Ответ. График изображен на рисунке 18.
- Квадратные уравнения
- Неравенства
- Числовые последовательности
- Предел числовой последовательности
- Формулы сокращенного умножения
- Разложение многочленов на множители
- Системы линейных уравнений с двумя переменными
- Рациональные выражения
Что такое арифметический квадратный корень
Квадратным корнем (арифметическим квадратным корнем) из неотрицательного числа (a) называется такое неотрицательное число, квадрат которого равен (a). ( (sqrt{a}=x, {{x}^{2}}=a; x, age 0)).
А почему же число ( a) (число под корнем) должно быть обязательно неотрицательным?
Например, чему равен ( sqrt{-9})?
Так-так, попробуем подобрать. Может, три?
Проверим: ( {{3}^{2}}=9), а не ( -9).
Может, ( left( -3 right))?
Опять же, проверяем: ( {{left( -3 right)}^{2}}=9).
Ну что же, не подбирается?
Это и следовало ожидать – потому что нет таких чисел, которые при возведении в квадрат дают отрицательное число! Это надо запомнить!
Число или выражение под знаком корня должно быть неотрицательным!
Однако ты наверняка уже заметил, что не только число под корнем должно быть неотрицательным, но и само значение тоже должно быть неотрицательным!
Ведь в определении сказано, что «квадратным корнем из числа( a)называется такое неотрицательное число, квадрат которого равен( a)».
Но подождите! В самом начале мы разбирали пример ( {{x}^{2}}=4) и один из ответов был отрицательным числом!
Мы подбирали числа, которые можно возвести в квадрат и получить при этом ( displaystyle 4). Ответом были ( displaystyle 2) и ( displaystyle -2)
А тут говорится, что квадратным корнем должно быть «неотрицательное число»! Почему?
Такой вопрос вполне уместен. Здесь необходимо просто разграничить понятия квадратного уравнения и арифметического квадратного корня.
К примеру, ( displaystyle {{x}^{2}}=4) (квадратное уравнение) не равносильно выражению ( x=sqrt{4}) (арифмитический квадратный корень).
Из ( {{x}^{2}}=4) следует, что
( left| x right|=sqrt{4}), то есть ( x=pm sqrt{4}=pm 2) или ( {{x}_{1}}=2); ( {{x}_{2}}=-2)
(не помнишь почему так? Почитай тему «Модуль числа»!)
А из ( x=sqrt{4}) следует, что ( x=2).
Конечно, это очень путает, но это необходимо запомнить, что знаки «плюс-минус» являются результатом решения квадратного уравнения, так как при решении уравнения мы должны записать все иксы, которые при подстановке в исходное уравнение дадут верный результат.
В наше квадратное уравнение подходит как ( 2), так и ( x=-2).
Однако, если просто извлекать квадратный корень из чего-либо, то всегда получаем один неотрицательный результат.
Запись иррациональных чисел с помощью квадратного корня
А теперь попробуй решить такое уравнение ( {{x}^{2}}=3).
Уже все не так просто и гладко, правда? Попробуй перебрать числа, может, что-то и выгорит?
Начнем с самого начала – с нуля: ( {{0}^{2}}=0) – не подходит.
Двигаемся дальше ( displaystyle x=1); ( displaystyle {{1}^{2}}=1) – меньше трех, тоже отметаем.
А что если ( displaystyle x=2)?
Проверим: ( displaystyle {{2}^{2}}=4) – тоже не подходит, т.к. это больше трех.
С отрицательными числами получится такая же история.
И что же теперь делать? Неужели перебор нам ничего не дал?
Совсем нет, теперь мы точно знаем, что ответом будет некоторое число между ( displaystyle 1) и ( displaystyle 2), а также между ( displaystyle -2) и ( displaystyle -1).
Кроме того, очевидно, что решения не будут целыми числами. Более того, они не являются рациональными.
И что дальше?
Давай построим график функции ( displaystyle y={{x}^{2}}) и отметим на нем решения.
Попробуем обмануть систему и получить ответ с помощью калькулятора (как мы это делали в начале)!
Извлечем корень из ( displaystyle 3), делов-то!
Ой-ой-ой, выходит, что ( sqrt{3}=1,732050807568ldots ) Такое число никогда не кончается.
Как же такое запомнить, ведь на экзамене калькулятора не будет!?
Все очень просто, это и не надо запоминать, необходимо помнить (или уметь быстро прикинуть) приблизительное значение. ( sqrt{3}) и ( -sqrt{3}) уже сами по себе ответы.
Такие числа называются иррациональными, именно для упрощения записи таких чисел и было введено понятие квадратного корня.
Деление корней
С умножением корней разобрались, теперь приступим к свойству деления.
Напомню, что формула в общем виде выглядит так:
( displaystyle sqrt[{}]{frac{a}{b}}=frac{sqrt[{}]{a}}{sqrt[{}]{b}}), если ( displaystyle age 0 , b>0).
А значит это, что корень из частного равен частному корней.
Ну что, давай разбираться на примерах:
( displaystyle frac{sqrt{12}}{sqrt{3}}=sqrt{frac{12}{3}}=sqrt{4}=2)
Вот и вся наука. А вот такой пример:
( displaystyle frac{sqrt{12}}{3}=frac{sqrt{12}}{sqrt{9}}=sqrt{frac{12}{9}}=sqrt{frac{4}{3}}=frac{2}{sqrt{3}})
Все не так гладко, как в первом примере, но, как видишь, ничего сложного нет.
А что, если попадется такое выражение:
( displaystyle sqrt{frac{144}{225}}=?)
Надо просто применить формулу в обратном направлении:
( displaystyle sqrt{frac{144}{225}}=frac{sqrt{144}}{sqrt{225}}=frac{12}{15}=frac{4}{5}=0,8)
А вот такой примерчик:
( displaystyle sqrt{0,16}=sqrt{frac{16}{100}}=frac{4}{10}=0,4)
Еще ты можешь встретить такое выражение:
( displaystyle sqrt{5frac{19}{25}}=?)
Все то же самое, только здесь надо вспомнить, как переводить дроби (если не помнишь, загляни в тему дроби и возвращайся!). Вспомнил? Теперь решаем!
( displaystyle sqrt{5frac{19}{25}}=sqrt{frac{144}{25}}=frac{12}{5}=2,4)
Уверена, что ты со всем, всем справился, теперь попробуем возводить корни в степени.
Возведение в степень
А что же будет, если квадратный корень возвести в квадрат? Все просто, вспомним смысл квадратного корня из числа ( displaystyle a) – это число, квадратный корень которого равен ( displaystyle a).
Так вот, если мы возводим число, квадратный корень которого равен ( displaystyle a), в квадрат, то что получаем?
Ну, конечно, ( displaystyle a)!
Рассмотрим на примерах:
( displaystyle {{left( sqrt{12} right)}^{2}}=12)
( displaystyle {{left( sqrt{17} right)}^{2}}=17)
Все просто, правда? А если корень будет в другой степени? Ничего страшного!
Придерживайся той же логики и помни свойства и возможные действия со степенями.
Забыл?
Почитай теорию по теме «Степень и ее свойства» и тебе все станет предельно ясно.
Вот, к примеру, такое выражение:
( displaystyle {{left( sqrt{5} right)}^{6}}={{left( {{left( sqrt{5} right)}^{2}} right)}^{3}}={{5}^{3}}=125)
В этом примере степень четная, а если она будет нечетная? Опять же, примени свойства степени и разложи все на множители:
( displaystyle {{left( sqrt{5} right)}^{7}}={{left( sqrt{5} right)}^{6}}cdot sqrt{5}=125sqrt{5})
С этим вроде все ясно, а как извлечь корень из числа в степени? Вот, к примеру, такое:
( displaystyle sqrt{{{3}^{2}}}=sqrt{9}=3)
Довольно просто, правда? А если степень больше двух? Следуем той же логике, используя свойства степеней:
( displaystyle sqrt{{{3}^{6}}}=sqrt{{{left( {{3}^{3}} right)}^{2}}}={{3}^{3}}=27)
( displaystyle sqrt{{{3}^{5}}}=sqrt{{{3}^{4}}cdot 3}=sqrt{{{left( {{3}^{2}} right)}^{2}}cdot 3}={{3}^{2}}cdot sqrt{3}=9sqrt{3})
Ну как, все понятно? Тогда реши самостоятельно примеры:
- ( displaystyle sqrt{{{left( -3 right)}^{2}}})
- ( displaystyle sqrt{{{6}^{6}}})
- ( displaystyle {{left( sqrt{8} right)}^{7}})
А вот и ответы:
Извлечение корней из больших чисел
До этого мы вносили множитель под знак корня, а как его вынести? Надо просто разложить его на множители и извлечь то, что извлекается!
( displaystyle sqrt{98}=sqrt{49cdot 2}=sqrt{49}cdot sqrt{2}=7sqrt{2})
Можно было пойти по иному пути и разложить на другие множители:
( displaystyle sqrt{98}=sqrt{7cdot 14})
Что дальше? А дальше раскладываем на множители до самого конца:
( displaystyle sqrt{98}=sqrt{7cdot 14}=sqrt{7cdot 7cdot 2}=sqrt{{{7}^{2}}cdot 2}=7sqrt{2})
Неплохо, да? Любой из этих подходов верен, решай как тебе удобно.
Разложение на множители очень пригодится при решении таких нестандартных заданий, как вот это:
( displaystyle sqrt{15}cdot sqrt{180}cdot sqrt{12})
Не пугаемся, а действуем! Разложим каждый множитель под корнем на отдельные множители:
А теперь попробуй самостоятельно (без калькулятора! его на экзамене не будет):
( displaystyle sqrt{15}cdot sqrt{180}cdot sqrt{12}=sqrt{5cdot 3}cdot sqrt{36cdot 5}cdot sqrt{2cdot 6})
Разве это конец? Не останавливаемся на полпути!
( displaystyle begin{array}{l}sqrt{5cdot 3}cdot sqrt{36cdot 5}cdot sqrt{2cdot 6}=sqrt{5cdot 3}cdot sqrt{3cdot 12cdot 5}cdot sqrt{2cdot 3cdot 2}=\=sqrt{5cdot 3}cdot sqrt{3cdot 2cdot 2cdot 3cdot 5}cdot sqrt{2cdot 3cdot 2}end{array})
На простые множители разложили. Что дальше? А дальше пользуемся свойством умножение корней и записываем все под одним знаком корня:
( displaystyle begin{array}{l}sqrt{5cdot 3cdot 3cdot 2cdot 2cdot 3cdot 5cdot 2cdot 3cdot 2}=sqrt{5cdot 5cdot 3cdot 3cdot 3cdot 3cdot 2cdot 2cdot 2cdot 2}=\=sqrt{25}cdot sqrt{81}cdot sqrt{16}=5cdot 9cdot 4=180end{array})
Вот и все, не так все и страшно, правда?
( displaystyle sqrt{15}cdot sqrt{54}cdot sqrt{10}=?)
Получилось ( displaystyle 90)? Молодец, все верно!
А теперь попробуй вот такой пример решить:
( displaystyle sqrt{4225}=?)
А пример-то – крепкий орешек, так сходу и не разберешься, как к нему подступиться. Но нам он, конечно, по зубам.
Основные сведения
Чтобы найти площадь квадрата, нужно длину его стороны возвести во вторую степень.
Найдём площадь квадрата, длина стороны которого 3 см
S = 32 = 9 см2
Теперь решим обратную задачу. А именно, зная площадь квадрата определим длину его стороны. Для этого воспользуемся таким инструментом как кóрень. Корень бывает квадратный, кубический, а также n-й степени.
Сейчас наш интерес вызывает квадратный корень. По другому его называют кóрнем второй степени.
Для нахождения длины стороны нашего квадрата, нужно найти число, вторая степень которого равна 9. Таковым является число 3. Это число и является кóрнем.
Введём для работы с корнями новые обозначения.
Символ кóрня выглядит как . Это по причине того, что слово корень в математике употребляется как радикал. А слово радикал происходит от латинского radix (что в переводе означает корень). Первая буква слова radix это r впоследствии преобразилась в символ корня .
Под корнем располагáют подкореннóе выражение. В нашем случае подкоренным выражением будет число 9 (площадь квадрата)
Нас интересовал квадратный корень (он же корень второй степени), поэтому слева над корнем указываем число 2. Это число называют показателем корня (или степенью корня)
Получили выражение, которое читается так: «квадратный корень из числа 9». С этого момента возникает новая задача по поиску самогó корня.
Если число 3 возвести во вторую степень, то получится число 9. Поэтому число 3 и будет ответом:
Значит квадрат площадью 9 см2 имеет сторону, длина которой 3 см. Приведённое действие называют извлечéнием квадрáтного кóрня.
Нетрудно догадаться, что квадратным корнем из числа 9 также является отрицательное число −3. При его возведении во вторую степень тоже получается число 9
Получается, что выражение имеет два значения: 3 и −3. Но длина стороны квадрата не может быть отрицательным числом, поэтому для нашей задачи ответ будет только один, а именно 3.
Вообще, квадратный корень имеет два противоположных значения: положительное и отрицательное.
Например, извлечём квадратный корень из числа 4
Это выражение имеет два значения: 2 и −2, поскольку при возведении этих чисел во вторую степень, получится один и тот же результат 4
Поэтому ответ к выражению вида записывают с плюсом и минусом. Плюс с минусом означает, что квадратный корень имеет два противоположных значения.
Запишем ответ к выражению с плюсом и минусом:
Определения
Дадим определение квадратному корню.
Квадратным корнем из числа a называют такое число b, вторая степень которого равна a.
То есть число b должно быть таким, чтобы выполнялось равенство b2 = a. Число b (оно же корень) обозначается через радикал так, что . На практике левая и правая часть поменяны местами и мы видим привычное выражение
Например, квадратным корнем из числá 16 есть число 4, поскольку число 4 во второй степени равно 16
42 = 16
Корень 4 можно обозначить через радикал так, что .
Также квадратным корнем из числá 16 есть число −4, поскольку число −4 во второй степени равно 16
(−4)2 = 16
Если при решении задачи интересует только положительное значение, то корень называют не просто квадратным, а арифметическим квадратным.
Арифметический квадратный корень из числá a — это неотрицательное число b (b ≥ 0), при котором выполняется равенство b2 = a.
В нашем примере квадратными корнями из числá 16 являются корни 4 и −4, но арифметическим из них является только корень 4.
В разговорном языке можно использовать сокращение. К примеру, выражение полностью читается так: «квадратный корень из числá шестнадцать», а в сокращённом варианте можно прочитать так: «корень из шестнадцати».
Не следует путать понятия корень и квадрат. Квадрат это число, которое получилось в результате возведения какого-нибудь числá во вторую степень. Например, числа 25, 36, 49 являются квадратами, потому что они получились в результате возведения во вторую степень чисел 5, 6 и 7 соответственно.
Корнями же являются числа 5, 6 и 7. Они являются теми числами, которые во второй степени равны 25, 36 и 49 соответственно.
Чаще всего в квадратных корнях показатель кóрня вообще не указывается. Так, вместо записи можно использовать запись. Если в учебнике по математике встретится корень без показателя, то нужно понимать, что это квадратный корень.
Квадратный корень из единицы равен единице. То есть справедливо следующее равенство:
Это по причине того, что единица во второй степени равна единице:
12 = 1
и квадрат, состоящий из одной квадратной единицы, имеет сторону, равную единице:
Квадратный корень из нуля равен нулю. То есть справедливо равенство , поскольку 02 = 0.
Выражение вида смысла не имеет. Например, не имеет смысла выражение , поскольку вторая степень любого числа есть число положительное. Невозможно найти число, вторая степень которого будет равна −4.
Если выражение вида возвести во вторую степень, то есть если записать , то это выражение будет равно подкореннóму выражению a
Например, выражение равно 4
Это потому что выражение равно значению 2. Но это значение сразу возвóдится во вторую степень и получается результат 4.
Еще примеры:
Корень из квадрата числá равен модулю этого числá:
Например, корень из числá 5, возведённого во вторую степень, равен модулю числá 5
Это же правило будет срабатывать, если во вторую степень возвóдится отрицательное число. То есть, ответ опять же станет положительным. Например, корень из числá −5, возведённого во вторую степень, равен модулю числá −5. А модуль числа −5 равен 5
Действительно, если не пользуясь правилом , вычислять выражение обычным методом — сначала возвести число −5 во вторую степень, затем извлечь полученный результат, то полýчим ответ 5
Не следует путать правило с правилом . Правило верно при любом a, тогда как правило верно в том случае, если выражение имеет смысл.
В некоторых учебниках знак корня может выглядеть без верхней линии. Выглядит это так:
Примеры: √4, √9, √16.
Мéньшему числу соответствует мéньший корень, а бóльшему числу соответствует бóльший корень.
Например, рассмотрим числа 49 и 64. Число 49 меньше, чем число 64.
49 < 64
Если извлечь квадратные корни из этих чисел, то числу 49 будет соответствовать меньший корень, а числу 64 — бóльший. Действительно, √49 = 7, а √64 = 8,
√49 < √64
Отсюда:
7 < 8
Примеры извлечения квадратных корней
Рассмотрим несколько простых примеров на извлечение квадратных корней.
Пример 1. Извлечь квадратный корень √36
Данный квадратный корень равен числу, квадрат которого равен 36. Таковым является число 6, поскольку 62 = 36
√36 = 6
Пример 2. Извлечь квадратный корень √49
Данный квадратный корень равен числу, квадрат которого равен 49. Таковым является число 7, поскольку 72 = 49
√49 = 7
В таких простых примерах достаточно знать таблицу умножения. Так, мы помним, что число 49 входит в таблицу умножения на семь. То есть:
7 × 7 = 49
Но 7 × 7 это 72
72 = 49
Отсюда, √49 = 7.
Пример 3. Извлечь квадратный корень √100
Данный квадратный корень равен числу, квадрат которого равен 100. Таковым является число 10, поскольку 102 = 100
√100 = 10
Число 100 это последнее число, корень которого можно извлечь с помощью таблицы умножения. Для чисел, бóльших 100, квадратные корни можно находить с помощью таблицы квадратов.
Пример 3. Извлечь квадратный корень √256
Данный квадратный корень равен числу, квадрат которого равен 256. Чтобы найти это число, воспользуемся таблицей квадратов.
Нахóдим в таблице квадратов число 256 и двигаясь от него влево и вверх определяем цифры, которые образуют число, квадрат которого равен 256.
Видим, что это число 16. Значит √256 = 16.
Пример 4. Найти значение выражения 2√16
В данном примере число 2 умножается на выражение с корнем. Сначала вычислим корень √16, затем перемнóжим его с числом 2
Пример 7. Решить уравнение
В данном примере нужно найти значение переменной x, при котором левая часть будет равна 4.
Значение переменной x равно 16, поскольку . Значит корень уравнения равен 16.
Примечание. Не следует путать корень уравнения и квадратный корень. Корень уравнения это значение переменной, при котором уравнение обращается в верное числовое равенство. А квадратный корень это число, вторая степень которого равна выражению, находящемуся под радикалом .
Подобные примеры решают, пользуясь определением квадратного корня. Давайте и мы поступим так же.
Из определения мы знаем, что квадратный корень равен числу b, при котором выполняется равенство b2 = a.
Применим равенство b2 = a к нашему примеру . Роль переменной b у нас играет число 4, а роль переменной a — выражение, находящееся под корнем , а именно переменная x
В выражении 42 = x вычислим левую часть, полýчим 16 = x. Поменяем левую и правую часть местами, полýчим x = 16. В результате приходим к тому, что нашлось значение переменной x.
Пример 8. Решить уравнение
Перенесем −8 в правую часть, изменив знак:
Возведем правую часть во вторую степень и приравняем её к переменной x
Вычислим правую часть, полýчим 64 = x. Поменяем левую и правую часть местами, полýчим x = 64. Значит корень уравнения равен 64
Пример 9. Решить уравнение
Воспользуемся определением квадратного корня:
Роль переменной b играет число 7, а роль переменной a — подкореннóе выражение 3 + 5x. Возведем число 7 во вторую степень и приравняем его к 3 + 5x
В выражении 72 = 3 + 5x вычислим левую часть полýчим 49 = 3 + 5x. Получилось обычное линейное уравнение. Решим его:
Корень уравнения равен . Выполним проверку, подставив его в исходное уравнение:
Пример 10. Найти значение выражения
В этом выражении число 2 умножается на квадратный корень из числа 49.
Сначала нужно извлечь квадратный корень и перемножить его с числом 2
Приближённое значение квадратного корня
Не каждый квадратный корень можно извлечь. Извлечь квадратный корень можно только в том случае, если удаётся найти число, вторая степень которого равна подкореннóму выражению.
Например, извлечь квадратный корень можно, потому что удаётся найти число, вторая степень которого равна подкореннóму выражению. Таковым является число 8, поскольку 82 = 64. То есть
А извлечь квадратный корень нельзя, потому что невозможно найти число, вторая степень которого равна 3. В таком случае говорят, что квадратный корень из числа 3 не извлекается.
Зато можно извлечь квадратный корень из числа 3 приближённо. Извлечь квадратный корень приближённо означает найти значение, которое при возведении во вторую степень будет максимально близко к подкореннóму выражению.
Приближённое значение ищут с определенной точностью: с точностью до целых, с точностью до десятых, с точностью до сотых и так далее.
Найдём значение корня приближённо с точностью до десятых. Словосочетание «с точностью до десятых» говорит о том, что приближённое значение корня будет представлять собой десятичную дробь, у которой после запятой одна цифра.
Для начала найдём ближайшее меньшее число, корень которого можно извлечь. Таковым является число 1. Корень из этого числа равен самому этому числу:
√1 = 1
Аналогично находим ближайшее бóльшее число, корень которого можно извлечь. Таковым является число 4. Корень из этого числа равен 2
√4 = 2
√1 меньше, чем √4
√1 < √4
А √3 больше, чем √1 но меньше, чем √4. Запишем это в виде двойного неравенства:
√1 < √3 < √4
Точные значения корней √1 и √4 известны. Это числа 1 и 2
1 < √3 < 2
Тогда очевидно, что значение корня √3 будет представлять собой десятичную дробь, потому что между числами 1 и 2 нет целых чисел.
Для нахождения приближённого значения квадратного корня √3 будем проверять десятичные дроби, располагающиеся в интервале от 1 до 2, возводя их в квадрат. Делать это будем до тех пор пока не полýчим значение, максимально близкое к 3. Проверим к примеру дробь 1,1
1,12 = 1,21
Получился результат 1,21, который не очень близок к подкореннóму выражению 3. Значит 1,1 не годится в качестве приближённого значения квадратного корня √3, потому что оно малó.
Проверим тогда дробь 1,8
1,82 = 3,24
Получился результат 3,24, который близок к подкореннóму выражению, но превосходит его на 0,24. Значит 1,8 не годится в качестве приближенного значения корня √3, потому что оно великó.
Проверим тогда дробь 1,7
1,72 = 2,89
Получился результат 2,89, который уже близок к подкореннóму выражению. Значит 1,7 и будет приближённым значением квадратного корня √3. Напомним, что знак приближенного значения выглядит как ≈
√3 ≈ 1,7
Значение 1,6 проверять не нужно, потому что в результате получится число 2,56, которое дальше от трёх, чем значение 2,89. А значение 1,8, как было показано ранее, является уже большим.
В данном случае мы нашли приближенное значение корня √3 с точностью до десятых. Значение можно получить ещё более точно. Для этого его следует находить с точностью до сотых.
Чтобы найти значение с точностью до сотых проверим десятичные дроби в интервале от 1,7 до 1,8
1,7 < √3 < 1,8
Проверим дробь 1,74
1,742 = 3,0276
Получился результат 3,0276, который близок к подкореннóму выражению, но превосходит его на 0,0276. Значит значение 1,74 великó для корня √3.
Проверим тогда дробь 1,73
1,732 = 2,9929
Получился результат 2,9929, который близок к подкореннóму выражению √3. Значит 1,73 будет приближённым значением квадратного корня √3 с точностью до сотых.
Процесс нахождения приближённого значения квадратного корня продолжается бесконечно. Так, корень √3 можно находить с точностью до тысячных, десятитысячных и так далее:
√3 = 1,732 (вычислено с точностью до тысячных)
√3 = 1,7320 (вычислено с точностью до десятитысячных)
√3 = 1,73205 (вычислено с точностью до ста тысячных).
Ещё квадратный корень можно извлечь с точностью до целых. Приближённое значение квадратного корня √3 с точностью до целых равно единице:
√3 ≈ 1
Значение 2 будет слишком большим, поскольку при возведении этого числа во вторую степень получается число 4, которое больше подкоренного выражения. Нас же интересуют значения, которые при возведении во вторую степень равны подкореннóму выражению или максимально близки к нему, но не превосходят его.
В зависимости от решаемой задачи допускается находить значение, вторая степень которого больше подкоренного выражения. Это значение называют приближённым значением квадратного корня с избытком. Поговорим об этом подробнее.
Приближенное значение квадратного корня с недостатком или избытком
Иногда можно встретить задание, в котором требуется найти приближённое значение корня с недостатком или избытком.
В предыдущей теме мы нашли приближённое значение корня √3 с точностью до десятых с недостатком. Недостаток понимается в том смысле, что до значения 3 нам недоставало ещё некоторых частей. Так, найдя приближённое значение √3 с точностью до десятых, мы получили 1,7. Это значение является значением с недостатком, поскольку при возведении этого числа во вторую степень полýчим результат 2,89. Этому результату недостаёт ещё 0,11 чтобы получить число 3. То есть, 2,89 + 0,11 = 3.
С избытком же называют приближённые значения, которые при возведении во вторую степень дают результат, который превосходит подкореннóе выражение. Так, вычисляя корень √3 приближённо, мы проверили значение 1,8. Это значение является приближённым значением корня √3 с точностью до десятых с избытком, поскольку при возведении 1,8 во вторую степень, получаем число 3,24. Этот результат превосходит подкореннóе выражение на 0,24. То есть 3,24 − 3 = 0,24.
Приближённое значение квадратного корня √3 с точностью до целых тоже был найден с недостатком:
√3 ≈ 1
Это потому что при возведении единицы в квадрат получаем единицу. То есть до числа 3 недостаёт ещё 2.
Приближённое значение квадратного корня √3 с точностью до целых можно найти и с избытком. Тогда этот корень приближённо будет равен 2
√3 ≈ 2
Это потому что при возведении числа 2 в квадрат получаем 4. Число 4 превосходит подкореннóе выражение 3 на единицу. Извлекая приближённо квадратный корень с избытком желательно уточнять, что корень извлечен именно с избытком:
√3 ≈ 2 (с избытком)
Потому что приближённое значение чаще всего ищется с недостатком, чем с избытком.
Дополнительно следует упомянуть, что в некоторых учебниках словосочетания «с точностью до целых», «с точностью до десятых», с «точностью до сотых», заменяют на словосочетания «с точностью до 1», «с точностью до 0,1», «с точностью до 0,01» соответственно.
Так, если в задании сказано извлечь квадратный корень из числа 5 с точностью до 0,01, то это значит что корень следует извлекать приближённо с точностью до сотых:
√5 ≈ 2,23
Пример 2. Извлечь квадратный корень из числа 51 с точностью до 1
√51 ≈ 7
Пример 3. Извлечь квадратный корень из числа 51 с точностью до 0,1
√51 ≈ 7,1
Пример 4. Извлечь квадратный корень из числа 51 с точностью до 0,01
√51 ≈ 7,14
Границы, в пределах которых располагаются корни
Если исходное число принадлежит промежутку [1; 100], то квадратный корень из этого исходного числа будет принадлежать промежутку [1; 10].
Например, пусть исходным числом будет 64. Данное число принадлежит промежутку [1; 100]. Сразу делаем вывод, что квадратный корень из числа 64 будет принадлежать промежутку [1; 10]. Теперь вспоминаем таблицу умножения. Какое перемножение двух одинаковых сомножителей даёт в результате 64? Ясно, что перемножение 8 × 8, а это есть 82 = 64. Значит квадратный корень из числа 64 есть 8
Пример 2. Извлечь квадратный корень из числа 49
Число 49 принадлежит промежутку [1; 100]. Значит квадратный корень будет принадлежать промежутку [1; 10]. Этим корнем будет число 7, поскольку 72 = 49
√49 = 7
Пример 2. Извлечь квадратный корень из числа 1
Число 1 принадлежит промежутку [1; 100]. Значит квадратный корень будет принадлежать промежутку [1; 10]. Этим корнем будет число 1, поскольку 12 = 1
√1 = 1
Пример 3. Извлечь квадратный корень из числа 100
Число 100 принадлежит промежутку [1; 100]. Значит квадратный корень будет принадлежать промежутку [1; 10]. Этим корнем будет число 10, поскольку 102 = 100
√100 = 10
Понятно, что промежуток [1; 100] содержит ещё и числа, квадратные корни из которых не извлекаются. Для таких чисел корень нужно извлекать приближённо. Тем не менее, приближённый корень тоже будет располагаться в пределах промежутка [1; 10].
Например, извлечём квадратный корень из числа 37. Нет целого числа, вторая степень которого была бы равна 37. Поэтому извлекать квадратный корень следует приближённо. Извлечём его к примеру с точностью до сотых:
√37 ≈ 6,08
Для облегчения можно находить ближайшее меньшее число, корень из которого извлекается. Таковым в данном примере было число 36. Квадратный корень из него равен 6. И далее отталкиваясь от числа 6, можно находить приближённое значение корня √37, проверяя различные десятичные дроби, целая часть которых равна 6.
Квадраты чисел от 1 до 10 обязательно нужно знать наизусть. Ниже представлены эти квадраты:
12 = 1
22 = 4
32 = 9
42 = 16
52 = 25
62 = 36
72 = 49
82 = 64
92 = 81
102 = 100
И обратно, следует знать значения квадратных корней этих квадратов:
Если к любому числу от 1 до 10 в конце дописать ноль (или несколько нулей), и затем возвести это число во вторую степень, то в полученном числе будет в два раза больше нулей.
Например, 62 = 36. Допишем к числу 6 один ноль, полýчим 60. Возведём число 60 во вторую степень, полýчим 3600
602 = 3600
А если к числу 6 дописать два нуля, и возвести это число во вторую степень, то полýчим число, в котором четыре нуля. То есть в два раза больше нулей:
6002 = 360000
Тогда можно сделать следующий вывод:
Если исходное число содержит знакомый нам квадрат и чётное количество нулей, то можно извлечь квадратный корень из этого числа. Для этого следует извлечь корень из знакомого нам квадрата и затем записать половину количества нулей из исходного числа.
Например, извлечём квадратный корень из числа 900. Видим, что в данном числе есть знакомый нам квадрат 9. Извлекаем из него корень, получаем 3
Теперь из исходного числа записываем половину от количества нулей. В исходном числе 900 содержится два нуля. Половина этого количества нулей есть один ноль. Записываем его в ответе после цифры 3
Пример 2. Извлечём квадратный корень из числа 90000
Здесь опять же имеется знакомый нам квадрат 9 и чётное количество нулей. Извлекаем корень из числа 9 и записываем половину от количества нулей. В исходном числе содержится четыре нуля. Половиной же этого количества нулей будет два нуля:
Пример 3. Извлечем квадратный корень из числа 36000000
Здесь имеется знакомый нам квадрат 36 и чётное количество нулей. Извлекаем корень из числа 36 и записываем половину от количества нулей. В исходном числе шесть нулей. Половиной же будет три нуля:
Пример 4. Извлечем квадратный корень из числа 2500
Здесь имеется знакомый нам квадрат 25 и чётное количество нулей. Извлекаем корень из числа 25 и записываем половину от количества нулей. В исходном числе два нуля. Половиной же будет один ноль:
Если подкореннóе число увеличить (или уменьшить) в 100, 10000 то корень увеличится (или уменьшится) в 10, 100 раз соответственно.
Например, . Если увеличим подкореннóе число в 100 раз, то квадратный корень увеличится в 10 раз:
И наоборот, если в равенстве уменьшим подкореннóе число в 100 раз, то квадратный корень уменьшится в 10 раз:
Пример 2. Увеличим в равенстве подкореннóе число в 10000, тогда квадратный корень 70 увеличиться в 100 раз
Пример 3. Уменьшим в равенстве подкореннóе число в 100 раз, тогда квадратный корень 70 уменьшится в 10 раз
Эта закономерность позволяет извлечь квадратный корень из десятичной дроби, если в данной дроби после запятой содéржатся две цифры, и эти две цифры образуют знакомый нам квадрат. В таких случаях данную десятичную дробь следует умножить на 100. Затем извлечь квадратный корень из получившегося числа и уменьшить подкореннóе число в сто раз.
Например, извлечём квадратный корень из числа 0,25. В данной десятичной дроби после запятой содержатся две цифры и эти две цифры образуют знакомый нам квадрат 25.
Умнóжим десятичную дробь 0,25 на 100, полýчим 25. А из числа 25 квадратный корень извлекается легко:
Но нам изначально нужно было извлечь корень из 0,25, а не из 25. Чтобы исправить ситуацию, вернём нашу десятичную дробь. Если в равенстве подкореннóе число уменьшить в 100 раз, то полýчим под корнем 0,25 и соответственно ответ уменьшится в 10 раз:
Обычно в таких случаях достаточно уметь передвигáть запятую. Потому что сдвинуть в числе запятую вправо на две цифры это всё равно что умножить это число на 100.
В предыдущем примере в подкоренном числе 0,25 можно было сдвинуть запятую вправо на две цифры, а в полученном ответе сдвинуть её влево на одну цифру.
Например, извлечем корень из числа 0,81. Мысленно передвинем запятую вправо на две цифры, полýчим 81. Теперь извлечём квадратный корень из числа 81, полýчим ответ 9. В ответе 9 передвинем запятую влево на одну цифру, полýчим 0,9. Значит, .
Это правило работает и в ситуации, когда после запятой содержатся четыре цифры и эти цифры образуют знакомый нам квадрат.
Например, десятичная дробь 0,1225 содержит после запятой четыре цифры. Эти четыре цифры образуют число 1225, квадратный корень из которого равен 35.
Тогда можно извлечь квадратный корень и из 0,1225. Умнóжим данную десятичную дробь на 10000, полýчим 1225. Из числа 1225 квадратный корень можно извлечь с помощью таблицы квадратов:
Но нам изначально нужно было извлечь корень из 0,1225, а не из 1225. Чтобы исправить ситуацию, в равенстве подкореннóе число уменьшим в 10000 раз. В результате под корнем образуется десятичная дробь 0,1225, а правая часть уменьшится в 100 раз
Эта же закономерность будет работать и при извлечении корней из дробей вида 12,25. Если цифры из которых состоит десятичная дробь образуют знакомый нам квадрат, при этом после запятой содержится чётное количество цифр, то можно извлечь корень из этой десятичной дроби.
Умнóжим десятичную дробь 12,25 на 100, полýчим 1225. Извлечём корень из числа 1225
Теперь в равенстве уменьшим подкореннóе число в 100 раз. В результате под корнем образуется число 12,25, и соответственно ответ уменьшится в 10 раз
Если исходное число принадлежит промежутку [100; 10000], то квадратный корень из этого исходного числа будет принадлежать промежутку [10; 100].
В этом случае применяется таблица квадратов:
Например, пусть исходным числом будет 576. Данное число принадлежит промежутку [100; 10000]. Сразу делаем вывод, что квадратный корень из числа 576 будет принадлежать промежутку [10; 100]. Теперь открываем таблицу квадратов и смотрим какое число во второй степени равно 576
Видим, что это число 24. Значит .
Пример 2. Извлечь квадратный корень из числа 432.
Число 432 принадлежит промежутку [100; 10000]. Значит квадратный корень следует искать в промежутке [10; 100]. Открываем таблицу квадратов и смотрим какое число во второй степени равно 432. Обнаруживаем, что число 432 в таблице квадратов отсутствует. В этом случае квадратный корень следует искать приближённо.
Извлечем квадратный корень из числа 432 с точностью до десятых.
В таблице квадратов ближайшее меньшее число к 432 это число 400. Квадратный корень из него равен 20. Отталкиваясь от числа 20, будем проверять различные десятичные дроби, целая часть которых равна 20.
Проверим, например, число 20,8. Для этого возведём его в квадрат:
20,82 = 432,64
Получилось число 432,64 которое превосходит исходное число 432 на 0,64. Видим, что значение 20,8 великó для корня √432. Проверим тогда значение 20,7
20,72 = 428,49
Значение 20,7 годится в качестве корня, поскольку в результате возведения этого числа в квадрат получается число 428,49, которое меньше исходного числа 432, но близко к нему. Значит √432 ≈ 20,7.
Необязательно запоминать промежутки чтобы узнать в каких границах располагается корень. Можно воспользоваться методом нахождения ближайших квадратов с чётным количеством нулей на конце.
Например, извлечём корень из числа 4225. Нам известен ближайший меньший квадрат 3600, и ближайший больший квадрат 4900
3600 < 4225 < 4900
Извлечём квадратные корни из чисел 3600 и 4900. Это числа 60 и 70 соответственно:
Тогда можно понять, что квадратный корень из числа 4225 располагается между числами 60 и 70. Можно даже найти его методом подбора. Корни 60 и 70 исключаем сразу, поскольку это корни чисел 3600 и 4900. Затем можно проверить, например, корень 64. Возведём его в квадрат (или умнóжим данное число само на себя)
Корень 64 не годится. Проверим корень 65
Получается 4225. Значит 65 является корнем числа 4225
Тождественные преобразования с квадратными корнями
Над квадратными корнями можно выполнять различные тождественные преобразования, тем самым облегчая их вычисление. Рассмотрим некоторые из этих преобразований.
Квадратный корень из произведения
Квадратный корень из произведения это выражение вида , где a и b некоторые числа.
Например, выражение является квадратным корнем из произведения чисел 4 и 9.
Чтобы извлечь такой квадратный корень, нужно по отдельности извлечь квадратные корни из множителей 4 и 9, представив выражение в виде произведения корней . Вычислив по отдельности эти корни полýчим произведение 2 × 3, которое равно 6
Конечно, можно не прибегать к таким манипуляциям, а вычислить сначала подкореннóе выражение 4 × 9, которое равно 36. Затем извлечь квадратный корень из числа 36
Но при извлечении квадратных корней из больших чисел это правило может оказаться весьма полезным.
Допустим, потребовалось извлечь квадратный корень из числа 144. Этот корень легко определяется с помощью таблицы квадратов — он равен 12
Но предстáвим, что таблицы квадратов под рукой не оказалось. В этом случае число 144 можно разложить на простые множители. Затем из этих простых множителей составить числа, квадратные корни из которых извлекаются.
Итак, разлóжим число 144 на простые множители:
Получили следующее разложение:
В разложéнии содержатся четыре двойки и две тройки. При этом все числа, входящие в разложение, перемнóжены. Это позволяет предстáвить произведения одинаковых сомножителей в виде степени с показателем 2.
Тогда четыре двойки можно заменить на запись 22 × 22, а две тройки заменить на 32
В результате будем иметь следующее разложение:
Теперь можно извлекáть квадратный корень из разложения числа 144
Применим правило извлечения квадратного корня из произведения:
Ранее было сказано, что если подкореннóе выражение возведенó во вторую степень, то такой квадратный корень равен модулю из подкореннóго выражения.
Тогда получится произведение 2 × 2 × 3, которое равно 12
Простые множители представляют в виде степени для удобства и короткой записи. Допускается также записывать их под кóрнем как есть, чтобы впоследствии перемнóжив их, получить новые сомножители.
Так, разложив число 144 на простые множители, мы получили разложение 2 × 2 × 2 × 2 × 3 × 3. Это разложение можно записать под кóрнем как есть:
затем перемнóжить некоторые сомножители так, чтобы получились числа, квадратные корни из которых извлекаются. В данном случае можно дважды перемнóжить две двойки и один раз перемнóжить две тройки:
Затем применить правило извлечения квадратного корня из произведения и получить окончательный ответ:
С помощью правила извлечения квадратного корня из произведения можно извлекать корень и из других больших чисел. В том числе, из тех чисел, которых нет в таблице квадратов.
Например, извлечём квадратный корень из числа 13456. Этого числа нет в таблице квадратов, поэтому воспользуемся правилом извлечения квадратного корня из произведения, предварительно разложив число 13456 на простые множители.
Итак, разложим число 13456 на простые множители:
В разложении имеются четыре двойки и два числа 29. Двойки дважды предстáвим как 22. А два числа 29 предстáвим как 292. В результате полýчим следующее разложение числа 13456
Теперь будем извлекать квадратный корень из разложения числа 13456
Итак, если a ≥ 0 и b ≥ 0, то . То есть корень из произведения неотрицательных множителей равен произведению корней из этих множителей.
Докажем равенство . Для этого воспользуемся определением квадратного корня.
Согласно определению, квадратным корня из числа a есть число b, при котором выполняется равенство b2 = a.
В нашем случае нужно удостовериться, что правая часть равенства при возведении во вторую степень даст в результате подкореннóе выражение левой части, то есть выражение ab.
Итак, выпишем правую часть равенства и возведём ее во вторую степень:
Теперь воспользуемся правилом возведения в степень произведения. Согласно этому правилу, каждый множитель данного произведения нужно возвести в указанную степень:
Ранее было сказано, что если выражение вида возвести во вторую степень, то получится подкореннóе выражение. Применим это правило. Тогда полýчим ab. А это есть подкореннóе выражение квадратного корня
Значит равенство справедливо, поскольку при возведéнии правой части во вторую степень, получается подкореннóе выражение левой части.
Правило извлечения квадратного корня из произведения работает и в случае, если под кóрнем располагается более двух множителей. То есть справедливым будет следующее равенство:
, при a ≥ 0 и b ≥ 0, c ≥ 0.
Пример 1. Найти значение квадратного корня
Запишем корень в виде произведения корней, извлечём их, затем найдём значение полученного произведения:
Пример 2. Найти значение квадратного корня
Предстáвим число 250 в виде произведения чисел 25 и 10. Делать это будем под знáком корня:
Теперь под кóрнем образовалось два одинаковых множителя 10 и 10. Перемнóжим их, полýчим 100
Далее применяем правило извлечения квадратного кóрня из произведения и получáем окончательный ответ:
Пример 3. Найти значение квадратного корня
Воспользуемся правилом возведения степени в степень. Степень 114 предстáвим как (112)2.
Теперь воспользуемся правилом извлечения квадратного кóрня из квадрата числа:
В нашем случае квадратный корень из числа (112)2 будет равен 112. Говоря простым языком, внешний показатель степени 2 исчезнет, а внутренний останется:
Далее возводим число 11 во вторую степень и получаем окончательный ответ:
Этот пример также можно решить, воспользовавшись правилом извлечения квадратного корня из произведения. Для этого подкореннóе выражение 114 нужно записать в виде произведения 112 × 112. Затем извлечь квадратный корень из этого произведения:
Пример 4. Найти значение квадратного корня
Перепишем степень 34 в виде (32)2, а степень 56 в виде (53)2
Далее используем правило извлечения квадратного кóрня из произведения:
Далее используем правило извлечения квадратного кóрня из квадрата числа:
Вычислим произведение получившихся степеней и полýчим окончательный ответ:
Сомножители, находящиеся под корнем, могут быть десятичными дробями. Например, извлечём квадратный корень из произведения
Запишем корень в виде произведения корней, извлечём их, затем найдём значение полученного произведения:
Пример 6. Найти значение квадратного корня
Пример 7. Найти значение квадратного корня
Если первый сомножитель умножить на число n, а второй сомножитель разделить на это число n, то произведение не изменится.
Например, произведение 8 × 4 равно 32
8 × 4 = 32
Умнóжим сомножитель 8 скажем на число 2, а сомножитель 4 раздéлим на это же число 2. Тогда получится произведение 16 × 2, которое тоже равно 32.
(8 × 2) × (4 : 2) = 32
Это свойство полезно при решении некоторых задач на извлечение квадратных корней. Сомножители подкореннóго выражения можно умнóжить и разделить так, чтобы корни из них извлекались.
Например, извлечём квадратный корень из произведения . Если сразу воспользоваться правилом извлечения квадратного корня из произведения, то не полýчится извлечь корни √1,6 и √90, потому что они не извлекаются.
Проанализировав подкореннóе выражение 1,6 × 90, можно заметить, что если первый сомножитель 1,6 умножить на 10, а второй сомножитель 90 разделить на 10, то полýчится произведение 16 × 9. Из такого произведения квадратный корень можно извлечь, пользуясь правилом извлечения квадратного корня из произведения.
Запишем полное решение данного примера:
Процесс умножения и деления можно выполнять в уме. Также можно пропустить подробную запись извлечения квадратного корня из каждого сомножителя. Тогда решение станóвится короче:
Пример 9. Найти значение квадратного корня
Умнóжим первый сомножитель на 10, а второй раздéлим на 10. Тогда под кóрнем образуется произведение 36 × 0,04, квадратный корень из которого извлекается:
Если в равенстве поменять местами левую и правую часть, то полýчим равенство . Это преобразовáние позволяет упрощáть вычисление некоторых корней.
Например, узнáем чему равно значение выражения .
Квадратные корни из чисел 10 и 40 не извлекаются. Воспользуемся правилом , то есть заменим выражение из двух корней на выражение с одним корнем, под которым будет произведение из чисел 10 и 40
Теперь найдём значение произведения, находящегося под корнем:
А квадратный корень из числа 400 извлекается. Он равен 20
Сомножители, располагáющиеся под корнем, можно расклáдывать на множители, группировáть, представлять в виде степени, а также перемножáть для получения новых сомножителей, корни из которых извлекаются.
Например, найдём значение выражения .
Воспользуемся правилом
Сомножитель 32 это 25. Предстáвим этот сомножитель как 2 × 24
Перемнóжим сомножители 2 и 2, полýчим 4. А сомножитель 24 предстáвим в виде степени с показателем 2
Теперь воспóльзуемся правилом и вычислим окончательный ответ:
Пример 12. Найти значение выражения
Воспользуемся правилом
Сомножитель 8 это 2 × 2 × 2, а сомножитель 98 это 2 × 7 × 7
Теперь под кóрнем имеются четыре двойки и две семёрки. Четыре двойки можно записать как 22 × 22, а две семёрки как 72
Теперь воспользуемся правилом и вычислим окончательный ответ:
Квадратный корень из дроби
Квадратный корень вида равен дроби, в числителе которой квадратный корень из числа a, а в знаменателе — квадратный корень из числа b
Например, квадратный корень из дроби равен дроби, в числителе которой квадратный корень из числа 4, а в знаменателе — квадратный корень из числа 9
Вычислим квадратные корни в числителе и знаменателе:
Значит, квадратный корень из дроби равен .
Докáжем, что равенство является верным.
Возведём правую часть во вторую степень. Если в результате полýчим дробь , то это будет означать, что равенство верно:
Пример 1. Извлечь квадратный корень
Воспользуемся правилом извлечения квадратного корня из дроби:
Пример 2. Извлечь квадратный корень
Переведём подкореннóе выражение в неправильную дробь, затем воспользуемся правилом извлечения квадратного корня из дроби:
Пример 3. Извлечь квадратный корень
Квадратным корнем из числа 0,09 является 0,3. Но можно извлечь этот корень, воспользовавшись правилом извлечения квадратного корня из дроби.
Предстáвим подкоренное выражение в виде обыкновенной дроби. 0,09 это девять сотых:
Теперь можно воспользоваться правилом извлечения квадратного корня из дроби:
Пример 4. Найти значение выражения
Извлечём корни из 0,09 и 0,25, затем сложим полученные результаты:
Также можно воспользоваться правилом извлечения квадратного корня из дроби:
В данном примере первый способ оказался проще и удобнее.
Пример 5. Найти значение выражения
Сначала вычислим квадратный корень, затем перемнóжим его с 10. Получившийся результат вычтем из 4
Пример 6. Найти значение выражения
Сначала найдём значение квадратного корня . Он равен 0,6 поскольку 0,62 = 0,36
Теперь вычислим получившееся выражение. Согласно порядку действий, сначала надо выполнить умножение, затем сложение:
Вынесение множителя из-под знака корня
В некоторых задачах может быть полезным вынесение множителя из-под знака корня.
Рассмотрим квадратный корень из произведения . Согласно правилу извлечения квадратного корня из произведения, нужно извлечь квадратный корень из каждого множителя данного произведения:
В нашем примере квадратный корень извлекается только из множителя 4. Его мы извлечём, а выражение оставим без изменений:
Это и есть вынесение множителя из-под знака корня.
На практике подкореннóе выражение чаще всего требуется разложить на множители.
Пример 2. Вынести множитель из-под знака корня в выражении
Разлóжим подкореннóе выражение на множители 9 и 2. Тогда полýчим:
Теперь воспользуемся правило извлечения квадратного корня из произведения. Извлечь можно только корень из множителя 9. Множитель 2 остáвим под кóрнем:
Пример 3. Вынести множитель из-под знака корня в выражении
Разлóжим подкореннóе выражение на множители 121 и 3. Тогда полýчим:
Теперь воспользуемся правилом извлечения квадратного корня из произведения. Извлечь можно только корень из множителя 121. Выражение √3 остáвим под корнем:
Пример 4. Вынести множитель из-под знака корня в выражении
Воспользуемся правилом извлечения квадратного корня из произведения:
Квадратный корень извлекается только из числа 121. Извлечём его, а выражение √15 оставим без изменений:
Получается, что множитель 11 вынесен из-под знака корня. Вынесенный множитель принято записывать до выражения с корнем. Поменяем выражения √15 и 11 местами:
Пример 5. Вынести множитель из-под знака корня в выражении
Разлóжим подкореннóе выражение на множители 4 и 3
Воспользуемся правилом извлечения квадратного корня из произведения:
Извлечём корень из числа 4, а выражение √3 остáвим без изменений:
Пример 6. Упростить выражение
Предстáвим второе слагаемое в виде . А третье слагаемое предстáвим в виде
Теперь в выражениях и вынесем множитель из-под знака корня:
Во втором слагаемом перемнóжим числа −4 и 4. Остальное перепишем без изменений:
Замечáем, что получившемся выражении квадратный корень √3 является общим множителем. Вынесем его за скобки:
Вычислим содержимое скобок, полýчим −1
Если множителем является −1, то записывают только минус. Единица опускается. Тогда полýчим окончательный ответ −√3
Внесение множителя под знак корня
Рассмотрим следующее выражение:
В этом выражении число 5 умнóжено на квадратный корень из числа 9. Найдём значение этого выражения.
Сначала извлечём квадратный корень, затем перемнóжим его с числом 5.
Квадратный корень из 9 равен 3. Перемнóжим его с числом 5. Тогда полýчим 15
Число 5 в данном случае было множителем. Внесём этот множитель под знак корня. Но сделать это нужно таким образом, чтобы в результате наших действий значение исходного выражения не изменилось. Проще говоря, после внесения множителя 5 под знак корня, получившееся выражение по-прежнему должно быть равно 15.
Значение выражения не изменится, если число 5 возвести во вторую степень и только тогда внести его под корень:
Итак, если данó выражение , и нужно внести множитель a под знак корня, то надо возвести во вторую степень множитель a и внести его под корень:
Пример 1. Внести множитель под знак корня в выражении
Возведём число 7 во вторую степень и внесём его под знак корня:
Пример 2. Внести множитель под знак корня в выражении
Возведём число 10 во вторую степень и внесем его под знак корня:
Пример 3. Внести множитель под знак корня в выражении
Вносить под знак корня можно только положительный множитель. Ранее было сказано, что выражение вида не имеет смысла.
Однако, если перед знаком кóрня располагается отрицательный множитель, то минус можно оставить за знáком корня, а самó число внести под знак корня.
Пример 4. Внести множитель по знак корня в выражении
В этом примере под знак корня внóсится только 3. Минус остаётся за знáком корня:
Пример 5. Выполнить возведéние в степень в следующем выражении:
Воспользуемся формулой квадрата суммы двух выражений:
(a + b)2 = a2 + 2ab + b2
Роль переменной a в данном случае играет выражение √3, роль переменной b — выражение √2. Тогда полýчим:
Теперь необходимо упростить получившееся выражение.
Для выражений и применим правило . Ранее мы говорили, что если выражение вида возвести во вторую степень, то это выражение будет равно подкореннóму выражению a.
А в выражении для множителей и применим правило . То есть заменим произведение корней на один общий корень:
Приведём подобные слагаемые. В данном случае можно сложить слагаемые 3 и 2. А в слагаемом вычислить произведение, которое под кóрнем:
Задания для самостоятельного решения
Задание 1. Найдите значение квадратного корня:
Решение:
Задание 2. Найдите значение квадратного корня:
Решение:
Задание 3. Найдите значение квадратного корня:
Решение:
Задание 4. Найдите значение выражения:
Решение:
Задание 5. Найдите значение квадратного корня:
Решение:
Задание 6. Найдите значение квадратного корня:
Решение:
Задание 7. Найдите значение квадратного корня:
Решение:
Задание 8. Найдите значения следующих выражений:
Решение:
Задание 9. Извлеките квадратный корень из числа 4624
Решение:
Задание 10. Извлеките квадратный корень из числа 11025
Решение:
Задание 11. Найдите значение квадратного корня:
Решение:
Задание 12. Найдите значение квадратного корня:
Решение:
Задание 13. Найдите значение квадратного корня:
Решение:
Задание 14. Найдите значение квадратного корня:
Решение:
Задание 15. Найдите значение квадратного корня:
Решение:
Задание 16. Найдите значение выражения:
Решение:
Задание 17. Найдите значение выражения:
Решение:
Задание 18. Найдите значение выражения:
Решение:
Задание 19. Найдите значение выражения:
Решение:
Задание 20. Найдите значение выражения:
Решение:
Задание 21. Найдите значение выражения:
Решение:
Задание 22. Найдите значение выражения:
Решение:
Задание 23. Найдите значение выражения:
Решение:
Задание 24. Найдите значение выражения:
Решение:
Задание 25. Найдите значение выражения:
Решение:
Задание 26. Найдите значение выражения:
Решение:
Задание 27. Найдите значение выражения:
Решение:
Задание 28. Найдите значение выражения:
Решение:
Задание 29. Найдите значение выражения:
Решение:
Задание 30. Найдите значение выражения:
Решение:
Задание 31. Найдите значение выражения:
Решение:
Задание 32. Найдите значение выражения:
Решение:
Задание 33. Найдите значение выражения:
Решение:
Задание 34. Вынести множитель из-под знака корня:
Решение:
Задание 35. Вынести множитель из-под знака корня:
Решение:
Задание 36. Вынести множитель из-под знака корня:
Решение:
Задание 37. Вынести множитель из-под знака корня:
Решение:
Задание 38. Вынести множитель из-под знака корня:
Решение:
Задание 39. Вынести множитель из-под знака корня:
Решение:
Задание 40. Вынести множитель из-под знака корня:
Решение:
Задание 41. Вынести множитель из-под знака корня:
Решение:
Задание 42. Вынести множитель из-под знака корня:
Решение:
Задание 43. Вынести множитель из-под знака корня:
Решение:
Задание 44. Вынести множитель из-под знака корня в следующих выражениях:
Решение:
Задание 45. Внести множитель под знак корня:
Решение:
Задание 46. Внести множитель под знак корня:
Решение:
Задание 47. Внести множитель под знак корня:
Решение:
Задание 48. Внести множитель под знак корня:
Решение:
Задание 49. Внести множитель под знак корня:
Решение:
Задание 50. Внести множитель под знак корня в следующих выражениях:
Решение:
Задание 51. Упростить выражение:
Решение:
Задание 52. Упростить выражение:
Решение:
Задание 53. Упростить выражение:
Решение:
Задание 54. Упростить выражение:
Решение:
Задание 55. Упростить выражение:
Решение:
Задание 56. Упростить выражение:
Решение:
Задание 57. Упростить выражение:
Решение:
Задание 58. Упростить выражение:
Решение:
Задание 59. Упростить выражение:
Решение:
Задание 60. Упростить выражение:
Решение:
Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках
Возникло желание поддержать проект?
Используй кнопку ниже
Математика зародилась тогда, когда человек осознал себя и стал позиционироваться как автономная единица мира. Желание измерить, сравнить, посчитать то, что тебя окружает, – вот что лежало в основе одной из фундаментальных наук наших дней. Сначала это были частички элементарной математики, что позволили связать числа с их физическими выражениями, позже выводы стали излагаться лишь теоретически (в силу своей абстрактности), ну а через некоторое время, как выразился один ученый, “математика достигла потолка сложности, когда из нее исчезли все числа”. Понятие “квадратный корень” появилось еще в то время, когда его можно было без проблем подкрепить эмпирическими данными, выходя за плоскость вычислений.
С чего все начиналось
Первое упоминание корня, который на данный момент обозначается как √, было зафиксировано в трудах вавилонских математиков, положивших начало современной арифметике. Конечно, на нынешнюю форму они походили мало – ученые тех лет сначала пользовались громоздкими табличками. Но во втором тысячелетии до н. э. ими была выведена приближенная формула вычислений, которая показывала, как извлечь квадратный корень. На фото ниже изображен камень, на котором вавилонские ученые высекли процесс вывода √2 , причем он оказался настолько верным, что расхождение в ответе нашли лишь в десятом знаке после запятой.
Помимо этого, корень применялся, если нужно было найти сторону треугольника, при условии, что две другие известны. Ну и при решении квадратных уравнений от извлечения корня никуда не деться.
Наравне с вавилонскими работами объект статьи изучался и в китайской работе “Математика в девяти книгах”, а древние греки пришли к выводу, что любое число, из которого не извлекается корень без остатка, дает иррациональный результат.
Происхождение данного термина связывают с арабским представлением числа: древние ученые полагали, что квадрат произвольного числа произрастает из корня, подобно растению. На латыни это слово звучит как radix (можно проследить закономерность – все, что имеет под собой “корневую” смысловую нагрузку, созвучно, будь то редис или радикулит).
Ученые последующих поколений подхватили эту мысль, обозначая его как Rx. Например, в XV веке, дабы указать, что извлекается корень квадратный из произвольного числа a, писали R2a. Привычная современному взгляду “галочка” √ появилась лишь в XVII веке благодаря Рене Декарту.
Наши дни
С точки зрения математики, квадратный корень из числа y – это такое число z, квадрат которого равен y. Иными словами, z2=y равносильно √y=z. Однако данное определение актуально лишь для арифметического корня, так как оно подразумевает неотрицательное значение выражения. Иными словами, √y=z, где z больше либо равно 0.
В общем случае, что действует для определения алгебраического корня, значение выражения может быть как положительным, так и отрицательным. Таким образом, в силу того, что z2=y и (-z)2=y, имеем: √y=±z или √y=|z|.
Благодаря тому, что любовь к математике с развитием науки лишь возросла, существуют разнообразные проявления привязанности к ней, не выраженные в сухих вычислениях. Например, наравне с такими занятными явлениями, как день числа Пи, отмечаются и праздники корня квадратного. Отмечаются они девять раз в сто лет, и определяются по следующему принципу: числа, которые обозначают по порядку день и месяц, должна быть корнем квадратным из года. Так, в следующий раз предстоит отмечать сей праздник 4 апреля 2016 года.
Свойства квадратного корня на поле R
- Квадратный корень из произведения равен произведению квадратных корней, при условии, что подкоренные выражения больше либо равны 0.
- При возведении корня квадратного в степень достаточно возвести в эту степень подкоренное выражение, при условии, что оно больше нуля.
- Квадратный корень из дроби равен корню из числителя, разделенному на корень из знаменателя, при условии, что подкоренное выражение числителя больше либо равно 0, а подкоренное выражение знаменателя строго больше 0.
- Подкоренное выражение, если оно больше нуля, можно разбить на несколько частей, из которых, в свою очередь, допустимо извлечь корень. Например: √75=√25*3=5√3.
- Под знак корня можно вводить любое число, при этом возведя его в квадрат. Например: 5√8=√25*√8=√200.
Практически все математические выражения имеют под собой геометрическую основу, не миновала эта участь и √y, который определяется как сторона квадрата с площадью y.
Как найти корень числа?
Алгоритмов вычисления существует несколько. Наиболее простым, но при этом достаточно громоздким, является обычный арифметический подсчет, который заключается в следующем:
1) из числа, корень которого нам нужен, по очереди вычитаются нечетные числа – до тех пор, пока остаток на выходе не получится меньше вычитаемого или вообще будет равен нулю. Количество ходов и станет в итоге искомым числом. Например, вычисление квадратного корня из 25:
25-1=24
24-3=21
21-5=17
17-7=10
10-9=1
Следующее нечетное число – это 11, остаток у нас следующий: 1<11. Количество ходов – 5, так что корень из 25 равен 5. Вроде все легко и просто, но представьте, что придется вычислять из 18769?
Для таких случаев существует разложение в ряд Тейлора:
√(1+y)=∑((-1)n(2n)!/(1-2n)(n!)2(4n))yn, где n принимает значения от 0 до
+∞, а |y|≤1.
Графическое изображение функции z=√y
Рассмотрим элементарную функцию z=√y на поле вещественных чисел R, где y больше либо равен нулю. График ее выглядит следующим образом:
Кривая растет из начала координат и обязательно пересекает точку (1; 1).
Свойства функции z=√y на поле действительных чисел R
1. Область определения рассматриваемой функции – промежуток от нуля до плюс бесконечности (ноль включен).
2. Область значений рассматриваемой функции – промежуток от нуля до плюс бесконечности (ноль опять же включен).
3. Минимальное значение (0) функция принимает лишь в точке (0; 0). Максимальное значение отсутствует.
4. Функция z=√y ни четная, ни нечетная.
5. Функция z=√y не является периодической.
6. Точка пересечения графика функции z=√y с осями координат лишь одна: (0; 0).
7. Точка пересечения графика функции z=√y также является и нулем этой функции.
8. Функция z=√y непрерывно растет.
9. Функция z=√y принимает лишь положительные значения, следовательно, график ее занимает первый координатный угол.
Варианты изображения функции z=√y
В математике для облегчения вычислений сложных выражений порой используют степенную форму написания корня квадратного: √y=y1/2. Такой вариант удобен, например, в возведении функции в степень: (√y)4=(y1/2)4=y2. Этот метод является удачным представлением и при дифференцировании с интегрированием, так как благодаря ему корень квадратный представляется обычной степенной функцией.
А в программировании заменой символа √ является комбинация букв sqrt.
Стоит отметить, что в данной области квадратный корень очень востребован, так как входит в состав большинства геометрических формул, необходимых для вычислений. Сам алгоритм подсчета достаточно сложен и строится на рекурсии (функции, что вызывает сама себя).
Корень квадратный в комплексном поле С
По большому счету именно предмет данной статьи стимулировал открытие поля комплексных чисел C, так как математикам не давал покоя вопрос получения корня четной степени из отрицательного числа. Так появилась мнимая единица i, которая характеризуется очень интересным свойством: ее квадратом есть -1. Благодаря этому квадратные уравнения и при отрицательном дискриминанте получили решение. В С для корня квадратного актуальны те же свойства, что и в R, единственное, сняты ограничения с подкоренного выражения.