Как найти квадратный корень в слове

В уроке «Степень числа»
мы проходили, что возвести в квадрат число означает умножить число на само себя.
Кратко запись числа в квадрате выглядит следующим образом:

3 · 3 = 32 = 9

Но как быть, если нам нужно получить обратный результат?
Например, узнать, какое число при возведении в квадрат дало бы число «9»?

Запомните!
!

Нахождение исходного числа, которое в квадрате дало бы требуемое, называется
извлечением квадратного корня.

Извлечение квадратного корня — это действие, обратное возведению в квадрат.

У квадратного корня есть специальный знак.
Исходя из вычислений выше, нетрудно догадаться, что число, которое в квадрате дает «9»,
это число «3». Запись извлечения квадратного корня из числа «9» выглядит так:

9 = 3

Читаем запись: «Арифметический квадратный корень из девяти». Можно опустить слово «арифметический».
Словосочетания «арифметический квадратный корень» и «квадратный корень» полностью равнозначны.

Число под знаком корня называют подкоренным выражением.

знак квадратного корня и подкоренное выражение

Подкоренное выражение может быть представлено не только одним числом.
Всё, что находится под знаком корня, называют подкоренным выражением. Оно может сожержать как числа, так и буквы.

подкоренное выражение из чисел
подкоренное выражение из букв


Запомните!
!

Извлекать квадратный корень можно только из положительного числа.


  • −9
    = … нельзя извлекать квадратный корень из отрицательного числа;

  • 64 = 8

  • −1,44

    = … нельзя извлекать квадратный корень из отрицательного числа;


  • 256 = 16

Квадратный корень из нуля

Запомните!
!

Квадратный корень из нуля равен нулю.

0 = 0

Квадратный корень из единицы

Запомните!
!

Квадратный корень из единицы равен единице.

1 = 1

Как найти квадратный корень из числа

Квадратные корни из целых чисел, чьи квадраты известны, вычислить довольно просто.
Для этого достаточно выучить таблицу квадратов.

Чаще всего в задачах школьного курса математики требуется найти квадратный корень из квадратов чисел от
1 до 20.

Решение примеров с квадратными корнями

Разбор примера

Вычислить арифметический квадратный корень из числа.

  • 81 = 9
  • 64 = 8
  • 100 = 10

Как найти квадратный корень из десятичной дроби

Важно!
Галка

При нахождении квадратного корня из десятичной дроби нужно выполнить следующие действия:

  1. забыть про запятую в исходной десятичной дроби и представить её в виде целого числа;
  2. вычислить для целого числа квадратный корень;
  3. полученное целое число заменить на десятичную дробь (поставить запятую исходя из
    правила умножения десятичных дробей).

Более подробно разберем на примере ниже.

Разбор примера

Вычислить квадратный корень из десятичной дроби «0,16».

0,16 =

По первому пункту правила забудем про запятую в десятичной дроби и представим ее в виде целого числа «16».

Нетрудно вспомнить, какое число в квадрате дает «16». Это число
«4».

16 = 4

0,16 = …

Вспомним правило умножения десятичных дробей.
Количество знаков после запятой в результате умножения десятичных дробей равняется сумме количества знаков после запятой каждой
дроби.

Т.е., например, при умножении «0,15» на
«0,3» в полученном произведении будет десятичная дробь с тремя знаками после запятой.

0,15 · 0,3 = 0,045

Значит, при вычислении квадратного корня
0,16

нам нужно найти десятичную дробь, у которой был бы только один знак после запятой.

Мы исходим из того, что в результате умножения десятичной дроби на саму себя в результате должно было получиться
два знака после запятой, как у десятичной дроби «0,16».

Получается, что ответ — десятичная дробь «0,4».

0,16 = 0,4

Убедимся, что квадрат десятичной дроби
«0,42» дает
«0,16».

Умножим в столбик «0,4» на

«0,4».

умножение 0,4 на 0,4 в столбик


Рассмотрим другой пример вычисления квадратного корня из десятичной дроби. Вычислить:

1,44 =

Представим вместо десятичной дроби «1,44» целое число
«144». Какое число в квадрате даст «144»?
Ответ — число «12».

122 = 144

144 = 12

1,44 = …

Так как в десятичной дроби «1,44» — два знака после запятой, значит в десятичной дроби,
которая дала в квадрате «1,44» должен быть один знак после запятой.

1,44 = 1,2

Убедимся, что «1,22» дает в квадрате «1,44».

1,22 = 1,2 · 1,2 = 1,44

Квадратные корни из чисел

2,
3,
5,
6,

и т.п.

Не из всех чисел удается легко извлечь квадратный корень. Например, совершенно неочевидно, чему равен


2

или

3

и т.п.

В самом деле, какое число в квадрате даст «2»? Или число «3»?
Такое число не будет целым. Более того, оно представляет из себя
непериодическую десятичную дробь
и входит в
множество иррациональных чисел.

Что делать, когда в ответе остаются подобные квадратные корни? Как, например, в примере ниже:


15 − 2 · 4 =
15 − 8 =
7

Нет такого целого числа, которое бы дало в квадрате число «7».
Поэтому, перед завершением задачи внимательно читайте её условие.

Если в задаче дополнительно ничего не сказано об обязательном вычислении всех квадратных корней, тогда ответ можно
оставить с корнем.


15 − 2 · 4 =
15 − 8 =
7

Если в задании сказано, что необходимо вычислить все квадратные корни с помощью микрокалькулятора,
то после вычисления квадратного корня на калькуляторе
округлите результат до необходимого количества знаков.

Текст задания в таком случае может быть написан следующим образом:

«Вычислить. Квадратные корни найти с помощью калькулятора и округлить с точностью до
«0,001».

15 − 2 · 4 =
15 − 8 =
7 ≈ 2,646


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:

14 июля 2016 в 18:32

Temur Uldashev
(^-^)
Профиль
Благодарили: 0

Сообщений: 2

(^-^)
Temur Uldashev
Профиль
Благодарили: 0

Сообщений: 2

Всем доброго времени суток! Прошу помочь с примером который я не могу решить, по теме «Квадратные корни. Задачи на вычесление» пример выглядит так:
??28-16?3 ( то есть выражение 28-16?3  еще под двумя корнями, не только 28, а все выражение!)

0
Спасибоthanks
Ответить

15 июля 2016 в 0:04
Ответ для Temur Uldashev

Евгений Фёдоров
(^-^)
Профиль
Благодарили: 0

Сообщений: 60

(^-^)
Евгений Фёдоров
Профиль
Благодарили: 0

Сообщений: 60


?(28 ? 16?3)  = 4 ? 2?3.
Скобки не знешь?

0
Спасибоthanks
Ответить

15 июля 2016 в 6:53
Ответ для Temur Uldashev

Temur Uldashev
(^-^)
Профиль
Благодарили: 0

Сообщений: 2

(^-^)
Temur Uldashev
Профиль
Благодарили: 0

Сообщений: 2


Затупил. Но и вы не правильно подсказали. Я уже решил ответ ?3-1

0
Спасибоthanks
Ответить

16 июля 2016 в 22:58
Ответ для Temur Uldashev

Евгений Фёдоров
(^-^)
Профиль
Благодарили: 0

Сообщений: 60

(^-^)
Евгений Фёдоров
Профиль
Благодарили: 0

Сообщений: 60


Чушь не пори.
Спасибо скажи, что тебе подсказали.

0
Спасибоthanks
Ответить

21 июля 2016 в 13:24
Ответ для Temur Uldashev

Евгений Фёдоров
(^-^)
Профиль
Благодарили: 0

Сообщений: 60

(^-^)
Евгений Фёдоров
Профиль
Благодарили: 0

Сообщений: 60


Что не верно у меня, митрофанушка?

0
Спасибоthanks
Ответить

23 ноября 2015 в 15:15

Ксюша Новикова
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Ксюша Новикова
Профиль
Благодарили: 0

Сообщений: 1

0
Спасибоthanks
Ответить

16 сентября 2016 в 14:23
Ответ для Ксюша Новикова

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


1,38 · ?361 = 1,38 · 19 = 26,22

0
Спасибоthanks
Ответить

16 сентября 2015 в 16:11

Макс Простов
(^-^)
Профиль
Благодарили: 0

Сообщений: 4

(^-^)
Макс Простов
Профиль
Благодарили: 0

Сообщений: 4

Расположите в порядке возрастания Корни:3V16,  7V19, 8V13 срочно))))) 

0
Спасибоthanks
Ответить

9 сентября 2016 в 9:41
Ответ для Макс Простов

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


?16 = 4
?19 ? 4,35
?13 ? 3,61

3 · 4 = 12
7 · 4,35 = 30,45
8 · 3,61 = 28,88

Ответ: 3?16, 8?13, 7?19

0
Спасибоthanks
Ответить


Содержание:

Квадратные корни

Уравнение х2 = 9 имеет два решения: 3 и -3. Говорят, что 3 и -3 — квадратные корни из числа 9.

Квадратным корнем из числа а называют число, I квадрат которого равен а.

Примеры:

Квадратными корнями из числа:

  • а) 1600 являются 40 и – 40, поскольку 402 = 1600 и (-40)2 = 1600;
  • б) 0,49 являются 0,7 и 0,7, поскольку 0,72 = 0,49 и (-0,7)2 = 0,49.

Среди известных вам чисел нет такого, квадрат которого был бы равен отрицательному числу, поэтому квадратного корня из отрицательного числа не существует.

Квадратный корень из числа 0 равен нулю. Квадратный корень из положительного числа имеет два значения: одно из них положительное, другое — противоположное ему отрицательное число.

Неотрицательное значение квадратного корня называют арифметическим значением этого корня.

Арифметическое значение квадратного корня из числа a обозначают символом Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Примечание. Символом Квадратные корни - определение и вычисление с примерами решения обозначают только арифметическое значение квадратного корня из числа а, хотя читается оно короче: «квадратный корень из числа а».

Вычисление арифметического значения квадратного корня называют извлечением квадратного корня.

Из небольших чисел, являющихся точными квадратами чисел, извлекать квадратные корни желательно устно.

а 1 4 9 16 25 36 49 64 81 100 121 144
Квадратные корни - определение и вычисление с примерами решения 1 2 3 4 5 6 7 8 9 10 11 12

Квадратные корни из больших натуральных чисел можно находить, пользуясь таблицей квадратов.

Например, Квадратные корни - определение и вычисление с примерами решения, Квадратные корни - определение и вычисление с примерами решения.

С помощью калькулятора можно извлекать квадратные корни с большей точностью. Например, чтобы извлечь квадратный корень из 1000, набираем это число, затем нажимаем клавишу Квадратные корни - определение и вычисление с примерами решения. На экране высвечивается число 31,622776.

Следовательно, Квадратные корни - определение и вычисление с примерами решения.

Если таким способом найти значение Квадратные корни - определение и вычисление с примерами решения , то на некоторых калькуляторах высвечиваются два числа: 5,9160797 и -2. Число -2 здесь показывает порядок искомого значения, записанного в стандартном виде. Следовательно,

Квадратные корни - определение и вычисление с примерами решения.

Хотите знать ещё больше?

Извлекать квадратные корни из натуральных чисел вавилонские учёные умели ещё 4 тыс. лет тому назад Они составили таблицу квадратов многих натуральных чисел и, пользуясь ею, находили квадратные корни. Если число m не было точным квадратом натурального числа, то они искали ближайшее приближённое значение а квадратного корня из m, представляли число m в виде m = а2 + b и применяли правило, которое сейчас можно записать в виде формулы Квадратные корни - определение и вычисление с примерами решения Например, если m = 108, то Квадратные корни - определение и вычисление с примерами решения.

Проверка. 10,42 = 108,16.

Это правило извлечения квадратных корней было известно и учёным Древней Греции.

Известны и другие алгоритмы извлечения квадратных корней, но теперь это удобнее делать с помощью калькулятора.

Квадратный корень из произведения, дроби, степени

Арифметический корень из а — неотрицательное значение квадратного корня из неотрицательного числа а. Поэтому для любого неотрицательного числа а выполняется тождество Квадратные корни - определение и вычисление с примерами решения .

Примеры:

Квадратные корни - определение и вычисление с примерами решения

Верны и такие тождества:

  1. Квадратные корни - определение и вычисление с примерами решения — для неотрицательных значений а и b;
  2. Квадратные корни - определение и вычисление с примерами решения — для неотрицательного а и положительного b;
  3. Квадратные корни - определение и вычисление с примерами решения– для неотрицательного а и натурального к.

Докажем эти тождества:

1. Если а и b — произвольные неотрицательные числа, то числа Квадратные корни - определение и вычисление с примерами решениятакже неотрицательные. Кроме того, Квадратные корни - определение и вычисление с примерами решения

Следовательно, Квадратные корни - определение и вычисление с примерами решения — неотрицательное число, квадрат которого равен ab, то есть Квадратные корни - определение и вычисление с примерами решения

2. Если Квадратные корни - определение и вычисление с примерами решения, то числа Квадратные корни - определение и вычисление с примерами решения неотрицательные, a Квадратные корни - определение и вычисление с примерами решения — положительное. Кроме того,

Квадратные корни - определение и вычисление с примерами решения

Следовательно, Квадратные корни - определение и вычисление с примерами решения неотрицательное число, квадрат которого равен Квадратные корни - определение и вычисление с примерами решения , то есть Квадратные корни - определение и вычисление с примерами решения

3. Если число а — неотрицательное, a k — натуральное, то числа Квадратные корни - определение и вычисление с примерами решения — неотрицательные. Кроме того,Квадратные корни - определение и вычисление с примерами решения. Следовательно, Квадратные корни - определение и вычисление с примерами решения— неотрицательный квадратный корень из Квадратные корни - определение и вычисление с примерами решения, то есть

Квадратные корни - определение и вычисление с примерами решения

Доказанные три теоремы кратко можно сформулировать так.

  1. Корень из произведения двух неотрицательных чисел равен произведению корней из этих чисел (теорема о корне из произведения).
  2. Корень из дроби, числитель которой неотрицательный, а знаменатель положительный, равен корню из числителя, делённому на корень из знаменателя (теорема о корне из дроби).
  3. Корень из степени a , в котором числа а — неотрицательное и k — натуральное, равен ст (теорема о корне из степени)

Примечание. Здесь под «корнем» понимают только квадратный арифметический корень.

Теорему о корне из произведения можно распространить на три множителя и более. Действительно, если числа а, b и с — неотрицательные, то Квадратные корни - определение и вычисление с примерами решения Если в доказанных тождествах поменять местами их левые и правые части, то получим:

Квадратные корни - определение и вычисление с примерами решения Эти тождества показывают, как можно умножать и делить корни. Например,

Квадратные корни - определение и вычисление с примерами решения

Из теоремы о корне из степени следует, что Квадратные корни - определение и вычисление с примерами решения, если Квадратные корни - определение и вычисление с примерами решения. Если а < 0, то равенство Квадратные корни - определение и вычисление с примерами решения – а неверное, поскольку число Квадратные корни - определение и вычисление с примерами решения неотрицательное и не может быть равным отрицательному числу а.

Равенство Квадратные корни - определение и вычисление с примерами решения верное при каждом значении а, поскольку число Квадратные корни - определение и вычисление с примерами решения — неотрицательное и его квадрат равен а2.

Примеры: Квадратные корни - определение и вычисление с примерами решения

Хотите знать ещё больше?

В сформулированных выше теоремах представлены только простейшие случаи преобразования арифметических значений квадратных корней: если все числа под корнями положительные или неотрицательные Но бывают и такие выражения, в которых под знаком корня — произведение либо частное двух отрицательных чисел. В этом случае можно использовать определения квадратного корня, арифметического значения квадратного корня и т. д.

Например, Квадратные корни - определение и вычисление с примерами решения Квадратные корни - определение и вычисление с примерами решения.

Квадратные корни - определение и вычисление с примерами решения

Из теоремы 3 несложно получить такое следствие.

Если натуральное число Квадратные корни - определение и вычисление с примерами решения — чётное, то для любых значений а выполняется тождество Квадратные корни - определение и вычисление с примерами решения

Ведь обе части этого равенства — числа неотрицательные, их квадраты – равны.

Выполним вместе!

Пример:

Найдите значение выражения: а) Квадратные корни - определение и вычисление с примерами решения ; б) Квадратные корни - определение и вычисление с примерами решения; в) Квадратные корни - определение и вычисление с примерами решения ; г) Квадратные корни - определение и вычисление с примерами решения.

Решение:

Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

О т в е т. а) 35; б) 1,2; в) 6; г) Квадратные корни - определение и вычисление с примерами решения

Преобразование выражений с корнями

Выражения с квадратными корнями можно складывать, вычитать, умножать, возводить в степень и делить (на делитель, отличный от нуля).

Примеры:

Квадратные корни - определение и вычисление с примерами решения

Рассмотрим и другие преобразования выражений с корнями.

Квадратные корни - определение и вычисление с примерами решения

Подобное преобразование называют вынесением множителя за знак корня. В последнем примере за знак корня вынесен множитель 10.

Преобразование, обратное вынесению множителя за знак корня, называют внесением множителя под знак корня. Квадратные корни - определение и вычисление с примерами решения

В атом примере под знак корня вносим множитель 0,3. Рассмотренные преобразования осуществляются на основании теоремы о корне из произведения.

Если знак корня находится в знаменателе дроби, то такую дробь можно заменить тождественной, знаменатель которой не имеет корней. Достаточно умножить члены дроби на соответствующее выражение. Например, Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Такие преобразования называют освобождением дроби от иррациональности в знаменателе.

Эти преобразования можно выполнять также с выражениями, содержащими переменные. Например,

Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Примечание. При вынесении переменной за знак корня необходимо помнить, что равенство Квадратные корни - определение и вычисление с примерами решения верно только при неотрицательных значениях а и с. Если Квадратные корни - определение и вычисление с примерами решения, то Квадратные корни - определение и вычисление с примерами решения. При любых действительных значениях а и неотрицательных с верно тождество: Квадратные корни - определение и вычисление с примерами решения.

Пример:

Вынесите множитель за знак корня: a) Квадратные корни - определение и вычисление с примерами решения

Решение:

а) Квадратные корни - определение и вычисление с примерами решения б) Квадратные корни - определение и вычисление с примерами решения Ответ. a) Квадратные корни - определение и вычисление с примерами решения; б) Квадратные корни - определение и вычисление с примерами решения.

При внесении переменной под знак корня следует помнить, что под корень можно вносить лишь положительные числа.

Пример:

Внесите множитель под знак корня: а) Квадратные корни - определение и вычисление с примерами решения; б) Квадратные корни - определение и вычисление с примерами решения

Решение:

а) Квадратные корни - определение и вычисление с примерами решения ; б) Квадратные корни - определение и вычисление с примерами решения Квадратные корни - определение и вычисление с примерами решения О т в е т. a) Квадратные корни - определение и вычисление с примерами решения ; б) Квадратные корни - определение и вычисление с примерами решения

Используя словосочетание «выражения с корнями», в этой главе мы будем говорить только о «выражениях с арифметическими квадратными корнями». Но в математике выражения с корнями имеют более широкий смысл поскольку корни бывают не только квадратные, но и кубические четвёртой, пятой …. n-й степеней. Корни из числа а таких степеней обозначают символами:

Квадратные корни - определение и вычисление с примерами решения

Выражения, содержащие любые из таких корней, называют выражениями с корнями, или иррациональными выражениями. Выражения с арифметическими квадратными корнями – это только часть иррациональных выражений (рис 45) .

Квадратные корни - определение и вычисление с примерами решения

Рис. 45 Раньше знаки корней Квадратные корни - определение и вычисление с примерами решения…, Квадратные корни - определение и вычисление с примерами решения называли радикалами, поэтому в некоторых публикациях иррациональные выражения до сих пор называют выражениями с радикалами.

Выполним вместе!

Пример:

Упростите выражение: а) Квадратные корни - определение и вычисление с примерами решения; б) Квадратные корни - определение и вычисление с примерами решения; в)Квадратные корни - определение и вычисление с примерами решения.

Решение:

a) Квадратные корни - определение и вычисление с примерами решения . б) Квадратные корни - определение и вычисление с примерами решения;

в) Квадратные корни - определение и вычисление с примерами решения. О т в е т. a) Квадратные корни - определение и вычисление с примерами решения ; б)16; в) 9.

Пример:

Разложите на множители выражение: a) Квадратные корни - определение и вычисление с примерами решения ; б) Квадратные корни - определение и вычисление с примерами решения ; в) Квадратные корни - определение и вычисление с примерами решения.

Решение:

а) Квадратные корни - определение и вычисление с примерами решения; б) Квадратные корни - определение и вычисление с примерами решения; в) если а — число положительное, то Квадратные корни - определение и вычисление с примерами решения . Поэтому

Квадратные корни - определение и вычисление с примерами решения

Ответ, a) Квадратные корни - определение и вычисление с примерами решения; б) Квадратные корни - определение и вычисление с примерами решения; в) Квадратные корни - определение и вычисление с примерами решения.

Пример:

Освободитесь от иррациональности в знаменателе дроби:

а) Квадратные корни - определение и вычисление с примерами решения; б) Квадратные корни - определение и вычисление с примерами решения;

Решение:

а) Квадратные корни - определение и вычисление с примерами решения ; б) Квадратные корни - определение и вычисление с примерами решения

Ответ. а)Квадратные корни - определение и вычисление с примерами решения ; б) Квадратные корни - определение и вычисление с примерами решения.

ИСТОРИЧЕСКИЕ СВЕДЕНИЯ

Квадратные корни из чисел вавилонские математики умели вычислять ещё 4 тыс. лет тому назад. Находили даже приближённые значения квадратных корней, пользуясь правилом, которое теперь можно записать (при небольших значениях с) в виде приближённого равенства:

Квадратные корни - определение и вычисление с примерами решения В XIII в. европейские математики предложили сокращённое обозначение корня. Вместо нынешнего Квадратные корни - определение и вычисление с примерами решения писали R12 (от латинского Radix — корень). Позднее вместо R стали писать знак V, например V7, V(a + b). Затем над многочленом за корнем добавили черту: Квадратные корни - определение и вычисление с примерами решения. Р. Декарт (1596 -1650) соединил знак корня с чертой, после чего запись приобрела современный вид: Квадратные корни - определение и вычисление с примерами решения . Действительные числа входили в математику непросто. Учёные античного мира не предполагали, что кроме целых и дробных могут быть и другие числа. Хотя Пифагор (VI в. до и. э.) и его ученики доказали: если длина стороны квадрата равна 1, то длину его диагонали нельзя выразить ни одним рациональным числом. Таким образом, они выяснили, что существуют отрезки, длины которых не выражаются рациональными числами, но при этом иррациональных чисел не ввели. Математики Индии и Среднего Востока пользовались иррациональными числами, но считали их ненастоящими, неправильными, «глухими». И только когда Р. Декарт предложил каждой точке координатной прямой поставить в соответствие число, иррациональные числа объединили с рациональными во множество действительных чисел. Строгая теория действительных чисел появилась лишь в XIX в. В 8 классе изучают не все действительные числа. Кроме квадратных существуют корни третьей, четвёртой и высших степеней, например Квадратные корни - определение и вычисление с примерами решения, Квадратные корни - определение и вычисление с примерами решения, Квадратные корни - определение и вычисление с примерами решения . С такими действительными числами вы ознакомитесь в старших классах.

ОСНОВНОЕ В ГЛАВЕ

Квадратным корнем из числа а называют число, квадрат которого равен а. Например, число 16 имеет два квадратных корня: 4 и -4. Неотрицательное значение квадратного корня из числа а называют арифметическим значением корня я обозначают символом Квадратные корни - определение и вычисление с примерами решения . Свойства квадратных корней. Если а > 0 и b > 0, то

Квадратные корни - определение и вычисление с примерами решения

Для любого действительного Квадратные корни - определение и вычисление с примерами решения. Значения многих квадратных корней — числа не рациональные, а иррациональные. Числа целые и дробные, положительные, отрицательные и нуль вместе составляют множество рациональных чисел. Каждое рациональное число можно записать в виде дроби Квадратные корни - определение и вычисление с примерами решения , где Квадратные корни - определение и вычисление с примерами решения — число целое, а n— натуральное. Любое рациональное число можно представить в виде бесконечной периодической десятичной дроби. А любая бесконечная периодическая десятичная дробь изображает некоторое рациональное число. Примеры: Квадратные корни - определение и вычисление с примерами решения = 0,6666…, Квадратные корни - определение и вычисление с примерами решения=1,181818…. Числа, которые можно представить в виде бесконечных непериодических десятичных дробей, называют иррациональными. Примеры иррациональных чисел: Квадратные корни - определение и вычисление с примерами решения = 1,4142136…, Квадратные корни - определение и вычисление с примерами решения = 3,1415927… . Иррациональные числа вместе с рациональными образуют множество действительных чисел. Множества натуральных, целых, рациональных и действительных чисел обозначают соответственно буквами N, Z, Q, R (см. рис. 41). Действительные числа можно складывать, вычитать, умножать, возводить в степень и делить (на числа, отличные от нуля). Для сложения и умножения произвольных действительных чисел верны переместительный, сочетательный и распределительный законы: а + b = b + а, ab=ba, a + (b + c) = (a + b) + c, a . (bc) = (ab) . c, (a + b) с = ас +bс.

Квадратные корни. Арифметический квадратный корень

Рассмотрим квадрат, площадь которого равна 49 квадратным единицам. Пусть длина его стороны составляет Квадратные корни - определение и вычисление с примерами решения единиц. Тогда уравнение Квадратные корни - определение и вычисление с примерами решения можно рассматривать как математическую модель задачи о нахождении стороны квадрата, площадь которого равна 49 квадратным единицам.

Корнями этого уравнения являются числа 7 и —7. Говорят, что числа 7 и —7 являются квадратными корнями из числа 49.

Определение: Квадратным корнем из числа Квадратные корни - определение и вычисление с примерами решения называют число, квадрат которого равен Квадратные корни - определение и вычисление с примерами решения

Приведем несколько примеров.

Квадратными корнями из числа 9 являются числа 3 и —3. Действительно, Квадратные корни - определение и вычисление с примерами решения

Квадратными корнями из числа Квадратные корни - определение и вычисление с примерами решения являются числа Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения

Действительно, Квадратные корни - определение и вычисление с примерами решения

Квадратным корнем из числа 0 является только число 0. Действительно, существует лишь одно число, квадрат которого равен нулю, — это число 0.

Поскольку не существует числа, квадрат которого равен отрицательному числу, то квадратного корня из отрицательного числа не существует.

Положительный корень уравнения Квадратные корни - определение и вычисление с примерами решения число 7, является ответом в задаче о нахождении стороны квадрата, площадь которого равна 49 квадратным единицам. Это число называют арифметическим квадратным корнем из числа 49.

Определение: Арифметическим квадратным корнем из числа Квадратные корни - определение и вычисление с примерами решения называют неотрицательное число, квадрат которого равен Квадратные корни - определение и вычисление с примерами решения.

Арифметический квадратный корень из числа Квадратные корни - определение и вычисление с примерами решения обозначают Квадратные корни - определение и вычисление с примерами решения Знак Квадратные корни - определение и вычисление с примерами решенияназывают знаком квадратного корня или радикалом (от лат. radix — корень).

Запись Квадратные корни - определение и вычисление с примерами решения читают: «квадратный корень из Квадратные корни - определение и вычисление с примерами решения», опуская при чтении слово «арифметический».

Выражение, стоящее под радикалом, называют подкоренным выражением. Например, в записи Квадратные корни - определение и вычисление с примерами решения двучлен Квадратные корни - определение и вычисление с примерами решения является подкоренным выражением. Из определения арифметического квадратного корня следует, что подкоренное выражение может принимать только неотрицательные значения.

Действие нахождения арифметического квадратного корня из числа называют извлечением квадратного корня.

Рассмотрим несколько примеров:

Квадратные корни - определение и вычисление с примерами решения так как Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения так как Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения так как Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения

Вообще, равенство Квадратные корни - определение и вычисление с примерами решения выполняется при условии, что Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения

Этот вывод можно представить в другой форме: для любого неотрицательного числа Квадратные корни - определение и вычисление с примерами решения справедливо, что Квадратные корни - определение и вычисление с примерами решения а Квадратные корни - определение и вычисление с примерами решения

Например, Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения

Подчеркнем, что к понятию квадратного корня мы пришли, решая уравнение вида Квадратные корни - определение и вычисление с примерами решения где Квадратные корни - определение и вычисление с примерами решения Корни этого уравнения — числа, каждое из которых является квадратным корнем из числа Квадратные корни - определение и вычисление с примерами решения

Поиск корней уравнения Квадратные корни - определение и вычисление с примерами решения проиллюстрируем, решив графически уравнение Квадратные корни - определение и вычисление с примерами решения

В одной системе координат построим графики функций Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения (рис. 17). Точки пересечения этих графиков имеют абсциссы 2 и —2, которые и являются корнями данного уравнения.

Квадратные корни - определение и вычисление с примерами решения

Уравнение Квадратные корни - определение и вычисление с примерами решения при Квадратные корни - определение и вычисление с примерами решения не имеет корней, что подтверждается графически: графики функций Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения при Квадратные корни - определение и вычисление с примерами решения общих точек не имеют (рис. 18).

При Квадратные корни - определение и вычисление с примерами решения уравнение Квадратные корни - определение и вычисление с примерами решения имеет единственный корень Квадратные корни - определение и вычисление с примерами решения что также подтверждается графически: графики функций Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения имеют только одну общую точку (рис. 18).

Графический метод также позволяет сделать следующий вывод: если Квадратные корни - определение и вычисление с примерами решения то уравнение Квадратные корни - определение и вычисление с примерами решения имеет два корня. Действительно, парабола Квадратные корни - определение и вычисление с примерами решения и прямая Квадратные корни - определение и вычисление с примерами решения где Квадратные корни - определение и вычисление с примерами решения имеют две общие точки (рис. 18). При этом корнями уравнения Квадратные корни - определение и вычисление с примерами решения являются числа Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения Действительно, Квадратные корни - определение и вычисление с примерами решения

Например, уравнение Квадратные корни - определение и вычисление с примерами решения имеет два корня: Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения

Пример:

Найдите значение выражения Квадратные корни - определение и вычисление с примерами решения

Решение:

Применив правило возведения произведения в степень и тождество Квадратные корни - определение и вычисление с примерами решения получим:

Квадратные корни - определение и вычисление с примерами решения

Пример:

Решите уравнение: Квадратные корни - определение и вычисление с примерами решения

Решение:

1) Имеем: Квадратные корни - определение и вычисление с примерами решения Тогда Квадратные корни - определение и вычисление с примерами решения

Ответ: 36.

2) Квадратные корни - определение и вычисление с примерами решения

Ответ: 7.

Пример:

Решите уравнение Квадратные корни - определение и вычисление с примерами решения

Решение:

Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения или Квадратные корни - определение и вычисление с примерами решения Квадратные корни - определение и вычисление с примерами решения или Квадратные корни - определение и вычисление с примерами решения

Ответ: 1; 9. ▲

Пример:

Решите уравнение Квадратные корни - определение и вычисление с примерами решения

Решение:

Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения или Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения или Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения или Квадратные корни - определение и вычисление с примерами решения

Ответ: Квадратные корни - определение и вычисление с примерами решения

Пример:

При каких значениях Квадратные корни - определение и вычисление с примерами решения имеет смысл выражение: Квадратные корни - определение и вычисление с примерами решения

Решение:

1) Выражение Квадратные корни - определение и вычисление с примерами решения имеет смысл, если подкоренное выражение Квадратные корни - определение и вычисление с примерами решения принимает неотрицательные значения. Подкоренное выражение является произведением двух множителей, один из которых — отрицательное число. Следовательно, это произведение будет принимать неотрицательные значения, если другой множитель Квадратные корни - определение и вычисление с примерами решения будет принимать неположительные значения.

Ответ: при Квадратные корни - определение и вычисление с примерами решения

2) Данное выражение имеет смысл, если выполняются два условия: имеет смысл выражение Квадратные корни - определение и вычисление с примерами решения и знаменатель Квадратные корни - определение и вычисление с примерами решения отличен от нуля. Следовательно, должны одновременно выполняться два условия: Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения Отсюда Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения

Ответ: при Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения

Пример:

Решите уравнение: Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Решение:

1) Левая часть данного уравнения имеет смысл, если подкоренные выражения Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения одновременно принимают неотрицательные значения. Из того, что первое подкоренное выражение должно быть неотрицательным, получаем: Квадратные корни - определение и вычисление с примерами решения тогда Квадратные корни - определение и вычисление с примерами решения Однако если Квадратные корни - определение и вычисление с примерами решения то второе подкоренное выражение, Квадратные корни - определение и вычисление с примерами решения принимает только отрицательные значения. Следовательно, левая часть данного уравнения не имеет смысла.

Ответ: корней нет.

2) Левая часть данного уравнения является суммой двух слагаемых, каждое из которых может принимать только неотрицательные значения. Тогда их сумма будет равна нулю, если каждое из слагаемых равно нулю. Следовательно, одновременно должны выполняться два условия: Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения Это означает, что надо найти общие корни полученных уравнений, то есть решить систему уравнений

Имеем, Квадратные корни - определение и вычисление с примерами решения

Решением последней системы, а значит, и исходного уравнения, является число 2.

Ответ: 2.

3) Используя условие равенства произведения нулю, получаем:

Квадратные корни - определение и вычисление с примерами решения или Квадратные корни - определение и вычисление с примерами решения Квадратные корни - определение и вычисление с примерами решения или Квадратные корни - определение и вычисление с примерами решения

Однако при Квадратные корни - определение и вычисление с примерами решения выражение Квадратные корни - определение и вычисление с примерами решения не имеет смысла. Следовательно, данное уравнение имеет единственный корень — число 2.

Ответ: 2.

Свойства арифметического квадратного корня

Легко проверить, что Квадратные корни - определение и вычисление с примерами решения Может показаться, что при любом значении а выполняется равенство Квадратные корни - определение и вычисление с примерами решения Однако это не так. Например, равенство Квадратные корни - определение и вычисление с примерами решения является ошибочным, поскольку Квадратные корни - определение и вычисление с примерами решения На самом деле Квадратные корни - определение и вычисление с примерами решения Также можно убедиться, что, например,

Квадратные корни - определение и вычисление с примерами решения

Вообще, справедлива следующая теорема.

Теорема: Для любого действительного числа а выполняется равенство

Квадратные корни - определение и вычисление с примерами решения

Доказательство: Для того чтобы доказать равенство Квадратные корни - определение и вычисление с примерами решения надо показать, что Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения

Имеем: Квадратные корни - определение и вычисление с примерами решения при любом Квадратные корни - определение и вычисление с примерами решения

Также из определения модуля следует, что Квадратные корни - определение и вычисление с примерами решения

Следующая теорема обобщает доказанный факт.

Теорема: (арифметический квадратный корень из степени). Для любого действительного числа Квадратные корни - определение и вычисление с примерами решения и любого натурального числа Квадратные корни - определение и вычисление с примерами решения выполняется равенство

Квадратные корни - определение и вычисление с примерами решения

Доказательство этой теоремы аналогично доказательству теоремы 15.1. Проведите это доказательство самостоятельно.

Теорема: (арифметический квадратный корень из произведения). Для любых действительных чисел Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения таких, что Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения выполняется равенство

Квадратные корни - определение и вычисление с примерами решения

Доказательство: Имеем: Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения Тогда Квадратные корни - определение и вычисление с примерами решения Кроме того, Квадратные корни - определение и вычисление с примерами решения

Следовательно, выражение Квадратные корни - определение и вычисление с примерами решения принимает только неотрицательные значения, и его квадрат равен Квадратные корни - определение и вычисление с примерами решения

Эту теорему можно обобщить для произведения трех и более множителей. Например, если Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения то

Квадратные корни - определение и вычисление с примерами решения

Теорема: (арифметический квадратный корень из дроби). Для любых действительных чисел Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения таких, что Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения выполняется равенство

Квадратные корни - определение и вычисление с примерами решения

Доказательство этой теоремы аналогично доказательству теоремы 15.3. Проведите это доказательство самостоятельно.

Понятно, что из двух квадратов с площадями Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения (рис. 27) большую сторону имеет тот, у которого площадь больше, то есть если Квадратные корни - определение и вычисление с примерами решения то Квадратные корни - определение и вычисление с примерами решения Это очевидное соображение иллюстрирует такое свойство арифметического квадратного корня: для любых неотрицательных чисел Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения таких, что Квадратные корни - определение и вычисление с примерами решения выполняется неравенство Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Пример:

Найдите значение выражения: Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Решение:

Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Пример:

Найдите значение выражения: Квадратные корни - определение и вычисление с примерами решения

Решение:

1) Заменив произведение корней корнем из произведения, получим:

Квадратные корни - определение и вычисление с примерами решения

2) Заменив частное корней корнем из частного (дроби), получим:

Квадратные корни - определение и вычисление с примерами решения

Пример:

Упростите выражение: Квадратные корни - определение и вычисление с примерами решения если Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения если Квадратные корни - определение и вычисление с примерами решения

Решение:

1) По теореме об арифметическом квадратном корне из степени имеем:

Квадратные корни - определение и вычисление с примерами решения

2) Имеем: Квадратные корни - определение и вычисление с примерами решения Поскольку по условию Квадратные корни - определение и вычисление с примерами решения то Квадратные корни - определение и вычисление с примерами решения Тогда

Квадратные корни - определение и вычисление с примерами решения

3) Имеем: Квадратные корни - определение и вычисление с примерами решенияПоскольку по условию Квадратные корни - определение и вычисление с примерами решения то Квадратные корни - определение и вычисление с примерами решения Поскольку Квадратные корни - определение и вычисление с примерами решения то Квадратные корни - определение и вычисление с примерами решения Следовательно,

Квадратные корни - определение и вычисление с примерами решения

4) Имеем: Квадратные корни - определение и вычисление с примерами решения Поскольку Квадратные корни - определение и вычисление с примерами решения то Квадратные корни - определение и вычисление с примерами решения

Пример:

Найдите значение выражения: Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Решение:

1) Преобразовав подкоренное выражение по формуле разности квадратов, получаем:

Квадратные корни - определение и вычисление с примерами решения

Пример:

Постройте график функции Квадратные корни - определение и вычисление с примерами решения

Решение:

Поскольку Квадратные корни - определение и вычисление с примерами решения то Квадратные корни - определение и вычисление с примерами решения

Если Квадратные корни - определение и вычисление с примерами решения то Квадратные корни - определение и вычисление с примерами решения

Если Квадратные корни - определение и вычисление с примерами решения то Квадратные корни - определение и вычисление с примерами решения

Следовательно, Квадратные корни - определение и вычисление с примерами решения

График функции изображен на рисунке 28.

Квадратные корни - определение и вычисление с примерами решения

Тождественные преобразования выражений, содержащих квадратные корни

Пользуясь теоремой об арифметическом квадратном корне из произведения, преобразуем выражение Квадратные корни - определение и вычисление с примерами решения Имеем: Квадратные корни - определение и вычисление с примерами решения Выражение Квадратные корни - определение и вычисление с примерами решения мы представили в виде произведения рационального числа 4 и иррационального числа Квадратные корни - определение и вычисление с примерами решения Такое преобразование называют вынесением множителя из-под знака корня. В данном случае был вынесен из-под знака корня множитель 4. Рассмотрим выполненное преобразование в обратном порядке:

Квадратные корни - определение и вычисление с примерами решения

Такое преобразование называют внесением множителя под знак корня. В данном случае был внесен под знак корня множитель 4.

Пример:

Вынесите множитель из-под знака корня: Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения если Квадратные корни - определение и вычисление с примерами решения

Решение:

1) Представим число, стоящее под знаком корня, в виде произведения двух чисел, одно из которых является квадратом рационального числа:

Квадратные корни - определение и вычисление с примерами решения

2) Квадратные корни - определение и вычисление с примерами решения

3) Поскольку подкоренное выражение должно быть неотрицательным, то из условия следует, что Квадратные корни - определение и вычисление с примерами решения Тогда

Квадратные корни - определение и вычисление с примерами решения

4) Из условия следует, что Квадратные корни - определение и вычисление с примерами решения Тогда

Квадратные корни - определение и вычисление с примерами решения

5) Из условия следует, что Квадратные корни - определение и вычисление с примерами решения Поскольку подкоренное выражение должно быть неотрицательным, то получаем, что Квадратные корни - определение и вычисление с примерами решения Тогда

Квадратные корни - определение и вычисление с примерами решения

Пример:

Внесите множитель под знак корня: Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Решение:

Квадратные корни - определение и вычисление с примерами решения

2) Если Квадратные корни - определение и вычисление с примерами решения то Квадратные корни - определение и вычисление с примерами решения если Квадратные корни - определение и вычисление с примерами решения то Квадратные корни - определение и вычисление с примерами решенияКвадратные корни - определение и вычисление с примерами решения

3) Из условия следует, что Квадратные корни - определение и вычисление с примерами решения Тогда Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

4) Из условия следует, что Квадратные корни - определение и вычисление с примерами решения Тогда Квадратные корни - определение и вычисление с примерами решения

Пример:

Упростите выражение:

Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Решение:

1) Имеем:

Квадратные корни - определение и вычисление с примерами решения

2) Квадратные корни - определение и вычисление с примерами решения

3) Применяя формулы сокращенного умножения (квадрат двучлена и произведение разности и суммы двух выражений), получим:

Квадратные корни - определение и вычисление с примерами решения

Пример:

Разложите на множители выражение: Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения если Квадратные корни - определение и вычисление с примерами решения

Решение:

1) Представив данное выражение в виде разности квадратов, получим:

Квадратные корни - определение и вычисление с примерами решения

2) Поскольку по условию Квадратные корни - определение и вычисление с примерами решения то Квадратные корни - определение и вычисление с примерами решения

3) Применим формулу квадрата разности:

Квадратные корни - определение и вычисление с примерами решения

4) Имеем: Квадратные корни - определение и вычисление с примерами решения

5) Квадратные корни - определение и вычисление с примерами решения

6) Квадратные корни - определение и вычисление с примерами решения

Пример:

Сократите дробь: Квадратные корни - определение и вычисление с примерами решения

если Квадратные корни - определение и вычисление с примерами решения

Решение:

1) Разложив числитель данной дроби на множители, получаем:

Квадратные корни - определение и вычисление с примерами решения

2) Квадратные корни - определение и вычисление с примерами решения

3) Поскольку по условию Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения то числитель и знаменатель данной дроби можно разложить на множители и полученную дробь сократить:

Квадратные корни - определение и вычисление с примерами решения

Освободиться от иррациональности в знаменателе дроби означает преобразовать дробь так, чтобы ее знаменатель не содержал квадратного корня.

Пример:

Освободитесь от иррациональности в знаменателе дроби: Квадратные корни - определение и вычисление с примерами решения

Решение:

1) Умножив числитель и знаменатель данной дроби на Квадратные корни - определение и вычисление с примерами решения получаем:

Квадратные корни - определение и вычисление с примерами решения

2) Умножив числитель и знаменатель данной дроби на выражение Квадратные корни - определение и вычисление с примерами решенияполучаем:

Квадратные корни - определение и вычисление с примерами решения

Пример:

Докажите тождество

Квадратные корни - определение и вычисление с примерами решения

Решение:

Квадратные корни - определение и вычисление с примерами решения

Пример:

Упростите выражение Квадратные корни - определение и вычисление с примерами решения

Решение:

Представив подкоренное выражение в виде квадрата суммы, получаем:

Квадратные корни - определение и вычисление с примерами решения

Растут ли в огороде радикалы?

В Древней Греции действие извлечения корня отождествляли с поиском стороны квадрата по его площади, а сам квадратный корень называли «стороной».

В Древней Индии слово «мула» означало «начало», «основание», «корень дерева». Это же слово стали употреблять и по отношению к стороне квадрата, возможно, исходя из такой ассоциации: из стороны квадрата, как из корня, вырастает сам квадрат. Вероятно, поэтому в латинском языке понятия «сторона» и «корень» выражаются одним и тем же словом — radix. От этого слова произошел термин «радикал».

Слово radix можно также перевести как «редис», то есть корнеплод — часть растения — видоизмененный корень, который может являться съедобным.

В XIII-XV вв. европейские математики, сокращая слово radix, обозначали квадратный корень знаками Квадратные корни - определение и вычисление с примерами решения Например, запись Квадратные корни - определение и вычисление с примерами решения имела следующий вид: Квадратные корни - определение и вычисление с примерами решения.

В XVI в. стали использовать знак Квадратные корни - определение и вычисление с примерами решения Происхождение этого символа, по-видимому, связано с рукописным начертанием латинской буквы Квадратные корни - определение и вычисление с примерами решения

В XVII в. выдающийся французский математик Рене Декарт, соединив знак Квадратные корни - определение и вычисление с примерами решения с горизонтальной черточкой, получил символ Рене Декарт Квадратные корни - определение и вычисление с примерами решения который мы и используем сегодня. (1596-1650)

Множество и его элементы. Подмножество

Мы часто говорим: стадо баранов, букет цветов, коллекция марок, косяк рыб, стая птиц, рой пчел, собрание картин, набор ручек, компания друзей.

Если в этих парах перемешать первые слова, то может получиться смешно: букет баранов, косяк картин, стадо друзей. В то же время такие словосочетания, как коллекция рыб, коллекция птиц, коллекция картин, коллекция ручек и т. д., вполне приемлемы. Дело в том, что слово «коллекция» достаточно универсальное. Однако в математике есть термин, которым можно заменить любое из первых слов в данных парах. Это слово множество.

Приведем еще несколько примеров множеств:

Отдельным важнейшим множествам присвоены общепринятые названия и обозначения:

Как правило, множества обозначают прописными буквами латинского алфавита: Квадратные корни - определение и вычисление с примерами решения и т. д.

Объекты, составляющие данное множество, называют элементами этого множества. Обычно элементы обозначают строчными буквами латинского алфавита: Квадратные корни - определение и вычисление с примерами решения и т. д.

Если Квадратные корни - определение и вычисление с примерами решения — элемент множества Квадратные корни - определение и вычисление с примерами решения то пишут: Квадратные корни - определение и вычисление с примерами решения (читают: «Квадратные корни - определение и вычисление с примерами решенияпринадлежит множеству Квадратные корни - определение и вычисление с примерами решения»). Если Квадратные корни - определение и вычисление с примерами решения не является элементом множества Квадратные корни - определение и вычисление с примерами решения, то пишут: Квадратные корни - определение и вычисление с примерами решения (читают: «Квадратные корни - определение и вычисление с примерами решения не принадлежит множеству Квадратные корни - определение и вычисление с примерами решения»).

Если множество Квадратные корни - определение и вычисление с примерами решения состоит из трех элементов Квадратные корни - определение и вычисление с примерами решения то пишут: Квадратные корни - определение и вычисление с примерами решения

Если Квадратные корни - определение и вычисление с примерами решения — множество натуральных делителей числа 6, то пишут: Квадратные корни - определение и вычисление с примерами решения Множество делителей числа 6, являющихся составными числами, имеет следующий вид: {6}. Это пример одноэлементного множества.

Задавать множество с помощью фигурных скобок, в которых указан список его элементов, удобно в тех случаях, когда множество состоит из небольшого количества элементов.

Определение: Два множества Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения называют равными, если они состоят из одних и тех же элементов, то есть каждый элемент множества Квадратные корни - определение и вычисление с примерами решения принадлежит множеству Квадратные корни - определение и вычисление с примерами решения и, наоборот, каждый элемент множества В принадлежит множеству Квадратные корни - определение и вычисление с примерами решения.

Если множества Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения равны, то пишут: Квадратные корни - определение и вычисление с примерами решения

Из определения следует, что множество однозначно определяется своими элементами. Если множество записано с помощью фигурных скобок, то порядок, в котором выписаны его элементы, не имеет значения. Так, для множества, состоящего из трех элементов Квадратные корни - определение и вычисление с примерами решения существует шесть вариантов его записи:

Квадратные корни - определение и вычисление с примерами решения

Поскольку из определения равных множеств следует, что, например, Квадратные корни - определение и вычисление с примерами решения то в дальнейшем будем рассматривать множества, состоящие из разных элементов. Так, множество букв слова «космодром» имеет вид {к, о, с, м, д, р}.

Заметим, что Квадратные корни - определение и вычисление с примерами решения Действительно, множество Квадратные корни - определение и вычисление с примерами решения состоит из одного элемента и; множество Квадратные корни - определение и вычисление с примерами решения состоит из одного элемента — множества Квадратные корни - определение и вычисление с примерами решения.

Чаще всего множество задают одним из следующих двух способов.

Первый способ состоит в том, что множество задают указанием (перечислением) всех его элементов. Мы уже использовали этот способ, записывая множество с помощью фигурных скобок, в которых указывали список его элементов. Ясно, что не всякое множество можно задать таким способом. Например, множество четных чисел так задать невозможно.

Второй способ состоит в том, что указывают характеристическое свойство элементов множества, то есть свойство, которым обладают все элементы данного множества и только они. Например, свойство «натуральное число при делении на 2 дает в остатке 1» задает множество нечетных чисел.

Если задавать множество характеристическим свойством его элементов, то может оказаться, что ни один объект этим свойством не обладает.

Обратимся к примерам.

Приведенные примеры указывают на то, что удобно к совокупности множеств отнести еще одно особенное множество, не содержащее ни одного элемента. Его называют пустым множеством и обозначают символом Квадратные корни - определение и вычисление с примерами решения

Заметим, что множество Квадратные корни - определение и вычисление с примерами решения не является пустым. Оно содержит один элемент — пустое множество.

Рассмотрим множество цифр десятичной системы счисления: Квадратные корни - определение и вычисление с примерами решения Выделим из множества его элементы, являющиеся четными цифрами. Получим множество Квадратные корни - определение и вычисление с примерами решенияКвадратные корни - определение и вычисление с примерами решения все элементы которого являются элементами множества Квадратные корни - определение и вычисление с примерами решения

Определение: Множество Квадратные корни - определение и вычисление с примерами решения называют подмножеством множества Квадратные корни - определение и вычисление с примерами решения если каждый элемент множества Квадратные корни - определение и вычисление с примерами решения является элементом множества Квадратные корни - определение и вычисление с примерами решения

Это записывают так: Квадратные корни - определение и вычисление с примерами решения или Квадратные корни - определение и вычисление с примерами решения (читают: «множество Квадратные корни - определение и вычисление с примерами решения является подмножеством множества Квадратные корни - определение и вычисление с примерами решения» или «множество Квадратные корни - определение и вычисление с примерами решения содержит множество Квадратные корни - определение и вычисление с примерами решения»).

Рассмотрим примеры:

Для иллюстрации соотношений между множествами пользуются схемами, которые называют диаграммами Эйлера.

На рисунке 20 изображены множество Квадратные корни - определение и вычисление с примерами решения (больший круг) и множество Квадратные корни - определение и вычисление с примерами решения (меньший круг, содержащийся в большем). Эта схема означает, что Квадратные корни - определение и вычисление с примерами решения (или Квадратные корни - определение и вычисление с примерами решения).

Из определений подмножества и равенства множеств следует, что если Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения то Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Если в множестве Квадратные корни - определение и вычисление с примерами решения нет элемента, не принадлежащего множеству А, то множество Квадратные корни - определение и вычисление с примерами решения является подмножеством множества Квадратные корни - определение и вычисление с примерами решения. В силу этих соображений пустое множество считают подмножеством любого множества. Действительно, пустое множество не содержит ни одного элемента, следовательно, в нем нет элемента, который не принадлежит данному множеству Квадратные корни - определение и вычисление с примерами решения. Поэтому для любого множества Квадратные корни - определение и вычисление с примерами решения справедливо утверждение: Квадратные корни - определение и вычисление с примерами решения

Любое множество Квадратные корни - определение и вычисление с примерами решения является подмножеством самого себя, то есть Квадратные корни - определение и вычисление с примерами решения

  • Заказать решение задач по высшей математике

Пример:

Выпишите все подмножества множества Квадратные корни - определение и вычисление с примерами решения

Решение:

Имеем: Квадратные корни - определение и вычисление с примерами решения

Числовые множества

Натуральные числа — это первые числа, которыми начали пользоваться люди. С ними вы ознакомились в детстве, когда учились считать предметы. Все натуральные числа образуют множество натуральных чисел, которое обозначают буквой Квадратные корни - определение и вычисление с примерами решения

Практические потребности людей привели к возникновению дробных чисел. Позже появилась необходимость рассматривать величины, для характеристики которых положительных чисел оказалось недостаточно. Так возникли отрицательные числа.

Все натуральные числа, противоположные им числа и число нуль образуют множество целых чисел, которое обозначают буквой Квадратные корни - определение и вычисление с примерами решения

Например, Квадратные корни - определение и вычисление с примерами решения

Множество натуральных чисел является подмножеством множества целых чисел, то есть Квадратные корни - определение и вычисление с примерами решения

Целые и дробные (как положительные, так и отрицательные) числа образуют множество рациональных чисел, которое обозначают буквой Квадратные корни - определение и вычисление с примерами решения Например, Квадратные корни - определение и вычисление с примерами решения

Понятно, что Квадратные корни - определение и вычисление с примерами решения Схема, изображенная на рисунке 21, показывает, как соотносятся множества Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Каждое рациональное число можно представить в виде отношения Квадратные корни - определение и вычисление с примерами решения где Квадратные корни - определение и вычисление с примерами решения — целое число, а Квадратные корни - определение и вычисление с примерами решения — натуральное. Например,

Квадратные корни - определение и вычисление с примерами решенияКвадратные корни - определение и вычисление с примерами решения

С возможностью такого представления связано название «рациональное число»: одним из значений латинского слова ratio является «отношение».

В 6 классе вы узнали, что каждое рациональное число можно представить в виде конечной десятичной дроби или в виде бесконечной периодической десятичной дроби. Для дроби Квадратные корни - определение и вычисление с примерами решения такое представление можно получить, выполнив деление числа Квадратные корни - определение и вычисление с примерами решения на число Квадратные корни - определение и вычисление с примерами решения уголком.

Например, Квадратные корни - определение и вычисление с примерами решения

Число Квадратные корни - определение и вычисление с примерами решения записано в виде конечной десятичной дроби, а число Квадратные корни - определение и вычисление с примерами решения в виде бесконечной периодической десятичной дроби. В записи 0,454545… цифры 4 и 5 периодически повторяются. Повторяющуюся группу цифр называют периодом дроби и записывают в круглых скобках. В данном случае период дроби составляет 45, а дробь Квадратные корни - определение и вычисление с примерами решения записывают так: Квадратные корни - определение и вычисление с примерами решения

Заметим, что любую конечную десятичную дробь и любое целое число можно представить в виде бесконечной периодической десятичной дроби. Например,

Квадратные корни - определение и вычисление с примерами решения

Следовательно, каждое рациональное число можно представить в виде бесконечной периодической десятичной дроби.

Справедливо и такое утверждение: каждая бесконечная периодическая десятичная дробь является записью некоторого рационального числа.

В 9 классе вы научитесь записывать бесконечную периодическую десятичную дробь в виде обыкновенной дроби.

Сумма и произведение двух натуральных чисел являются натуральными числами. Однако разность натуральных чисел не всегда обладает таким свойством. Например, Квадратные корни - определение и вычисление с примерами решения

Сумма, разность, произведение двух целых чисел являются целыми числами. Однако частное целых чисел не всегда обладает таким свойством. Например, Квадратные корни - определение и вычисление с примерами решения

Сумма, разность, произведение и частное (кроме деления на нуль) двух рациональных чисел являются рациональными числами.

Итак, действие вычитания натуральных чисел может вывести результат за пределы множества Квадратные корни - определение и вычисление с примерами решениядействие деления целых чисел — за пределы множества Квадратные корни - определение и вычисление с примерами решения однако выполнение любого из четырех арифметических действий с рациональными числами не выводит результат за пределы множества Квадратные корни - определение и вычисление с примерами решения

Вы ознакомились с новым действием — извлечением квадратного корня. Возникает естественный вопрос: всегда ли квадратный корень из неотрицательного рационального числа является рациональным числом? Иными словами, может ли действие извлечения квадратного корня из рационального числа вывести результат за пределы множества Квадратные корни - определение и вычисление с примерами решения

Рассмотрим уравнение Квадратные корни - определение и вычисление с примерами решения Поскольку Квадратные корни - определение и вычисление с примерами решения то это уравнение имеет два корня: Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения (рис. 22). Однако не существует рационального числа, квадрат которого равен 2 (доказательство этого факта вы можете найти в рубрике «Когда сделаны уроки» в рассказе «Открытие иррациональности»), то есть числа Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения не являются рациональными. Эти числа — примеры иррациональных чисел (приставка «ир» означает отрицание).

Квадратные корни - определение и вычисление с примерами решения

Следовательно, действие извлечения корня из рационального числа может вывести результат за пределы множества Квадратные корни - определение и вычисление с примерами решения

Ни одно иррациональное число не может быть представлено в виде дроби Квадратные корни - определение и вычисление с примерами решения где Квадратные корни - определение и вычисление с примерами решения а следовательно, и в виде бесконечной периодической десятичной дроби.

Иррациональные числа могут быть представлены в виде бесконечных непериодических десятичных дробей.

Например, с помощью специальной компьютерной программы можно установить, что

Квадратные корни - определение и вычисление с примерами решения

Числа Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения — это не первые иррациональные числа, с которыми вы встречаетесь. Число Квадратные корни - определение и вычисление с примерами решения равное отношению длины окружности к диаметру, также является иррациональным:

Квадратные корни - определение и вычисление с примерами решения

Иррациональные числа возникают не только в результате извлечения квадратных корней. Их можно конструировать, строя бесконечные непериодические десятичные дроби.

Например, число Квадратные корни - определение и вычисление с примерами решения (после запятой записаны последовательно степени числа 10) является иррациональным. Действительно, если предположить, что у рассматриваемой десятичной дроби есть период, состоящий из Квадратные корни - определение и вычисление с примерами решения цифр, то с некоторого места этот период будет полностью состоять из нулей. Иными словами, начиная с этого места в записи не должна встретиться ни одна единица, что противоречит конструкции числа.

Вместе множества иррациональных и рациональных чисел образуют множество действительных чисел. Его обозначают буквой Квадратные корни - определение и вычисление с примерами решения (первой буквой латинского слова realis — «реальный», «существующий в действительности»).

Теперь «цепочку» Квадратные корни - определение и вычисление с примерами решения можно продолжить: Квадратные корни - определение и вычисление с примерами решения

Связь между числовыми множествами, рассмотренными в этом пункте, иллюстрирует схема, изображенная на рисунке 23.

Квадратные корни - определение и вычисление с примерами решения

Длину любого отрезка можно выразить действительным числом. Eh-от факт позволяет установить связь между множеством Квадратные корни - определение и вычисление с примерами решения и множеством точек координатной прямой. Точке Квадратные корни - определение и вычисление с примерами решения началу отсчета, поставим в соответствие число 0. Каждой точке Квадратные корни - определение и вычисление с примерами решения координатной прямой, отличной от точки Квадратные корни - определение и вычисление с примерами решения поставим в соответствие единственное число, равное длине отрезка Квадратные корни - определение и вычисление с примерами решения если точка А расположена справа от точки Квадратные корни - определение и вычисление с примерами решения и число, противоположное длине отрезка Квадратные корни - определение и вычисление с примерами решения если точка Квадратные корни - определение и вычисление с примерами решения расположена слева от точки Квадратные корни - определение и вычисление с примерами решения. Также понятно, что каждое действительное число является соответствующим единственной точке координатной прямой.

Над действительными числами можно выполнять четыре арифметических действия: сложение, вычитание, умножение, деление (кроме деления на ноль), в результате будем получать действительное число. Эти действия обладают известными вам свойствами:

  • Квадратные корни - определение и вычисление с примерами решения Переместительное свойство сложения
  • Квадратные корни - определение и вычисление с примерами решения Переместительное свойство умножения
  • Квадратные корни - определение и вычисление с примерами решения Сочетательное свойство сложения
  • Квадратные корни - определение и вычисление с примерами решения Сочетательное свойство умножения
  • Квадратные корни - определение и вычисление с примерами решения Распределительное свойство умножения относительно сложения

Действительные числа можно сравнивать, используя правила сравнения десятичных дробей, то есть сравнивая цифры в соответствующих разрядах. Например, Квадратные корни - определение и вычисление с примерами решения

Любое положительное действительное число больше нуля и любого отрицательного действительного числа. Любое отрицательное действительное число меньше нуля. Из двух отрицательных действительных чисел больше то, у которого модуль меньше.

Если отметить на координатной прямой два действительных числа, то меньшее из них будет расположено слева от большего.

Находя длину окружности и площадь круга, вы пользовались приближенным значением числа Квадратные корни - определение и вычисление с примерами решения (например, Квадратные корни - определение и вычисление с примерами решения). Аналогично при решении практических задач, где нужно выполнить действия с действительными числами, при необходимости эти числа заменяют их приближенными значениями. Например, для числа Квадратные корни - определение и вычисление с примерами решения можно воспользоваться такими приближенными равенствами: Квадратные корни - определение и вычисление с примерами решения или Квадратные корни - определение и вычисление с примерами решения Первое из них называют приближенным значением числа Квадратные корни - определение и вычисление с примерами решения по недостатку с точностью до 0,001, второе — приближенным значением числа Квадратные корни - определение и вычисление с примерами решения по избытку с точностью до 0,001. Более подробно о приближенных значениях вы узнаете в 9 классе.

В заключение подчеркнем, что из любого неотрицательного действительного числа можно извлечь квадратный корень и в результате этого действия получить действительное число. Следовательно, действие извлечения квадратного корня из неотрицательного действительного числа не выводит результат за пределы множества Квадратные корни - определение и вычисление с примерами решения

Открытие иррациональности

Решая графически уравнение Квадратные корни - определение и вычисление с примерами решения мы установили, что длина каждого из отрезков Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения равна Квадратные корни - определение и вычисление с примерами решения (рис. 24). Покажем, что число Квадратные корни - определение и вычисление с примерами решения иррациональное. Предположим, что число Квадратные корни - определение и вычисление с примерами решения рациональное. Тогда его можно

представить в виде несократимой дроби Квадратные корни - определение и вычисление с примерами решения где Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения — натуральные числа. Имеем:

Квадратные корни - определение и вычисление с примерами решения

Тогда Квадратные корни - определение и вычисление с примерами решения

Из последнего равенства следует, что число Квадратные корни - определение и вычисление с примерами решения четное. А это значит, что четным является и число Квадратные корни - определение и вычисление с примерами решения Тогда Квадратные корни - определение и вычисление с примерами решения где Квадратные корни - определение и вычисление с примерами решения — некоторое натуральное число. Имеем: Квадратные корни - определение и вычисление с примерами решения Отсюда следует, что число Квадратные корни - определение и вычисление с примерами решения а следовательно, и число Квадратные корни - определение и вычисление с примерами решения четные.

Таким образом, числитель и знаменатель дроби Квадратные корни - определение и вычисление с примерами решения — четные числа. Следовательно, эта дробь является сократимой. Получили противоречие.

Приведенный пример показывает, что существуют отрезки (в нашем случае это отрезки Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения на рисунке 24), длины которых нельзя выразить рациональными числами, то есть для измерения отрезков рациональных чисел недостаточно.

Этот факт был открыт в школе великого древнегреческого ученого Пифагора.

Квадратные корни - определение и вычисление с примерами решения

Сначала пифагорейцы считали, что для любых отрезков Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения всегда можно найти такой отрезок Квадратные корни - определение и вычисление с примерами решения который в каждом из них укладывается целое число раз. Отсюда следовало, что отношение длин любых двух отрезков выражается отношением целых чисел, то есть рациональным числом.

Например, на рисунке 25 имеем: Квадратные корни - определение и вычисление с примерами решения

и Квадратные корни - определение и вычисление с примерами решения. Отрезок Квадратные корни - определение и вычисление с примерами решения называют общей мерой отрезков Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Если для отрезков существует общая мера, то их называют соизмеримыми. Например, отрезки Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения (рис. 25) являются соизмеримыми.

Итак, древнегреческие ученые считали, что любые два отрезка соизмеримы. А из этого следовало, что длину любого отрезка можно выразить рациональным числом.

Действительно, пусть некоторый отрезок Квадратные корни - определение и вычисление с примерами решения выбран в качестве единичного. Тогда для отрезка Квадратные корни - определение и вычисление с примерами решения и любого другого отрезка Квадратные корни - определение и вычисление с примерами решения существует отрезок длиной Квадратные корни - определение и вычисление с примерами решения являющийся их общей мерой. Получаем: Квадратные корни - определение и вычисление с примерами решения где Квадратные корни - определение и вычисление с примерами решения и — некоторые натуральные числа. Отсюда Квадратные корни - определение и вычисление с примерами решения Поскольку Квадратные корни - определение и вычисление с примерами решения то Квадратные корни - определение и вычисление с примерами решения

Однако сами же пифагорейцы сделали выдающееся открытие. Они доказали, что диагональ и сторона квадрата несоизмеримы, то есть если сторону квадрата принять за единицу, то длину диагонали квадрата выразить рациональным числом нельзя.

Для доказательства рассмотрим произвольный квадрат Квадратные корни - определение и вычисление с примерами решения и примем его сторону за единицу длины. Тогда его площадь равна Квадратные корни - определение и вычисление с примерами решения На диагонали Квадратные корни - определение и вычисление с примерами решения построим квадрат Квадратные корни - определение и вычисление с примерами решения (рис. 26). Понятно, что площадь квадрата Квадратные корни - определение и вычисление с примерами решения в 2 раза больше площади квадрата Квадратные корни - определение и вычисление с примерами решения. Отсюда Квадратные корни - определение и вычисление с примерами решения, то есть Квадратные корни - определение и вычисление с примерами решенияСледовательно, длина диагонали Квадратные корни - определение и вычисление с примерами решения не может быть выражена рациональным числом.

Квадратные корни - определение и вычисление с примерами решения

Это открытие изменило один из фундаментальных постулатов древнегреческих ученых, заключавшийся в том, что отношение любых двух величин выражается отношением целых чисел.

Существует легенда о том, что пифагорейцы держали открытие иррациональных чисел в строжайшей тайне, а человека, разгласившего этот факт, покарали боги: он погиб при кораблекрушении.

ГЛАВНОЕ В ПАРАГРАФЕ 2

Свойства функции Квадратные корни - определение и вычисление с примерами решения

Область определения: Квадратные корни - определение и вычисление с примерами решения

Область значений: множество неотрицательных чисел.

График: парабола.

Нуль функции: Квадратные корни - определение и вычисление с примерами решения

Свойство графика: если точка Квадратные корни - определение и вычисление с примерами решения принадлежит графику функции, то точка Квадратные корни - определение и вычисление с примерами решения также принадлежит графику.

Квадратный корень

Квадратным корнем из числа Квадратные корни - определение и вычисление с примерами решения называют число, квадрат которого равен Квадратные корни - определение и вычисление с примерами решения

Арифметический квадратный корень

Арифметическим квадратным корнем из числа Квадратные корни - определение и вычисление с примерами решения называют неотрицательное число, квадрат которого равен Квадратные корни - определение и вычисление с примерами решения

Равные множества

Два множества Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения называют равными, если они состоят из одних и тех же элементов, то есть каждый элемент множества Квадратные корни - определение и вычисление с примерами решения принадлежит множеству Квадратные корни - определение и вычисление с примерами решения и, наоборот, каждый элемент множества Квадратные корни - определение и вычисление с примерами решения принадлежит множеству Квадратные корни - определение и вычисление с примерами решения.

Подмножество

Множество Квадратные корни - определение и вычисление с примерами решения называют подмножеством множества Квадратные корни - определение и вычисление с примерами решения, если каждый элемент множества Квадратные корни - определение и вычисление с примерами решения является элементом множества Квадратные корни - определение и вычисление с примерами решения.

Обозначения числовых множеств

Квадратные корни - определение и вычисление с примерами решения — множество натуральных чисел;

Квадратные корни - определение и вычисление с примерами решения — множество целых чисел;

Квадратные корни - определение и вычисление с примерами решения — множество рациональных чисел;

Квадратные корни - определение и вычисление с примерами решения — множество действительных чисел.

Связь между числовыми множествами

Квадратные корни - определение и вычисление с примерами решения

Свойства арифметического квадратного корня

Для любого действительного числа Квадратные корни - определение и вычисление с примерами решения выполняется равенство

Квадратные корни - определение и вычисление с примерами решения

Для любого действительного числа Квадратные корни - определение и вычисление с примерами решения и любого натурального числа Квадратные корни - определение и вычисление с примерами решения выполняется равенство Квадратные корни - определение и вычисление с примерами решения

Для любых действительных чисел Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения таких, что Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения выполняется равенство Квадратные корни - определение и вычисление с примерами решения

Для любых действительных чисел Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения таких, что Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения

выполняется равенство Квадратные корни - определение и вычисление с примерами решения

Для любых неотрицательных чисел Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения таких, что Квадратные корни - определение и вычисление с примерами решения выполняется неравенство Квадратные корни - определение и вычисление с примерами решения

Свойства функции Квадратные корни - определение и вычисление с примерами решения

Область определения: множество неотрицательных чисел.

Область значений: множество неотрицательных чисел.

График: ветвь параболы.

Нуль функции: Квадратные корни - определение и вычисление с примерами решения

Большему значению аргумента соответствует большее значение функции.

———

Квадратные корни

Функция y=x2 её график и свойства

Функция Квадратные корни - определение и вычисление с примерами решения её график и свойства

Пример №223

Пусть сторона квадрата равна Квадратные корни - определение и вычисление с примерами решения см. Тогда его площадь (в Квадратные корни - определение и вычисление с примерами решения можно найти но формуле Квадратные корни - определение и вычисление с примерами решения В этой формуле каждому положительному значению переменной Квадратные корни - определение и вычисление с примерами решения соответствует единственное значение переменной Квадратные корни - определение и вычисление с примерами решения

Если обозначить независимую переменную через Квадратные корни - определение и вычисление с примерами решения а зависимую – через Квадратные корни - определение и вычисление с примерами решения то получим функцию, которую задают формулой Квадратные корни - определение и вычисление с примерами решения В этой формуле переменная Квадратные корни - определение и вычисление с примерами решения может принимать любые значения (положительные, отрицательные, значение нуль).

Составим таблицу значений функции Квадратные корни - определение и вычисление с примерами решения для нескольких значений аргумента: Квадратные корни - определение и вычисление с примерами решения

Отметим на координатной плоскости точки Квадратные корни - определение и вычисление с примерами решения координаты которых записаны в таблице (рис. 8). Если на этой плоскости отметить больше точек, координаты которых удовлетворяют формуле Квадратные корни - определение и вычисление с примерами решения а потом соединить их плавной линией, то получим график функции Квадратные корни - определение и вычисление с примерами решения (рис. 9). График этой функции называют параболой, точку (0; 0) – вершиной параболы. Вершина делит параболу на две части, каждую из которых называют ветвью параболы.

Квадратные корни - определение и вычисление с примерами решения

Сформулируем некоторые свойства функции Квадратные корни - определение и вычисление с примерами решения

1. Область определения функции состоит из всех чисел.

2. Область значений функции состоит из всех неотрицательных чисел, то есть Квадратные корни - определение и вычисление с примерами решения

Действительно, так как Квадратные корни - определение и вычисление с примерами решения для любого Квадратные корни - определение и вычисление с примерами решения то Квадратные корни - определение и вычисление с примерами решения

3. Графиком функции является парабола с вершиной в точке Квадратные корни - определение и вычисление с примерами решения ветви которой направлены вверх. Все точки параболы, за исключением вершины, лежат выше оси абсцисс.

4. Противоположным значениям аргумента соответствует одно и то же значение функции.

Действительно, это следует из того, что Квадратные корни - определение и вычисление с примерами решения при любом значении Квадратные корни - определение и вычисление с примерами решения

Пример №224

Решите графически уравнение Квадратные корни - определение и вычисление с примерами решения

Решение:

График функции Квадратные корни - определение и вычисление с примерами решения – парабола, а функции Квадратные корни - определение и вычисление с примерами решения – прямая, проходящая через точки (0; 3) и (2; -1).Квадратные корни - определение и вычисление с примерами решения Построим эти графики в одной системе координат ( рис.10). Они пересекутся в двух точках с абсциссами Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Убедимся, что числа 1 и -3 являются корнями уравнения:

1) для Квадратные корни - определение и вычисление с примерами решения

2) для Квадратные корни - определение и вычисление с примерами решения

Следовательно, 3 и -1 – корни уравнения Квадратные корни - определение и вычисление с примерами решения

Ответ. -3; 1.

Пример №225

Между какими последовательными целыми числами лежит корень уравнения Квадратные корни - определение и вычисление с примерами решения

Решение:

Решим уравнение графически, построив графики функций Квадратные корни - определение и вычисление с примерами решения в одной системе координат. Так как Квадратные корни - определение и вычисление с примерами решения для любого Квадратные корни - определение и вычисление с примерами решения то в данном уравнении и Квадратные корни - определение и вычисление с примерами решения

Откуда Квадратные корни - определение и вычисление с примерами решения Поэтому рассмотрим графики функций только для Квадратные корни - определение и вычисление с примерами решения Это ветвь гиперболы и ветвь параболы, лежащие в первой координатной четверти (рис. 11).

Графики пересекаются в одной точке, абсцисса которой является корнем уравнения и заключена между числами 1 и 2.

Таким образом, корень уравнения Квадратные корни - определение и вычисление с примерами решения лежит между числами 1 и 2.

Ответ. Между числами 1 и 2. Квадратные корни - определение и вычисление с примерами решения

Арифметический квадратный корень

Если известна сторона квадрата, можно легко найти его площадь. Но часто приходится решать и обратную задачу: по известной площади квадрата находить его сторону.

Пример №226

Площадь квадрата равна Квадратные корни - определение и вычисление с примерами решения Чему равна длина его стороны?

Решение:

Пусть длина стороны квадрата равна Квадратные корни - определение и вычисление с примерами решения см, тогда его площадь будет Квадратные корни - определение и вычисление с примерами решения Имеем уравнение: Квадратные корни - определение и вычисление с примерами решения корнями которого являются числа 4 и -4. Действительно, Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения Длина не может выражаться отрицательным числом, поэтому условию задачи удовлетворяет только один из корней уравнения – число 4. Следовательно, длина стороны квадрата равна 4 см.

Корни уравнения Квадратные корни - определение и вычисление с примерами решения то есть числа, квадраты которых равны 16, называют квадратными корнями из числа 16.

Квадратным корнем из числа Квадратные корни - определение и вычисление с примерами решения называют число, квадрат которого равен Квадратные корни - определение и вычисление с примерами решения.

Например, квадратными корнями из числа 100 являются числа 10 и -10, потому что Квадратные корни - определение и вычисление с примерами решения Квадратным корнем из числа 0 является число 0, потому что Квадратные корни - определение и вычисление с примерами решения Квадратного корня из числа -16 мы не найдем, ведь среди известных нам чисел не существует числа, квадрат которого равнялся бы -16.

Число 4, являющееся неотрицательным корнем уравнения . Квадратные корни - определение и вычисление с примерами решения называют арифметическим квадратным корнем из числа 16.

Арифметическим квадратным корнем из числа а называют неотрицательное число, квадрат которого равен Квадратные корни - определение и вычисление с примерами решения

Арифметический квадратный корень из числа Квадратные корни - определение и вычисление с примерами решения обозначают Квадратные корни - определение и вычисление с примерами решения знак арифметического квадратного корня, или радикал). Выражение, стоящее под знаком корня, называют подкоренным выражением. Запись Квадратные корни - определение и вычисление с примерами решения читают следующим образом: квадратный корень из Квадратные корни - определение и вычисление с примерами решения (слово арифметический при чтении принято опускать, поскольку в школе рассматривают только арифметические корни).

Пример №227

1) Квадратные корни - определение и вычисление с примерами решения так как Квадратные корни - определение и вычисление с примерами решения

2) Квадратные корни - определение и вычисление с примерами решения так как Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Вообще равенство Квадратные корни - определение и вычисление с примерами решения является верным, если выполняются два условия: Квадратные корни - определение и вычисление с примерами решения

Так как Квадратные корни - определение и вычисление с примерами решения для всех значений переменной Квадратные корни - определение и вычисление с примерами решения

Выражение Квадратные корни - определение и вычисление с примерами решения не имеет смысла, если Квадратные корни - определение и вычисление с примерами решения

Например, не имеют смысла выражения Квадратные корни - определение и вычисление с примерами решения

Действие нахождения значения арифметического квадратного корня называют извлечением квадратного корня. Из небольших чисел квадратный корень желательно извлекать устно. Извлекать квадратный корень из больших чисел поможет таблица квадратов двузначных натуральных чисел на форзаце или калькулятор.

Пример №228

Найдите значение корня Квадратные корни - определение и вычисление с примерами решения

Решение:

По таблице квадратов двузначных натуральных чисел имеем: Квадратные корни - определение и вычисление с примерами решения Поэтому Квадратные корни - определение и вычисление с примерами решения

Пример №229

Вычислите Квадратные корни - определение и вычисление с примерами решения

Решение:

Сначала нужно найти значение выражения Квадратные корни - определение и вычисление с примерами решения а потом извлечь из него корень:

Квадратные корни - определение и вычисление с примерами решения

Ответ. 35.

Рассмотрим уравнение Квадратные корни - определение и вычисление с примерами решения где Квадратные корни - определение и вычисление с примерами решения – некоторое число. Если Квадратные корни - определение и вычисление с примерами решения то по определению квадратного корня следует, что Квадратные корни - определение и вычисление с примерами решения Если же Квадратные корни - определение и вычисление с примерами решения то уравнение не имеет решений, так как по определению число Квадратные корни - определение и вычисление с примерами решения – неотрицательное.

Систематизируем данные о решениях уравнения Квадратные корни - определение и вычисление с примерами решения в виде схемы:

Квадратные корни - определение и вычисление с примерами решения

Пример №230

Решите уравнение:

Квадратные корни - определение и вычисление с примерами решения

Ответ. 1) 49; 2) решений нет; 3) 13.

Множество. Подмножество. Числовые множества. Рациональные числа. Иррациональные числа. Действительные числа

Понятие множества является одним из основных понятий математики. Под множеством будем понимать совокупность объектов, имеющих общую природу (или объединенных по общему признаку), сами объекты при этом будем называть элементами множества.

Как правило, множества обозначают большими латинскими буквами. Если, например, множество Квадратные корни - определение и вычисление с примерами решения состоит из чисел 1, 2, 3, а множество Квадратные корни - определение и вычисление с примерами решения – из знаков Квадратные корни - определение и вычисление с примерами решения то это записывают так: Квадратные корни - определение и вычисление с примерами решения Числа 1, 2, 3 – элементы множества Квадратные корни - определение и вычисление с примерами решения а знаки Квадратные корни - определение и вычисление с примерами решения – элементы множества Квадратные корни - определение и вычисление с примерами решения Тот факт, что число 1 принадлежит множеству Квадратные корни - определение и вычисление с примерами решения записывают с помощью уже известного нам символа Квадратные корни - определение и вычисление с примерами решения а именно: Квадратные корни - определение и вычисление с примерами решения Тот факт, что число 1 не принадлежит множеству Квадратные корни - определение и вычисление с примерами решения записывают так: Квадратные корни - определение и вычисление с примерами решения

Множества, количество элементов которых можно выразить натуральным числом, называют конечными.

Множество, не содержащее ни одного элемента, называют пустым множеством. Его обозначают символом Квадратные корни - определение и вычисление с примерами решения Так, например, пустым множеством является множество корней уравнения Квадратные корни - определение и вычисление с примерами решения

Множества, количество элементов которых нельзя выразить натуральным числом и которые не являются пустыми, называют бесконечными.

Если каждый элемент множества Квадратные корни - определение и вычисление с примерами решения является элементом множества Квадратные корни - определение и вычисление с примерами решения то говорят, что множество Квадратные корни - определение и вычисление с примерами решения является подмножеством множества Квадратные корни - определение и вычисление с примерами решения

Записывают это следующим образом: Квадратные корни - определение и вычисление с примерами решения Схематическая иллюстрация этого факта представлена на рисунке 12.

Квадратные корни - определение и вычисление с примерами решения

Пример №231

Пусть Квадратные корни - определение и вычисление с примерами решения Квадратные корни - определение и вычисление с примерами решения Тогда множество Квадратные корни - определение и вычисление с примерами решения является подмножеством множества Квадратные корни - определение и вычисление с примерами решения то есть Квадратные корни - определение и вычисление с примерами решения Множество Квадратные корни - определение и вычисление с примерами решения не является подмножеством множества Квадратные корни - определение и вычисление с примерами решения так как множество Квадратные корни - определение и вычисление с примерами решения содержит элемент – число 5, которое не является элементом множества Квадратные корни - определение и вычисление с примерами решения

Считают, что пустое множество является подмножеством любого множества, то есть Квадратные корни - определение и вычисление с примерами решения

Целые числа и дробные числа образуют множество рациональных чисел.

Множество натуральных чисел обозначают буквой Квадратные корни - определение и вычисление с примерами решения множество целых чисел – буквой Квадратные корни - определение и вычисление с примерами решения множество рациональных чисел -буквой Квадратные корни - определение и вычисление с примерами решения Они являются бесконечными множествами.

Можно утверждать, что Квадратные корни - определение и вычисление с примерами решения

Любое рациональное число можно представить в виде Квадратные корни - определение и вычисление с примерами решения где Квадратные корни - определение и вычисление с примерами решения – целое число, Квадратные корни - определение и вычисление с примерами решения – натуральное число.

Например Квадратные корни - определение и вычисление с примерами решения

Рациональное число можно также представить и в виде десятичной дроби. Для этого достаточно числитель дроби разделить на ее знаменатель. Например,

Квадратные корни - определение и вычисление с примерами решения

В последнем случае мы получили бесконечную десятичную периодическую дробь. Дроби Квадратные корни - определение и вычисление с примерами решения также можно представить в виде бесконечных десятичных периодических дробей, дописав справа в десятичной части бесконечное много нулей:

Квадратные корни - определение и вычисление с примерами решения

Таким образом, каждое рациональное число можно представить в виде бесконечной десятичной периодической дроби.

Справедливо и обратное утверждение:

Каждая бесконечная периодическая десятичная дробь является записью некоторого рационального числа.

Например,

Квадратные корни - определение и вычисление с примерами решения

В правильности этих равенств легко убедиться, выполнив соответствующее деление.

Но в математике существуют числа, которые нельзя записать в виде Квадратные корни - определение и вычисление с примерами решения где Квадратные корни - определение и вычисление с примерами решения – целое число, а Квадратные корни - определение и вычисление с примерами решения – натуральное.

Числа, которые нельзя записать в виде Квадратные корни - определение и вычисление с примерами решения где Квадратные корни - определение и вычисление с примерами решения – целое число, a Квадратные корни - определение и вычисление с примерами решения — натуральное, называют иррациональными числами.

Префикс «иp» означает отрицание, иррациональные значит не рациональные.

Например, иррациональными являются числа Квадратные корни - определение и вычисление с примерами решения Приближенные значения таких чисел можно находить с определенной точностью (то есть округленными до определенного разряда) с помощью микрокалькулятора или компьютера:

Квадратные корни - определение и вычисление с примерами решения

Каждое иррациональное число можно представить в виде бесконечной десятичной непериодической дроби.

Рациональные числа вместе с иррациональными числами образуют множество действительных чисел.

Множество действительных чисел обозначают буквой Квадратные корни - определение и вычисление с примерами решения

Так как каждое натуральное число является целым числом, то множество Квадратные корни - определение и вычисление с примерами решения является подмножеством множества Квадратные корни - определение и вычисление с примерами решения Аналогично, множество Квадратные корни - определение и вычисление с примерами решения является подмножеством множества Квадратные корни - определение и вычисление с примерами решения а множество Квадратные корни - определение и вычисление с примерами решения подмножеством множества Квадратные корни - определение и вычисление с примерами решения (рис. 13).

Квадратные корни - определение и вычисление с примерами решения

Действительные числа, записанные в виде бесконечных десятичных непериодических дробей, можно сравнивать по тем же правилам, что и конечные десятичные дроби. Например,

Квадратные корни - определение и вычисление с примерами решения

В задачах с практическим содержанием действительные числа (для выполнения арифметических действий) заменяют на их приближенные значения, округленные до определенного разряда.

Пример №232

Вычислите Квадратные корни - определение и вычисление с примерами решения с точностью до тысячных.

Решение:

Квадратные корни - определение и вычисление с примерами решения

Заметим, что при сложении, вычитании, умножении, делении и возведении в степень действительных чисел справедливы те же свойства и ограничения, что и при действиях с рациональными числами.

Понятие числа появилось очень давно.

А еще раньше Оно является одним из самых общих понятий математики. Потребность в измерениях и подсчетах обусловила появление положительных рациональных чисел. Именно тогда возникли и использовались натуральные числа и дробные числа, которые рассматривались как отношение натуральных чисел.

Следующим этапом развития понятия числа является введение в практику отрицательных чисел. В Древнем Китае эти числа появились во II в. до н. э. Там умели складывать и вычитать отрицательные числа. Отрицательные числа толковали как долг, а положительные – как имущество. В Индии в VII в. эти числа воспринимали так же, но еще и умели их умножать и делить.

Уже древние вавилоняне около 4 тыс. лет назад знали ответ на вопрос: «Какова должна быть длина стороны квадрата, чтобы его площадь равнялась Квадратные корни - определение и вычисление с примерами решения Ими были составлены таблицы квадратов чисел и квадратных корней. Вавилоняне использовали и метод нахождения приближенного значения квадратного корня из числа Квадратные корни - определение и вычисление с примерами решения не являющегося квадратом натурального числа. Суть метода заключалась в том, что число Квадратные корни - определение и вычисление с примерами решения записывали в виде Квадратные корни - определение и вычисление с примерами решения было достаточно малым в сравнении с Квадратные корни - определение и вычисление с примерами решения и применяли формулу

Квадратные корни - определение и вычисление с примерами решения

Например, с помощью этого метода:

Квадратные корни - определение и вычисление с примерами решения

Проверим точность результата: Квадратные корни - определение и вычисление с примерами решения

Такой метод вычисления приближенного значения квадратного корня использовался и в Древней Греции. Его детально описал Герон Александрийский (I в. н. э.).

В эпоху Возрождения (XV – нач. XVII в.) европейские математики обозначали корень латинским словом Radix (корень), потом – сокращенно – буквой Квадратные корни - определение и вычисление с примерами решения Так появился термин «радикал», которым называют знак корня. Впоследствии для обозначения корня стали использовать точку, а потом ромбик. Спустя некоторое время – уже знак Квадратные корни - определение и вычисление с примерами решения и горизонтальную черточку над подкоренным выражением. Затем знак Квадратные корни - определение и вычисление с примерами решения и черточка были объединены, и современные математики стали использовать знак квадратного корня в привычном нам виде: Квадратные корни - определение и вычисление с примерами решения

Тождество (√a)2=a, a⩾0 уравнение Квадратные корни - определение и вычисление с примерами решения x2=a

Тождество Квадратные корни - определение и вычисление с примерами решения уравнение Квадратные корни - определение и вычисление с примерами решения

Напомним, что для любых значений Квадратные корни - определение и вычисление с примерами решения равенство Квадратные корни - определение и вычисление с примерами решения является верным, если выполняются два условия: Квадратные корни - определение и вычисление с примерами решенияКвадратные корни - определение и вычисление с примерами решения Подставив в последнее равенство вместо Квадратные корни - определение и вычисление с примерами решения его запись в виде Квадратные корни - определение и вычисление с примерами решения получим тождество Квадратные корни - определение и вычисление с примерами решения

Для любого Квадратные корни - определение и вычисление с примерами решения справедливо тождество

Квадратные корни - определение и вычисление с примерами решения

Пример №233

Вычислите:

Квадратные корни - определение и вычисление с примерами решения

Решение:

Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения Ответ: Квадратные корни - определение и вычисление с примерами решения

Рассмотрим уравнение Квадратные корни - определение и вычисление с примерами решения где Квадратные корни - определение и вычисление с примерами решения – некоторое число.

Так как квадрат числа не может быть отрицательным, то при Квадратные корни - определение и вычисление с примерами решения уравнение Квадратные корни - определение и вычисление с примерами решения не имеет решений, что можно записать следующим образом: Квадратные корни - определение и вычисление с примерами решения

Если Квадратные корни - определение и вычисление с примерами решения то единственным корнем уравнения Квадратные корни - определение и вычисление с примерами решения является число 0.

Если Квадратные корни - определение и вычисление с примерами решения то корни уравнения Квадратные корни - определение и вычисление с примерами решения – числа Квадратные корни - определение и вычисление с примерами решения Действительно, Квадратные корни - определение и вычисление с примерами решения Для того чтобы убедиться, что уравнение Квадратные корни - определение и вычисление с примерами решения при Квадратные корни - определение и вычисление с примерами решения других корней не имеет, обратимся к графическому методу решения уравнения. Построим графики функций Квадратные корни - определение и вычисление с примерами решения (рис. 14). Эти графики пересекутся дважды: в точках с абсциссами Квадратные корни - определение и вычисление с примерами решения Систематизируем данные о решениях уравнения Квадратные корни - определение и вычисление с примерами решения в виде схемы:

Квадратные корни - определение и вычисление с примерами решения

Пример №234

Решите уравнение:

Квадратные корни - определение и вычисление с примерами решения

Решение:

Квадратные корни - определение и вычисление с примерами решения

2) уравнение корней не имеет, то есть Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения Эти корни являются иррациональными числами;

4) Имеем:

Квадратные корни - определение и вычисление с примерами решения

Таким образом, получим два корня: Квадратные корни - определение и вычисление с примерами решения

Ответ. Квадратные корни - определение и вычисление с примерами решения

Свойства арифметического квадратного корня

Сравним значения выражений Квадратные корни - определение и вычисление с примерами решенияКвадратные корни - определение и вычисление с примерами решения

Имеем: Квадратные корни - определение и вычисление с примерами решения то есть корень из произведения двух чисел равен произведению их корней. Это свойство справедливо для произведения любых двух неотрицательных чисел.

Теорема (о корне из произведения). Корень из произведения двух неотрицательных чисел равен произведению корней из этих чисел, то есть при Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решения

Доказательство: Так как Квадратные корни - определение и вычисление с примерами решения то выражения Квадратные корни - определение и вычисление с примерами решения имеют смысл, причем Квадратные корни - определение и вычисление с примерами решения Поэтому Квадратные корни - определение и вычисление с примерами решения Кроме того, Квадратные корни - определение и вычисление с примерами решения

Имеем: Квадратные корни - определение и вычисление с примерами решения Тогда по определению арифметического квадратного корня: Квадратные корни - определение и вычисление с примерами решения

Доказанная теорема распространяется и на случай, когда множителей под знаком корня три и больше.

Следствие. Корень из произведения неотрицательных множителей равен произведению корней из этих множителей.

Доказательство: Докажем это следствие, например, для трех чисел Квадратные корни - определение и вычисление с примерами решения

Имеем: Квадратные корни - определение и вычисление с примерами решения

Пример №235

Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Замечание 1. Очевидно, что выражение Квадратные корни - определение и вычисление с примерами решения имеет смысл при условии Квадратные корни - определение и вычисление с примерами решения то есть когда переменные Квадратные корни - определение и вычисление с примерами решения – одного знака, а значит и тогда, когда переменные Квадратные корни - определение и вычисление с примерами решения одновременно отрицательны. В таком случае тождество, рассмотренное выше, принимает вид Квадратные корни - определение и вычисление с примерами решения где Квадратные корни - определение и вычисление с примерами решенияи Квадратные корни - определение и вычисление с примерами решения Учитывая оба случая, можно записать, что

Квадратные корни - определение и вычисление с примерами решения

Если в равенстве Квадратные корни - определение и вычисление с примерами решения поменять местами левую и правую части, получим тождество:

Квадратные корни - определение и вычисление с примерами решения

Произведение корней из неотрицательных чисел равно корню из произведения этих чисел.

Пример №236

Квадратные корни - определение и вычисление с примерами решения

Рассмотрим квадратный корень из дроби.

Теорема (о корне из дроби). Корень из дроби, числитель которой неотрицателен, а знаменатель -положителен, равен корню из числителя, деленному на корень из знаменателя, то есть при Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Доказательство: Так как Квадратные корни - определение и вычисление с примерами решения то выражения Квадратные корни - определение и вычисление с примерами решения имеют смысл и Квадратные корни - определение и вычисление с примерами решения Поэтому Квадратные корни - определение и вычисление с примерами решения

Кроме того,

Квадратные корни - определение и вычисление с примерами решения

Имеем: Квадратные корни - определение и вычисление с примерами решения Тогда по определению квадратного корня: Квадратные корни - определение и вычисление с примерами решения

Пример №237

Квадратные корни - определение и вычисление с примерами решения

Замечание 2. По аналогии с замечанием 1, тождество, только что рассмотренное нами, можно записать и так:

Квадратные корни - определение и вычисление с примерами решения

Если в равенстве Квадратные корни - определение и вычисление с примерами решения поменять местами левую и правую части, получим тождество:

Квадратные корни - определение и вычисление с примерами решения

Частное, числитель которого является корнем из неотрицательного числа, а знаменатель — корнем из положительного числа, равно корню из частного этих чисел.

Пример №238

Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Рассмотрим, как извлечь квадратный корень из квадрата.

Теорема (о корне из квадрата). Для любого значения справедливо равенство

Квадратные корни - определение и вычисление с примерами решения

Доказательство: Так как Квадратные корни - определение и вычисление с примерами решения для любого Квадратные корни - определение и вычисление с примерами решения то по определению квадратного корня: Квадратные корни - определение и вычисление с примерами решения

Пример №239

Квадратные корни - определение и вычисление с примерами решения

Рассмотрим квадратный корень из степени.

Теорема (о корне из степени). Для любого значения Квадратные корни - определение и вычисление с примерами решения и натурального числа Квадратные корни - определение и вычисление с примерами решения справедливо равенство

Квадратные корни - определение и вычисление с примерами решения

Доказательство: Квадратные корни - определение и вычисление с примерами решения По теореме о корне из квадрата имеем Квадратные корни - определение и вычисление с примерами решения Следовательно, Квадратные корни - определение и вычисление с примерами решения

Пример №240

Вычислите: Квадратные корни - определение и вычисление с примерами решения

Решение:

Квадратные корни - определение и вычисление с примерами решения

Пример №241

Упростите выражение: Квадратные корни - определение и вычисление с примерами решения

Решение:

Квадратные корни - определение и вычисление с примерами решения Так как Квадратные корни - определение и вычисление с примерами решения для любого Квадратные корни - определение и вычисление с примерами решения то Квадратные корни - определение и вычисление с примерами решения Следовательно, Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения Так как Квадратные корни - определение и вычисление с примерами решения поэтому Квадратные корни - определение и вычисление с примерами решения Следовательно, если Квадратные корни - определение и вычисление с примерами решения

Ответ. Квадратные корни - определение и вычисление с примерами решения

Тождественные преобразования выражений, содержащих квадратные корни

Рассмотрим тождественные преобразования выражений, содержащих квадратные корни.

Вынесение множителя из-под знака корня

Воспользуемся теоремой о корне из произведения для преобразования выражения Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Говорят, что множитель вынесли из-под знака корня. В данном случае из-под знака корня вынесли множитель 2.

Пример №242

Вынесите множитель из-под знака корня в выражении Квадратные корни - определение и вычисление с примерами решения

Решение:

Выражение Квадратные корни - определение и вычисление с примерами решения имеет смысл при Квадратные корни - определение и вычисление с примерами решения поскольку Квадратные корни - определение и вычисление с примерами решения если Квадратные корни - определение и вычисление с примерами решенияПредставим выражение Квадратные корни - определение и вычисление с примерами решения в виде произведения Квадратные корни - определение и вычисление с примерами решения в котором Квадратные корни - определение и вычисление с примерами решения является степенью с четным показателем. Тогда

Квадратные корни - определение и вычисление с примерами решения

Так как Квадратные корни - определение и вычисление с примерами решения Поэтому Квадратные корни - определение и вычисление с примерами решения

Следовательно, Квадратные корни - определение и вычисление с примерами решения

Ответ. Квадратные корни - определение и вычисление с примерами решения

Внесение множителя под знак корня

Рассмотрим тождественное преобразование, обратное к предыдущему. Воспользуемся правилом умножения корней:

Квадратные корни - определение и вычисление с примерами решения

Говорят, что множитель внесли под знак корня. В данном случае под знак корня внесли множитель 2.

Отметим, что под знак корня можно вносить только положительный множитель.

Пример №243

Внести множитель под знак корня:

Квадратные корни - определение и вычисление с примерами решения

Решение:

Квадратные корни - определение и вычисление с примерами решения

2) Множитель Квадратные корни - определение и вычисление с примерами решения может принимать любые значения (быть положительным, нулем или отрицательным). Поэтому рассмотрим два случая:

– если Квадратные корни - определение и вычисление с примерами решения

– если Квадратные корни - определение и вычисление с примерами решения

Ответ. Квадратные корни - определение и вычисление с примерами решения

Сложение, вычитание, умножение, деление и возведение в степень выражений, содержащих квадратные корни

Используя свойства умножения и деления корней, можно выполнять арифметические действия с выражениями, содержащими квадратные корни.

Пример №244

Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Используя тождество Квадратные корни - определение и вычисление с примерами решения можно возводить в степень выражения, содержащие квадратные корни.

Пример №245

Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Рассмотрим примеры, где квадратные корни можно складывать.

Пример №246

Упростите выражение Квадратные корни - определение и вычисление с примерами решения

Решение:

Слагаемые содержат общий множитель Квадратные корни - определение и вычисление с примерами решения Вынесем его за скобки и выполним действие в скобках: Квадратные корни - определение и вычисление с примерами решения

Обычно решение записывают короче: Квадратные корни - определение и вычисление с примерами решения

Заметим, что выражения Квадратные корни - определение и вычисление с примерами решения в данном примере называют подобными радикалами (по аналогии с подобными слагаемыми), мы их сложили по правилу приведения подобных слагаемых.

Пример №247

Упростите выражение Квадратные корни - определение и вычисление с примерами решения

Решение:

В каждом из слагаемых можно вынести множитель из-под знака корня, в результате получим подобные радикалы и приведем их: Квадратные корни - определение и вычисление с примерами решенияКвадратные корни - определение и вычисление с примерами решения

Ответ. Квадратные корни - определение и вычисление с примерами решения

Пример №248

Упростите выражение:

Квадратные корни - определение и вычисление с примерами решения

Решение:

Применим формулы сокращенного умножения.

Квадратные корни - определение и вычисление с примерами решения

Ответ. Квадратные корни - определение и вычисление с примерами решения

Сокращение дробей

Пример №249

Сократите дробь: Квадратные корни - определение и вычисление с примерами решения

Решение:

1) Учитывая, что Квадратные корни - определение и вычисление с примерами решения числитель дроби представим в виде разности квадратов, получим:

Квадратные корни - определение и вычисление с примерами решения

2) Учитывая, что Квадратные корни - определение и вычисление с примерами решения в числителе и знаменателе вынесем за скобки общий множитель, получим:

Квадратные корни - определение и вычисление с примерами решения

Ответ. Квадратные корни - определение и вычисление с примерами решения

Избавление от иррациональности в знаменателе дроби

Пример №250

Преобразуйте дробь Квадратные корни - определение и вычисление с примерами решения так, чтобы она не содержала корня в знаменателе.

Решение:

Учитывая, что Квадратные корни - определение и вычисление с примерами решения достаточно числитель и знаменатель дроби умножить на Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения

Ответ. Квадратные корни - определение и вычисление с примерами решения

В таких случаях говорят, что избавились от иррациональности в знаменателе дроби.

Пример №251

Избавьтесь от иррациональности в знаменателе дроби Квадратные корни - определение и вычисление с примерами решения

Решение:

Умножим числитель и знаменатель дроби на Квадратные корни - определение и вычисление с примерами решения чтобы в знаменателе получить формулу сокращенного умножения разности двух выражений на их сумму:

Квадратные корни - определение и вычисление с примерами решения

Ответ. Квадратные корни - определение и вычисление с примерами решения

Заметим, что выражение Квадратные корни - определение и вычисление с примерами решения называют сопряженным выражению Квадратные корни - определение и вычисление с примерами решенияВообще-то, если в формулах сокращенного умножения в результате умножения скобок, содержащих радикалы, получается рациональное выражение, то выражения в скобках называют взаимно сопряженными. Так, Квадратные корни - определение и вычисление с примерами решения и Квадратные корни - определение и вычисление с примерами решениявзаимно сопряженные выражения.

Взаимно сопряженными также являются выраженияКвадратные корни - определение и вычисление с примерами решения и им подобные.

Функция y= √x её график и свойства

Функция Квадратные корни - определение и вычисление с примерами решения её график и свойства

Пример №252

Пусть Квадратные корни - определение и вычисление с примерами решения – площадь квадрата, а см – длина его стороны. Так как Квадратные корни - определение и вычисление с примерами решения то зависимость длины стороны Квадратные корни - определение и вычисление с примерами решения квадрата от его площади Квадратные корни - определение и вычисление с примерами решения можно задать формулой

Квадратные корни - определение и вычисление с примерами решения

Рассмотрим функцию Квадратные корни - определение и вычисление с примерами решения Очевидно, что переменная Квадратные корни - определение и вычисление с примерами решения принимает только неотрицательные значения, то есть Квадратные корни - определение и вычисление с примерами решения

Составим таблицу значений функции Квадратные корни - определение и вычисление с примерами решения для нескольких значений аргумента: Квадратные корни - определение и вычисление с примерами решения

Отметим эти точки на координатной плоскости (рис. 15). Если бы мы отметили на этой плоскости больше точек, координаты которых удовлетворяют уравнению Квадратные корни - определение и вычисление с примерами решения а потом соединили их плавной линией, то получили бы график функции Квадратные корни - определение и вычисление с примерами решения (рис. 16).

Графиком этой функции является ветвь параболы. Квадратные корни - определение и вычисление с примерами решенияКвадратные корни - определение и вычисление с примерами решения

Обобщим свойства функции Квадратные корни - определение и вычисление с примерами решения

1. Областью определения функции является множество всех неотрицательных чисел: Квадратные корни - определение и вычисление с примерами решения

2. Областью значений функции является множество всех неотрицательных чисел: Квадратные корни - определение и вычисление с примерами решения

3. График функции – ветвь параболы, выходящая из точки Квадратные корни - определение и вычисление с примерами решения все другие точки графика лежат в первой координатной четверти.

Большему значению аргумента соответствует большее значение функции

Последнее свойство дает возможность сравнивать значения выражении, содержащих корни.

Пример №253

Сравните числа:

Квадратные корни - определение и вычисление с примерами решения

Решение:

1) Так как Квадратные корни - определение и вычисление с примерами решения

Квадратные корни - определение и вычисление с примерами решения поэтому Квадратные корни - определение и вычисление с примерами решения значит, Квадратные корни - определение и вычисление с примерами решения

3) Внесем множитель в обоих выражениях под знак корня:

Квадратные корни - определение и вычисление с примерами решения

Так как Квадратные корни - определение и вычисление с примерами решения поэтому Квадратные корни - определение и вычисление с примерами решения

Пример №254

Решите графически уравнение Квадратные корни - определение и вычисление с примерами решения

Решение:

Поскольку мы пока не умеем строить график функции Квадратные корни - определение и вычисление с примерами решенияразделим обе части уравнения на число 5. Получим уравнение: Квадратные корни - определение и вычисление с примерами решения

Построим графики функций Квадратные корни - определение и вычисление с примерами решения в одной системе координат (рис. 17). Они пересекаются в точке с абсциссой 4. Проверкой убеждаемся, что число 4 – корень уравнения. Действительно, Квадратные корни - определение и вычисление с примерами решения

Ответ. 4. Квадратные корни - определение и вычисление с примерами решения

Пример №255

Постройте график функции

Квадратные корни - определение и вычисление с примерами решения

Ответ. График изображен на рисунке 18.

Квадратные корни - определение и вычисление с примерами решения

  • Квадратные уравнения
  • Неравенства
  • Числовые последовательности
  • Предел числовой последовательности
  • Формулы сокращенного умножения
  • Разложение многочленов на множители
  • Системы линейных уравнений с двумя переменными
  • Рациональные выражения

Что такое арифметический квадратный корень

Квадратным корнем (арифметическим квадратным корнем) из неотрицательного числа (a) называется такое неотрицательное число, квадрат которого равен (a). (  (sqrt{a}=x, {{x}^{2}}=a; x, age 0)).

А почему же число  ( a) (число под корнем) должно быть обязательно неотрицательным?

Например, чему равен ( sqrt{-9})?

Так-так, попробуем подобрать. Может, три?

Проверим: ( {{3}^{2}}=9), а не ( -9).

Может, ( left( -3 right))? 

Опять же, проверяем: ( {{left( -3 right)}^{2}}=9).

Ну что же, не подбирается?

Это и следовало ожидать – потому что нет таких чисел, которые при возведении в квадрат дают отрицательное число! Это надо запомнить!

Число или выражение под знаком корня должно быть неотрицательным!

Однако ты наверняка уже заметил, что не только число под корнем должно быть неотрицательным, но и само значение тоже должно быть неотрицательным!

 Ведь в определении сказано, что «квадратным корнем из числа( a)называется такое неотрицательное число, квадрат которого равен( a)».

Но подождите!  В самом начале мы разбирали пример ( {{x}^{2}}=4) и один из ответов был отрицательным числом! 

 Мы подбирали числа, которые можно возвести в квадрат и получить при этом ( displaystyle 4). Ответом были ( displaystyle 2) и ( displaystyle -2)

А тут говорится, что квадратным корнем должно быть «неотрицательное число»! Почему?

Такой вопрос вполне уместен. Здесь необходимо просто разграничить понятия квадратного уравнения и арифметического квадратного корня.

К примеру, ( displaystyle {{x}^{2}}=4) (квадратное уравнение) не равносильно выражению ( x=sqrt{4}) (арифмитический квадратный корень).

Из ( {{x}^{2}}=4) следует, что

( left| x right|=sqrt{4}), то есть ( x=pm sqrt{4}=pm 2) или ( {{x}_{1}}=2); ( {{x}_{2}}=-2)

(не помнишь почему так? Почитай тему «Модуль числа»!)

А из ( x=sqrt{4}) следует, что ( x=2).

Конечно, это очень путает, но это необходимо запомнить, что знаки «плюс-минус» являются результатом решения квадратного уравнения, так как при решении уравнения мы должны записать все иксы, которые при подстановке в исходное уравнение дадут верный результат.

В наше квадратное уравнение подходит как ( 2), так и ( x=-2).

Однако, если просто извлекать квадратный корень из чего-либо, то всегда получаем один неотрицательный результат.

Запись иррациональных чисел с помощью квадратного корня

А теперь попробуй решить такое уравнение ( {{x}^{2}}=3).

Уже все не так просто и гладко, правда? Попробуй перебрать числа, может, что-то и выгорит?

Начнем с самого начала – с нуля: ( {{0}^{2}}=0) – не подходит.

Двигаемся дальше ( displaystyle x=1); ( displaystyle {{1}^{2}}=1) – меньше трех, тоже отметаем.

А что если ( displaystyle x=2)? 

Проверим: ( displaystyle {{2}^{2}}=4) – тоже не подходит, т.к. это больше трех.

С отрицательными числами получится такая же история.

И что же теперь делать? Неужели перебор нам ничего не дал?

Совсем нет, теперь мы точно знаем, что ответом будет некоторое число между ( displaystyle 1) и ( displaystyle 2), а также между ( displaystyle -2) и ( displaystyle -1).

Кроме того, очевидно, что решения не будут целыми числами. Более того, они не являются рациональными.

И что дальше?

Давай построим график функции ( displaystyle y={{x}^{2}}) и отметим на нем решения.

График квадратичной функции

Попробуем обмануть систему и получить ответ с помощью калькулятора (как мы это делали в начале)!

Извлечем корень из ( displaystyle 3), делов-то!

Ой-ой-ой, выходит, что ( sqrt{3}=1,732050807568ldots ) Такое число никогда не кончается.

Как же такое запомнить, ведь на экзамене калькулятора не будет!?

Все очень просто, это и не надо запоминать, необходимо помнить (или уметь быстро прикинуть) приблизительное значение. ( sqrt{3}) и ( -sqrt{3}) уже сами по себе ответы.

Такие числа называются иррациональными, именно для упрощения записи таких чисел и было введено понятие квадратного корня.

Деление корней

С умножением корней разобрались, теперь приступим к свойству деления.

Напомню, что формула в общем виде выглядит так:

( displaystyle sqrt[{}]{frac{a}{b}}=frac{sqrt[{}]{a}}{sqrt[{}]{b}}), если ( displaystyle age 0 , b>0).

А значит это, что корень из частного равен частному корней.

Ну что, давай разбираться на примерах:

( displaystyle   frac{sqrt{12}}{sqrt{3}}=sqrt{frac{12}{3}}=sqrt{4}=2)

Вот и вся наука. А вот такой пример:

( displaystyle   frac{sqrt{12}}{3}=frac{sqrt{12}}{sqrt{9}}=sqrt{frac{12}{9}}=sqrt{frac{4}{3}}=frac{2}{sqrt{3}})

Все не так гладко, как в первом примере, но, как видишь, ничего сложного нет.

А что, если попадется такое выражение:

( displaystyle   sqrt{frac{144}{225}}=?)

Надо просто применить формулу в обратном направлении:

( displaystyle   sqrt{frac{144}{225}}=frac{sqrt{144}}{sqrt{225}}=frac{12}{15}=frac{4}{5}=0,8)

А вот такой примерчик:

( displaystyle   sqrt{0,16}=sqrt{frac{16}{100}}=frac{4}{10}=0,4)

Еще ты можешь встретить такое выражение:

( displaystyle   sqrt{5frac{19}{25}}=?)

Все то же самое, только здесь надо вспомнить, как переводить дроби (если не помнишь, загляни в тему дроби и возвращайся!). Вспомнил? Теперь решаем!

( displaystyle   sqrt{5frac{19}{25}}=sqrt{frac{144}{25}}=frac{12}{5}=2,4)

Уверена, что ты со всем, всем справился, теперь попробуем возводить корни в степени.

Возведение в степень

А что же будет, если квадратный корень возвести в квадрат? Все просто, вспомним смысл квадратного корня из числа ( displaystyle a) – это число, квадратный корень которого равен ( displaystyle a).

Так вот, если мы возводим число, квадратный корень которого равен ( displaystyle a), в квадрат, то что получаем?

Ну, конечно, ( displaystyle a)!

Рассмотрим на примерах:

( displaystyle   {{left( sqrt{12} right)}^{2}}=12)

( displaystyle   {{left( sqrt{17} right)}^{2}}=17)

Все просто, правда? А если корень будет в другой степени? Ничего страшного!

Придерживайся той же логики и помни свойства и возможные действия со степенями.

Забыл?

Почитай теорию по теме «Степень и ее свойства» и тебе все станет предельно ясно.

Вот, к примеру, такое выражение:

( displaystyle   {{left( sqrt{5} right)}^{6}}={{left( {{left( sqrt{5} right)}^{2}} right)}^{3}}={{5}^{3}}=125)

В этом примере степень четная, а если она будет нечетная? Опять же, примени свойства степени и разложи все на множители:

( displaystyle   {{left( sqrt{5} right)}^{7}}={{left( sqrt{5} right)}^{6}}cdot sqrt{5}=125sqrt{5})

С этим вроде все ясно, а как извлечь корень из числа в степени? Вот, к примеру, такое:

( displaystyle   sqrt{{{3}^{2}}}=sqrt{9}=3)

Довольно просто, правда? А если степень больше двух? Следуем той же логике, используя свойства степеней:

( displaystyle   sqrt{{{3}^{6}}}=sqrt{{{left( {{3}^{3}} right)}^{2}}}={{3}^{3}}=27)

( displaystyle   sqrt{{{3}^{5}}}=sqrt{{{3}^{4}}cdot 3}=sqrt{{{left( {{3}^{2}} right)}^{2}}cdot 3}={{3}^{2}}cdot sqrt{3}=9sqrt{3})

Ну как, все понятно? Тогда реши самостоятельно примеры:

  • ( displaystyle   sqrt{{{left( -3 right)}^{2}}})
  • ( displaystyle   sqrt{{{6}^{6}}})
  • ( displaystyle   {{left( sqrt{8} right)}^{7}})

А вот и ответы:

Извлечение корней из больших чисел

До этого мы вносили множитель под знак корня, а как его вынести? Надо просто разложить его на множители и извлечь то, что извлекается!

( displaystyle   sqrt{98}=sqrt{49cdot 2}=sqrt{49}cdot sqrt{2}=7sqrt{2})

Можно было пойти по иному пути и разложить на другие множители:

( displaystyle   sqrt{98}=sqrt{7cdot 14})

Что дальше? А дальше раскладываем на множители до самого конца:

( displaystyle   sqrt{98}=sqrt{7cdot 14}=sqrt{7cdot 7cdot 2}=sqrt{{{7}^{2}}cdot 2}=7sqrt{2})

Неплохо, да? Любой из этих подходов верен, решай как тебе удобно.

Разложение на множители очень пригодится при решении таких нестандартных заданий, как вот это:

( displaystyle   sqrt{15}cdot sqrt{180}cdot sqrt{12})

Не пугаемся, а действуем! Разложим каждый множитель под корнем на отдельные множители:

А теперь попробуй самостоятельно (без калькулятора! его на экзамене не будет):

( displaystyle   sqrt{15}cdot sqrt{180}cdot sqrt{12}=sqrt{5cdot 3}cdot sqrt{36cdot 5}cdot sqrt{2cdot 6})

Разве это конец? Не останавливаемся на полпути!

( displaystyle   begin{array}{l}sqrt{5cdot 3}cdot sqrt{36cdot 5}cdot sqrt{2cdot 6}=sqrt{5cdot 3}cdot sqrt{3cdot 12cdot 5}cdot sqrt{2cdot 3cdot 2}=\=sqrt{5cdot 3}cdot sqrt{3cdot 2cdot 2cdot 3cdot 5}cdot sqrt{2cdot 3cdot 2}end{array})

На простые множители разложили. Что дальше? А дальше пользуемся свойством умножение корней и записываем все под одним знаком корня:

( displaystyle   begin{array}{l}sqrt{5cdot 3cdot 3cdot 2cdot 2cdot 3cdot 5cdot 2cdot 3cdot 2}=sqrt{5cdot 5cdot 3cdot 3cdot 3cdot 3cdot 2cdot 2cdot 2cdot 2}=\=sqrt{25}cdot sqrt{81}cdot sqrt{16}=5cdot 9cdot 4=180end{array})

Вот и все, не так все и страшно, правда?

( displaystyle   sqrt{15}cdot sqrt{54}cdot sqrt{10}=?)

Получилось ( displaystyle   90)? Молодец, все верно!

А теперь попробуй вот такой пример решить:

( displaystyle   sqrt{4225}=?)

А пример-то – крепкий орешек, так сходу и не разберешься, как к нему подступиться. Но нам он, конечно, по зубам.

Основные сведения

Чтобы найти площадь квадрата, нужно длину его стороны возвести во вторую степень.

Найдём площадь квадрата, длина стороны которого 3 см

квадрат со стороной 3 см 2

S = 32 = 9 см2

квадрат со стороной 3 см S 2

Теперь решим обратную задачу. А именно, зная площадь квадрата определим длину его стороны. Для этого воспользуемся таким инструментом как кóрень. Корень бывает квадратный, кубический, а также n-й степени.

Сейчас наш интерес вызывает квадратный корень. По другому его называют кóрнем второй степени.

Для нахождения длины стороны нашего квадрата, нужно найти число, вторая степень которого равна 9. Таковым является число 3. Это число и является кóрнем.

Введём для работы с корнями новые обозначения.

Символ кóрня выглядит как символ корня. Это по причине того, что слово корень в математике употребляется как радикал. А слово радикал происходит от латинского radix (что в переводе означает корень). Первая буква слова radix это r впоследствии преобразилась в символ корня символ корня.

Под корнем располагáют подкореннóе выражение. В нашем случае подкоренным выражением будет число 9 (площадь квадрата)

корень из 9

Нас интересовал квадратный корень (он же корень второй степени), поэтому слева над корнем указываем число 2. Это число называют показателем корня (или степенью корня)

корень из 9 второй степени

Получили выражение, которое читается так: «квадратный корень из числа . С этого момента возникает новая задача по поиску самогó корня.

Если число 3 возвести во вторую степень, то получится число 9. Поэтому число 3 и будет ответом:

корень из 9 решение

Значит квадрат площадью 9 см2 имеет сторону, длина которой 3 см. Приведённое действие называют извлечéнием квадрáтного кóрня.

Нетрудно догадаться, что квадратным корнем из числа 9 также является отрицательное число −3. При его возведении во вторую степень тоже получается число 9

Получается, что выражение корень из 9 второй степени 130px имеет два значения: 3 и −3. Но длина стороны квадрата не может быть отрицательным числом, поэтому для нашей задачи ответ будет только один, а именно 3.

Вообще, квадратный корень имеет два противоположных значения: положительное и отрицательное.

Например, извлечём квадратный корень из числа 4

корень из 4 второй степени

Это выражение имеет два значения: 2 и −2, поскольку при возведении этих чисел во вторую степень, получится один и тот же результат 4

2 v 2 i -2 v -2

Поэтому ответ к выражению вида корень кв из a записывают с плюсом и минусом. Плюс с минусом означает, что квадратный корень имеет два противоположных значения.

Запишем ответ к выражению корень из 4 второй степени 130px с плюсом и минусом:

кв корень из 4 два значения


Определения

Дадим определение квадратному корню.

Квадратным корнем из числа a называют такое число b, вторая степень которого равна a.

То есть число b должно быть таким, чтобы выполнялось равенство ba. Число b (оно же корень) обозначается через радикал корень кв из a так, что корень кв из a это b. На практике левая и правая часть поменяны местами и мы видим привычное выражение корень кв из a это b 2

Например, квадратным корнем из числá 16 есть число 4, поскольку число 4 во второй степени равно 16

42 = 16

Корень 4 можно обозначить через радикал корень кв из 16 так, что 4 это корень из 16.

Также квадратным корнем из числá 16 есть число −4, поскольку число −4 во второй степени равно 16

(−4)2 = 16

Если при решении задачи интересует только положительное значение, то корень называют не просто квадратным, а арифметическим квадратным.

Арифметический квадратный корень из числá a — это неотрицательное число b (b ≥ 0), при котором выполняется равенство ba.

В нашем примере квадратными корнями из числá 16 являются корни 4 и −4, но арифметическим из них является только корень 4.

В разговорном языке можно использовать сокращение. К примеру, выражение корень кв из 16 полностью читается так: «квадратный корень из числá шестнадцать», а в сокращённом варианте можно прочитать так: «корень из шестнадцати».

Не следует путать понятия корень и квадрат. Квадрат это число, которое получилось в результате возведения какого-нибудь числá во вторую степень. Например, числа 25, 36, 49 являются квадратами, потому что они получились в результате возведения во вторую степень чисел 5, 6 и 7 соответственно.

Корнями же являются числа 5, 6 и 7. Они являются теми числами, которые во второй степени равны 25, 36 и 49 соответственно.

Чаще всего в квадратных корнях показатель кóрня вообще не указывается. Так, вместо записи корень из 9 второй степени 130px можно использовать записькорень из 9 130px. Если в учебнике по математике встретится корень без показателя, то нужно понимать, что это квадратный корень.

Квадратный корень из единицы равен единице. То есть справедливо следующее равенство:

квадрат из 1 есть 1

Это по причине того, что единица во второй степени равна единице:

12 = 1

и квадрат, состоящий из одной квадратной единицы, имеет сторону, равную единице:

одна кв единица

Квадратный корень из нуля равен нулю. То есть справедливо равенство корень из нуля равен нулю, поскольку 0= 0.

Выражение вида корень кв из -a без 2 смысла не имеет. Например, не имеет смысла выражение корень кв из -4, поскольку вторая степень любого числа есть число положительное. Невозможно найти число, вторая степень которого будет равна −4.

Если выражение вида корень кв из a без 2 возвести во вторую степень, то есть если записать корень кв из a в 2, то это выражение будет равно подкореннóму выражению a

корень кв из a в 2 равно а

Например, выражение корень кв из 4 в 2 равно 4

корень кв из 4 в 2 равно 4

Это потому что выражение корень кв из 4 равно значению 2. Но это значение сразу возвóдится во вторую степень и получается результат 4.

Еще примеры:

кв корень из 9 16 25 во 2 степени

Корень из квадрата числá равен модулю этого числá:

кор из а в 2 равно а

Например, корень из числá 5, возведённого во вторую степень, равен модулю числá 5

кор из 5 в 2 равно мод из 5

Это же правило будет срабатывать, если во вторую степень возвóдится отрицательное число. То есть, ответ опять же станет положительным. Например, корень из числá −5, возведённого во вторую степень, равен модулю числá −5. А модуль числа −5 равен 5

кор из числа -5 в квадрате

Действительно, если не пользуясь правилом кор из а в 2 равно а 130px, вычислять выражение кор из числа -5 в квадрате 1 обычным методом — сначала возвести число −5 во вторую степень, затем извлечь полученный результат, то полýчим ответ 5

кор из числа -5 в 2 2 способ

Не следует путать правило кор из а в 2 равно а 130px с правилом кор из а в 2 равно а 2 130px. Правило кор из а в 2 равно а 130px верно при любом a, тогда как правило кор из а в 2 равно а 2 130px верно в том случае, если выражение корень кв из a без 2 имеет смысл.

В некоторых учебниках знак корня может выглядеть без верхней линии. Выглядит это так:

знак корня без верхней линии

Примеры: √4, √9, √16.

Мéньшему числу соответствует мéньший корень, а бóльшему числу соответствует бóльший корень.

Например, рассмотрим числа 49 и 64. Число 49 меньше, чем число 64.

49 < 64

Если извлечь квадратные корни из этих чисел, то числу 49 будет соответствовать меньший корень, а числу 64 — бóльший. Действительно, √49 = 7, а √64 = 8,

√49 < √64

Отсюда:

7 < 8


Примеры извлечения квадратных корней

Рассмотрим несколько простых примеров на извлечение квадратных корней.

Пример 1. Извлечь квадратный корень √36

Данный квадратный корень равен числу, квадрат которого равен 36. Таковым является число 6, поскольку 6= 36

√36 = 6


Пример 2. Извлечь квадратный корень √49

Данный квадратный корень равен числу, квадрат которого равен 49. Таковым является число 7, поскольку 7= 49

√49 = 7

В таких простых примерах достаточно знать таблицу умножения. Так, мы помним, что число 49 входит в таблицу умножения на семь. То есть:

7 × 7 = 49

Но 7 × 7 это 72

7= 49

Отсюда, √49 = 7.


Пример 3. Извлечь квадратный корень √100

Данный квадратный корень равен числу, квадрат которого равен 100. Таковым является число 10, поскольку 102 = 100

√100 = 10

Число 100 это последнее число, корень которого можно извлечь с помощью таблицы умножения. Для чисел, бóльших 100, квадратные корни можно находить с помощью таблицы квадратов.


Пример 3. Извлечь квадратный корень √256

Данный квадратный корень равен числу, квадрат которого равен 256. Чтобы найти это число, воспользуемся таблицей квадратов.

Нахóдим в таблице квадратов число 256 и двигаясь от него влево и вверх определяем цифры, которые образуют число, квадрат которого равен 256.

таблица квадратов кв ч 256

Видим, что это число 16. Значит √256 = 16.


Пример 4. Найти значение выражения 2√16

В данном примере число 2 умножается на выражение с корнем. Сначала вычислим корень √16, затем перемнóжим его с числом 2

2 на корень из 16


Пример 7. Решить уравнение rad to x ravno 4

В данном примере нужно найти значение переменной x, при котором левая часть будет равна 4.

Значение переменной x равно 16, поскольку корень из 16 равно 4. Значит корень уравнения равен 16.

корень из 16 равно 4 проверка

Примечание. Не следует путать корень уравнения и квадратный корень. Корень уравнения это значение переменной, при котором уравнение обращается в верное числовое равенство. А квадратный корень это число, вторая степень которого равна выражению, находящемуся под радикалом символ корня.

Подобные примеры решают, пользуясь определением квадратного корня. Давайте и мы поступим так же.

Из определения мы знаем, что квадратный корень корень кв из a без 2 равен числу b, при котором выполняется равенство ba.

корень кв из a это b без 2 и b v 2 ravno a

Применим равенство ba к нашему примеру rad to x ravno 4. Роль переменной b у нас играет число 4, а роль переменной a — выражение, находящееся под корнем корень кв из x без 2, а именно переменная x

корень кв из 4 b 4 v 2 racno x

В выражении 4x вычислим левую часть, полýчим 16 = x. Поменяем левую и правую часть местами, полýчим = 16. В результате приходим к тому, что нашлось значение переменной x.


Пример 8. Решить уравнение x - 8 ravno 0 primer

Перенесем −8 в правую часть, изменив знак:

x - 8 ravno 0 step 1

Возведем правую часть во вторую степень и приравняем её к переменной x

x - 8 ravno 0 step 2

Вычислим правую часть, полýчим 64 = x. Поменяем левую и правую часть местами, полýчим = 64. Значит корень уравнения x - 8 ravno 0 primer равен 64

x - 8 ravno 0 step 3


Пример 9. Решить уравнение корень из 3 на 5x ravno 7 пример

Воспользуемся определением квадратного корня:

корень кв из a это b без 2 и b v 2 ravno a

Роль переменной b играет число 7, а роль переменной a — подкореннóе выражение 3 + 5x. Возведем число 7 во вторую степень и приравняем его к 3 + 5x

корень из 3 на 5x ravno 7 шаг 1

В выражении 72 = 3 + 5x вычислим левую часть полýчим 49 = 3 + 5x. Получилось обычное линейное уравнение. Решим его:

корень из 3 на 5x ravno 7 шаг 3

Корень уравнения корень из 3 на 5x ravno 7 пример равен 46 на 5. Выполним проверку, подставив его в исходное уравнение:

корень из 3 на 5x ravno 7 шаг 5


Пример 10. Найти значение выражения 2 на кор из 49

В этом выражении число 2 умножается на квадратный корень из числа 49.

Сначала нужно извлечь квадратный корень и перемножить его с числом 2

2 на кор из 49 решение


Приближённое значение квадратного корня

Не каждый квадратный корень можно извлечь. Извлечь квадратный корень можно только в том случае, если удаётся найти число, вторая степень которого равна подкореннóму выражению.

Например, извлечь квадратный корень корень из 64 можно, потому что удаётся найти число, вторая степень которого равна подкореннóму выражению. Таковым является число 8, поскольку 8= 64. То есть корень из 64 равно 8

А извлечь квадратный корень корень из 3 нельзя, потому что невозможно найти число, вторая степень которого равна 3. В таком случае говорят, что квадратный корень из числа 3 не извлекается.

Зато можно извлечь квадратный корень из числа 3 приближённо. Извлечь квадратный корень приближённо означает найти значение, которое при возведении во вторую степень будет максимально близко к подкореннóму выражению.

Приближённое значение ищут с определенной точностью: с точностью до целых, с точностью до десятых, с точностью до сотых и так далее.

Найдём значение корня корень из 3 приближённо с точностью до десятых. Словосочетание «с точностью до десятых» говорит о том, что приближённое значение корня корень из 3 будет представлять собой десятичную дробь, у которой после запятой одна цифра.

Для начала найдём ближайшее меньшее число, корень которого можно извлечь. Таковым является число 1. Корень из этого числа равен самому этому числу:

√1 = 1

Аналогично находим ближайшее бóльшее число, корень которого можно извлечь. Таковым является число 4. Корень из этого числа равен 2

√4 = 2

√1 меньше, чем √4

√1√4

А √3 больше, чем √1 но меньше, чем √4. Запишем это в виде двойного неравенства:

√1 < √3 < √4

Точные значения корней √1 и √4 известны. Это числа 1 и 2

1 < √3 < 2

Тогда очевидно, что значение корня √3 будет представлять собой десятичную дробь, потому что между числами 1 и 2 нет целых чисел.

Для нахождения приближённого значения квадратного корня √3 будем проверять десятичные дроби, располагающиеся в интервале от 1 до 2, возводя их в квадрат. Делать это будем до тех пор пока не полýчим значение, максимально близкое к 3. Проверим к примеру дробь 1,1

1,12 = 1,21

Получился результат 1,21, который не очень близок к подкореннóму выражению 3. Значит 1,1 не годится в качестве приближённого значения квадратного корня √3, потому что оно малó.

Проверим тогда дробь 1,8

1,82 = 3,24

Получился результат 3,24, который близок к подкореннóму выражению, но превосходит его на 0,24. Значит 1,8 не годится в качестве приближенного значения корня √3, потому что оно великó.

Проверим тогда дробь 1,7

1,72 = 2,89

Получился результат 2,89, который уже близок к подкореннóму выражению. Значит 1,7 и будет приближённым значением квадратного корня √3. Напомним, что знак приближенного значения выглядит как

√3 ≈ 1,7

Значение 1,6 проверять не нужно, потому что в результате получится число 2,56, которое дальше от трёх, чем значение 2,89. А значение 1,8, как было показано ранее, является уже большим.

В данном случае мы нашли приближенное значение корня √3 с точностью до десятых. Значение можно получить ещё более точно. Для этого его следует находить с точностью до сотых.

Чтобы найти значение с точностью до сотых проверим десятичные дроби в интервале от 1,7 до 1,8

1,7 < √3 < 1,8

Проверим дробь 1,74

1,742 = 3,0276

Получился результат 3,0276, который близок к подкореннóму выражению, но превосходит его на 0,0276. Значит значение 1,74 великó для корня √3.

Проверим тогда дробь 1,73

1,732 = 2,9929

Получился результат 2,9929, который близок к подкореннóму выражению √3. Значит 1,73 будет приближённым значением квадратного корня √3 с точностью до сотых.

Процесс нахождения приближённого значения квадратного корня продолжается бесконечно. Так, корень √3 можно находить с точностью до тысячных, десятитысячных и так далее:

√3 = 1,732 (вычислено с точностью до тысячных)

√3 = 1,7320 (вычислено с точностью до десятитысячных)

√3 = 1,73205 (вычислено с точностью до ста тысячных).

Ещё квадратный корень можно извлечь с точностью до целых. Приближённое значение квадратного корня √3 с точностью до целых равно единице:

√3 ≈ 1

Значение 2 будет слишком большим, поскольку при возведении этого числа во вторую степень получается число 4, которое больше подкоренного выражения. Нас же интересуют значения, которые при возведении во вторую степень равны подкореннóму выражению или максимально близки к нему, но не превосходят его.

В зависимости от решаемой задачи допускается находить значение, вторая степень которого больше подкоренного выражения. Это значение называют приближённым значением квадратного корня с избытком. Поговорим об этом подробнее.


Приближенное значение квадратного корня с недостатком или избытком

Иногда можно встретить задание, в котором требуется найти приближённое значение корня с недостатком или избытком.

В предыдущей теме мы нашли приближённое значение корня √3 с точностью до десятых с недостатком. Недостаток понимается в том смысле, что до значения 3 нам недоставало ещё некоторых частей. Так, найдя приближённое значение √3 с точностью до десятых, мы получили 1,7. Это значение является значением с недостатком, поскольку при возведении этого числа во вторую степень полýчим результат 2,89. Этому результату недостаёт ещё 0,11 чтобы получить число 3. То есть, 2,89 + 0,11 = 3.

С избытком же называют приближённые значения, которые при возведении во вторую степень дают результат, который превосходит подкореннóе выражение. Так, вычисляя корень √3 приближённо, мы проверили значение 1,8. Это значение является приближённым значением корня √3 с точностью до десятых с избытком, поскольку при возведении 1,8 во вторую степень, получаем число 3,24. Этот результат превосходит подкореннóе выражение на 0,24. То есть 3,24 − 3 = 0,24.

Приближённое значение квадратного корня √3 с точностью до целых тоже был найден с недостатком:

√3 ≈ 1

Это потому что при возведении единицы в квадрат получаем единицу. То есть до числа 3 недостаёт ещё 2.

Приближённое значение квадратного корня √3 с точностью до целых можно найти и с избытком. Тогда этот корень приближённо будет равен 2

√3 ≈ 2

Это потому что при возведении числа 2 в квадрат получаем 4. Число 4 превосходит подкореннóе выражение 3 на единицу. Извлекая приближённо квадратный корень с избытком желательно уточнять, что корень извлечен именно с избытком:

√3 ≈ 2 (с избытком)

Потому что приближённое значение чаще всего ищется с недостатком, чем с избытком.

Дополнительно следует упомянуть, что в некоторых учебниках словосочетания «с точностью до целых», «с точностью до десятых», с «точностью до сотых», заменяют на словосочетания «с точностью до 1», «с точностью до 0,1», «с точностью до 0,01» соответственно.

Так, если в задании сказано извлечь квадратный корень из числа 5 с точностью до 0,01, то это значит что корень следует извлекать приближённо с точностью до сотых:

√5 ≈ 2,23


Пример 2. Извлечь квадратный корень из числа 51 с точностью до 1

√51 ≈ 7


Пример 3. Извлечь квадратный корень из числа 51 с точностью до 0,1

√51 ≈ 7,1

Пример 4. Извлечь квадратный корень из числа 51 с точностью до 0,01

√51 ≈ 7,14


Границы, в пределах которых располагаются корни

Если исходное число принадлежит промежутку [1; 100], то квадратный корень из этого исходного числа будет принадлежать промежутку [1; 10].

Например, пусть исходным числом будет 64. Данное число принадлежит промежутку [1; 100]. Сразу делаем вывод, что квадратный корень из числа 64 будет принадлежать промежутку [1; 10]. Теперь вспоминаем таблицу умножения. Какое перемножение двух одинаковых сомножителей даёт в результате 64? Ясно, что перемножение 8 × 8, а это есть 8= 64. Значит квадратный корень из числа 64 есть 8

корень из 64 равно 8


Пример 2. Извлечь квадратный корень из числа 49

Число 49 принадлежит промежутку [1; 100]. Значит квадратный корень будет принадлежать промежутку [1; 10]. Этим корнем будет число 7, поскольку 7= 49

√49 = 7


Пример 2. Извлечь квадратный корень из числа 1

Число 1 принадлежит промежутку [1; 100]. Значит квадратный корень будет принадлежать промежутку [1; 10]. Этим корнем будет число 1, поскольку 1= 1

√1 = 1


Пример 3. Извлечь квадратный корень из числа 100

Число 100 принадлежит промежутку [1; 100]. Значит квадратный корень будет принадлежать промежутку [1; 10]. Этим корнем будет число 10, поскольку 10= 100

√100 = 10

Понятно, что промежуток [1; 100] содержит ещё и числа, квадратные корни из которых не извлекаются. Для таких чисел корень нужно извлекать приближённо. Тем не менее, приближённый корень тоже будет располагаться в пределах промежутка [1; 10].

Например, извлечём квадратный корень из числа 37. Нет целого числа, вторая степень которого была бы равна 37. Поэтому извлекать квадратный корень следует приближённо. Извлечём его к примеру с точностью до сотых:

√37 ≈ 6,08

Для облегчения можно находить ближайшее меньшее число, корень из которого извлекается. Таковым в данном примере было число 36. Квадратный корень из него равен 6. И далее отталкиваясь от числа 6, можно находить приближённое значение корня √37, проверяя различные десятичные дроби, целая часть которых равна 6.

Квадраты чисел от 1 до 10 обязательно нужно знать наизусть. Ниже представлены эти квадраты:

12 = 1
22 = 4
32 = 9
42 = 16
52 = 25
62 = 36
72 = 49
82 = 64
92 = 81
102 = 100

И обратно, следует знать значения квадратных корней этих квадратов:

Если к любому числу от 1 до 10 в конце дописать ноль (или несколько нулей), и затем возвести это число во вторую степень, то в полученном числе будет в два раза больше нулей.

Например, 6= 36. Допишем к числу 6 один ноль, полýчим 60. Возведём число 60 во вторую степень, полýчим 3600

60= 3600

А если к числу 6 дописать два нуля, и возвести это число во вторую степень, то полýчим число, в котором четыре нуля. То есть в два раза больше нулей:

6002 = 360000

Тогда можно сделать следующий вывод:

Если исходное число содержит знакомый нам квадрат и чётное количество нулей, то можно извлечь квадратный корень из этого числа. Для этого следует извлечь корень из знакомого нам квадрата и затем записать половину количества нулей из исходного числа.

Например, извлечём квадратный корень из числа 900. Видим, что в данном числе есть знакомый нам квадрат 9. Извлекаем из него корень, получаем 3

корень из 900 равно 3

Теперь из исходного числа записываем половину от количества нулей. В исходном числе 900 содержится два нуля. Половина этого количества нулей есть один ноль. Записываем его в ответе после цифры 3

корень из 900 равно 30


Пример 2. Извлечём квадратный корень из числа 90000

Здесь опять же имеется знакомый нам квадрат 9 и чётное количество нулей. Извлекаем корень из числа 9 и записываем половину от количества нулей. В исходном числе содержится четыре нуля. Половиной же этого количества нулей будет два нуля:

квк рис 2


Пример 3. Извлечем квадратный корень из числа 36000000

Здесь имеется знакомый нам квадрат 36 и чётное количество нулей. Извлекаем корень из числа 36 и записываем половину от количества нулей. В исходном числе шесть нулей. Половиной же будет три нуля:

квк рис 3


Пример 4. Извлечем квадратный корень из числа 2500

Здесь имеется знакомый нам квадрат 25 и чётное количество нулей. Извлекаем корень из числа 25 и записываем половину от количества нулей. В исходном числе два нуля. Половиной же будет один ноль:

квк рис 4


Если подкореннóе число увеличить (или уменьшить) в 100, 10000 то корень увеличится (или уменьшится) в 10, 100 раз соответственно.

Например, корень из 49 равно 7. Если увеличим подкореннóе число в 100 раз, то квадратный корень увеличится в 10 раз:

квк рис 101

И наоборот, если в равенстве корень из 49 равно 7 уменьшим подкореннóе число в 100 раз, то квадратный корень уменьшится в 10 раз:

квк рис 102

Пример 2. Увеличим в равенстве квк рис 103 подкореннóе число в 10000, тогда квадратный корень 70 увеличиться в 100 раз

квк рис 104

Пример 3. Уменьшим в равенстве квк рис 103 подкореннóе число в 100 раз, тогда квадратный корень 70 уменьшится в 10 раз

квк рис 105

Эта закономерность позволяет извлечь квадратный корень из десятичной дроби, если в данной дроби после запятой содéржатся две цифры, и эти две цифры образуют знакомый нам квадрат. В таких случаях данную десятичную дробь следует умножить на 100. Затем извлечь квадратный корень из получившегося числа и уменьшить подкореннóе число в сто раз.

Например, извлечём квадратный корень из числа 0,25. В данной десятичной дроби после запятой содержатся две цифры и эти две цифры образуют знакомый нам квадрат 25.

Умнóжим десятичную дробь 0,25 на 100, полýчим 25. А из числа 25 квадратный корень извлекается легко:

квк рис 106

Но нам изначально нужно было извлечь корень из 0,25, а не из 25. Чтобы исправить ситуацию, вернём нашу десятичную дробь. Если в равенстве корень из 25 равно 5 подкореннóе число уменьшить в 100 раз, то полýчим под корнем 0,25 и соответственно ответ уменьшится в 10 раз:

квк рис 107

Обычно в таких случаях достаточно уметь передвигáть запятую. Потому что сдвинуть в числе запятую вправо на две цифры это всё равно что умножить это число на 100.

В предыдущем примере в подкоренном числе 0,25 можно было сдвинуть запятую вправо на две цифры, а в полученном ответе сдвинуть её влево на одну цифру.

Например, извлечем корень из числа 0,81. Мысленно передвинем запятую вправо на две цифры, полýчим 81. Теперь извлечём квадратный корень из числа 81, полýчим ответ 9. В ответе 9 передвинем запятую влево на одну цифру, полýчим 0,9. Значит, квк рис 108.

Это правило работает и в ситуации, когда после запятой содержатся четыре цифры и эти цифры образуют знакомый нам квадрат.

Например, десятичная дробь 0,1225 содержит после запятой четыре цифры. Эти четыре цифры образуют число 1225, квадратный корень из которого равен 35.

Тогда можно извлечь квадратный корень и из 0,1225. Умнóжим данную десятичную дробь на 10000, полýчим 1225. Из числа 1225 квадратный корень можно извлечь с помощью таблицы квадратов:

square 1225

квк рис 109

Но нам изначально нужно было извлечь корень из 0,1225, а не из 1225. Чтобы исправить ситуацию, в равенстве квк рис 109 подкореннóе число уменьшим в 10000 раз. В результате под корнем образуется десятичная дробь 0,1225, а правая часть уменьшится в 100 раз

квк рис 110

Эта же закономерность будет работать и при извлечении корней из дробей вида 12,25. Если цифры из которых состоит десятичная дробь образуют знакомый нам квадрат, при этом после запятой содержится чётное количество цифр, то можно извлечь корень из этой десятичной дроби.

Умнóжим десятичную дробь 12,25 на 100, полýчим 1225. Извлечём корень из числа 1225

квк рис 109

Теперь в равенстве квк рис 109 уменьшим подкореннóе число в 100 раз. В результате под корнем образуется число 12,25, и соответственно ответ уменьшится в 10 раз

квк рис 111


Если исходное число принадлежит промежутку [100; 10000], то квадратный корень из этого исходного числа будет принадлежать промежутку [10; 100].

В этом случае применяется таблица квадратов:

Например, пусть исходным числом будет 576. Данное число принадлежит промежутку [100; 10000]. Сразу делаем вывод, что квадратный корень из числа 576 будет принадлежать промежутку [10; 100]. Теперь открываем таблицу квадратов и смотрим какое число во второй степени равно 576

таблица квадратов рисунок 2

Видим, что это число 24. Значит корень из 576 равно 24.


Пример 2. Извлечь квадратный корень из числа 432.

Число 432 принадлежит промежутку [100; 10000]. Значит квадратный корень следует искать в промежутке [10; 100]. Открываем таблицу квадратов и смотрим какое число во второй степени равно 432. Обнаруживаем, что число 432 в таблице квадратов отсутствует. В этом случае квадратный корень следует искать приближённо.

Извлечем квадратный корень из числа 432 с точностью до десятых.

В таблице квадратов ближайшее меньшее число к 432 это число 400. Квадратный корень из него равен 20. Отталкиваясь от числа 20, будем проверять различные десятичные дроби, целая часть которых равна 20.

Проверим, например, число 20,8. Для этого возведём его в квадрат:

20,82 = 432,64

Получилось число 432,64 которое превосходит исходное число 432 на 0,64. Видим, что значение 20,8 великó для корня √432. Проверим тогда значение 20,7

20,7= 428,49

Значение 20,7 годится в качестве корня, поскольку в результате возведения этого числа в квадрат получается число 428,49, которое меньше исходного числа 432, но близко к нему. Значит √432 ≈ 20,7.

Необязательно запоминать промежутки чтобы узнать в каких границах располагается корень. Можно воспользоваться методом нахождения ближайших квадратов с чётным количеством нулей на конце.

Например, извлечём корень из числа 4225. Нам известен ближайший меньший квадрат 3600, и ближайший больший квадрат 4900

3600 < 4225 < 4900

Извлечём квадратные корни из чисел 3600 и 4900. Это числа 60 и 70 соответственно:

квк рис 112

Тогда можно понять, что квадратный корень из числа 4225 располагается между числами 60 и 70. Можно даже найти его методом подбора. Корни 60 и 70 исключаем сразу, поскольку это корни чисел 3600 и 4900. Затем можно проверить, например, корень 64. Возведём его в квадрат (или умнóжим данное число само на себя)

квк рис 55

Корень 64 не годится. Проверим корень 65

квк рис 56

Получается 4225. Значит 65 является корнем числа 4225

квк рис 113


Тождественные преобразования с квадратными корнями

Над квадратными корнями можно выполнять различные тождественные преобразования, тем самым облегчая их вычисление. Рассмотрим некоторые из этих преобразований.

Квадратный корень из произведения

Квадратный корень из произведения это выражение вида rad ab, где a и b некоторые числа.

Например, выражение корень кв из 4 на 9 является квадратным корнем из произведения чисел 4 и 9.

Чтобы извлечь такой квадратный корень, нужно по отдельности извлечь квадратные корни из множителей 4 и 9, представив выражение корень кв из 4 на 9 в виде произведения корней корень кв из 4 на корень из 9. Вычислив по отдельности эти корни полýчим произведение 2 × 3, которое равно 6

кор 4 на 9 решение

Конечно, можно не прибегать к таким манипуляциям, а вычислить сначала подкореннóе выражение 4 × 9, которое равно 36. Затем извлечь квадратный корень из числа 36

кор 4 на 9 короткое решение

Но при извлечении квадратных корней из больших чисел это правило может оказаться весьма полезным.

Допустим, потребовалось извлечь квадратный корень из числа 144. Этот корень легко определяется с помощью таблицы квадратов — он равен 12

кор 144 равен 12

Но предстáвим, что таблицы квадратов под рукой не оказалось. В этом случае число 144 можно разложить на простые множители. Затем из этих простых множителей составить числа, квадратные корни из которых извлекаются.

Итак, разлóжим число 144 на простые множители:

разложение числа 144 на множители

Получили следующее разложение:

разложение числа 144 на множители 2

В разложéнии содержатся четыре двойки и две тройки. При этом все числа, входящие в разложение, перемнóжены. Это позволяет предстáвить произведения одинаковых сомножителей в виде степени с показателем 2.

Тогда четыре двойки можно заменить на запись 2× 22, а две тройки заменить на 32

разложение числа 144 на множители 3

В результате будем иметь следующее разложение:

разложение числа 144 на множители 4

Теперь можно извлекáть квадратный корень из разложения числа 144

кор из разложения 144

Применим правило извлечения квадратного корня из произведения:

кор из разложения 144 шаг 2

Ранее было сказано, что если подкореннóе выражение возведенó во вторую степень, то такой квадратный корень равен модулю из подкореннóго выражения.

Тогда получится произведение 2 × 2 × 3, которое равно 12

кор из разложения 144 шаг 3

Простые множители представляют в виде степени для удобства и короткой записи. Допускается также записывать их под кóрнем как есть, чтобы впоследствии перемнóжив их, получить новые сомножители.

Так, разложив число 144 на простые множители, мы получили разложение 2 × 2 × 2 × 2 × 3 × 3. Это разложение можно записать под кóрнем как есть:

корень из 144

затем перемнóжить некоторые сомножители так, чтобы получились числа, квадратные корни из которых извлекаются. В данном случае можно дважды перемнóжить две двойки и один раз перемнóжить две тройки:

корень из 144 шаг 2

Затем применить правило извлечения квадратного корня из произведения и получить окончательный ответ:

корень из 144 шаг 3

С помощью правила извлечения квадратного корня из произведения можно извлекать корень и из других больших чисел. В том числе, из тех чисел, которых нет в таблице квадратов.

Например, извлечём квадратный корень из числа 13456. Этого числа нет в таблице квадратов, поэтому воспользуемся правилом извлечения квадратного корня из произведения, предварительно разложив число 13456 на простые множители.

Итак, разложим число 13456 на простые множители:

13456 разложение на простые множители

В разложении имеются четыре двойки и два числа 29. Двойки дважды предстáвим как 22. А два числа 29 предстáвим как 292. В результате полýчим следующее разложение числа 13456

разложение числа 13456 на множители

Теперь будем извлекать квадратный корень из разложения числа 13456

кор из числа 13456

Итак, если ≥ 0 и ≥ 0, то корень кв из ab это rad a and rad b. То есть корень из произведения неотрицательных множителей равен произведению корней из этих множителей.

Докажем равенство корень кв из ab это rad a and rad b. Для этого воспользуемся определением квадратного корня.

Согласно определению, квадратным корня из числа a есть число b, при котором выполняется равенство b= a.

В нашем случае нужно удостовериться, что правая часть равенства корень кв из ab это rad a and rad b при возведении во вторую степень даст в результате подкореннóе выражение левой части, то есть выражение ab.

Итак, выпишем правую часть равенства корень кв из ab это rad a and rad b и возведём ее во вторую степень:

cor a na kor b v 2

Теперь воспользуемся правилом возведения в степень произведения. Согласно этому правилу, каждый множитель данного произведения нужно возвести в указанную степень:

cor a na kor b v 2 равно кор в 2 на кор б

Ранее было сказано, что если выражение вида корень кв из a без 2 возвести во вторую степень, то получится подкореннóе выражение. Применим это правило. Тогда полýчим ab. А это есть подкореннóе выражение квадратного корня кор ab

cor a na kor b v 2 равно кор в 2 на кор б равно ab

Значит равенство корень кв из ab это rad a and rad b справедливо, поскольку при возведéнии правой части во вторую степень, получается подкореннóе выражение левой части.

Правило извлечения квадратного корня из произведения работает и в случае, если под кóрнем располагается более двух множителей. То есть справедливым будет следующее равенство:

корень кв из abc это rad a and rad b and rad c, при ≥ 0 и ≥ 0, ≥ 0.


Пример 1. Найти значение квадратного корня rad 16 na rad 25 na 64 пример

Запишем корень rad 16 na rad 25 na 64 пример в виде произведения корней, извлечём их, затем найдём значение полученного произведения:

rad 16 na rad 25 na 64 решение


Пример 2. Найти значение квадратного корня корень из 10 на 250

Предстáвим число 250 в виде произведения чисел 25 и 10. Делать это будем под знáком корня:

кор из 10 на 250 шаг 1

Теперь под кóрнем образовалось два одинаковых множителя 10 и 10. Перемнóжим их, полýчим 100

кор из 10 на 250 шаг 2

Далее применяем правило извлечения квадратного кóрня из произведения и получáем окончательный ответ:

кор из 10 на 250 шаг 3


Пример 3. Найти значение квадратного корня кор из 11 в 4 шаг 1

Воспользуемся правилом возведения степени в степень. Степень 114 предстáвим как (112)2.

кор из 11 в 4 шаг 2

Теперь воспользуемся правилом извлечения квадратного кóрня из квадрата числа:

кор из а в 2 равно а 130px

В нашем случае квадратный корень из числа (112)2 будет равен 112. Говоря простым языком, внешний показатель степени 2 исчезнет, а внутренний останется:

кор из 11 в 4 шаг 3

Далее возводим число 11 во вторую степень и получаем окончательный ответ:

кор из 11 в 4

Этот пример также можно решить, воспользовавшись правилом извлечения квадратного корня из произведения. Для этого подкореннóе выражение 114 нужно записать в виде произведения 11× 112. Затем извлечь квадратный корень из этого произведения:

кор из 11 в 4 вариант 2


Пример 4. Найти значение квадратного корня кор из 3 в 4 на 5 в 6

Перепишем степень 34 в виде (32)2, а степень 56 в виде (53)2

кор из 3 в 4 на 5 в 6 шаг 2

Далее используем правило извлечения квадратного кóрня из произведения:

кор из 3 в 4 на 5 в 6 шаг 3

Далее используем правило извлечения квадратного кóрня из квадрата числа:

кор из 3 в 4 на 5 в 6 шаг 4

Вычислим произведение получившихся степеней и полýчим окончательный ответ:

кор из 3 в 4 на 5 в 6 шаг 5


Сомножители, находящиеся под корнем, могут быть десятичными дробями. Например, извлечём квадратный корень из произведения квк рис 58

Запишем корень квк рис 58 в виде произведения корней, извлечём их, затем найдём значение полученного произведения:

квк рис 59


Пример 6. Найти значение квадратного корня квк рис 60

квк рис 61


Пример 7. Найти значение квадратного корня квк рис 63

квк рис 62


Если первый сомножитель умножить на число n, а второй сомножитель разделить на это число n, то произведение не изменится.

Например, произведение 8 × 4 равно 32

8 × 4 = 32

Умнóжим сомножитель 8 скажем на число 2, а сомножитель 4 раздéлим на это же число 2. Тогда получится произведение 16 × 2, которое тоже равно 32.

(8 × 2) × (4 : 2) = 32

Это свойство полезно при решении некоторых задач на извлечение квадратных корней. Сомножители подкореннóго выражения можно умнóжить и разделить так, чтобы корни из них извлекались.

Например, извлечём квадратный корень из произведения квк рис 64. Если сразу воспользоваться правилом извлечения квадратного корня из произведения, то не полýчится извлечь корни √1,6 и √90, потому что они не извлекаются.

Проанализировав подкореннóе выражение 1,6 × 90, можно заметить, что если первый сомножитель 1,6 умножить на 10, а второй сомножитель 90 разделить на 10, то полýчится произведение 16 × 9. Из такого произведения квадратный корень можно извлечь, пользуясь правилом извлечения квадратного корня из произведения.

Запишем полное решение данного примера:

квк рис 65

Процесс умножения и деления можно выполнять в уме. Также можно пропустить подробную запись извлечения квадратного корня из каждого сомножителя. Тогда решение станóвится короче:

квк рис 66


Пример 9. Найти значение квадратного корня квк рис 68

Умнóжим первый сомножитель на 10, а второй раздéлим на 10. Тогда под кóрнем образуется произведение 36 × 0,04, квадратный корень из которого извлекается:

квк рис 67


Если в равенстве корень кв из ab это rad a and rad b поменять местами левую и правую часть, то полýчим равенство корень кв из ab это rad a and rad b change. Это преобразовáние позволяет упрощáть вычисление некоторых корней.

Например, узнáем чему равно значение выражения кор из 10 на кор из 40 шаг 1.

Квадратные корни из чисел 10 и 40 не извлекаются. Воспользуемся правилом корень кв из ab это rad a and rad b change, то есть заменим выражение из двух корней кор из 10 на кор из 40 шаг 1 на выражение с одним корнем, под которым будет произведение из чисел 10 и 40

кор из 10 на кор из 40 шаг 2

Теперь найдём значение произведения, находящегося под корнем:

кор из 10 на кор из 40 шаг 3

А квадратный корень из числа 400 извлекается. Он равен 20

кор из 10 на кор из 40 шаг 4

Сомножители, располагáющиеся под корнем, можно расклáдывать на множители, группировáть, представлять в виде степени, а также перемножáть для получения новых сомножителей, корни из которых извлекаются.

Например, найдём значение выражения квк рис 69.

Воспользуемся правилом корень кв из ab это rad a and rad b change

квк рис 70

Сомножитель 32 это 25. Предстáвим этот сомножитель как 2 × 24

квк рис 71

Перемнóжим сомножители 2 и 2, полýчим 4. А сомножитель 24 предстáвим в виде степени с показателем 2

квк рис 72

Теперь воспóльзуемся правилом корень кв из ab это rad a and rad b и вычислим окончательный ответ:

квк рис 73


Пример 12. Найти значение выражения квк рис 74

Воспользуемся правилом корень кв из ab это rad a and rad b change

квк рис 75

Сомножитель 8 это 2 × 2 × 2, а сомножитель 98 это 2 × 7 × 7

квк рис 76

Теперь под кóрнем имеются четыре двойки и две семёрки. Четыре двойки можно записать как 2× 22, а две семёрки как 72

квк рис 77

Теперь воспользуемся правилом корень кв из ab это rad a and rad b и вычислим окончательный ответ:

квк рис 78


Квадратный корень из дроби

Квадратный корень видакор из а на б равен дроби, в числителе которой квадратный корень из числа a, а в знаменателе — квадратный корень из числа b

Например, квадратный корень из дроби  равен дроби, в числителе которой квадратный корень из числа 4, а в знаменателе — квадратный корень из числа 9

кор из 4 на 9 равно кор из 4 на кор из 9

Вычислим квадратные корни в числителе и знаменателе:

кор из 4 на 9 равно кор из 4 на кор из 9 шаг 2

Значит, квадратный корень из дроби равен две третьих.

Докáжем, что равенство является верным.

Возведём правую часть во вторую степень. Если в результате полýчим дробь a na b, то это будет означать, что равенство верно:

cor a na cor b v 2


Пример 1. Извлечь квадратный корень кор из 49 на кор из 81

Воспользуемся правилом извлечения квадратного корня из дроби:

кор из 49 на кор из 81 решение


Пример 2. Извлечь квадратный корень кор из 16 на 9 пример

Переведём подкореннóе выражение в неправильную дробь, затем воспользуемся правилом извлечения квадратного корня из дроби:

кор из 16 на 9 решение


Пример 3. Извлечь квадратный корень квк рис 92

Квадратным корнем из числа 0,09 является 0,3. Но можно извлечь этот корень, воспользовавшись правилом извлечения квадратного корня из дроби.

Предстáвим подкоренное выражение в виде обыкновенной дроби. 0,09 это девять сотых:

квк рис 70

Теперь можно воспользоваться правилом извлечения квадратного корня из дроби:

корень из 0.09


Пример 4. Найти значение выражения кв 009 на кв 025 пример

Извлечём корни из 0,09 и 0,25, затем сложим полученные результаты:

кв 009 на кв 025

Также можно воспользоваться правилом извлечения квадратного корня из дроби:

квк рис 71

В данном примере первый способ оказался проще и удобнее.


Пример 5. Найти значение выражения 4 - 10 кв 001 пример

Сначала вычислим квадратный корень, затем перемнóжим его с 10. Получившийся результат вычтем из 4

4 - 10 кв 001 решение


Пример 6. Найти значение выражения -7 на кор 036 на 54 пример

Сначала найдём значение квадратного корня кор из 036. Он равен 0,6 поскольку 0,6= 0,36

-7 на кор 036 на 54 шаг 2

Теперь вычислим получившееся выражение. Согласно порядку действий, сначала надо выполнить умножение, затем сложение:

-7 на кор 036 на 54 шаг 3


Вынесение множителя из-под знака корня

В некоторых задачах может быть полезным вынесение множителя из-под знака корня.

Рассмотрим квадратный корень из произведения кор из 4 на 3. Согласно правилу извлечения квадратного корня из произведения, нужно извлечь квадратный корень из каждого множителя данного произведения:

кор из 4 на 3 шаг 2

В нашем примере квадратный корень извлекается только из множителя 4. Его мы извлечём, а выражение кор из 3 оставим без изменений:

кор из 4 на 3 шаг 3

Это и есть вынесение множителя из-под знака корня.

На практике подкореннóе выражение чаще всего требуется разложить на множители.


Пример 2. Вынести множитель из-под знака корня в выражении кор из 18

Разлóжим подкореннóе выражение на множители 9 и 2. Тогда полýчим:

кор из 18 шаг 1

Теперь воспользуемся правило извлечения квадратного корня из произведения. Извлечь можно только корень из множителя 9. Множитель 2 остáвим под кóрнем:

кор из 18 последний шаг


Пример 3. Вынести множитель из-под знака корня в выражении кор из 363

Разлóжим подкореннóе выражение на множители 121 и 3. Тогда полýчим:

кор из 363 шаг 2

Теперь воспользуемся правилом извлечения квадратного корня из произведения. Извлечь можно только корень из множителя 121. Выражение √3 остáвим под корнем:

кор из 363 последний шаг


Пример 4. Вынести множитель из-под знака корня в выражении квк рис 79

Воспользуемся правилом извлечения квадратного корня из произведения:

квк рис 81

Квадратный корень извлекается только из числа 121. Извлечём его, а выражение √15 оставим без изменений:

квк рис 82

Получается, что множитель 11 вынесен из-под знака корня. Вынесенный множитель принято записывать до выражения с корнем. Поменяем выражения √15 и 11 местами:

квк рис 80


Пример 5. Вынести множитель из-под знака корня в выражении корень из 12

Разлóжим подкореннóе выражение на множители 4 и 3

корень из 12 шаг 1

Воспользуемся правилом извлечения квадратного корня из произведения:

корень из 12 шаг 2

Извлечём корень из числа 4, а выражение √3 остáвим без изменений:

корень из 12 шаг 3


Пример 6. Упростить выражение квк рис 72

Предстáвим второе слагаемое квк рис 79 в виде квк рис 80. А третье слагаемое квк рис 81 предстáвим в виде квк рис 82

квк рис 73

Теперь в выражениях квк рис 83 и квк рис 82 вынесем множитель из-под знака корня:

квк рис 74

Во втором слагаемом квк рис 84 перемнóжим числа −4 и 4. Остальное перепишем без изменений:

квк рис 75

Замечáем, что получившемся выражении квадратный корень √3 является общим множителем. Вынесем его за скобки:

квк рис 76

Вычислим содержимое скобок, полýчим −1

квк рис 77

Если множителем является −1, то записывают только минус. Единица опускается. Тогда полýчим окончательный ответ −√3

квк рис 78


Внесение множителя под знак корня

Рассмотрим следующее выражение:

5 на кор из 9

В этом выражении число 5 умнóжено на квадратный корень из числа 9. Найдём значение этого выражения.

Сначала извлечём квадратный корень, затем перемнóжим его с числом 5.

Квадратный корень из 9 равен 3. Перемнóжим его с числом 5. Тогда полýчим 15

5 на кор из 9 шаг 2

Число 5 в данном случае было множителем. Внесём этот множитель под знак корня. Но сделать это нужно таким образом, чтобы в результате наших действий значение исходного выражения не изменилось. Проще говоря, после внесения множителя 5 под знак корня, получившееся выражение по-прежнему должно быть равно 15.

Значение выражения не изменится, если число 5 возвести во вторую степень и только тогда внести его под корень:

5 на кор из 9 шаг 3

Итак, если данó выражение а на кор из b, и нужно внести множитель a под знак корня, то надо возвести во вторую степень множитель a и внести его под корень:

а на кор из b formula

Пример 1. Внести множитель под знак корня в выражении 7 на кор из 10

Возведём число 7 во вторую степень и внесём его под знак корня:

7 на кор из 10 решение


Пример 2. Внести множитель под знак корня в выражении 10 на кор из y шаг 1

Возведём число 10 во вторую степень и внесем его под знак корня:

10 на кор из y решение


Пример 3. Внести множитель под знак корня в выражении 5 на кор 3 ab

5 на кор 3 ab решение

Вносить под знак корня можно только положительный множитель. Ранее было сказано, что выражение вида корень кв из -a без 2 не имеет смысла.

Однако, если перед знаком кóрня располагается отрицательный множитель, то минус можно оставить за знáком корня, а самó число внести под знак корня.

Пример 4. Внести множитель по знак корня в выражении -3 на кор из 2

В этом примере под знак корня внóсится только 3. Минус остаётся за знáком корня:

-3 на кор из 2 решение


Пример 5. Выполнить возведéние в степень в следующем выражении:

квк рис 85

Воспользуемся формулой квадрата суммы двух выражений:

(a + b)2 = a+ 2ab + b2

Роль переменной a в данном случае играет выражение √3, роль переменной b — выражение √2. Тогда полýчим:

квк рис 86

Теперь необходимо упростить получившееся выражение.

Для выражений корень из 3 в квадратеи корень из 2 в квадрате применим правило квк рис 87. Ранее мы говорили, что если выражение вида корень кв из a без 2 возвести во вторую степень, то это выражение будет равно подкореннóму выражению a.

А в выражении квк рис 89 для множителей корень из 3 и корень из 2 применим правило корень кв из ab это rad a and rad b change. То есть заменим произведение корней на один общий корень:

квк рис 90

Приведём подобные слагаемые. В данном случае можно сложить слагаемые 3 и 2. А в слагаемом квк рис 88 вычислить произведение, которое под кóрнем:

квк рис 91


Задания для самостоятельного решения

Задание 1. Найдите значение квадратного корня:

Решение:

Задание 2. Найдите значение квадратного корня:

Решение:

Задание 3. Найдите значение квадратного корня:

Решение:

Задание 4. Найдите значение выражения:

Решение:

Задание 5. Найдите значение квадратного корня:

Решение:

Задание 6. Найдите значение квадратного корня:

Решение:

Задание 7. Найдите значение квадратного корня:

Решение:

Задание 8. Найдите значения следующих выражений:

Решение:

Задание 9. Извлеките квадратный корень из числа 4624

Решение:

Задание 10. Извлеките квадратный корень из числа 11025

Решение:

Задание 11. Найдите значение квадратного корня:

Решение:

Задание 12. Найдите значение квадратного корня:

Решение:

Задание 13. Найдите значение квадратного корня:

Решение:

Задание 14. Найдите значение квадратного корня:

Решение:

Задание 15. Найдите значение квадратного корня:

Решение:

Задание 16. Найдите значение выражения:

Решение:

Задание 17. Найдите значение выражения:

Решение:

Задание 18. Найдите значение выражения:

Решение:

Задание 19. Найдите значение выражения:

Решение:

Задание 20. Найдите значение выражения:

Решение:

Задание 21. Найдите значение выражения:

Решение:

Задание 22. Найдите значение выражения:

Решение:

Задание 23. Найдите значение выражения:

Решение:

Задание 24. Найдите значение выражения:

Решение:

Задание 25. Найдите значение выражения:

Решение:

Задание 26. Найдите значение выражения:

Решение:

Задание 27. Найдите значение выражения:

Решение:

Задание 28. Найдите значение выражения:

Решение:

Задание 29. Найдите значение выражения:

Решение:

Задание 30. Найдите значение выражения:

Решение:

Задание 31. Найдите значение выражения:

Решение:

Задание 32. Найдите значение выражения:

Решение:

Задание 33. Найдите значение выражения:

Решение:

Задание 34. Вынести множитель из-под знака корня:

Решение:

Задание 35. Вынести множитель из-под знака корня:

Решение:

Задание 36. Вынести множитель из-под знака корня:

Решение:

Задание 37. Вынести множитель из-под знака корня:

Решение:

Задание 38. Вынести множитель из-под знака корня:

Решение:

Задание 39. Вынести множитель из-под знака корня:

Решение:

Задание 40. Вынести множитель из-под знака корня:

Решение:

Задание 41. Вынести множитель из-под знака корня:

Решение:

Задание 42. Вынести множитель из-под знака корня:

Решение:

Задание 43. Вынести множитель из-под знака корня:

Решение:

Задание 44. Вынести множитель из-под знака корня в следующих выражениях:

Решение:

Задание 45. Внести множитель под знак корня:

Решение:

Задание 46. Внести множитель под знак корня:

Решение:

Задание 47. Внести множитель под знак корня:

Решение:

Задание 48. Внести множитель под знак корня:

Решение:

Задание 49. Внести множитель под знак корня:

Решение:

Задание 50. Внести множитель под знак корня в следующих выражениях:

Решение:

Задание 51. Упростить выражение:

Решение:

Задание 52. Упростить выражение:

Решение:

Задание 53. Упростить выражение:

Решение:

Задание 54. Упростить выражение:

Решение:

Задание 55. Упростить выражение:

Решение:

Задание 56. Упростить выражение:

Решение:

Задание 57. Упростить выражение:

Решение:

Задание 58. Упростить выражение:

Решение:

Задание 59. Упростить выражение:

Решение:

Задание 60. Упростить выражение:

Решение:


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже


Математика зародилась тогда, когда человек осознал себя и стал позиционироваться как автономная единица мира. Желание измерить, сравнить, посчитать то, что тебя окружает, – вот что лежало в основе одной из фундаментальных наук наших дней. Сначала это были частички элементарной математики, что позволили связать числа с их физическими выражениями, позже выводы стали излагаться лишь теоретически (в силу своей абстрактности), ну а через некоторое время, как выразился один ученый, “математика достигла потолка сложности, когда из нее исчезли все числа”. Понятие “квадратный корень” появилось еще в то время, когда его можно было без проблем подкрепить эмпирическими данными, выходя за плоскость вычислений.

С чего все начиналось

Первое упоминание корня, который на данный момент обозначается как √, было зафиксировано в трудах вавилонских математиков, положивших начало современной арифметике. Конечно, на нынешнюю форму они походили мало – ученые тех лет сначала пользовались громоздкими табличками. Но во втором тысячелетии до н. э. ими была выведена приближенная формула вычислений, которая показывала, как извлечь квадратный корень. На фото ниже изображен камень, на котором вавилонские ученые высекли процесс вывода √2 , причем он оказался настолько верным, что расхождение в ответе нашли лишь в десятом знаке после запятой.

квадратный корень

Помимо этого, корень применялся, если нужно было найти сторону треугольника, при условии, что две другие известны. Ну и при решении квадратных уравнений от извлечения корня никуда не деться.

Наравне с вавилонскими работами объект статьи изучался и в китайской работе “Математика в девяти книгах”, а древние греки пришли к выводу, что любое число, из которого не извлекается корень без остатка, дает иррациональный результат.

Происхождение данного термина связывают с арабским представлением числа: древние ученые полагали, что квадрат произвольного числа произрастает из корня, подобно растению. На латыни это слово звучит как radix (можно проследить закономерность – все, что имеет под собой “корневую” смысловую нагрузку, созвучно, будь то редис или радикулит).

Ученые последующих поколений подхватили эту мысль, обозначая его как Rx. Например, в XV веке, дабы указать, что извлекается корень квадратный из произвольного числа a, писали R2a. Привычная современному взгляду “галочка” √ появилась лишь в XVII веке благодаря Рене Декарту.

Наши дни

С точки зрения математики, квадратный корень из числа y – это такое число z, квадрат которого равен y. Иными словами, z2=y равносильно √y=z. Однако данное определение актуально лишь для арифметического корня, так как оно подразумевает неотрицательное значение выражения. Иными словами, √y=z, где z больше либо равно 0.

корень квадратный

В общем случае, что действует для определения алгебраического корня, значение выражения может быть как положительным, так и отрицательным. Таким образом, в силу того, что z2=y и (-z)2=y, имеем: √y=±z или √y=|z|.

Благодаря тому, что любовь к математике с развитием науки лишь возросла, существуют разнообразные проявления привязанности к ней, не выраженные в сухих вычислениях. Например, наравне с такими занятными явлениями, как день числа Пи, отмечаются и праздники корня квадратного. Отмечаются они девять раз в сто лет, и определяются по следующему принципу: числа, которые обозначают по порядку день и месяц, должна быть корнем квадратным из года. Так, в следующий раз предстоит отмечать сей праздник 4 апреля 2016 года.

Свойства квадратного корня на поле R

  1. Квадратный корень из произведения равен произведению квадратных корней, при условии, что подкоренные выражения больше либо равны 0.
  2. При возведении корня квадратного в степень достаточно возвести в эту степень подкоренное выражение, при условии, что оно больше нуля.
  3. Квадратный корень из дроби равен корню из числителя, разделенному на корень из знаменателя, при условии, что подкоренное выражение числителя больше либо равно 0, а подкоренное выражение знаменателя строго больше 0.
  4. Подкоренное выражение, если оно больше нуля, можно разбить на несколько частей, из которых, в свою очередь, допустимо извлечь корень. Например: √75=√25*3=5√3.
  5. Под знак корня можно вводить любое число, при этом возведя его в квадрат. Например: 5√8=√25*√8=√200.

    сторона квадрата

Практически все математические выражения имеют под собой геометрическую основу, не миновала эта участь и √y, который определяется как сторона квадрата с площадью y.

Как найти корень числа?

Алгоритмов вычисления существует несколько. Наиболее простым, но при этом достаточно громоздким, является обычный арифметический подсчет, который заключается в следующем:

1) из числа, корень которого нам нужен, по очереди вычитаются нечетные числа – до тех пор, пока остаток на выходе не получится меньше вычитаемого или вообще будет равен нулю. Количество ходов и станет в итоге искомым числом. Например, вычисление квадратного корня из 25:

25-1=24

24-3=21

21-5=17

17-7=10

10-9=1

Следующее нечетное число – это 11, остаток у нас следующий: 1<11. Количество ходов – 5, так что корень из 25 равен 5. Вроде все легко и просто, но представьте, что придется вычислять из 18769?

вычисление квадратного корня

Для таких случаев существует разложение в ряд Тейлора:

√(1+y)=∑((-1)n(2n)!/(1-2n)(n!)2(4n))yn, где n принимает значения от 0 до

+∞, а |y|≤1.

Графическое изображение функции z=√y

Рассмотрим элементарную функцию z=√y на поле вещественных чисел R, где y больше либо равен нулю. График ее выглядит следующим образом:

вычисление квадратного корня

Кривая растет из начала координат и обязательно пересекает точку (1; 1).

Свойства функции z=√y на поле действительных чисел R

1. Область определения рассматриваемой функции – промежуток от нуля до плюс бесконечности (ноль включен).

2. Область значений рассматриваемой функции – промежуток от нуля до плюс бесконечности (ноль опять же включен).

3. Минимальное значение (0) функция принимает лишь в точке (0; 0). Максимальное значение отсутствует.

4. Функция z=√y ни четная, ни нечетная.

5. Функция z=√y не является периодической.

6. Точка пересечения графика функции z=√y с осями координат лишь одна: (0; 0).

7. Точка пересечения графика функции z=√y также является и нулем этой функции.

8. Функция z=√y непрерывно растет.

9. Функция z=√y принимает лишь положительные значения, следовательно, график ее занимает первый координатный угол.

Варианты изображения функции z=√y

В математике для облегчения вычислений сложных выражений порой используют степенную форму написания корня квадратного: √y=y1/2. Такой вариант удобен, например, в возведении функции в степень: (√y)4=(y1/2)4=y2. Этот метод является удачным представлением и при дифференцировании с интегрированием, так как благодаря ему корень квадратный представляется обычной степенной функцией.

А в программировании заменой символа √ является комбинация букв sqrt.

вычисление квадратного корня

Стоит отметить, что в данной области квадратный корень очень востребован, так как входит в состав большинства геометрических формул, необходимых для вычислений. Сам алгоритм подсчета достаточно сложен и строится на рекурсии (функции, что вызывает сама себя).

Корень квадратный в комплексном поле С

По большому счету именно предмет данной статьи стимулировал открытие поля комплексных чисел C, так как математикам не давал покоя вопрос получения корня четной степени из отрицательного числа. Так появилась мнимая единица i, которая характеризуется очень интересным свойством: ее квадратом есть -1. Благодаря этому квадратные уравнения и при отрицательном дискриминанте получили решение. В С для корня квадратного актуальны те же свойства, что и в R, единственное, сняты ограничения с подкоренного выражения.

Добавить комментарий