Как разложить на множители квадратный трёхчлен
Квадратный трёхчлен — это многочлен вида ax2 + bx + c.
В прошлых уроках мы решали квадратные уравнения. Общий вид таких уравнений выглядел так:
ax2 + bx + c = 0
Левая часть этого уравнения является квадратным трёхчленом.
Одним из полезных преобразований при решении задач является разложение квадратного трёхчлена на множители. Для этого исходный квадратный трёхчлен приравнивают к нулю и решают квадратное уравнение. В этом случае говорят, что выполняется поиск корней квадратного трёхчлена.
Полученные корни x1 и x2 следует подстáвить в следующее выражение, которое и станет разложением:
a(x − x1)(x − x2)
Таким образом, чтобы разложить квадратный трёхчлен на множители при помощи решения квадратного уравнения, нужно воспользоваться следующей готовой формулой:
ax2 + bx + c = a(x − x1)(x − x2)
Где левая часть — исходный квадратный трёхчлен.
Пример 1. Разложить на множители следующий квадратный трёхчлен:
x2 − 8x + 12
Найдём корни квадратного трёхчлена. Для этого приравняем данный квадратный трёхчлен к нулю и решим квадратное уравнение:
x2 − 8x + 12 = 0
В данном случае коэффициент b является чётным. Поэтому можно воспользоваться формулами для чётного второго коэффициента. Чтобы сэкономить время, некоторые подробные вычисления можно пропустить:
Итак, x1 = 6, x2 = 2. Теперь воспользуемся формулой ax2 + bx + c = a(x − x1)(x − x2). В левой части вместо выражения ax2 + bx + c напишем свой квадратный трёхчлен x2 − 8x + 12. А в правой части подставим имеющиеся у нас значения. В данном случае a = 1, x1 = 6, x2 = 2
x2 − 8x + 12 = 1(x − 6)(x − 2) = (x − 6)(x − 2)
Если a равно единице (как в данном примере), то решение можно записать покороче:
x2 − 8x + 12 = (x − 6)(x − 2)
Чтобы проверить правильно ли разложен квадратный трёхчлен на множители, нужно раскрыть скобки у правой части получившегося равенства.
Раскроем скобки у правой части равенства, то есть в выражении (x − 6)(x − 2). Если мы всё сделали правильно, то должен получиться квадратный трёхчлен x2 − 8x + 12
(x − 6)(x − 2) = x2 − 6x − 2x + 12 = x2 − 8x + 12
Пример 2. Разложить на множители следующий квадратный трёхчлен:
2x2 − 14x + 24
Приравняем данный квадратный трёхчлен к нулю и решим уравнение:
2x2 − 14x + 24 = 0
Как и в прошлом примере коэффициент b является чётным. Поэтому можно воспользоваться формулами для чётного второго коэффициента:
Итак, x1 = 4, x2 = 3. Приравняем квадратный трехчлен 2x2 − 14x + 24 к выражению a(x − x1)(x − x2), где вместо переменных a, x1 и x2 подстáвим соответствующие значения. В данном случае a = 2
2x2 − 14x + 24 = 2(x − 4)(x − 3)
Выполним проверку. Для этого раскроем скобки у правой части получившегося равенства. Если мы всё сделали правильно, то должен получиться квадратный трёхчлен 2x2 − 14x + 24
2(x − 4)(x − 3) = 2(x2 − 4x −3x + 12) = 2(x2 − 7x + 12) = 2x2 − 14x + 24
Как это работает
Разложение квадратного трёхчлена на множители происходит, если вместо коэффициентов квадратного трёхчлена подстáвить теорему Виета и выполнить тождественные преобразования.
Для начала рассмотрим случай, когда коэффициент a квадратного трёхчлена равен единице:
x2 + bx + c
Вспоминаем, что если квадратное уравнение является приведённым, то теорема Виета имеет вид:
Тогда приведённый квадратный трехчлен x2 + bx + c можно разложить на множители следующим образом. Сначала выразим b из уравнения x1 + x2 = −b. Для этого можно умножить обе его части на −1
Переменную c из теоремы Виета выражать не нужно — она уже выражена. Достаточно поменять местами левую и правую часть:
Теперь подставим выраженные переменные b и c в квадратный трёхчлен x2 + bx + c
Раскроем скобки там где это можно:
В получившемся выражении выполним разложение многочлена на множители способом группировки. В данном случае удобно сгруппировать первый член со вторым, а третий с четвёртым:
Из первых скобок вынесем общий множитель x, из вторых скобок — общий множитель −x2
Далее замечаем, что выражение (x − x1) является общим множителем. Вынесем его за скобки:
Мы пришли к тому, что выражение x2 + bx + c стало равно (x − x1)(x − x2)
x2 + bx + c = (x − x1)(x − x2)
Но это был случай, когда исходный квадратный трёхчлен является приведённым. В нём коэффициент a равен единице. И соответственно, в формуле разложения такого квадратного трехчлена коэффициент a можно опустить.
Теперь рассмотрим случай, когда коэффициент a квадратного трёхчлена не равен единице. Это как раз тот случай, когда в формуле разложения присутствует перед скобками коэффициент a
ax2 + bx + c = a(x − x1)(x − x2)
Вспоминаем, что если квадратное уравнение не является приведённым, то есть имеет вид ax2 + bx + c = 0, то теорема Виета принимает следующий вид:
Это потому что теорема Виета работает только для приведённых квадратных уравнений. А чтобы уравнение ax2 + bx + c = 0 стало приведённым, нужно разделить обе его части на a
Далее чтобы квадратный трёхчлен вида ax2 + bx + c разложить на множители, нужно вместо b и c подставить соответствующие выражения из теоремы Виета. Но в этот раз нам следует использовать равенства и
Для начала выразим b и c. В первом равенстве умножим обе части на a. Затем обе части получившегося равенства умножим на −1
Теперь из второго равенства выразим c. Для этого умножим обе его части на a
Теперь подставим выраженные переменные b и с в квадратный трёхчлен ax2 + bx + c. Для наглядности каждое преобразование будем выполнять на новой строчке:
Здесь вместо переменных b и c были подставлены выражения −ax1 − ax2 и ax1x2, которые мы ранее выразили из теоремы Виета. Теперь раскроем скобки там где это можно:
В получившемся выражении выполним разложение многочлена на множители способом группировки. В данном случае удобно сгруппировать первый член со вторым, а третий с четвёртым:
Теперь из первых скобок вынесем общий множитель ax, а из вторых — общий множитель −ax2
Далее замечаем, что выражение x − x1 тоже является общим множителем. Вынесем его за скобки:
Вторые скобки содержат общий множитель a. Вынесем его за скобки. Его можно расположить в самом начале выражения:
Мы пришли к тому, что выражение ax2 + bx + c стало равно a(x − x1)(x − x2)
ax2 + bx + c = a(x − x1)(x − x2)
Отметим, что если квадратный трехчлен не имеет корней, то его нельзя разложить на множители. Действительно, если не найдены корни квадратного трёхчлена, то нéчего будет подставлять в выражение a(x − x1)(x − x2) вместо переменных x1 и x2.
Если квадратный трёхчлен имеет только один корень, то этот корень одновременно подставляется в x1 и x2. Например, квадратный трёхчлен x2 + 4x + 4 имеет только один корень −2
Тогда значение −2 в процессе разложения на множители будет подставлено вместо x1 и x2. А значение a в данном случае равно единице. Её можно не записывать, поскольку это ничего не даст:
Скобки внутри скобок можно раскрыть. Тогда получим следующее:
При этом если нужно получить короткий ответ, последнее выражение можно записать в виде (x + 2)2 поскольку выражение (x + 2)(x + 2) это перемножение двух сомножителей, каждый из которых равен (x + 2)
Примеры разложений
Пример 1. Разложить на множители следующий квадратный трёхчлен:
3x2 − 2x − 1
Найдём корни квадратного трёхчлена:
Воспользуемся формулой разложения. В левой части напишем квадратный трёхчлен 3x2 − 2x − 1, а в правой части — его разложение в виде a(x − x1)(x − x2), где вместо a, x1 и x2 подстáвим соответствующие значения:
Во вторых скобках можно заменить вычитание сложением:
Пример 2. Разложить на множители следующий квадратный трёхчлен:
3 − 11x + 6x2
Упорядочим члены так, чтобы старший коэффициент располагался первым, средний — вторым, свободный член — третьим:
6x2 − 11x + 3
Найдём корни квадратного трёхчлена:
Воспользуемся формулой разложения:
Упростим получившееся разложение. Вынесем за первые скобки общий множитель 3
Теперь воспользуемся сочетательным законом умножения. Напомним, что он позволяет перемножать сомножители в любом порядке. Умножим 3 на вторые скобки. Это позвóлит избавиться от дроби в этих скобках:
Пример 3. Разложить на множители следующий квадратный трёхчлен:
3x2 + 7x − 6
Найдём корни квадратного трёхчлена:
Воспользуемся формулой разложения:
Пример 4. Найдите значение k, при котором разложение на множители трёхчлена 3x2 − 8x + k содержит множитель (x − 2)
Если разложение содержит множитель (x − 2), то один из корней квадратного трёхчлена равен 2. Пусть корень 2 это значение переменной x1
Чтобы найти значение k, нужно знать чему равен второй корень. Для его определения воспользуемся теоремой Виета.
В данном случае квадратный трёхчлен не является приведённым, поэтому сумма его корней будет равна дроби , а произведение корней — дроби
Выразим из первого равенства переменную x2 и сразу подстáвим найденное значение во второе равенство вместо x2
Теперь из второго равенства выразим k. Так мы найдём его значение.
Пример 5. Разложить на множители следующий квадратный трёхчлен:
Перепишем данный трёхчлен в удобный для нас вид. Если в первом члене заменить деление умножением, то получим . Если поменять местами сомножители, то получится . То есть коэффициент a станет равным
Коэффициент b можно перевести в обыкновенную дробь. Так проще будет искать дискриминант:
Найдём корни квадратного трёхчлена:
Воспользуемся формулой разложения:
Задания для самостоятельного решения
Задание 1. Разложить на множители квадратный трёхчлен:
Решение:
Задание 2. Разложить на множители квадратный трёхчлен:
Решение:
Задание 3. Разложить на множители квадратный трёхчлен:
Решение:
Задание 4. Разложить на множители квадратный трёхчлен:
Решение:
Задание 5. Разложить на множители квадратный трёхчлен:
Решение:
Задание 6. Разложить на множители квадратный трёхчлен:
Решение:
Задание 7. Разложить на множители квадратный трёхчлен:
Решение:
Задание 8. Разложить на множители квадратный трёхчлен:
Решение:
Задание 9. Разложить на множители квадратный трёхчлен:
Решение:
Задание 10. Разложить на множители квадратный трёхчлен:
Решение:
Задание 11. Разложить на множители квадратный трёхчлен:
Решение:
Задание 12. Разложить на множители квадратный трёхчлен:
Решение:
Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках
Возникло желание поддержать проект?
Используй кнопку ниже
#хакнем_математика 👈 рубрика, содержащая интересный, познавательный контент по математике как для школьников, так и для взрослых 🥳
ВСЁ о КВАДРАТНЫХ УРАВНЕНИЯХ и НЕРАВЕНСТВАХ
ЧАСТЬ I. РАЗЛОЖЕНИЕ КВАДРАТНОГО ТРЁХЧЛЕНА на МНОЖИТЕЛИ СПОСОБОМ ГРУППИРОВКИ
Здравствуйте, уважаемые читатели! Перед вами первая статья цикла «ВСЁ о КВАДРАТНЫХ УРАВНЕНИЯХ и НЕРАВЕНСТВАХ», задуманного для учеников старших классов, начиная с 9-го, готовящихся к ОГЭ или ЕГЭ. Как обычно, начну с определений.
Квадратное уравнение — это уравнение вида
где a, b и с — действительные числа, называемые коэффициентами квадратного уравнения, а ≠ 0 (иначе уравнение не будет квадратным) — первый или старший коэффициент; b — второй коэффициент; с — свободный член, и х — неизвестная величина, значение которой надо найти, чтобы после подстановки его в уравнение оно превращалась бы в верное равенство.
Приведённое квадратное уравнение — это уравнение, у которого а = 1, имеет вид
но обычно его записывают в виде
где р — второй коэффициент и q — свободный член.
Квадратный трёхчлен — это выражение, стоящее в левой части квадратного уравнения и имеющее вид
Знакомство с квадратным трёхчленом начинается уже в 7-ом классе в теме РАЗЛОЖЕНИЕ МНОГОЧЛЕНОВ на МНОЖИТЕЛИ СПОСОБОМ ГРУППИРОВКИ. Казалось бы, какое отношение имеет квадратный трёхчлен к способу группировки, ведь здесь и группировать то нечего? Хорошо освоившие метод группировки, учащиеся догадаются, что трёхчлен следует превратить в четырёхчлен, но так, чтобы в каждой паре одночленов обязательно был одночлен с буквенным множителем х.
Для этого одночлен со вторым коэффициентом следует представить в виде суммы таких двух одночленов, чтобы произведение их числовых коэффициентов было равно свободному члену. Покажем, как это сделать на конкретных примерах, взятых из различных учебников для 7-го класса.
Пример 1. Разложить на множители многочлен
РЕШЕНИЕ. Представим одночлен 6х в виде суммы одночленов 2х + 4х:
ПРИМЕР 2. Разложить на множители квадратный трёхчлен
РЕШЕНИЕ.
ПРИМЕР 3. Представить квадратный трёхчлен в виде произведения.
РЕШЕНИЕ.
ПРИМЕР 4. Представить в виде произведения многочлен
РЕШЕНИЕ.
Мы рассмотрели разложение на множители квадратного трёхчлена с а=1. Обобщим полученные решения: можно заметить, что после представления одночлена со вторым коэффициентом в виде суммы одночленов число знаков «плюс» и/или число знаков «минус» чётно — это может служить подсказкой для представления второго коэффициента в виде нужной суммы. Аналогично раскладываются на множители квадратные трёхчлены, у которых первый коэффициент принимает другие значения.
ПРИМЕР 5. Разложить на множители многочлен
РЕШЕНИЕ.
ПРИМЕР 6*. Разложить на множители квадратный трёхчлен
РЕШЕНИЕ. Заметим, что каждый одночлен трёхчлена делится на 3, поэтому
Разложение на множители записанного в скобках квадратного трёхчлена рассмотрено в решении примера № 2.
Отмечу, что не каждый квадратный трёхчлен можно разложить на множители, а о причине этого мы узнаем в одной из следующих статей.
В заключение статьи представлю достаточно широкую подборку квадратных трёхчленов для желающих отработать навыки подобного разложения квадратного трёхчлена на множители, которые в достаточно большом числе случаев помогут сократить время решения квадратных уравнений или неравенств и упрощение выражений с алгебраическими дробями, содержащих квадратные трёхчлены, особенно в заданиях с кратким ответом.
РАЗЛОЖИТЕ на МНОЖИТЕЛИ (№№ 1-54):
Не забудьте подписаться на канал Хакнем Школа и хэштег #хакнем_математика
Автор: #себихов_александр 71 год, много лет проработал конструктором-технологом микроэлектронных приборов и узлов в одном из НИИ г. Саратова, затем преподавателем математики и физики.
Читайте наш канал в телеграм – по этой ссылке
Другие статьи автора:
Если у вас есть познавательный материал, тёплые воспоминания и интересные истории из школьной жизни, которые вы хотели бы опубликовать в нашем канале, или вы просто хотите стать автором канала, напишите нам об этом 👉 story@haknem.com
Квадратный трехчлен – это многочлен вида (ax^2+bx+c) ((a≠0)).
Пример:
(x^2-2x+1)
(3x^2-5x+6)
Почему его называют именно так? Потому что, наибольшая степень у него – квадрат, а состоит он из трех слагаемых (одночленов). Вот и получается – квадратный трехчлен.
Примеры не квадратных трехчленов:
(x^3-3x^2-5x+6) – кубический четырёхчлен
(2x+1) – линейный двучлен
Корень квадратного трехчлена:
Значение переменной (x), при котором квадратный трехчлен обращается в ноль, называют его корнем.
Пример:
У трехчлена (x^2-2x+1) корень (1), потому что (1^2-2·1+1=0)
У трехчлена (x^2+2x-3) корни (1) и (-3), потому что (1^2+2-3=0) и ((-3)^2-6-3=9-9=0)
Например: если нужно найти корни для квадратного трехчлена (x^2-2x+1), приравняем его к нулю и решим уравнение (x^2-2x+1=0).
(D=4-4cdot1=0)
(x=frac{2-0}{2}=frac{2}{2}=1)
Готово. Корень равен (1).
Разложение квадратного трёхчлена на множители:
Квадратный трехчлен (ax^2+bx+c) можно разложить как (a(x-x_1 )(x-x_2)), если дискриминант уравнения (ax^2+bx+c=0) больше нуля (x_1) и (x_2) – корни того же уравнения).
Например, рассмотрим трехчлен (3x^2+13x-10).
У квадратного уравнения (3x^2+13x-10=0) дискриминант равен 289 (больше нуля), а корни равны (-5) и (frac{2}{3}). Поэтому (3x^2+13x-10=3(x+5)(x-frac{2}{3})). В верности этого утверждения легко убедится – если мы раскроем скобки, то получим исходный трехчлен.
Квадратный трехчлен (ax^2+bx+c) можно представить как (a(x-x_1)^2), если дискриминант уравнения (ax^2+bx+c=0) равен нулю.
Например, рассмотрим трехчлен (x^2+6x+9).
У квадратного уравнения (x^2+6x+9=0) дискриминант равен (0), а единственный корень равен (-3). Значит, (x^2+6x+9=(x+3)^2) (здесь коэффициент (a=1), поэтому перед скобкой не пишется – незачем). Обратите внимание, что тоже самое преобразование можно сделать и по формулам сокращенного умножения.
Квадратный трехчлен (ax^2+bx+c) не раскладывается на множители, если дискриминант уравнения (ax^2+bx+c=0) меньше нуля.
Например, у трехчленов (x^2+x+4) и (-5x^2+2x-1) – дискриминант меньше нуля. Поэтому разложить их на множители невозможно.
Пример. Разложите на множители (2x^2-11x+12).
Решение:
Найдем корни квадратного уравнения (2x^2-11x+12=0)
(D=11^2-4 cdot 2 cdot 12=121-96=25>0)
(x_1=frac{11-5}{4}=1,5;) (x_2=frac{11+5}{4}=4.)
Значит, (2x^2-11x+12=2(x-1,5)(x-4))
Ответ: (2(x-1,5)(x-4))
Полученный ответ, может быть, записать по-другому: ((2x-3)(x-4)).
Пример. (Задание из ОГЭ) Квадратный трехчлен разложен на множители (5x^2+33x+40=5(x++ 5)(x-a)). Найдите (a).
Решение:
(5x^2+33x+40=0)
(D=33^2-4 cdot 5 cdot 40=1089-800=289=17^2)
(x_1=frac{-33-17}{10}=-5)
(x_2=frac{-33+17}{10}=-1,6)
(5x^2+33x+40=5(x+5)(x+1,6))
Ответ: (-1,6)
Смотрите также:
Квадратный трехчлен (шпаргалка)
Разложение квадратного трехчлена на множители
Квадратный трехчлен можно разложить на множители следующим образом:
a x 2 + b x + c = a ⋅ ( x − x 1 ) ⋅ ( x − x 2 )
где a – число, коэффициент перед старшим коэффициентом,
x – переменная (то есть буква),
x 1 и x 2 – числа, корни квадратного уравнения a x 2 + b x + c = 0 , которые найдены через дискриминант.
Если квадратное уравнение имеет только один корень , то разложение выглядит так:
a x 2 + b x + c = a ⋅ ( x − x 0 ) 2
Примеры разложения квадратного трехчлена на множители:
- − x 2 + 6 x + 7 = 0 ⇒ x 1 = − 1, x 2 = 7
− x 2 + 6 x + 7 = ( − 1 ) ⋅ ( x − ( − 1 ) ) ( x − 7 ) = − ( x + 1 ) ( x − 7 ) = ( x + 1 ) ( 7 − x )
- − x 2 + 4 x − 4 = 0 ; ⇒ x 0 = 2
− x 2 + 4 x − 4 = ( − 1 ) ⋅ ( x − 2 ) 2 = − ( x − 2 ) 2
Если квадратный трехчлен является неполным ( b = 0 или c = 0 ) , то его можно разложить на множители следующими способами:
- c = 0 ⇒ a x 2 + b x = x ( a x + b )
- b = 0 ⇒ применить формулу сокращенного умножения для разности квадратов.
Задания для самостоятельного решения
№1. Квадратный трёхчлен разложен на множители: x 2 + 6 x − 27 = ( x + 9 ) ( x − a ) . Найдите a .
№2. Уравнение x 2 + p x + q = 0 имеет корни − 5 ; 7. Найдите q .
Имеем х² + 11х + 24 = (х+8)•(х-а), надо найти a.
Есть несколько способов решения, наиболее простой:
Раскроем скобки справа:
х² + 11х + 24 = х² + 8х – ах – 8а; (приведем подобне)
3х + 24 = -ах – 8а; (вынесем за скобки слева 3, справа “-а”)
3•(x+8) = -a•(х+8); Сократим на (х+8) ≠ 0 (то есть х≠-8) и получим
a = -3, при х ≠ -8
При х = -8, a – любое
Но в задаче просят разложить квадратный трехчлен (упустили слово в конце “на множители”).
Квадратный трехчлен уже разложен на множители в условии и поскольку уже нашли a=-3, то
х² + 11х + 24 = (х + 8)•(х + 3)
Но если идти по порядку.
Опять же есть несколько способов разложения на множители.
1) Найти корни этого трехчлена х² + 11х + 24 = 0 и тогда
х² + 11х + 24 = (х – х₁)•(х – х₂)
Корни х₁ и х₂ ищутся путем решения уравнения через дискриминант или по теореме Виета. Подробно тут останавливаться не буду. Тем более в другом ответе корни нашли:
х₁ = -8; х₂ =-3 и разложение на множители будет выглядеть
х² + 11х + 24 = (х + 8)•(х + 3)
2) Вычленением полного квадрата
х² + 11х + 24 = х² + 2•11/2•х + (11/2)² – (11/2)² + 24 =
= (х+11/2)² – 121/4 +24 = (х+11/2)² – 25/4 = (х+11/2)² – (5/2)² (видим разность квадратов)
= (х + 11/2 – 5/2)•(х + 11/2 + 5/2) = (х + 6/2)•(х + 16/2) = (х+3)•(х+8)
3) Группировка. Поскольку уже видим что справа есть множитель (х+8), то это сильная помощь в группировке. В группировке нужны парные слагаемые, а у нас их 3. Разобьем 11х на 8х+3х и получим
х² + 11х + 24 = х² + 3х + 8х + 24 (теперь группируем парами и выносим общие множители у пар)
= х•(х+3) + 8•(х+3), теперь вынесем общий множитель (х+3) за скобки и получим
= (х+3)•(х+8)
__
Мы рассмотрели несколько способов разложения квадратного трехчлена на множители.
И нашли a.
Но есть тонкий нюанс в ответе:
Если попросят заменить a на конкретное число в выражении, то a= -3 и заменяем в выражении на -3 и получим равносильное выражение.
Но если спрашивают значение “a”, то правильный
Ответ: a = -3, при х ≠-8 и а – любое, при х =-8