Вывести уравнение прямой по координатам двух точек
По введенным пользователем координатам двух точек вывести уравнение прямой, проходящей через эти точки.
Общее уравнение прямой имеет вид y = kx + b . Для какой-то конкретной прямой в уравнении коэффициенты k и b заменяются на числа, например, y = 4x — 2 . Задача сводится именно к нахождению этих коэффициентов.
Так как координаты точки это значения x и y , то мы имеем два уравнения. Пусть, например, координаты точки А(3;2), а координаты B(-1;-1). Получаем уравнения:
2 = k*3 + b,
-1 = k*(-1) + b.
Решая полученную систему уравнений находим значения k и b :
b = 2 — 3k
-1 = -k + 2 — 3k
4k = 3
k = 3/4 = 0.75
b = 2 — 3 * 0.75 = 2 — 2.25 = -0.25
Таким образом, получается уравнение конкретной прямой, проходящей через указанные точки: y = 0.75x — 0.25.
Алгоритм решения данной задаче на языке программирования будет таков:
- Получить значения координат первой точки и присвоить их переменным, например x1 и y1 .
- Получить значения координат ( x2, y2 ) второй точки.
- Вычислить значение k по формуле k = (y1 — y2) / (x1 — x2) .
- Вычислить значение b по формуле b = y2 — k * x2 .
- Вывести на экран полученное уравнение.
Аппроксимация функции одной переменной
Калькулятор использует методы регрессии для аппроксимации функции одной переменной.
Данный калькулятор по введенным данным строит несколько моделей регрессии: линейную, квадратичную, кубическую, степенную, логарифмическую, гиперболическую, показательную, экспоненциальную. Результаты можно сравнить между собой по корреляции, средней ошибке аппроксимации и наглядно на графике. Теория и формулы регрессий под калькулятором.
Если не ввести значения x, калькулятор примет, что значение x меняется от 0 с шагом 1.
Аппроксимация функции одной переменной
Линейная регрессия
Коэффициент линейной парной корреляции:
Средняя ошибка аппроксимации:
Квадратичная регрессия
Система уравнений для нахождения коэффициентов a, b и c:
Коэффициент корреляции:
,
где
Средняя ошибка аппроксимации:
Кубическая регрессия
Система уравнений для нахождения коэффициентов a, b, c и d:
Коэффициент корреляции, коэффициент детерминации, средняя ошибка аппроксимации – используются те же формулы, что и для квадратичной регрессии.
Степенная регрессия
Коэффициент корреляции, коэффициент детерминации, средняя ошибка аппроксимации — используются те же формулы, что и для квадратичной регрессии.
Показательная регрессия
Коэффициент корреляции, коэффициент детерминации, средняя ошибка аппроксимации — используются те же формулы, что и для квадратичной регрессии.
Гиперболическая регрессия
Коэффициент корреляции, коэффициент детерминации, средняя ошибка аппроксимации – используются те же формулы, что и для квадратичной регрессии.
Логарифмическая регрессия
Коэффициент корреляции, коэффициент детерминации, средняя ошибка аппроксимации – используются те же формулы, что и для квадратичной регрессии.
Экспоненциальная регрессия
Коэффициент корреляции, коэффициент детерминации, средняя ошибка аппроксимации – используются те же формулы, что и для квадратичной регрессии.
Вывод формул
Сначала сформулируем задачу:
Пусть у нас есть неизвестная функция y=f(x), заданная табличными значениями (например, полученными в результате опытных измерений).
Нам необходимо найти функцию заданного вида (линейную, квадратичную и т. п.) y=F(x), которая в соответствующих точках принимает значения, как можно более близкие к табличным.
На практике вид функции чаще всего определяют путем сравнения расположения точек с графиками известных функций.
Полученная формула y=F(x), которую называют эмпирической формулой, или уравнением регрессии y на x, или приближающей (аппроксимирующей) функцией, позволяет находить значения f(x) для нетабличных значений x, сглаживая результаты измерений величины y.
Для того, чтобы получить параметры функции F, используется метод наименьших квадратов. В этом методе в качестве критерия близости приближающей функции к совокупности точек используется суммы квадратов разностей значений табличных значений y и теоретических, рассчитанных по уравнению регрессии.
Таким образом, нам требуется найти функцию F, такую, чтобы сумма квадратов S была наименьшей:
Рассмотрим решение этой задачи на примере получения линейной регрессии F=ax+b.
S является функцией двух переменных, a и b. Чтобы найти ее минимум, используем условие экстремума, а именно, равенства нулю частных производных.
Используя формулу производной сложной функции, получим следующую систему уравнений:
Для функции вида частные производные равны:
,
Подставив производные, получим:
Откуда, выразив a и b, можно получить формулы для коэффициентов линейной регрессии, приведенные выше.
Аналогичным образом выводятся формулы для остальных видов регрессий.
Как найти функцию зная только точки?
Судя по всему, то, о чем Вы говорите — аппроксимация функции. В Википедии более подробна статья про интерполяцию.
По сути, Ваша задача сводится к 2м шагам:
1. По точкам и общим зависимостям выбирается форма функции (например, полиномиальная, экспоненциальная и.т.п).
2. Строится модель, в которой задаётся функция с неизвестными параметрами. Задача — найти такие параметры, чтобы минимизировать функцию невязки(часто это квадрат разности между реальными значениями в заданых точках и значениями модельной функции, см. МНК).
[spoiler title=”источники:”]
http://planetcalc.ru/5992/
http://qna.habr.com/q/5823
[/spoiler]
Вывести уравнение прямой по координатам двух точек
По введенным пользователем координатам двух точек вывести уравнение прямой, проходящей через эти точки.
Общее уравнение прямой имеет вид y = kx + b . Для какой-то конкретной прямой в уравнении коэффициенты k и b заменяются на числа, например, y = 4x — 2 . Задача сводится именно к нахождению этих коэффициентов.
Так как координаты точки это значения x и y , то мы имеем два уравнения. Пусть, например, координаты точки А(3;2), а координаты B(-1;-1). Получаем уравнения:
2 = k*3 + b,
-1 = k*(-1) + b.
Решая полученную систему уравнений находим значения k и b :
b = 2 — 3k
-1 = -k + 2 — 3k
4k = 3
k = 3/4 = 0.75
b = 2 — 3 * 0.75 = 2 — 2.25 = -0.25
Таким образом, получается уравнение конкретной прямой, проходящей через указанные точки: y = 0.75x — 0.25.
Алгоритм решения данной задаче на языке программирования будет таков:
- Получить значения координат первой точки и присвоить их переменным, например x1 и y1 .
- Получить значения координат ( x2, y2 ) второй точки.
- Вычислить значение k по формуле k = (y1 — y2) / (x1 — x2) .
- Вычислить значение b по формуле b = y2 — k * x2 .
- Вывести на экран полученное уравнение.
График линейной функции, его свойства и формулы
О чем эта статья:
Понятие функции
Функция — это зависимость y от x, где x является независимой переменной или аргументом функции, а y — зависимой переменной или значением функции. |
---|
Задать функцию значит определить правило, следуя которому по значениям независимой переменной можно найти соответствующие значения функции. Вот какими способами ее можно задать:
Табличный способ помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.
Словесный способ.
Графический способ — наглядно. Его мы и разберем в этой статье.
График функции — это множество точек (x; y), где x — это аргумент, а y — значение функции, которое соответствует данному аргументу. |
---|
Понятие линейной функции
Линейная функция — это функция вида y = kx + b, где х — независимая переменная, k, b — некоторые числа. При этом k — угловой коэффициент, b — свободный коэффициент. |
---|
Геометрический смысл коэффициента b — длина отрезка, который отсекает прямая по оси OY, считая от начала координат.
Геометрический смысл коэффициента k — угол наклона прямой к положительному направлению оси OX, считается против часовой стрелки.
Если известно конкретное значение х, можно вычислить соответствующее значение у.
Нам дана функция: у = 0,5х — 2. Значит:
если х = 0, то у = -2;
если х = 2, то у = -1;
если х = 4, то у = 0 и т. д.
Для удобства результаты можно оформлять в виде таблицы:
Графиком линейной функции является прямая. Для ее построения достаточно двух точек, координаты которых удовлетворяют уравнению функции.
Угловой коэффициент отвечает за угол наклона прямой, свободный коэффициент — за точку пересечения графика с осью ординат.
k и b — это числовые коэффициенты функции. На их месте могут стоять любые числа: положительные, отрицательные или дроби.
Давайте потренируемся и определим для каждой функций, чему равны числовые коэффициенты k и b.
Функция | Коэффициент k | Коэффициент b |
---|---|---|
y = 2x + 8 | k = 2 | b = 8 |
y = −x + 3 | k = −1 | b = 3 |
y = 1/8x − 1 | k = 1/8 | b = −1 |
y = 0,2x | k = 0,2 | b = 0 |
Может показаться, что в функции y = 0,2x нет числового коэффициента b, но это не так. В данном случае он равен нулю. Чтобы не поддаваться сомнениям, нужно запомнить: в каждой функции типа y = kx + b есть коэффициенты k и b.
Свойства линейной функции
Область определения функции — множество всех действительных чисел.
Множеством значений функции является множество всех действительных чисел.
График линейной функции — прямая. Для построения прямой достаточно знать две точки. Положение прямой на координатной плоскости зависит от значений коэффициентов k и b.
Функция не имеет ни наибольшего, ни наименьшего значений.
Четность и нечетность линейной функции зависят от значений коэффициентов k и b:
b ≠ 0, k = 0, значит, y = b — четная;
b = 0, k ≠ 0, значит, y = kx — нечетная;
b ≠ 0, k ≠ 0, значит, y = kx + b — функция общего вида;
b = 0, k = 0, значит, y = 0— как четная, так и нечетная функция.
Свойством периодичности линейная функция не обладает, потому что ее спектр непрерывен.
График функции пересекает оси координат:
ось абсцисс ОХ — в точке (−b/k; 0);
ось ординат OY — в точке (0; b).
x = −b/k — является нулем функции.
Если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х.
Если b ≠ 0 и k = 0, то функция y = b не обращается в нуль ни при каких значениях переменной х.
Функция монотонно возрастает на области определения при k > 0 и монотонно убывает при k 0 функция принимает отрицательные значения на промежутке (−∞; −b/k) и положительные значения на промежутке (−b/k; +∞).
При k 0, то этот угол острый, если k
Построение линейной функции
В геометрии есть аксиома: через любые две точки можно провести прямую и притом только одну. Исходя из этой аксиомы следует: чтобы построить график функции вида у = kx + b, достаточно найти всего две точки. А для этого нужно определить два значения х, подставить их в уравнение функции и вычислить соответствующие значения y.
Например, чтобы построить график функции y = 1/3x + 2, можно взять х = 0 и х = 3, тогда ординаты этих точек будут равны у = 2 и у = 3. Получим точки А (0; 2) и В (3; 3). Соединим их и получим такой график:
В уравнении функции y = kx + b коэффициент k отвечает за наклон графика функции:
если k > 0, то график наклонен вправо;
если k 0, то график функции y = kx + b получается из y = kx со сдвигом на b единиц вверх вдоль оси OY;
если b 0, то график функции y = kx + b выглядит так:
0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>
Если k > 0 и b > 0, то график функции y = kx + b выглядит так:
0 и b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>
Если k > 0 и b
В задачах 7 класса можно встретить график уравнения х = а. Он представляет собой прямую линию, которая параллельна оси ОY все точки которой имеют абсциссу х = а.
Важно понимать, что уравнение х = а не является функцией, так как различным значениям аргумента соответствует одно и то же значение функции, что не соответствует определению функции.
Например, график уравнения х = 3:
Условие параллельности двух прямых:
График функции y = k1x + b1 параллелен графику функции y = k2x + b2, если k1 = k2.
Условие перпендикулярности двух прямых:
График функции y = k1x + b1 перпендикулярен графику функции y = k2x + b2, если k1k2 = −1 или k1 = −1/k2.
Точки пересечения графика функции y = kx + b с осями координат:
С осью ОY. Абсцисса любой точки, которая принадлежит оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY, нужно в уравнение функции вместо х подставить ноль. Тогда получим y = b.
Координаты точки пересечения с осью OY: (0; b).
С осью ОХ. Ордината любой точки, которая принадлежит оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ, нужно в уравнение функции вместо y подставить ноль. И получим 0 = kx + b. Значит x = −b/k.
Координаты точки пересечения с осью OX: (−b/k; 0).
Решение задач на линейную функцию
Чтобы решать задачи и строить графики линейных функций, нужно рассуждать и использовать свойства и правила выше. Давайте потренируемся!
Пример 1. Построить график функции y = kx + b, если известно, что он проходит через точку А (-3; 2) и параллелен прямой y = -4x.
В уравнении функции y = kx + b два неизвестных параметра: k и b. Поэтому в тексте задачи нужно найти два условия, которые характеризуют график функции.
Из того, что график функции y = kx + b параллелен прямой y = -4x, следует, что k = -4. То есть уравнение функции имеет вид y = -4x + b.
Осталось найти b. Известно, что график функции y = -4x + b проходит через точку А (-3; 2). Подставим координаты точки в уравнение функции и мы получим верное равенство:
Таким образом, нам надо построить график функции y = -4x — 10
Мы уже знаем точку А (-3; 2), возьмем точку B (0; -10).
Поставим эти точки в координатной плоскости и соединим прямой:
Пример 2. Написать уравнение прямой, которая проходит через точки A (1; 1); B (2; 4).
Если прямая проходит через точки с заданными координатами, значит координаты точек удовлетворяют уравнению прямой y = kx + b.
Следовательно, если координаты точек подставить в уравнение прямой, то получим верное равенство.
Подставим координаты каждой точки в уравнение y = kx + b и получим систему линейных уравнений.
Вычтем из второго уравнения системы первое, и получим k = 3.
Подставим значение k в первое уравнение системы, и получим b = -2.
Ответ: уравнение прямой y = 3x — 2.
Алгоритм определения формулы линейной функции по графику
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Выполнила учительница математики МБОУ Башкирский лицей № 1 муниципального района Учалинский район Республики Башкортостан Хидиятова Залифа Даутовна
Алгоритм определения формулы линейной функции по графику»
На рисунке представлен график функции у = kx +b.
Записать формулу линейной функции, соответствующей данному графику.
1) Так как ордината точки пересечения графика функции с осью Оy равна 1, следовательно, b=1.
Значит, у = kx+ 1
2) Выбираем на графике произвольную точку, например, А (2;2) и определяем её координаты: если x = 2, то у = 2. Подставим в нашу формулу вместо Х и У и получим уравнение относительно k.
2 = 2k+1
2k=1
k = 0.5 Записываем формулу линейной функции: у = 0,5х + 1.
Написать ФОРМУЛУ линейной функции У= КХ+В, график которой изображен на рисунке :
Это ВПР задание 8) это ответ:
ВНИМАНИЕ : задание на сегодня 16 апреля
Внимание : вот эти следующие задания пока НЕ РЕШАТЬ.
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
- Сейчас обучается 924 человека из 80 регионов
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
- Сейчас обучается 686 человек из 75 регионов
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Сейчас обучается 309 человек из 69 регионов
Ищем педагогов в команду «Инфоурок»
Дистанционные курсы для педагогов
«Взбодрись! Нейрогимнастика для успешной учёбы и комфортной жизни»
Свидетельство и скидка на обучение каждому участнику
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
5 581 350 материалов в базе
Материал подходит для УМК
«Алгебра», Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. / Под ред. Теляковского С.А.
16. Линейная функция и её график
Самые массовые международные дистанционные
Школьные Инфоконкурсы 2022
33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»
Другие материалы
- 16.09.2020
- 199
- 11
- 31.03.2020
- 1166
- 30
- 16.03.2020
- 227
- 1
- 16.03.2020
- 191
- 1
- 08.03.2020
- 282
- 6
- 20.02.2020
- 1248
- 72
- 21.01.2020
- 180
- 0
- 09.12.2019
- 421
- 13
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Добавить в избранное
- 30.09.2020 16057
- DOCX 549.2 кбайт
- 155 скачиваний
- Оцените материал:
Настоящий материал опубликован пользователем Хидиятова Залифа Даутовна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Автор материала
- На сайте: 5 лет и 3 месяца
- Подписчики: 0
- Всего просмотров: 38704
- Всего материалов: 37
Московский институт профессиональной
переподготовки и повышения
квалификации педагогов
Дистанционные курсы
для педагогов
663 курса от 690 рублей
Выбрать курс со скидкой
Выдаём документы
установленного образца!
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
Инфоурок стал резидентом Сколково
Время чтения: 2 минуты
В Ленобласти школьники 5-11-х классов вернутся к очному обучению с 21 февраля
Время чтения: 1 минута
Профессия педагога на третьем месте по популярности среди абитуриентов
Время чтения: 1 минута
Минпросвещения упростит процедуру подачи документов в детский сад
Время чтения: 1 минута
Рособрнадзор не планирует переносить досрочный период ЕГЭ
Время чтения: 0 минут
В Ростовской и Воронежской областях организуют обучение эвакуированных из Донбасса детей
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
источники:
http://skysmart.ru/articles/mathematic/grafik-linejnoj-funkcii
http://infourok.ru/algoritm-opredeleniya-formuly-linejnoj-funkcii-po-grafiku-4463697.html
Перейти к содержанию
Вывести уравнение прямой по координатам двух точек
Просмотров 23к. Обновлено 26 октября 2021
Общее уравнение прямой имеет вид y = kx + b. Для какой-то конкретной прямой в уравнении коэффициенты k и b заменяются на числа, например, y = 4x — 2. Задача сводится именно к нахождению этих коэффициентов.
Так как координаты точки это значения x и y, то мы имеем два уравнения. Пусть, например, координаты точки А(3;2), а координаты B(-1;-1). Получаем уравнения:
2 = k*3 + b,
-1 = k*(-1) + b.
Решая полученную систему уравнений находим значения k и b:
b = 2 — 3k
-1 = -k + 2 — 3k
4k = 3
k = 3/4 = 0.75
b = 2 — 3 * 0.75 = 2 — 2.25 = -0.25
Таким образом, получается уравнение конкретной прямой, проходящей через указанные точки: y = 0.75x — 0.25.
Вывод общих выражений для вычисления b и k:
| y1 = kx1 + b
| y2 = kx2 + b
b = y2 — kx2
y1 = kx1 + y2 — kx2
k = (y1 — y2) / (x1 — x2)
Алгоритм решения данной задаче на языке программирования будет таков:
- Получить значения координат первой точки и присвоить их переменным, например x1 и y1.
- Получить значения координат (x2, y2) второй точки.
- Вычислить значение k по формуле k = (y1 — y2) / (x1 — x2).
- Вычислить значение b по формуле b = y2 — k * x2.
- Вывести на экран полученное уравнение.
Pascal
уравнение прямой по двум точкам паскаль
var
x1,y1,x2,y2: real;
k, b: real;begin
write('A(x1;y1): '); readln(x1, y1);
write('B(x2;y2): '); readln(x2, y2);k := (y1 - y2) / (x1 - x2);
b := y2 - k * x2;writeln('y = ',k:0:2,'x + ',b:0:2);
end.
A(x1;y1):
1.2
5.6
B(x2;y2):
-3.45 8.2
y = -0.56x + 6.27
Язык Си
#includemain() {
float x1, y1, x2, y2, k, b;printf("A(x1;y1): ");
scanf("%f%f", &x1,&y1);
printf("A(x2;y2): ");
scanf("%f%f", &x2,&y2);k = (y1 - y2) / (x1 - x2);
b = y2 - k * x2;printf("Уравнение прямой: y = %.2fx + %.2fn", k, b);
}
A(x1;y1): 5.67 -1.45
A(x2;y2): -3.12 4.00
Уравнение прямой: y = -0.62x + 2.07
Python
уравнение прямой по двум точкам python
уравнение прямой по двум точкам python
print("Координаты точки A(x1;y1):")
x1 = float(input("tx1 = "))
y1 = float(input("ty1 = "))print("Координаты точки B(x2;y2):")
x2 = float(input("tx2 = "))
y2 = float(input("ty2 = "))print("Уравнение прямой, проходящей через эти точки:")
k = (y1 - y2) / (x1 - x2)
b = y2 - k*x2
print(" y = %.2f*x + %.2f" % (k, b))
Координаты точки A(x1;y1):
x1 = 4.3
y1 = -1.2
Координаты точки B(x2;y2):
x2 = -8.5
y2 = 4
Уравнение прямой, проходящей через эти точки:
y = -0.41*x + 0.55
КуМир
алг уравнение_прямой
нач
вещ x1, y1, x2, y2, k, b
вывод "Координаты точки A(x1;y1): "
ввод x1, y1
вывод "Координаты точки B(x2;y2): "
ввод x2, y2
k := (y1 - y2) / (x1 - x2)
b := y2 - k * x2
вывод "Уравнение прямой: y = " + вещ_в_лит(k) + "x + " + вещ_в_лит(b)
кон
Координаты точки A(x1;y1): 4 9
Координаты точки B(x2;y2): -1 -3
Уравнение прямой: y = 2.4x + -0.6
Basic-256
input "x1 = ", x1
input "y1 = ", y1
input "x2 = ", x2
input "y2 = ", y2k = (y1 - y2) / (x1 - x2)
b = y2 - k * x2decimal 2
print "y = " + k + "x + " + b
x1 = 7.45
y1 = -1
x2 = -3.4
y2 = 3
y = -0.37x + 1.75
K и B — числовые коэффициенты функции. Это может быть любое число, например, положительное, отрицательное или дробное.
Линейная функция, ее свойства и график
Функция, заданная видом y = kx+b, где x — переменная, а k и b — некоторые числа, называется линейной функцией. Переменная x называется независимой переменной, а переменная y — зависимой переменной.
Графиком линейной функции является линия. Чтобы провести прямую линию, достаточно получить два значения x и получить два значения y, в результате чего получатся две точки, через которые проходит одна прямая.
Число K называется угловым коэффициентом линии.
Свойства линейной функции
- Область определения функции – множество всех действительных чисел. То есть в данную формулу мы можем подставлять любое значение х.
- Областью значений также является множество всех действительных чисел.
- Функция не имеет ни наибольших, ни наименьших значений.
- При k – положительном, угол наклона к оси х острый, другими словами – график функции возрастает.
- При k отрицательном угол наклона к оси х тупой, то есть график функции – убывает.
- При k=0 прямая параллельна оси х.
- Частный случай линейной функции: y=kx, где число b=0, эту функцию называют прямой пропорциональностью, график такой функции проходит через начало координат.
Рассмотрим пример линии до уровня координат в соответствии со значениями K и B
Пример №1
Постройте график функции y = 2x -1. Для облегчения расчетов, структурирования и т.д. создайте таблицу значений x и y.
Чтобы построить график, выберите два значения x. Желательно, чтобы одно из них было равно нулю, а второе значение (выберите три).
Затем замените значение x в уравнении и вычислите соответствующее значение y.
Запишите значение y в таблицу:.
Постройте систему координат, запишите в ней координаты A (0; -1) и B (3; 5) и проведите прямую линию к этим двум точкам.
Таким образом, из печати видно, что угловой коэффициент положительный. Это означает, что график растет, что видно на графике.
Каждое из этих уравнений является уравнением прямой линии. Решение системы заключается в нахождении цен, которые удовлетворяют как первому, так и второму уравнению. Однако, поскольку они определяют точки, для решения системы необходимо найти точки на первой и второй прямых, то есть пересечения прямых.
Как меняется график при разных (k)?
Определите, как влияет на графикКоэффициент. (k ) рисует различные функции с различными (k ): (⢙), (-⢙), (2 ), (-2 ), (0 ). В этом случае ⌘ (b ) равен (равен нулю) для всех функций, что устраняет его влияние. Другими словами, нарисуйте графики функций: (y = fracx ), (y = — fracx), (y = 2x ), (y = -2x ), (y = 0 ).
В случае (k = 2 ) и ʉ (ʉ frac ) функция возрастает, а в случае ʉ (k = -2 ) и ʉ (- frac) — убывает. На практике:.
При любом (k>0) функция возрастает и при любом (k
Также можно заметить, что болеефактор в случае В случае (k ) график более «острый».
Как по графику определить коэффициент k?
- Сначала определим, возрастает или убывает функция. Если возрастает – знак коэффициента (k) плюс, если убывает – минус.
- Дальше надо построить на прямой прямоугольный треугольник, так чтобы гипотенуза лежала на графике функции, а вершины треугольника совпадали с вершинами клеточек. Примерно вот так:
Чтобы найти значение (k ) по модулю (т.е. без учета знаков), нужно разделить вертикальную сторону треугольника на горизонтальные плоскости. Можно воспользоваться эмпирическим правилом. Стояние ошеломляет». В этих случаях (| k | = frac ). Следовательно, в первом графе ⌘ (k = 2 ), а во втором ⌘ (k = — frac ).
Как меняется график при разных значениях (b)?
Чтобы определить, как (b ) влияет на графики, нарисуйте различные функции с разными Ј (b ): Ј (6 ), Ј (2 ), Ј (0 ), Ј (-3 ), Ј (-3 ), Ј (-3 ). (-8 ). Для всех функций установите ⌘(k ) равным ⌘(2 ).
Вы можете легко увидеть, поднимается ли линия на ⌘(b ) (если (b>0 )) или опускается относительно ⌘(| b | ).<0)).
For (ː displaystyle k ). Функция ⌘ (⌘ displaystyle left (b = 0 right)). () Измените функцию displaystyle k ) и посмотрите, что произойдет на графике.
Свойства линейной функции
Определяющей областью функции является сумма всех действительных чисел.
Сумма функции — это сумма всех действительных чисел.
Графиком линейной функции является линия. Чтобы провести прямую, достаточно знать две точки. Положение линии на уровне координат зависит от значений коэффициентов K и B.
Функция не имеет наибольшего или наименьшего значения.
Превосходство и нерелевантность линейной функции зависит от значений коэффициентов k и b.
b ≠ 0, k = 0, поэтому y = b является хорошим, и
b = 0, k ≠ 0, поэтому y = kx не требуется.
b ≠ 0, k ≠ 0, где y = kx + b — общая функция и
b = 0, k = 0, поэтому y = 0 является как четной, так и нечетной функцией.
Линейные функции не обладают свойством периодичности, так как их спектр непрерывен.
График функции пересекает координатные оси.
ось OX — в точке (-b / k; 0), ось
Ось OY — в точке (0; b).
x = -b/k является точкой нуля функции.
Для b=0 и k=0 функция y=0 равна нулю при любом значении переменной x.
Если b≠0 и k=0, то функция y=b обращается в нуль при любом значении переменной x.
Функция монотонно возрастает в области определения до k>0 и монотонно убывает до k.< 0 .
Для k> 0 функция принимает отрицательные значения в интервале (-∞; -b / k) и положительные значения в интервале (-b / k; +∞).
Коэффициент k представляет собой угол, образованный линией в положительном направлении OX. Следовательно, k называется угловым коэффициентом.
Для линейных функций есть два особых случая.
Когда b = 0, уравнение принимает вид y=kx. Такая функция называется прямо пропорциональной. График представляет собой линию, проходящую через начало координат.
- Если k = 0, то уравнение примет вид y = b. График — прямая, которая параллельна оси OX и проходит через точку (0; b) .
Построение линейной функции
В геометрии есть аксиомы. Любые две точки могут пересекаться по прямой и только по одной. Из этой аксиомы следует, что для построения графика функции y = kx + b достаточно найти только две точки. Для этого нужно задать два значения x, заменить их уравнением функции и вычислить соответствующее значение y.
Например, чтобы построить график функции y = 1 / 3x + 2, можно взять x = 0 и x = 3, а нормали этих точек будут y = 2 и y = 3. Возьмем точки A (0; 2) и B (3; 3). Соедините их, чтобы получить график:.
В уравнении функции y=kx + b коэффициент k участвует в наклоне графика функции.
Если k>0, то график наклонен вправо.
Коэффициент b отвечает за смещение графика вдоль OY.
Если b> 0, то график функции y = kx + b строится из y = kx путем сдвига вверх на b единиц вдоль оси OY.
Постройте три графика функции.
Проанализируйте формы. Поскольку коэффициент k больше нуля для всех функций, все графики наклонены вправо. Чем выше значение k, тем круче линия.
Поскольку b = 3 для каждой функции, все графики пересекают ось OY в точке (0; 3).
Давайте посмотрим на графики функций.
На этот раз коэффициент k меньше нуля для всех функций, а графики функций перекошены влево. Чем больше k, тем круче становится линия.
Коэффициент b равен 3, и график также пересекает ось OY в точке (0; 3).
Исследуйте график функции.
Коэффициенты k теперь равны во всех уравнениях функции. Получаются три параллельные линии.
Коэффициенты b различны, и эти графики пересекают ось OY в разных точках.
График функции y = 2x + 3 (b = 3) пересекает ось OY в точке (0; 3).
График функции y=2x (b = 0) пересекает ось OY в начальной точке (0; 0).
График функции y=2x —2 (b = -2) пересекает ось OY в точке (0; -2).
Линии с одинаковым угловым коэффициентом параллельны.
Резюме. Если известны знаки коэффициентов k и b, то можно увидеть график функции y = kx+b.
Если k< 0 и b > 0, график функции y = kx+b имеет вид
Если k > 0 и b > 0, график функции y = kx+b имеет вид
Решение задач на линейную функцию
Чтобы решить задачу и построить график линейной функции, необходимо вспомнить и использовать вышеуказанные свойства и правила. Практикуйтесь!
Пример 1. Постройте график функции y = kx + b, если известно, что она проходит через точку A (-3; 2) и параллельна прямой y = -4x.
Уравнение функции y = kx + b имеет два неизвестных параметра, k и b. Поэтому в рассматриваемом тексте нам нужно найти два условия, характеризующие график функции.
График функции y=kx+b параллелен прямой y=-4x, поэтому k = -4. Это означает, что уравнением функции является y = -4x+b.
Осталось найти Б. Мы видим, что график функции y = -4x + b проходит через точку A (-3; 2). Подставьте координаты точки в уравнение функции, чтобы получить правильное уравнение.
Поэтому необходимо построить график функции y = -4x-10.
Мы уже знаем точку A (-3; 2), поэтому давайте найдем точку B (0; -10).
Расположим эти точки в координатной плоскости и соединим их прямыми линиями.
Пример 2. Напишите уравнение прямой, проходящей через точку A (1; 1). B (2; 4).
Если прямая проходит через точку с заданными координатами, то координаты точки удовлетворяют уравнению y = kx+b.
Поэтому замена координат точки в уравнении прямой дает верное равенство.
Подставьте координаты каждой точки в уравнение y = kx + b, чтобы получить одновременное линейное уравнение.
Вычтите первое уравнение из второго уравнения системы, чтобы получить k = 3.
Подставьте значение k в первое уравнение системы, чтобы получить b=-2.
Предположим, что нам даны две линейные функции (назовем эту линию) и (назовем эту линию). При различных комбинациях коэффициентов этих функций эти линии либо пересекаются в некоторой точке (перпендикулярно или произвольно), либо не пересекаются. Другими словами, они параллельны. Давайте рассмотрим эти варианты.
Свойства зависимости
Перед решением задачи следует обратить внимание на свойства линейных функций. Есть две позиции, которые зависят от коэффициента k. Для k> 0 функция обладает следующим свойством: если k > 0, то функция линейна.
- Графиком является прямая линия.
- D(y) = (-∞;∞).
- При отрицательных значениях аргумента значение функции эквивалентно отрицательной величине. Если независимая переменная — положительная величина, то и зависимая принимает только положительные значения. В этом моменте ключевую роль играет величина сдвига влево или вправо b.
- Возрастает на E(у).
- Отсутствие экстремумов.
- Непрерывная и нечетная.
- Период отсутствует.
Таким образом, график линейной функции — это прямая линия, и ее свойства необходимо исследовать по определенному алгоритму. Необходимо соблюдать основные свойства.
С осью OY. Представление всех точек, принадлежащих оси OY, равно нулю. Поэтому, чтобы найти пересечение с OY, x в уравнении функции заменяется на ноль. Тогда y = b.
График линейной функции
Как упоминалось выше, график этой функции — прямая линия.
Как известно из геометрии, прямую можно провести через две точки (т.е. если известны две точки, принадлежащие прямой, то этого достаточно).
Предположим, у нас есть линейная функция ⌘ (y = 2x + 1 ). Чтобы построить его, необходимо вычислить координаты любых двух точек.
Другими словами, вам нужно взять два значения члена ⌘(x ) и вычислить соответствующие два значения функции.
Затем для каждой пары ⌘(⌘ слева (x; y справа)⌘) найдите точку в системе координат и проведите прямую через эти две точки.
Проще всего найти функцию с аргументом (x = 0: y слева (0 справа) = 2 cdot 0 + 1 = 1 ).
Поэтому координаты первой точки ⌘(⌘ слева (0; 1 справа).
Предположим, что остальные числа ⌘(x ). Например, ǫ (x = 1: y слева (1 справа) = 2 cdot 1 + 1 = 3 ).
Координаты второй точки ⌘ (⌘ слева (1; 3 справа)).
Поместите следующие две точки в координатную плоскость.
Затем с помощью линейки проведите линию через следующие две точки.
И вот график создан!
Теперь на том же графике нарисуем еще два графика: ⌘ (y = -1 ) и ǫ (y = -x + 2 ).
Создайте свою собственную аналогичным образом: вычислите значения y для любых двух значений ǫ(x ), отметьте эти точки на графике и проведите через них линию.
Открыть ответы…
Мы постоянно совершенствуем это руководство, и вы можете помочь в этом. Неограниченный доступ и использование руководства Юклава (более 100 статей по всем темам использования и применения, более 2000 решенных задач, более 20 онлайн семинаров и семинаров).
Видно, что все три линии имеют разные уклоны и пересекают оси координат в разных точках. Это вкладчики( displaystyle k ) и displaystyle b ).
Давайте узнаем, чем они занимаются.
Коэффициенты линейной функции
Сначала посмотрим, что делают факторы (⌘ displaystyle b ). Рассмотрим функцию ⌘ (⌘ displaystyle y = x+b ), т.е. ⌘ (⌘ displaystyle k = 1 ).
Посмотрите, что происходит на графике, изменив (⌘ displaystyle b ).
(⌘ displaystyle b: b = -2, давайте построим график с различными значениями ⌘ text< ->1, {text< >0, {text< >1, {text< >2 ):.
Что вы можете сказать о них? Чем отличаются графики?
Скоро вы в этом убедитесь. Чем больше (Lo_ displaystyle b ), тем больше линий размещается.
Далее, обратите внимание на следующее. График пересекает ось ⌘ (⌘ displaystyle mathbf ) в точке с координатами, равными ⌘ (⌘ displaystyle mathbf )!
И это правда. Как найти пересечение графика с помощью оси ⌘ (⌘ displaystyle y )? Что такое ⌘ (⌘ displaystyle x ) в такой момент времени?
В любой точке вертикальной оси (так называется ось ⌘ (⌘ displaystyle y ), если вы забыли) ⌘ (⌘ displaystyle x = 0 ).
Поэтому просто замените функцию ⌘ (⌘ displaystyle x = 0 ) и вы получите расположение графика на оси ⌘ (⌘ displaystyle y ).
For (ː displaystyle k ). Функция ⌘ (⌘ displaystyle left (b = 0 right)). () Измените функцию displaystyle k ) и посмотрите, что произойдет на графике.
⌘ displaystyle k = -3, давайте построим график ⌘ text< ->1, {text< >0, {text< >1, {text< >2: ס)
Ну, теперь мы это поняли: displaystyle k ) влияет на тенденцию графика.
Чем больше модуль (то есть, несмотря на синус), тем более «острой» (бездной — с большим углом к оси ɛ — ɛ displaystyle ox ɛ) является линия.
Анализ. Постройте новый график (⌘ displaystyle y = kx+b ):.
Выберите на графике две точки ɑ (ɑ displaystyle a ) и ɑ (ɑ displaystyle b ). Для простоты мы выбрали точку на пересечении графика с линией. Точка ⌘ (⌘ displaystyle b ) может находиться в любой точке прямой.
Рассмотрим прямоугольный треугольник 섹 (섹 displaystyle ab ), построенный в сечении 섹 (섹 displaystyle ab ), подчиненном прямоугольнику 섹 (섹 displaystyle ab ).
На диаграмме показано, что හ (⌘ displaystyle ac = x ) и හ (⌘ displaystyle bc = y-b ).
Замените (⌘ displaystyle y = kx+b ) на ߋ (⌘ displaystyle bc: bc = y-b = kx+b-b = kx ).
bc = k cdot ac> rightrrow> k = frac >> =<mathop<rm tg> nolimits> alpha ).
Поэтому коэффициент ⌘ (⌘ displaystyle k ) равен тангенсу угла наклона графика, то есть углу между графиком и осью расстояния.
Поэтому (коэффициент ⌘ (⌘ displaystyle k )) обычно называют угловым коэффициентом.
Если (⌘ displaystyle k = 0 ), то ⌘ (⌘ также ⌘)<mathop<rm tg> nolimits> alpha = 0, ⌘), поэтому ⌘ (⌘ displaystyle alpha = 0 ), т.е. линия параллельна оси глубины на.
Понимание геометрического значения коэффициентов очень важно, так как они часто используются в различных задачах на линейные функции.
Разбор еще трех задач на линейную функцию
1. найдите коэффициенты ዄ (ዄ displaystyle k ) и ዄ (ዄ displaystyle b ) линейной функции, график которой изображен на рисунке. Напишите уравнение функции.
Бонус: Вебинары из нашего курса подготовки к ЕГЭ по математике
Элементарные функции и их графики (ЕГЭ 18. Задача с параметром)
Параметры США часто включают исследование функции или, по крайней мере, знание ее свойств.
Чтобы научиться исследовать функцию, лучше всего научиться визуализировать ее графически.
В этом уроке вы рассмотрите основные элементарные функции, научитесь представлять их графически и узнаете, как на них влияют различные параметры (коэффициенты функции).
Преобразования графиков функций. ЕГЭ 18. Задачи с параметром.
Научились ли вы строить графики функций? Что произойдет, если вы измените один из тарифов сейчас? Или «инкапсулировать» часть функции в раздел?
Можно ли просто переместить/расширить старую диаграмму вместо того, чтобы создавать новую для этой цели?
Вы можете! И в этом уроке вы узнаете, как выполнять такие преобразования.
Благодаря этим преобразованиям вы поймете, как выглядит график функции для всех значений параметра, и научитесь решать задачи США, связанные с этим вопросом.
(Задание подобного вида есть в ВПР по математике за 7 класс)
Семён Муратов
1 декабря 2019 · 297,0 K
Наставник по математике.
Помогаю воронежским школьникам разобраться в математике и… · 16 мая 2021
b равна точке, в которой график пересекает ось у
к находим следующим способом:
-
выбираем 2 точки на прямой, располагающиеся в узлах координатной решетки.
-
считаем от нижней точки до верхней количество клеток вбок и вверх.
-
к=количество клеток вверх делить на количество клеток вбок
-
при подсчете клеток вбок, учитываем направление движения: вправо плюс, влево минус
9,7 K
Комментировать ответ…Комментировать…
младший научный сотрудник ФТИ им. Иоффе · 2 дек 2019 ·
нужно взять на графике две любые точки (на практике удобно брать те, которые с удобными целыми координатами). Например, пусть по графику видно, что при x = x1, y = y1, при x = x2, y = y2. Две точки (x1,y1) и (x2,y2) подставляются в формулу линейной функции и получается система уравнений относительно k и b. y1 = k*x1 + b, y2 = k*x2 + b. сначалы вычитаем одно из другого и… Читать далее
119,7 K
Линейная функция описывает любую прямую формулой y=k(x+a) +b, где: а- сдвиг по оси х, b-сдвиг по оси у…. Читать дальше
Комментировать ответ…Комментировать…
Студент. Делаю необычные исследования · 9 мар 2021
Можно использовать способ перемещение. По сути график линейной функции это график прямой пропорциональности (проходящий через начало координат) только смещенное, это смещение и есть b. Если мы перенесем график к началу координат то м сможем найти все данные как у функции прямой пропорциональности, с помощью уравнения
7,2 K
Комментировать ответ…Комментировать…
Достаточно замерить угол n наклона прямой к оси Х (при чем угол будет положительным если прямая находится от оси Х протв движения часовой стрелки и отрицательным если наоборот) Найдем коэффициент
k=tgn ; коэффициент b будет равен ординате точки пересечения прямой с ординатой (осью “Y”)
Подставляем эти значения в уравнение y=kx+b и получаем ур=е данной прямой.
13,8 K
Комментировать ответ…Комментировать…