Как найти линейную оболочку системы векторов

Определение
1
.
Линейной
оболочкой

заданной
конечной совокупности

элементов векторного пространства
n
над полем К называется множество всех
линейных комбинаций этих элементов с
коэффициентами из поля К. При этом сама
совокупность

называется порождающей
системой

данной линейной оболочки, а сама линейная
оболочка обозначается символом
.

Линейные оболочки
обладают следующими свойствами:

.
Линейная оболочка элементов векторного
пространства
n
является подпространством М векторного
пространства
n.

Данный
результат следует из определения
линейной оболочки: сумма
двух векторов из линейной оболочки
будет принадлежать линейной оболочки
(одна из линейных комбинаций), произведение
вектора из линейной оболочки также
будет принадлежать линейной оболочки.

.
Линейная оболочка может совпадать со
всем пространством Rn
(если образующая
система является базисом
в пространстве Rn
)

.
Линейная оболочка

является наименьшим подпространством,
содержащим элементы
.
Все остальные подпространства могут
только содержать вектора порождающей
системы или их возможные комбинации.

.
Если какой-нибудь элемент из порождающей
системы элементов

есть линейная комбинация остальных
элементов этой системы, то его можно
удалить из порождающей системы, не
изменив при этом линейной оболочки.

.
Если координатная матрица системы
образующих

имеет ранг р, где
,
то любая линейно независимая система
,
является базисом линейной оболочки
,
а сама линейная оболочка будет
подпространством размерности р,
.

Примеры.

  1. Если
    a,
    b,
    с – геометрические векторы, лежащие
    на одной прямой. В этом случае линейная
    оболочка L(а,b,c)=
    L(a).Здесь
    линейная оболочка является одномерным
    пространством, которое состоит из всех
    вектор, лежащих на прямой, причем вектор
    а
    –является базисом.

  2. Пусть
    a,
    b,
    с – геометрические векторы, причем a,
    b
    не коллинеарны, с = а + b.
    В этом случае линейная оболочка L(а,b,c)=
    L(a,b).Здесь
    линейная оболочка является двумерным
    пространством, состоящем из всех
    векторов, компланарных с векторами a
    и b.
    Вектора а,b
    составляют базис в L(a,b).
    Любой вектор из L
    представляется в виде линейной комбинации
    векторов а
    и b.

Вообще,
в конечномерном пространстве R
всякое подпространство L

является линейной
оболочкой некоторой системы векторов.

Рассмотри
следующую задачу
.
В евклидовом пространстве En
задана линейная оболочка
,
где k

n.
Требуется:

1)Найти
размерность и базис линейной оболочки
;
2)Выделить в линейной оболочке

ортогональный базис и

достроить
его до
ортонормированного базиса евклидова

пространства
En.

Если
схема решения первой задачи нам знакома,
то решение второй задачи строится на
следующем теоретическом результате.

Теорема
(Грама
– Шмидта)

Пусть

– система линейно независимых векторов
в евклидовом пространстве, где k

n,
являющихся образующей системой линейной
оболочки
.
Система векторов
,
описываемая формулами

,

,

,
. . .

где
коэффициенты

,
,

образует
ортогональный
базис

линейной оболочки
.

Доказательство.
Для
доказательства теоремы достаточно
доказать следующее утверждение: вектор

ортогонален вектору
.

Действительно,
умножая скалярно вектор

на вектор
,
получим

==0


Следствие.
Результат теоремы дает
алгоритм последовательной ортогонализации
системы линейно независимых элементов
(
так
называемый
метод Грама – Шмидта).

Пример

  1. В
    евклидовом пространстве E4
    линейная оболочка

    задана образующей системой векторов

    с координатами

.

Требуется:

а)
найти размерность и базис линейной
оболочки

б)
указать в линейной оболочке

ортонормированный базис

и
достроить его до ортонормированного
базиса евклидова

пространства
E4.

Решение.
Рассмотрим координатную матрицу
.
Так как

,

то
,
элементы

линейно независимы в E4
и образуют базис данной линейной
оболочки, являющейся подпространством
в E4.

Для
построения ортонормированного базиса
в E4
применим метод
ортогонализации

Грама-Шмидта. Получим

,


,

.

Записывая векторы
столбцами их координат, последовательно
найдем


.

Легко
проверить, что полученные элементы

попарно ортогональны. Найдем ортогональный
им вектор
.

Пусть
,
то неизвестные координаты

вектора Y4
найдутся из условий

,,.

Так
как
,
в последней системе неизвестные

можно взять в качестве базисных
неизвестных
.

Если
для свободной (небазисной) неизвестной
,
то
.

Нормировав
найденные векторы
,
построим ортонормированный базис в E4:

.

Задача
решена
.

В
завершении параграфа введем важное
определение
.

Пусть

– – базис в En
и векторы

представлены в этом базисе своими
разложениями


.

Тогда
скалярное произведение этих векторов
имеет вид

или в матричной форме
,
где

– столбцы координат векторов

в базисе

а симметричная матрица

составлена из скалярных произведений
базисных векторов:

.

В
общем случае в качестве элементов
матрицы А рассматривают скалярные
произведения произвольной системы
векторов а1,
а2,…,
аn

Определение
3
.
Определитель
матрицы
А
скалярных произведений заданной системы
векторов

называют определителем
Грама.

Теорема
Произвольная
система
векторов
,
заданных в ортонормированном
базисе
,
будет линейно
независимой
,
если ее определитель
Грама отличен от нуля
.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Линейные оболочки и подпространства

Определение. Подпространством линейного пространства называется множество векторов из такое, что для любых двух векторови из и любых двух вещественных чисел и линейная комбинация также принадлежит .

Утверждение. Подпространство само является линейным про­странством.

Определение. Линейной оболочкой системы векторов называется множество всех линейных комбинаций векторов . Обозначается .

Утверждение. Линейная оболочка системы векторов является подпространством.

Определение. Пересечением двух подпространств и на­зывается множество всех векторов, принадлежащих одновре­менно и ,и . Обозначается .

Определение. Суммой двух подпространств и называется множество всех векторов , представимых в виде , где , . Обозначается .

Утверждение. Сумма и пересечение подпространств и являются линейными пространствами, и их размерности связаны равенством

+ = + .

Определение. Сумма двух подпространств называется прямой суммой, если пересечение этих подпространств состо­ит только из нулевого вектора.

Примеры

1. Найти размерность и какой-нибудь базис суммы и пересечения подпространств, порождённых векторами .

Решение. Вычислим вначале размерность подпространств. С этой целью установим, являются ли линейно независимыми векторы, порождающие данные подпространства. Для подпространства , порождённого векторами , равенство нулю линейной комбинации , эквивалентное системе уравнений , достигается лишь при условии . Следовательно, векторы линейно

независимы и размерность подпространства равна 2: . Для подпространства , порождённого векторами , проводя аналогичный анализ, получим .

Вычислим теперь размерность пересечения подпространств и . По определению векторы, составляющие пересечение, принадлежат одновременно обоим подпространствам. Произвольный вектор подпространства является линейной комбинацией базисных векторов : . Аналогично для подпространства имеем , тогда условие принадлежности пересечению есть или .

Это условие представляет собой систему уравнений относительно коэффициентов . Составим матрицу системы и упростим её с помощью элементарных преобразований:

Как видно ранг системы равен 3. Значит ФСР состоит из одного линейно независимого вектора. Найдём его, решив систему уравнений, соответствующих последней матрице, получим ,

откуда .

Полагая свободное неизвестное , для остальных имеем

. Итак, пересечение подпространств имеет один базисный вектор

.

Размерность пересечения . Следовательно, в соответствии с равенством

размерность суммы подпространств . В качестве базиса суммы подпространств можно взять, например, векторы , дополненные вектором . В линейной независимости векторов убедиться нетрудно.

Задачи

3.39. Найти размерность и какой-нибудь базис подпространства, порожденного векторами , , , , .

3.40. Найти размерность и какой-либо базис линейной оболочки векторов , , , , .

3.41. Является ли подпространством в указанном пространстве множество

а) векторов, выходящих из начала координат и заканчиваю­щихся на фиксированной прямой, в пространстве R 2 ;

б) бесконечно малых числовых последовательностей в про­странстве сходящихся последовательностей;

в) сходящихся к числу последовательностей в простран­стве сходящихся последовательностей;

г) диагональных матриц в пространстве квадратных матриц того же порядка;

д) невырожденных матриц в пространстве симметричных мат­риц того же порядка;

е) дифференцируемых на интервале функций в простран­стве функций, непрерывных на отрезке .

3.42. Почему не является подпространством в указанном про­странстве множество

а) векторов, каждый из которых лежит на одной из коорди­натных плоскостей, в пространстве R 3 ;

б) векторов из пространства R n , координаты которых удовлетворяют уравнению ;

в) расходящихся числовых последовательностей в простран­стве ограниченных последовательностей;

г) вырожденных матриц в пространстве квадратных матриц того же порядка;

д) монотонно возрастающих и ограниченных на множестве функций в пространстве функций, ограниченных на том же множестве.

3.43. Найти размерность и какой-либо базис подпространства ре­шений однородной системы:

а) ; б) ;

в) .

3.44. Доказать, что данное множество является подпространством в R n , найти его размерность и какой-либо базис:

а) все n-мерные векторы, координаты которых удовлетворя­ют уравнению ;

б) все n-мерные векторы, у которых первая координата равна нулю;

в) все n-мерные векторы, у которых первая и последняя координаты равны между собой;

г) все n-мерные векторы, у которых координаты с четными номерами равны нулю;

д) все n-мерные векторы, у которых координаты с нечетны­ми номерами равны между собой.

3.45. Найти размерность суммы и пересечения подпространств, порожденных векторами , и , . Является ли эта сумма прямой суммой?

3.46. Найти размерность суммы и пересечения линейных оболочек векторов , , и , , . Является ли их cумма прямой?

3.47. Найти базис суммы и пересечения двух подпространств, порожденных соответственно векторами и , если

а) , , , , , ;

б) , , , , , .

3.48. Найти базис суммы и пересечения линейных оболочек и , если

а) , , , ;

б) , , , , , .

Является ли прямой сумма этих подпространств?

Способы описания подпространств линейного пространства

Рассмотрим два важных способа описания линейных подпространств, которые условно будем называть внутренним и внешним. В первом (внутреннем) способе используется понятие линейной оболочки векторов, когда все элементы подпространства выражаются через некоторые его элементы (образующие). При втором (внешнем) способе применяются однородные системы уравнений. В этом случае подпространство описывается как пересечение некоторых содержащих его множеств. Для каждого способа описания подпространств укажем методики на хождения размерностей, базисов, алгебраических дополнений, пересечений и сумм подпространств.

Любое n-мерное вещественное линейное пространство изоморфно n-мерному арифметическому пространству . Чтобы установить изоморфизм , достаточно выбрать в пространстве базис и каждому вектору поставить в соответствие его координатный столбец. Поэтому в данном разделе будем рассматривать описание подпространств n-мерного арифметического пространства .

Первый (внутренний) способ. Пусть в пространстве заданы столбцы . Напомним, что для систем столбцов были определены понятия базы (максимальной линейно независимой подсистемы столбцов) и ранга (максимального числа линейно не зависимых столбцов системы), а также методы их нахождения.

Рассматривая линейную оболочку столбцов как линейное подпространство , заключаем, что база системы столбцов является базисом этого подпространства, а ранг системы столбцов равен размерности подпространства .

Поэтому для нахождения размерности и базиса подпространства нужно выполнить следующие действия:

1) составить из данных столбцов матрицу размеров ;

2) привести ее к ступенчатому виду (1.4), используя элементарные преобразования строк;

3) определить размерность и базис подпространства

– количество ненулевых строк в матрице равняется размерности подпространства, т.е. ,

– столбцы матрицы , содержащие единичные элементы (в начале каждой “ступеньки”), определяют номера линейно независимых столбцов матрицы , т.е. искомый базис.

Таким образом, если подпространство задано своими образующими , то его размерность равна рангу системы столбцов , т.е. , а базисом служит максимальная линейно независимая подсистема образующих.

Второй (внешний) способ. Пусть подпространство задано как множество решений однородной системы уравнений с неизвестными. Множество решений системы уравнений можно рассматривать как пересечение подпространств , где — множество решений i-го уравнения системы . Напомним, что любое решение однородной системы представляется в виде линейной комбинации элементов фундаментальной системы решений. Поэтому раз мерность пространства , а базисом служит фундаментальная система решений однородной системы . Способы нахождения фундаментальной системы решений рассмотрены ранее.

Переход от одного способа описания подпространств к другому

Переход от внутреннего описания к внешнему. Пусть подпространство задано линейной оболочкой столбцов . Требуется составить такую однородную систему уравнений, множество решений которой совпадает с , т.е. . Для этого нужно выполнить следующие действия.

1. Из данных столбцов составить матрицу размеров , а затем блочную матрицу , приписав к матрице единичную матрицу n-го порядка.

2. Элементарными преобразованиями над строками блочной матрицы и первыми ее столбцами привести матрицу к виду , где — простейший вид матрицы .

3. Из последних строк матрицы составить матрицу .

4. Записать искомую систему уравнений .

Поясним содержание алгоритма. Заданное подпространство состоит из линейных комбинаций данных векторов, т.е. все его элементы имеют вид . Решаемую задачу можно сформулировать так: для каких векторов найдутся такие числа , чтобы выполнялось равенство . Другими словами, при каких неоднородная система ( уравнений с неизвестными ) имеет решения? Используя необходимое и достаточное условие (5.24) совместности системы, получаем равенство . Заметим, что решение поставленной задачи неоднозначно, так как существует много однородных систем, имеющих од но и то же множество решений.

Пример 8.8. Подпространство задано линейной оболочкой столбцов . Составить систему уравнений, определяющую подпространство .

Решение. 1. Составляем матрицу и блочную матрицу:

2. Приводим левый блок к простейшему виду. Вычитаем первую строку из остальных, а затем к четвертой строке прибавляем вторую, умноженную на (-2):

Преобразовываем столбцы левого блока: ко второму столбцу прибавим пер вый, умноженный на (-1), к третьему столбцу прибавим первый, умноженный на (-3), а затем второй, умноженный на (-1). Эти преобразования не изменяют правый блок полученной матрицы. Находим простейший вид Л матрицы и матрицу

3. Из последних строк матрицы составляем матрицу искомой системы.

4. Записываем систему уравнений Заданные в условии примера столбцы являются решениями полученной системы, в чем можно убедиться при их подстановке в систему уравнений вместо .

Переход от внешнего описания к внутреннему. Пусть подпространство задано как множество решений однородной системы т уравнений с л неизвестными: . Требуется найти размерность и базис этого подпространства, т.е. представить его в виде линейной оболочки . Для этого нужно выполнить следующие действия.

1. Найти фундаментальную систему решений однородной системы . Искомая размерность .

2. Представить заданное пространство как линейную оболочку .

Первый пункт алгоритма удобно выполнять следующим образом:

– составить блочную матрицу , приписав к матрице единичную матрицу n-го порядка;

– элементарными преобразованиями над столбцами блочной матрицы и строками верхнего блока привести матрицу к виду , где — простейший вид матрицы ;

– из последних столбцов матрицы составить фундаментальную матрицу .

Столбцы фундаментальной матрицы составляют искомую фундаментальную систему решений.

Заметим, что решение поставленной задачи неоднозначно, так как существует много базисов одного и того же линейного подпространства.

Пример 8.9. Найти размерность и базис подпространства , заданного системой уравнений

Решение. 1. Фундаментальная матрица для этой системы была найдена в примере 5.6

Ее столбцы образуют фундаментальную систему решений. Размерность подпространства равна , .

2. Столбцы являются искомым базисом, так как они линейно независимы и .

[spoiler title=”источники:”]

http://mathhelpplanet.com/static.php?p=sposoby-opisaniya-podprostranstv

[/spoiler]

Макеты страниц

В § 8 были рассмотрены общие положения о подпространствах. Возникает, однако, естественный вопрос конструктивного характера о способах построения подпространств; одним из таких способов является образование так называемой линейной оболочки заданной системы векторов.

Определение 9. Пусть конечная система векторов линейного пространства над полем Линейной оболочкой системы называется совокупность всех конечных линейных комбинаций векторов данной системы, т. е. совокупность векторов вида

с произвольными коэффициентами , взятыми из поля

Линейную оболочку векторов обозначим через .

Пусть , т. е.

Тогда ,

По теореме 7 получаем, что — подпространство пространства Значит, образование линейных оболочек действительно является способом конструирования подпространств.

О пространстве говорят также, что оно порождено векторами или натянуто на систему векторов

Очевидно, что содержит и сами векторы так как, например, С другой стороны, всякое подпространство, содержащее векторы содержит, очевидно, и все их линейные комбинации. Значит, линейная оболочка системы векторов содержится во всяком подпространстве, содержащем векторы т. е. есть наименьшее подпространство, содержащее векторы Указанный способ построения подпространств с помощью линейных оболочек является весьма общим. В самом деле, каждый вектор произвольного подпространства по определению базиса есть линейная комбинация векторов базиса

пространства значит, всякое подпространство линейного пространства является подпространством, натянутым на некоторые векторы из векторы базиса

Из теоремы 1 следует, что размерность пространства равна числу векторов в максимальной линейно независимой подсистеме системы порождающих векторов короче, максимальному числу линейно независимых векторов в системе

Примеры. 1. Исходное пространство Порождающая система состоит из одного вектора а, подпространство состоит из всех векторов, коллинеарных вектору а.

2. Исходное пространство Порождающая система состоит из двух неколлинеарных векторов Подпространство есть совокупность векторов вида а а т. е. плоскость, проходящая через векторы а и 6.

3. Исходное пространство Порождающая система векторов — три некомпланарных вектора а, b, с. В этом случае подпространство есть

— произвольное линейное пространство; его базис. Тогда

5. Исходное пространство Система порождающих векторов — совокупность функций: Тогда

линейная оболочка есть пространство всех многочленов степени

6. Найти размерность и базис подпространства пространства если

Размерность пространства совпадает с максимальным числом линейно независимых векторов порождающей системы и потому равна рангу матрицы составленной из векторов Получаем ранг а потому В ходе вычисления ранга матрицы замечаем, что в качестве базиса можно взять систему векторов

7. Найти базис и размерность суммы и пересечения подпространств, натянутых на векторы

Решение. Так как

то состоит из всех таких векторов х, что

Решив уравнение

относительно неизвестных получим:

где с — произвольное вещественное число. Итак,

Пространство порождено одним вектором (5, —2, —3, —4). Значит, и в качестве базиса пространства можно взять вектор (5, —2, —3, —4).

Пространство состоит из векторов вида а где а следовательно, произвольный вектор пространства имеет вид:

т. е. Далее, тем же способом, что и в примере 6, получаем и базисом пространства может служить система векторов

Упражнения

(см. скан)

Рассмотрим L – линейное пространство.

–  Сколько в L линейно независимых векторов.

–  Какой из смысл.

Определение: Линейное пространство L называется N-мерным, а число N – размерностью, если в L существует N линейно независимых векторов, причём любые N+1 векторов линейно зависимы.

Определение: В N-мерном линейном пространстве L любая совокупность(система) N линейно независимых векторов называется базисом.

, – базисные векторы.

Определение: если – базис в , то для любого существуют числа : . Это разложение вектора по базису.

Теорема 8: В данном базисе координаты вектора определены однозначно

Доказательство(от противного): Пусть в базисе два набора чисел для вектора

Так как линейно независимы, то все

Если в L существует любое число линейно независимых векторов, то L называется бесконечномерным линейным пространством.

Примеры базисов:

1)

2)

Базис Вейля

3)

.

4)

Подпространство и линейная оболочка

Пусть

L – множество

M – подмножество

Кроме того

L – линейное пространство

Тогда M – подпространство в L, если

Рассмотрим систему векторов .

Определение: Линейной оболочкой системы векторов называется множество всевозможных линейных комбинаций этих векторов. То есть: . Очевидно, что и является подпространством.

Пример: найти размерность и базис линейной оболочки , где

линейно независимы.

Операции над линейными пространствами.

– линейные пространства.

А)

Б)

А) Что такое .

Определение: линейное пространство L является прямой суммой и , если: выполняется одно из условий:

1)

2)

Теорема 9: Для того, чтобы , достаточно, чтобы

1)

2)

Тогда чтобы доказать, что, необходимо доказать, что – базис в L.

Рассмотрим:

Тогда .

Так как , то 0=0

< Предыдущая   Следующая >

Пусть L – n-мерное линейное пространство, в котором фиксирован некоторый базис е = (e1 … еn) и выбраны векторы a1, …, ak, b. Запишем разложение выбранных векторов по базису е:

aj = eaj, j = 1,k, b = eb,

где aj = (a1j … anj)T , j = 1,k, b = (b1 … bn)T – столбцы координат соответствующих векторов
. Пусть А – матрица типа n × k, составленная из координатных столбцов векторов a1, …, аk, а (A|b) – матрица, полученная из матрицы А добавлением справа еще одного столбца b.

Для вектора b возможны два случая:

1) вектор b принадлежит линейной оболочке span{a1,…, ak};

2) вектор b не принадлежит span{a1,…,ak}.

В первом случае добавление к системе векторов a1, …, ak вектора b не приводит к расширению линейной оболочки системы и, следовательно,

dimspan{a1,… ,аk} = dimspan{a1,… ,аk,b}.

По теореме 2.6 заключаем, что RgA = Rg(A|b).

Во втором случае, наоборот, добавление вектора b к системе векторов a1, …, аk приводит к расширению линейной оболочки, причем по теореме 2.5

dimspan{a1,… ,аk,b} = dimspan{a1,… ,аk} + 1,

так как

span{a1,…, ak, b} = span{a1,…, ak} ⊕ span{b}.

Следовательно, Rg(A|b) = RgA + 1.

Выясним теперь, что означают эти два случая “на координатном уровне”. В первом случае условие b ∈ span{a1,… ,ak} означает существование разложения

х1а1 +… + xkak = b (2.8)

с некоторыми действительными коэффициентами x1, …, xk.
Записывая это векторное равенство в координатной форме, получаем систему линейных алгебраических уравнений (СЛАУ)

Линейные оболочки и системы уравнений

относительно переменных х = (х1 … xk)T, которая в матричной форме имеет вид Ах = b. Существование разложения (2.8) означает, что полученная система имеет решение. Во втором случае представление (2.8) невозможно, т.е. система (2.9) не имеет решений.

Итак, следующие четыре утверждения эквивалентны между собой:

– b ∈ span{a1,…,ak};

– dimspan{a1,… ,аk,b} = dimspan{a1,…,аk};

– Rg(A|b) = RgA;

– система Ах = b из n линейных алгебраических уравнений относительно k неизвестных совместна.

Эквивалентность последних двух утверждений составляет содержание теоремы Кронекера – Капелли [III], которая верна для произвольных СЛАУ. Отметим, что любая система из п ли-нейных алгебраических уравнений относительно к неизвестных может быть получена как результат проведенных рассуждений. Для этого достаточно в качестве векторов a1, …, ak рассмотреть столбцы коэффициентов при неизвестных, а в качестве вектора b – столбец свободных членов. Все эти столбцы могут рассматриваться как n-мерные векторы в линейном арифметическом пространстве Rn.

Таким образом, теорему Кронекера – Капелли можно переформулировать следующим образом: для того чтобы линейная оболочка системы векторов a1, …, аk совпадала с линейной оболочкой расширенной системы a1, …, аk, b, необходимо и достаточно, чтобы были равны размерности этих линейных оболочек.

Предположим, что квадратная СЛАУ Ах = b имеет решение при любом столбце b правых частей. Рассматривая столбцы матрицы А и столбец b как элементы a1, …, an, b n-мерного линейного арифметического пространства и записывая СЛАУ в векторной форме

x1a1 + x2a2 + … + xnan = b,

заключаем, что линейная оболочка системы векторов a1, …, аn совпадает со всем линейным пространством Rn. Из этого следует, что ранг этой системы векторов равен размерности линейного пространства n, а так как в системе ровно n векторов, то она, согласно теореме 2.6, линейно независима. Другими словами, столбцы матрицы А линейно независимы, а матрица А является невырожденной (см. теорему о базисном миноре [III]).

Таким образом, если квадратная СЛАУ Ах = b имеет решение при любой правой части, то матрица А системы невырождег на, а решение системы при любой правой части единственно.

  1. Линейные операции над векторами

  2. Базис. Cкалярное произведение

  3. Векторное и смешанное произведения векторов

  4. Декартова система координат. прямая на плоскости

  5. Плоскость в пространстве

  6. Прямая в пространстве

  7. Кривые второго порядка — I

  8. Кривые второго порядка — II

  9. Поверхности второго порядка

  10. Матрицы и операции с ними

  11. Обратная матрица

  12. Ранг матрицы

  13. Системы линейных алгебраических уравнений

  14. Свойства решений однородных и неоднородных СЛАУ

Добавить комментарий