Как найти линию уровня проходящую через точку

Линии и поверхности уровня

Содержание:

Линии и поверхности уровня

Понятие линии и поверхности уровня:

Для характеристики функций двух переменных вводится понятие линий уровня.

Определение 2. Линией уровня функции z = f (x, y) называется совокупность всех точек на плоскости Oxy, для которых выполняется условие f (x, y) = C.

Линии уровня можно получить, пересекая поверхность z = f (x, y) плоскостями z = C, где С = соnst.

Пример 1. Найти линии уровня функции z = x 2 + y 2 .

Решение.
Пусть z = C. x 2 + y 2 = C (C ≥ 0),

В этом случае линиями уровня является множество концентрических окружностей с центром в начале координат и радиусом С (рис. 2) .Аналогично вводится понятие поверхности уровня для функции трех переменных u = f (x, y, z), (f (x, y, z) = C).

Пример 2. Найти поверхности уровня функции u = x 2 + y 2 + z 2 .

Решение. Пусть u = C. Тогда x 2 + y 2 + z 2 = C (C ≥ 0) — это множество сфер с центром в точке O(0; 0; 0) и радиусом C.

Поверхности второго порядка

Наиболее изучены поверхности в курсе аналитической геометрии — поверхности второго порядка. В общем случае уравнение такой поверхности имеет вид:
a11 x 2 + 2a12 xy + a22 y 2 + 2a13 xz + 2a23 yz + a33 z 2 + 2a14 x + 2a24 y + 2a34 z + a44 = 0.

В зависимости от значений коэффициентов получают различные поверхности второго порядка.

Например:
1) — конус;

2) — полусфера;


Рис. 4.

3) — эллиптический параболоид;


Рис. 5.

4) — гиперболический параболоид;

рис.6

5) — трехосный эллипсоид.


Рис. 7.

Для изучения поверхностей в трехмерном пространстве применяется метод сечений. Суть этого метода такова: пересекаем заданную поверхность плоскостями x = C1, y = C2, z = C3. В результате получим некоторые кривые, характеризующие поверхность.

Пример 3. z = x 2 + y 2 . Пусть z = C1 (C1 ≥ 0). Получим уравнение x 2 + y 2 = C1 (уравнение окружности). Положим y = C2 , тогда — уравнение параболы в плоскости Оxz, которая смещена на единиц вверх по оси Oz. Положим x = C3 , получим уравнение
Получили уравнение параболы в плоскости Оyz, которая смещена на единиц вверх по оси Оz. Из этих исследований вытекает, что графиком функции z = x 2 + y 2 является параболоид вращения вокруг оси Оz.

Гиперповерхности уровня

Пусть задана функция от n переменных u = f (x1, x2, . xn) . Если положить u = C, то получим уравнение f (x1, x2, . xn) = C, которое называется уравнением гиперповерхности уровня в пространстве R n . Например: Если u = C, то уравнение является уравнением гиперсферы в R n с центром в точке O (0,0, . 0) и радиусом .

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

5.6. Производная по направлению. Градиент. Линии уровня функции

Определение. Предел отношения , если он существует, называется Производной функции Z=F(M) в точке M(X; Y) по направлению вектора L .

Обозначение.

Если функция F(M) дифференцируема в точке М(х; у), то в точке М(х; у) существует производная по любому направлению L, исходящему из М; вычисляется она по следующей формуле:

(8)

Где Cos И Cos – направляющие косинусы вектора L.

Пример 46. Вычислить производную функции Z=X2+Y2X в точке М(1; 2) по направлению вектора ММ1, где М1 – точка с координатами (3; 0).

Решение. Найдем единичный вектор L, имеющий данное направление:

Откуда Cos=; Cos=-.

Вычислим частные производные функции в точке М(1; 2):

По формуле (8) получим

Пример 47. Найти производную функции U = Xy2Z3 в точке М(3; 2; 1) В направлении вектора MN, где N(5; 4; 2).

Решение. Найдем вектор и его направляющие косинусы:

Вычислим значения частных производных в точке М:

Следовательно,

Определение. Градиентом Функции Z=F(M) в точке М(х; у) называется вектор, координаты которого равны соответствующим частным производным и, взятым в точке М(х; у).

Обозначение.

Решение. Находим частные производные: и их значения в точке М(2; -1):

Пример 49. Найти величину и направление градиента функции в точке

Решение. Найдем частные производные и вычислим их значения в точке М:

Аналогично определяется производная по направлению для функции трех переменных U=F(X, Y, Z), выводятся формулы

Вводится понятие градиента

Подчеркнем, что Основные свойства градиента функции важнее для анализа экономических оптимизационных задач: в направлении градиента функция возрастает. В экономических задачах находят применение следующие свойства градиента:

1) Пусть задана функция Z=F(X, Y), имеющая частные производные в области определения. Рассмотрим некоторую точку М0(х0, у0) из области определения. Значение функции в этой точке пусть равно F(X0, Y0). Рассмотрим график функции. Через точку (X0, Y0, F(X0, Y0)) трехмерного пространства проведем плоскость, касательную к поверхности графика функции. Тогда градиент функции, вычисленный в точке (х0, у0), рассматриваемый геометрически как вектор, приложенный в точке (X0, Y0, F(X0, Y0)), будет перпендикулярен касательной плоскости. Геометрическая иллюстрация приведена на рис. 34.

2) Градиент функции F(X, Y) в точке М0(х0, у0) указывает направление наиболее быстрого возрастания функции в точке М0. Кроме того, любое направление, составляющее с градиентом острый угол, является направлением роста функции в точке М0. Другими словами, малое движение из точки (х0, у0) по направлению градиента функции в этой точке ведет к росту функции, причем в наибольшей степени.

Рассмотрим вектор, противоположный градиенту. Он называется Антиградиентом. Координаты этого вектора равны:

Антиградиент функции F(X, Y) в точке М0(х0, у0) указывает направление наиболее быстрого убывания функции в точке М0. Любое направление, образующее острый угол с антиградиентом, является направлением убывания функции в этой точке.

3) При исследовании функции часто возникает необходимость нахождения таких пар (х, у) из области определения функции, при которых функция принимает одинаковые значения. Рассмотрим множество точек (X, Y) из области определения функции F(X, Y), таких, что F(X, Y)=Const, где запись Const означает, что значение функции зафиксировано и равно некоторому числу из области значений функции.

Линии уровня геометрически изображаются на плоскости изменения независимых переменных в виде кривых линий. Получение линий уровня можно представить себе следующим образом. Рассмотрим множество С, которое состоит из точек трехмерного пространства с координатами (X, Y, F(X, Y)=Const), которые, с одной стороны, принадлежат графику функции Z=F(X, Y), с другой – лежат в плоскости, параллельной координатной плоскости ХОУ, и отстоящей от неё на величину, равную заданной константе. Тогда для построения линии уровня достаточно поверхность графика функции пересечь плоскостью Z=Const и линию пересечения спроектировать на плоскость ХОУ. Проведенное рассуждение является обоснованием возможности непосредственно строить линии уровня на плоскости ХОУ.

Определение. Множество линий уровня называют Картой линий уровня.

Хорошо известны примеры линий уровня – уровни одинаковых высот на топографической карте и линии одинакового барометрического давления на карте погоды.


Определение. Направление, вдоль которого скорость увеличения функции максимальна, называется «предпочтительным» направлением, или Направлением наискорейшего роста.

«Предпочтительное» направление задается вектором-градиентом функции. На рис. 35 изображены максимум, минимум и седловая точка в задаче оптимизации функции двух переменных при отсутствии ограничений. В нижней части рисунка изображены линии уровня и направления наискорейшего роста.

Решение. Уравнение семейства линий уровня имеет вид X2+Y2=C (C>0). Придавая С различные действительные значения, получим концентрические окружности с центром в начале координат.

Построение линий уровня. Их анализ находит широкое применение в экономических задачах микро – и макроуровня, теории равновесия и эффективных решений. Изокосты, изокванты, кривые безразличия – это все линии уровня, построенные для разных экономических функций.

Пример 51. Рассмотрим следующую экономическую ситуацию. Пусть производство продукции описывается Функцией Кобба-Дугласа F(X, Y)=10х1/3у2/3, где Х – количество труда, У – количество капитала. На приобретение ресурсов выделено 30 у. ед., цена труда составляет 5 у. ед., капитала – 10 у. ед. Зададимся вопросом: какой наибольший выпуск можно получить в данных условиях? Здесь под «данными условиями» имеются в виду заданные технологии, цены на ресурсы, вид производственной функции. Как уже отмечалось, функция Кобба-Дугласа является монотонно возрастающей по каждой переменной, т. е. увеличение каждого вида ресурса ведет к росту выпуска. В данных условиях ясно, что увеличивать приобретение ресурсов можно до тех пор, пока хватает денег. Наборы ресурсов, стоимость которых составляет 30 у. ед., удовлетворяют условию:

Т. е. определяют линию уровня функции:

С другой стороны, с помощью линий уровня Функции Кобба-Дугласа (рис. 36) можно показать возрастание функции: в любой точке линии уровня направление градиента – это направление наибольшего возрастания, а для построения градиента в точке достаточно провести касательную к линии уровня в этой точке, построить перпендикуляр к касательной и указать направление градиента. Из рис. 36 видно, что движение линии уровня функции Кобба-Дугласа вдоль градиента следует производить до тех пор, пока она не станет касательной к линии уровня 5х + 10у = 30. Таким образом, с помощью понятий линии уровня, градиента, свойств градиента можно выработать подходы к наилучшему использованию ресурсов с точки зрения увеличения объемов выпускаемой продукции.

Компьютерный чертеж. Выполним

Линии уровня и градиент функции двух переменных

Линией уровня функции называется множество точек из области определения на плоскости , для которых значение функции постоянно и равно , то есть

Построить график функции . Записать уравнение линии уровня, проходящей через точку .

Графиком линейной функции двух переменных является плоскость в пространстве. Для функции график представляет собой плоскость, проходящую через точки , , .

Линиями уровня функции являются параллельные прямые, уравнение которых или или .

Найдем уравнение линии уровня, проходящей через точку , для этого подставим координаты точки в уравнение и найдем значение параметра :

уравнение линии уровня, проходящей через точку имеет вид

[spoiler title=”источники:”]

http://matica.org.ua/metodichki-i-knigi-po-matematike/metody-optimizatcii-nekrasova-m-g/5-6-proizvodnaia-po-napravleniiu-gradient-linii-urovnia-funktcii

http://zolotoyzapac.ru/asymptotes/analysis27.html

[/spoiler]

Определить вид
линий уровня функции
.
Построить линию уровня, проходящую
через точку
,
а также линии уровня для
.
Построить график данной функции.

Решение.
Область
определения данной функции есть вся
координатная плоскость. Линии уровня
– это множество точек области определения,
в которых функция принимает одно и то
же значение. Уравнение линий уровня
данной функции имеет вид
,
где С
– произвольная постоянная; перепишем
это уравнение в виде
.

Для каждого
конкретного значения С
это уравнение определяет на плоскости
ХОУ прямую. Следовательно, линиями
уровня данной функции являются
параллельные прямые с общим уравнением
.

Выделим из них ту,
которая проходит через точку
.
Для этого нужно найти такое значение
С,
при котором координаты
точки М
удовлетворяют
уравнению

линии уровня:





.

Таким
образом, через точку М
проходит линия уровня с уравнением
.
На рисунке 1.5. это прямая АМ.

При
получим
линию уровня с уравнением
,
а при

– с уравнением
,
они также изображены на рисунке 1.5.

Построим
график функции
.
В отличие от линий уровня, график функции
двух переменных – это геометрическое
место точек трехмерного
пространства, координаты которых
удовлетворяют заданному уравнению.
Очевидно, данное уравнение
,
или

определяет плоскость. Легко установить,
что эта плоскость пересекает оси
координат в точках
,
,
.
Таким образом, графиком данной функции
является плоскость, часть которой
изображена на рисунке 1.6.

Пример 1.3

Выразите длину
хорды окружности как функцию радиуса
и расстояния от хорды до центра окружности.
Постройте три линии уровня этой функции.

Решение.
Пусть
расстояние от хорды AB
до центра О окружности равно d,
радиус окружности равен
r
(рисунок
1.7). Обозначим длину хорды буквой L:

.
Тогда

причем
,
.

Таким образом,
длина L
хорды AB
есть функция переменных r
и d,
а закон, по которому каждой паре

из области

ставиться в соответствие единственное
действительное число L,
задается формулой
.
Множество D
является областью определения этой
функции, оно
изображено на рисунке 1.8.

Найдем
линии уровня этой функции. Для этого в
уравнении
положим
,
где С
– произвольная неотрицательная
постоянная. Получим уравнения линий
уровня

,
или
.

Построим линии
уровня для

,
.

При

уравнение линий уровня имеет вид
,
откуда
,
но в силу условия
,
получаем луч
,
.

При

линия уровня имеет уравнение

– это уравнение равнобочной гиперболы
с центром в начале координат и полуосями
,
но также в силу условия,
линия уровня данной функции есть только
часть правой ветви этой гиперболы,
расположенная в первой четверти.

Аналогично получим
и при
:
линия уровня – это часть гиперболы

,
или
,

расположенная в
первой четверти. Эти линии уровня
изображены на рисунке 1.9.

Пример
1.4

Определить вид
поверхностей уровня функции
.
Построить одну из них.

Решение.
Область
определения данной функции есть все
множество точек трехмерного пространства.
Семейство поверхностей
уровня

задается уравнением
,
,
или

.

Это уравнение
определяет семейство концентрических
сфер с центром в начале координат и
радиусами
.
На рисунке 1.10 изображена поверхность
уровня данной функции для
.

Пример
1.5

Найти пределы
функций:

а)
; б)

в)
г)

Решение.

а)
Функция
определена
и непрерывна в точке
,
поэтому предел этой функции в точке
равен значению функции в этой точке:

.

б)
Преобразуем функцию, предел которой
требуется найти:

.

Обозначим
.
Очевидно, при

имеем
.
Тогда

.

Здесь
мы воспользовались правилом Лопиталя.

в)
Для вычисления

выполним следующие преобразования:

.

Здесь мы использовали
первый замечательный предел.

г)
Как следует из определения,

, если
,
когда

вдоль любой
линии
,
соединяющей точки М
и М0.
Рассмотрим
,
считая, что

вдоль прямых
.
Получим

.

Следовательно,
значение предела функции зависит от
углового коэффициента k
прямой, по которой движется точка

к точке
.
Это означает, что данная функция не
имеет
предела
в точке
.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

 Пусть Z=F(M) – функция, определенная в некоторой окрестности точки М(у; х); L={Cos; Cos} – единичный вектор (на рис. 33 1=, 2=); L – направленная прямая, проходящая через точку М; М1(х1; у1), где х1=х+х и у1=у+у – точка на прямой L; L – величина отрезка ММ1; Z=F(х+х, у+у)-F(X, Y) – приращение функции F(M) в точке М(х; у).

Определение. Предел отношения , если он существует, называется Производной функции Z=F(M) в точке M(X; Y) по направлению вектора L .

Обозначение.

Если функция F(M) дифференцируема в точке М(х; у), то в точке М(х; у) существует производная по любому направлению L, исходящему из М; вычисляется она по следующей формуле:

  (8)

Где Cos И Cos – направляющие косинусы вектора L.

Пример 46. Вычислить производную функции Z=X2+Y2X в точке М(1; 2) по направлению вектора ММ1, где М1 – точка с координатами (3; 0).

Решение. Найдем единичный вектор L, имеющий данное направление:

Откуда Cos=; Cos=-.

Вычислим частные производные функции в точке М(1; 2):

По формуле (8) получим

Пример 47. Найти производную функции U = Xy2Z3 в точке М(3; 2; 1) В направлении вектора MN, где N(5; 4; 2).

Решение. Найдем вектор  и его направляющие косинусы:

Вычислим значения частных производных в точке М:

Следовательно,

Определение. Градиентом Функции Z=F(M)  в точке М(х; у) называется вектор, координаты которого равны соответствующим частным производным  и, взятым в точке М(х; у).

Обозначение.

Пример 48. Найти градиент функции Z=X2+2Y2-5 в точке М(2; -1).

Решение. Находим частные производные:  и их значения в точке М(2; -1):

Пример 49. Найти величину и направление градиента функции  в точке

Решение. Найдем частные производные и вычислим их значения в точке М:

Следовательно,

Аналогично определяется производная по направлению для функции трех переменных U=F(X, Y, Z), выводятся формулы

Вводится понятие градиента

Подчеркнем, что Основные свойства градиента функции важнее для анализа экономических оптимизационных задач: в направлении градиента функция возрастает. В экономических задачах находят применение следующие свойства градиента:

1) Пусть задана функция Z=F(X, Y), имеющая частные производные в области определения. Рассмотрим некоторую точку М0(х0, у0) из области определения. Значение функции в этой точке пусть равно F(X0, Y0). Рассмотрим график функции. Через точку (X0, Y0, F(X0, Y0)) трехмерного пространства проведем плоскость, касательную к поверхности графика функции. Тогда градиент функции, вычисленный в точке (х0, у0), рассматриваемый геометрически как вектор, приложенный в точке (X0, Y0, F(X0, Y0)), будет перпендикулярен касательной плоскости. Геометрическая иллюстрация приведена на рис. 34.

2)  Градиент функции F(X, Y) в точке М0(х0, у0) указывает направление наиболее быстрого возрастания функции в точке М0. Кроме того, любое направление, составляющее с градиентом острый угол, является направлением роста функции в точке М0. Другими словами, малое движение из точки (х0, у0) по направлению градиента функции в этой точке ведет к росту функции, причем в наибольшей степени.

Рассмотрим вектор, противоположный градиенту. Он называется Антиградиентом. Координаты этого вектора равны:

Антиградиент функции F(X, Y) в точке М0(х0, у0) указывает направление наиболее быстрого убывания функции в точке М0. Любое направление, образующее острый угол с антиградиентом, является направлением убывания функции в этой точке.

3)  При исследовании функции часто возникает необходимость нахождения таких пар (х, у) из области определения функции, при которых функция принимает одинаковые значения. Рассмотрим множество точек (X, Y) из области определения функции F(X, Y), таких, что F(X, Y)=Const, где запись Const означает, что значение функции зафиксировано и равно некоторому числу из области значений функции.

Определение. Линией уровня функции U=F(X, Y) называется линия F(X, Y)=С на плоскости XOy, в точках которой функция сохраняет постоянное значение U=C.

Линии уровня геометрически изображаются на плоскости изменения независимых переменных в виде кривых линий. Получение линий уровня можно представить себе следующим образом. Рассмотрим множество С, которое состоит из точек трехмерного пространства с координатами (X, Y, F(X, Y)=Const), которые, с одной стороны, принадлежат графику функции Z=F(X, Y), с другой  – лежат в плоскости, параллельной координатной плоскости ХОУ, и отстоящей от неё на величину, равную заданной константе. Тогда для построения линии уровня достаточно поверхность графика функции пересечь плоскостью Z=Const и линию пересечения спроектировать на плоскость ХОУ. Проведенное рассуждение является обоснованием возможности непосредственно строить линии уровня на плоскости ХОУ.

Определение. Множество линий уровня называют Картой линий уровня.

Хорошо известны примеры линий уровня – уровни одинаковых высот на топографической карте и линии одинакового барометрического давления на карте погоды.


Определение. Направление, вдоль которого скорость увеличения функции максимальна, называется «предпочтительным» направлением, или Направлением наискорейшего роста.

«Предпочтительное» направление задается вектором-градиентом функции. На рис. 35 изображены максимум, минимум и седловая точка в задаче оптимизации функции двух переменных при отсутствии ограничений. В нижней части рисунка изображены линии уровня и направления наискорейшего роста.

Пример 50. Найти линии уровня функции U=X2+Y2.

Решение. Уравнение семейства линий уровня имеет вид X2+Y2=C (C>0). Придавая С различные действительные значения, получим концентрические окружности с центром в начале координат.

Построение линий уровня. Их анализ находит широкое применение в экономических задачах микро – и макроуровня, теории равновесия и эффективных решений. Изокосты, изокванты, кривые безразличия – это все линии уровня, построенные для разных экономических функций.

Пример 51. Рассмотрим следующую экономическую ситуацию. Пусть производство продукции описывается Функцией Кобба-Дугласа F(X, Y)=10х1/3у2/3, где Х – количество труда, У – количество капитала. На приобретение ресурсов выделено 30 у. ед., цена труда составляет 5 у. ед., капитала – 10 у. ед. Зададимся вопросом: какой наибольший выпуск можно получить в данных условиях? Здесь под «данными условиями» имеются в виду заданные технологии, цены на ресурсы, вид производственной функции. Как уже отмечалось, функция Кобба-Дугласа является монотонно возрастающей по каждой переменной, т. е. увеличение каждого вида ресурса ведет к росту выпуска. В данных условиях ясно, что увеличивать приобретение ресурсов можно до тех пор, пока хватает денег. Наборы ресурсов, стоимость которых составляет 30 у. ед., удовлетворяют условию:

5х + 10у = 30,

Т. е. определяют линию уровня функции:

G(X, Y) = 5х + 10у.

С другой стороны, с помощью линий уровня Функции Кобба-Дугласа (рис. 36) можно показать возрастание функции: в любой точке линии уровня направление градиента – это направление наибольшего возрастания, а для построения градиента в точке достаточно провести касательную к линии уровня в этой точке, построить перпендикуляр к касательной и указать направление градиента. Из рис. 36 видно, что движение линии уровня функции Кобба-Дугласа вдоль градиента следует производить до тех пор, пока она не станет касательной к линии уровня  5х + 10у = 30. Таким образом, с помощью понятий линии уровня, градиента, свойств градиента можно выработать подходы к наилучшему использованию ресурсов с точки зрения увеличения объемов выпускаемой продукции.

Определение. Поверхностью уровня функции U=F(X, Y, Z) называется поверхность F(X, Y, Z)=С, в точках которой функция сохраняет постоянное значение U=C.

Пример 52. Найти поверхности уровня функции U=X2+Z2Y2.

Решение. Уравнение семейства поверхностей уровня имеет вид X2+Z2Y2. Если С=0, то получаем X2+Z2Y2=0 – конус; если  C<0, то X2+Z2Y2=С – Семейство двуполостных гиперболоидов.

< Предыдущая   Следующая >

Линии и поверхности уровня

Содержание:

  1. Линии и поверхности уровня
  2. Поверхности второго порядка
  3. Гиперповерхности уровня

Линии и поверхности уровня

Понятие линии и поверхности уровня:

Для характеристики функций двух переменных вводится понятие линий уровня.

Определение 2. Линией уровня функции z = f (x, y) называется совокупность всех точек на плоскости Oxy, для которых выполняется условие f (x, y) = C.

Линии уровня можно получить, пересекая поверхность z = f (x, y) плоскостями z = C, где С = соnst.

Пример 1. Найти линии уровня функции z = x2 + y2.

Решение.
Пусть z = C. x2 + y2 = C (C ≥ 0),

В этом случае линиями уровня является множество концентрических окружностей с центром в начале координат и радиусом С (рис. 2) .Аналогично вводится понятие поверхности уровня для функции трех переменных u = f (x, y, z), (f (x, y, z) = C).

Линии и поверхности уровня

Рис. 2.

Пример 2. Найти поверхности уровня функции  u = x2 + y2 + z2.

Решение. Пусть u = C. Тогда x2 + y2 + z2 = C (C ≥ 0) — это множество сфер с центром в точке O(0; 0; 0) и радиусом C.

Поверхности второго порядка

Наиболее изучены поверхности в курсе аналитической геометрии — поверхности второго порядка. В общем случае уравнение такой поверхности имеет вид:
 a11 x2 + 2a12 xy + a22 y2 + 2a13 xz + 2a23 yz + a33 z2 + 2a14 x + 2a24 y + 2a34 z + a44 = 0.

В зависимости от значений коэффициентов Линии и поверхности уровня получают различные поверхности второго порядка.

Например:
1) Линии и поверхности уровня — конус;

Линии и поверхности уровня

Рис. 3.

2) Линии и поверхности уровня  — полусфера;

Линии и поверхности уровня
Рис. 4.

3) Линии и поверхности уровня   — эллиптический параболоид;

Линии и поверхности уровня
Рис. 5.

4)   Линии и поверхности уровня— гиперболический параболоид;
Линии и поверхности уровня
рис.6

5) Линии и поверхности уровня — трехосный эллипсоид.

Линии и поверхности уровня
Рис. 7.

Для изучения поверхностей в трехмерном пространстве применяется метод сечений. Суть этого метода такова: пересекаем заданную поверхность плоскостями x = C1, y = C2, z = C3.  В результате получим некоторые кривые, характеризующие поверхность.

Пример 3. z = x2 + y2.  Пусть z = C1 (C1 ≥ 0). Получим уравнение  x2 + y2 = C1 (уравнение окружности). Положим y = C2 , тогда Линии и поверхности уровня — уравнение параболы в плоскости Оxz, которая смещена на Линии и поверхности уровня единиц вверх по оси Oz. Положим x = C3 , получим уравнение
Линии и поверхности уровня Получили уравнение параболы в плоскости Оyz, которая смещена на Линии и поверхности уровня единиц вверх по оси Оz. Из этих исследований вытекает, что графиком функции z = x2 + y2 является параболоид вращения вокруг оси Оz.

Гиперповерхности уровня

Пусть задана функция от n переменных  u = f (x1, x2, …, xn. Если положить u = C, то получим уравнение f (x1, x2, …, xn) = C,  которое называется уравнением гиперповерхности уровня в пространстве Rn. Например:  Линии и поверхности уровня   Если u = C, то уравнение Линии и поверхности уровня  является уравнением гиперсферы в Rn с центром в точке O (0,0, …, 0) и радиусом  Линии и поверхности уровня.

Лекции:

  • Дифференциал функции нескольких переменных
  • Непрерывность функции
  • Интервал сходимости степенного ряда
  • Уравнение прямой через две точки
  • Круги Эйлера фигуры, условно изображающие множества
  • Вычислить длину дуги кривой
  • Как найти ранг матрицы: пример решения
  • Дробные рациональные выражения
  • Система линейных уравнений
  • Интегрирование тригонометрических функций

Добавить комментарий