Как найти log2 cos

Школьнику.com

Задать вопрос

Вход
Регистрация

Опубликовано 12.06.2017 по предмету Математика от Гость
>> <<

Ответ оставил Гость

log_{2}(cos frac{ pi }{3})=log_{2} frac{1}{2}=-1

Оцени ответ

Подпишись на наш канал в телеграм. Там мы даём ещё больше полезной информации для школьников!

Найти другие ответы

Загрузить картинку

Предметы

  • Алгебра
  • Математика
  • Русский язык
  • Українська мова
  • Информатика
  • Геометрия
  • Химия
  • Физика
  • Экономика
  • Право
  • Английский язык
  • География
  • Биология
  • Другие предметы
  • Обществознание
  • История
  • Литература

Показать ещё

  • 2016-2023 www.shkolniku.com – Готовим домашнее задание вместе!

Логарифмом положительного числа (c) по основанию (a) ((a>0, aneq1)) называется показатель степени (b), в которую надо возвести основание (a), чтобы получить число (c) ((c>0)), т.е.

(a^{b}=c)       (Leftrightarrow)       (log_{a}{c}=b)

Объясним проще. Например, (log_{2}{8}) равен степени, в которую надо возвести (2), чтоб получить (8). Отсюда понятно, что (log_{2}{8}=3).

Примеры:

                 

(log_{5}{25}=2)

         

т.к. (5^{2}=25)

(log_{3}{81}=4)

 

т.к. (3^{4}=81)

 

(log_{2})(frac{1}{32})(=-5)

 

т.к. (2^{-5}=)(frac{1}{32})

Аргумент и основание логарифма

Любой логарифм имеет следующую «анатомию»:

Аргумент и основание логарифма.png

Аргумент логарифма обычно пишется на его уровне, а основание – подстрочным шрифтом ближе к знаку логарифма. А читается эта запись так: «логарифм двадцати пяти по основанию пять».

Как вычислить логарифм?

Чтобы вычислить логарифм – нужно ответить на вопрос: в какую степень следует возвести основание, чтобы получить аргумент?

Например, вычислите логарифм:  а) (log_{4}{16})     б) (log_{3})(frac{1}{3})     в) (log_{sqrt{5}}{1})     г) (log_{sqrt{7}}{sqrt{7}})      д) (log_{3}{sqrt{3}})

а) В какую степень надо возвести (4), чтобы получить (16)? Очевидно во вторую. Поэтому: 

(log_{4}{16}=2)

б) В какую степень надо возвести (3), чтобы получить (frac{1}{3})? В минус первую, так как именно отрицательная степень «переворачивает дробь» (здесь и далее пользуемся свойствами степени).

(log_{3})(frac{1}{3})(=-1)

в) В какую степень надо возвести (sqrt{5}), чтобы получить (1)? А какая степень делает любое число единицей? Ноль, конечно!

(log_{sqrt{5}}{1}=0)

г) В какую степень надо возвести (sqrt{7}), чтобы получить (sqrt{7})? В первую – любое число в первой степени равно самому себе.

(log_{sqrt{7}}{sqrt{7}}=1)

д) В какую степень надо возвести (3), чтобы получить (sqrt{3})? Из свойств степени мы знаем, что корень – это дробная степень, и значит квадратный корень – это степень (frac{1}{2}).

(log_{3}{sqrt{3}}=)(frac{1}{2})

Пример: Вычислить логарифм (log_{4sqrt{2}}{8})

Решение:

(log_{4sqrt{2}}{8}=x)

                              

Нам надо найти значение логарифма, обозначим его за икс. Теперь воспользуемся определением логарифма:
(log_{a}{c}=b)       (Leftrightarrow)       (a^{b}=c)

((4sqrt{2})^{x}=8)

 

Что связывает (4sqrt{2}) и (8)? Двойка, потому что и то, и другое число можно представить степенью двойки:
(4=2^{2})         (sqrt{2}=2^{frac{1}{2}})         (8=2^{3})

({(2^{2}cdot2^{frac{1}{2}})}^{x}=2^{3})

 

Слева воспользуемся свойствами степени: (a^{m}cdot a^{n}=a^{m+n}) и ((a^{m})^{n}=a^{mcdot n})

(2^{frac{5}{2}x}=2^{3})

 

Основания равны, переходим к равенству показателей

(frac{5x}{2})(=3)

Умножим обе части уравнения на (frac{2}{5})

(x=1,2)

Получившийся корень и есть значение логарифма

Ответ: (log_{4sqrt{2}}{8}=1,2)

Foxford

Зачем придумали логарифм?

Чтобы это понять, давайте решим уравнение: (3^{x}=9). Просто подберите (x), чтобы равенство сработало. Конечно, (x=2).

А теперь решите уравнение: (3^{x}=8).Чему равен икс? Вот в том-то и дело.

Самые догадливые скажут: «икс чуть меньше двух». А как точно записать это число? Для ответа на этот вопрос и придумали логарифм. Благодаря ему, ответ здесь можно записать как (x=log_{3}{8}).

Хочу подчеркнуть, что (log_{3}{8}), как и любой логарифм – это просто число. Да, выглядит непривычно, но зато коротко. Потому что, если бы мы захотели записать его в виде десятичной дроби, то оно выглядело бы вот так: (1,892789260714…..)

Пример: Решите уравнение (4^{5x-4}=10)

Решение:

(4^{5x-4}=10)

                              

(4^{5x-4}) и (10) никак к одному основанию не привести. Значит тут не обойтись без логарифма.

Воспользуемся определением логарифма:
(a^{b}=c)       (Leftrightarrow)       (log_{a}{c}=b)

(log_{4}{10}=5x-4)

 

Зеркально перевернем уравнение, чтобы икс был слева

(5x-4=log_{4}{10})

 

Перед нами линейное уравнение. Перенесем (4) вправо.

И не пугайтесь логарифма, относитесь к нему как к обычному числу. 

(5x=log_{4}{10}+4)

 

Поделим уравнение на 5

(x=)(frac{log_{4}{10}+4}{5})

Вот наш корень. Да, выглядит непривычно, но ответ не выбирают.

Ответ: (frac{log_{4}{10}+4}{5})

Десятичный и натуральный логарифмы

Как указано в определении логарифма, его основанием может быть любое положительное число, кроме единицы ((a>0, aneq1)). И среди всех возможных оснований есть два встречающихся настолько часто, что для логарифмов с ними придумали особую короткую запись:

Натуральный логарифм: логарифм, у которого основание – число Эйлера (e) (равное примерно (2,7182818…)), и записывается такой логарифм как (ln{a}).

То есть, (ln{a}) это то же самое, что и (log_{e}{a}), где (a) – некоторое число.

Десятичный логарифм: логарифм, у которого основание равно 10, записывается (lg{a}).

То есть, (lg{a}) это то же самое, что и (log_{10}{a}), где (a) – некоторое число.

Основное логарифмическое тождество

У логарифмов есть множество свойств. Одно из них носит название «Основное логарифмическое тождество» и выглядит вот так:

Это свойство вытекает напрямую из определения. Посмотрим как именно эта формула появилась.

Вспомним краткую запись определения логарифма:

если     (a^{b}=c),    то   (log_{a}{c}=b)

То есть, (b) – это тоже самое, что (log_{a}{c}). Тогда мы можем в формуле (a^{b}=c) написать (log_{a}{c}) вместо (b). Получилось (a^{log_{a}{c}}=c) – основное логарифмическое тождество.

Остальные свойства логарифмов вы можете найти здесь. С их помощью можно упрощать и вычислять значения выражений с логарифмами, которые «в лоб» посчитать сложно.

Пример: Найдите значение выражения (36^{log_{6}{5}})

Решение:

(36^{log_{6}{5}}=)

                              

Сразу пользоваться свойством (a^{log_{a}{c}}=c) мы не можем, так как в основании степени и в основании логарифма – разные числа. Однако мы знаем, что (36=6^{2})

(=(6^{2})^{log_{6}{5}}=)

 

Зная формулу ((a^{m})^{n}=a^{mcdot n}), а так же то, что множители можно менять местами, преобразовываем выражение

(=6^{2cdotlog_{6}{5}}=6^{log_{6}{5}cdot2}=(6^{log_{6}{5}})^{2}=)

 

Вот теперь спокойно пользуемся основным логарифмическим тождеством.

(=5^{2}=25)

     

Ответ готов.

Ответ: (25)

Как число записать в виде логарифма?

Как уже было сказано выше – любой логарифм это просто число. Верно и обратное: любое число может быть записано как логарифм. Например, мы знаем, что (log_{2}{4}) равен двум. Тогда можно вместо двойки писать (log_{2}{4}). 

Но (log_{3}{9}) тоже равен (2), значит, также можно записать (2=log_{3}{9})  . Аналогично и с (log_{5}{25}), и с (log_{9}{81}), и т.д. То есть, получается  

(2=log_{2}{4}=log_{3}{9}=log_{4}{16}=log_{5}{25}=log_{6}{36}=log_{7}{49}…)

Таким образом, если нам нужно, мы можем где угодно (хоть в уравнении, хоть в выражении, хоть в неравенстве) записывать двойку как логарифм с любым основанием – просто в качестве аргумента пишем основание в квадрате.

Точно также и с тройкой – ее можно записать как (log_{2}{8}), или как (log_{3}{27}), или как (log_{4}{64})… Здесь мы как аргумент пишем основание в кубе:

(3=log_{2}{8}=log_{3}{27}=log_{4}{64}=log_{5}{125}=log_{6}{216}=log_{7}{343}…)

И с четверкой:

(4=log_{2}{16}=log_{3}{81}=log_{4}{256}=log_{5}{625}=log_{6}{1296}=log_{7}{2401}…)

И с минус единицей:

(-1=) (log_{2})(frac{1}{2})(=) (log_{3})(frac{1}{3})(=) (log_{4})(frac{1}{4})(=) (log_{5})(frac{1}{5})(=) (log_{6})(frac{1}{6})(=) (log_{7})(frac{1}{7})(…)

И с одной третьей:

(frac{1}{3})(=log_{2}{sqrt[3]{2}}=log_{3}{sqrt[3]{3}}=log_{4}{sqrt[3]{4}}=log_{5}{sqrt[3]{5}}=log_{6}{sqrt[3]{6}}=log_{7}{sqrt[3]{7}}…)

И так далее.

Любое число (a) может быть представлено как логарифм с основанием (b):       (a=log_{b}{b^{a}})

Пример: Найдите значение выражения (frac{log_{2}{14}}{1+log_{2}{7}})

Решение:

(frac{log_{2}{14}}{1+log_{2}{7}})(=)

          

Превращаем единицу в логарифм с основанием (2): (1=log_{2}{2})

(=)(frac{log_{2}{14}}{log_{2}{2}+log_{2}{7}})(=)

 

Теперь пользуемся свойством логарифмов:
(log_{a}{b}+log_{a}{c}=log_{a}{(bc)})

(=)(frac{log_{2}{14}}{log_{2}{(2cdot7)}})(=)(frac{log_{2}{14}}{log_{2}{14}})(=)

 

В числителе и знаменателе одинаковые числа – их можно сократить.

(=1)

 

Ответ готов.

Ответ: (1)

Смотрите также:
Логарифмические уравнения
Логарифмические неравенства

Укажите основание логарифма, либо введите свои значения

Log


Как решать логарифмы

Логарифм обозначается как loga b и такая запись читается как: логарифм b по основанию a.

При решении логарифмов следует учитывать что, числа a и b должны быть больше 0 и a не должно быть равно 1.

loga b существует при a > 0, a ≠ 1, b > 0

Логарифмы у которых основание a равно 2, 10 или числу e получили свои названия:

loge b у которого основание равно числу Эйлера e (е = 2.7182818284…) называется – натуральный и обозначается ln b.
Например, ln 4 это тоже что loge 4, просто сама запись ln говорит что
основание равно числу e и поэтому запись сокращают.

log10 b у которого основание равно 10 называется – десятичный и обозначается lg b. Например, lg 6, что тоже самое что log10 6

log2 b у которого основание равно 2 называется – двоичный и обозначается lb b, такие логарифмы часто используется в информатике. Например, lb 3, это тоже самое что log2 3.

Можно легко определить является логарифм loga b отрицательным или положительным, для этого существует правило: если 0 < a > 1 и 0 < b < 1 или 0 < a < 1 и 0 < b > 1
тогда логарифм отрицательный, в остальных случаях положительный

loga b < 0 если 0 < a > 1 и 0 < b < 1 или 0 < a < 1 и 0 < b > 1

Например, эти логарифмы будут отрицательными log1/3 4, log4 1/3, log2/3 5, log5 2/3 и т.д. То есть либо a либо b должны быть меньше единицы но не оба сразу.

Найти логарифм означает найти показатель степени, в которую необходимо возвести число a, чтобы получить число b.
Говоря простым языком, когда мы вычисляем логарифм то всегда находим степень, и если возвести число a в эту степень получим число b.

Обозначим за х искомую степень числа a, тогда можно записать следующее уравнение: ax = b

Приведем примеры:
Дан логарифм log4 64, нам необходимо найти такой показатель степени, что при возведении в нее числа 4 должно получиться 64. Запишем уравнение:
4x = 64
4x = 43
х = 3
Проверим, возведем число 4 в степень 3: 43 = 64.

Вообще любое значение логарифма всегда просто проверить, достаточно число а возвести в степень, равную значению логарифма и если результат будет равен числу b, то ответ верный.

Вычислить log2(cos pi / 3).

На этой странице вы найдете ответ на вопрос Вычислить log2(cos pi / 3)?. Вопрос
соответствует категории Математика и уровню подготовки учащихся 10 – 11 классов классов. Если ответ полностью не удовлетворяет критериям поиска, ниже можно
ознакомиться с вариантами ответов других посетителей страницы или обсудить с
ними интересующую тему. Здесь также можно воспользоваться «умным поиском»,
который покажет аналогичные вопросы в этой категории. Если ни один из
предложенных ответов не подходит, попробуйте самостоятельно сформулировать
вопрос иначе, нажав кнопку вверху страницы.

Урокам.нет!

Войти

Задать вопрос

АлгебраАлгебра

Андроныч

24 августа, 01:52


0

Ответы (1)

  1. Георгий

    24 августа, 02:01


    +1

    log2 (cosx) = – 1

    cosx=1/2

    x = + – π/3+2πN

    • Комментировать
    • Жалоба
    • Ссылка

Знаешь ответ?

Не уверен в ответе?

Найди верный ответ на вопрос ✅ «Решите уравнение: log2 (cosx) = – 1 …» по предмету 📙 Алгебра, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.

Искать другие ответы

Новые вопросы по алгебре

Периметр прямоугольника 6,6 дм. Одна сторона больше другой на 0,9 дм. найдите площадь прямоугольника.

Ответы (1)

Как решить систему уровнений x-y=17 3x-4y=-12

Ответы (1)

x (x+2) (5x-1) = 0

Ответы (1)

Турист проплыл по течению 240 км, затратив на этот путь 12 часов, при этом скорость течения равнялась 3 км/ч. Далее он продолжил путь по озеру, затратив на весь путь по нему 4 часа. Найдите расстояние, которое турист проплыл по озеру.

Ответы (2)

Решите систему уравнений 5y-6x=4 7x-4y=-1

Ответы (1)

Главная » Алгебра » Решите уравнение: log2 (cosx) = – 1

Добавить комментарий