Как найти логарифм от десяти

График десятичного логарифма

Десятичный логарифм — логарифм по основанию 10. Другими словами, десятичный логарифм числа b есть решение уравнения {displaystyle 10^{x}=b.}

Вещественный десятичный логарифм числа b существует, если b>0 (комплексный десятичный логарифм существует для всех bneq 0). Международный стандарт ISO 31-11 обозначает его lg ,b. Примеры:

lg ,1=0;,lg ,10=1;,lg ,100=2
lg ,1000000=6;,lg ,0{,}1=-1;,lg ,0{,}001=-3

В зарубежной литературе, а также на клавиатуре калькуляторов встречаются и другие обозначения десятичного логарифма: {displaystyle operatorname {log} ,operatorname {Log} ,operatorname {Log10} }, причём следует иметь в виду, что первые 2 варианта могут относиться и к натуральному логарифму.

Алгебраические свойства[править | править код]

В нижеследующей таблице предполагается, что все значения положительны[1]:

Формула Пример
Произведение {displaystyle lg(xy)=lg(x)+lg(y)} {displaystyle lg(10000)=lg(100cdot 100)=lg(100)+lg(100)=2+2=4}
Частное от деления {displaystyle lg !left({frac {x}{y}}right)=lg(x)-lg(y)} lg left({frac {1}{1000}}right)=lg(1)-lg(1000)=0-3=-3
Степень {displaystyle lg(x^{p})=plg(x)} {displaystyle lg(10000000)=lg(10^{7})=7lg(10)=7}
Корень {displaystyle lg {sqrt[{p}]{x}}={frac {lg(x)}{p}}} lg {sqrt  {1000}}={frac  {1}{2}}lg 1000={frac  {3}{2}}=1{,}5

Существует очевидное обобщение приведённых формул на случай, когда допускаются отрицательные переменные, например:

lg |xy|=lg(|x|)+lg(|y|),
lg !left|{frac  xy}right|=lg(|x|)-lg(|y|),

Формула для логарифма произведения без труда обобщается на произвольное количество сомножителей:

lg(x_{1}x_{2}dots x_{n})=lg(x_{1})+lg(x_{2})+dots +lg(x_{n})

Вышеописанные свойства объясняют, почему применение логарифмов (до изобретения калькуляторов) существенно облегчало вычисления. Например, умножение многозначных чисел x,y с помощью логарифмических таблиц[⇨] производилось по следующему алгоритму:

  1. Найти в таблицах логарифмы чисел x,y.
  2. Сложить эти логарифмы, получая (согласно первому свойству) логарифм произведения xcdot y.
  3. По логарифму произведения найти в таблицах само произведение.

Деление, которое без помощи логарифмов намного более трудоёмко, чем умножение, выполнялось по тому же алгоритму, лишь с заменой сложения логарифмов на вычитание. Аналогично производились возведение в степень и извлечение корня.

Связь десятичного и натурального логарифмов[2]:

ln xapprox 2{,}30259 lg x;quad lg xapprox 0{,}43429 ln x

Знак логарифма зависит от логарифмируемого числа: если оно больше 1, логарифм положителен, если оно между 0 и 1, то отрицателен. Пример:

lg ,0{,}012=lg ,(10^{{-2}}times 1{,}2)=-2+lg ,1{,}2approx -2+0{,}079181=-1{,}920819

Чтобы унифицировать действия с положительными и отрицательными логарифмами, у последних целая часть (характеристика) надчёркивалась сверху:

lg ,0{,}012approx -2+0{,}079181={bar  {2}}{,}079181

Мантисса логарифма, выбираемая из таблиц, при таком подходе всегда положительна.

Функция десятичного логарифма[править | править код]

Если рассматривать логарифмируемое число как переменную, мы получим функцию десятичного логарифма: {displaystyle y=lg ,x.} Она определена при всех {displaystyle x>0.} Область значений: E(y)=(-infty ;+infty ). График этой кривой часто называется логарифмикой[3].

Функция монотонно возрастает, непрерывна и дифференцируема всюду, где она определена. Производная для неё даётся формулой:

{frac  {d}{dx}}lg ,x={frac  {lg ,e}{x}}

Ось ординат (x=0) является вертикальной асимптотой, поскольку:

lim _{{xto 0+0}}lg ,x=-infty

Применение[править | править код]

Логарифмы по основанию 10 до изобретения в 1970-е годы компактных электронных калькуляторов широко применялись для вычислений. Как и любые другие логарифмы, они позволяли многократно упростить и облегчить трудоёмкие расчёты, заменяя умножение на сложение, а деление на вычитание; аналогично упрощались возведение в степень и извлечение корня. Но десятичные логарифмы обладали преимуществом перед логарифмами с иным основанием: целую часть логарифма числа x (характеристику логарифма) {displaystyle [lg x]} легко определить.

Кроме того, при переносе десятичной запятой в числе на n разрядов значение десятичного логарифма этого числа изменяется на n. Например:

lg 8314{,}63=lg 8{,}31463+3

Отсюда следует, что для вычисления десятичных логарифмов достаточно составить таблицу логарифмов для чисел в диапазоне от 1 до 10[4]. Такие таблицы, начиная с XVII века, выпускались большим тиражом и служили незаменимым расчётным инструментом учёных и инженеров.

Поскольку применение логарифмов для расчётов с появлением вычислительной техники почти прекратилось, в наши дни десятичный логарифм в значительной степени вытеснен натуральным[5]. Он сохраняется в основном в тех математических моделях, где исторически укоренился — например, при построении логарифмических шкал.

Десятичные логарифмы для чисел вида 5 × 10C

Число Логарифм Характеристика Мантисса Запись
n lg(n) C M = lg(n) − C
5 000 000 6.698 970… 6 0.698 970… 6.698 970…
50 1.698 970… 1 0.698 970… 1.698 970…
5 0.698 970… 0 0.698 970… 0.698 970…
0.5 −0.301 029… −1 0.698 970… 1.698 970…
0.000 005 −5.301 029… −6 0.698 970… 6.698 970…

Обратите внимание, что у всех приведенных в таблице чисел n одна и та же мантисса M, поскольку:

{displaystyle lg(n)=lg left(xtimes 10^{C}right)=lg(x)+lg left(10^{C}right)=lg(x)+C},

где {displaystyle 1<x<10} — значащая часть числа n.

История[править | править код]

Первые таблицы десятичных логарифмов опубликовал в 1617 году оксфордский профессор математики Генри Бригс для чисел от 1 до 1000, с восемью (позже — с четырнадцатью) знаками. Поэтому за рубежом десятичные логарифмы часто называют бригсовыми. Но в этих и в последующих изданиях таблиц обнаружились ошибки. Первое безошибочное издание на основе таблиц Георга Веги (1783) появилось только в 1852 году в Берлине (таблицы Бремикера)[6].

В России первые таблицы логарифмов были изданы в 1703 году при участии Л. Ф. Магницкого[7]. В СССР выпускались несколько сборников таблиц логарифмов[8]:

  1. Брадис В. М. Четырехзначные математические таблицы. М.: Дрофа, 2010, ISBN 978-5-358-07433-0. Таблицы Брадиса, издаваемые с 1921 года, использовались в учебных заведениях и в инженерных расчётах, не требующих большой точности. Они содержали мантиссы десятичных логарифмов чисел и тригонометрических функций, натуральные логарифмы и некоторые другие полезные расчётные инструменты.
  2. Вега Г. Таблицы семизначных логарифмов, 4-е издание, М.: Недра, 1971. Профессиональный сборник для точных вычислений.

Литература[править | править код]

Теория логарифмов
  • Выгодский М. Я. Справочник по элементарной математике. — изд. 25-е. — М.: Наука, 1978. — ISBN 5-17-009554-6.
  • Корн Г., Корн Т. Справочник по математике (для научных работников и инженеров). — М.: Наука, 1973. — 720 с.
  • Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. — изд. 6-е. — М.: Наука, 1966. — 680 с.
История логарифмов
  • Зайцев В. В., Рыжков В. В., Сканави М. И. Элементарная математика. Повторительный курс. — Издание третье, стереотипное. — М.: Наука, 1976. — 591 с.
  • Клейн Ф. Элементарная математика с точки зрения высшей. — М.: Наука, 1987. — Т. I. Арифметика. Алгебра. Анализ. — 432 с.
  • Математика XVII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. II.
  • Математика XVIII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1972. — Т. III.
  • Успенский Я. В. Очерк истории логарифмов. — Петроград: Научное книгоиздательство, 1923. — 78 с.

Ссылки[править | править код]

  • Десятичные (бригсовы) логарифмы. (англ.)

Примечания[править | править код]

  1. Выгодский М. Я. Справочник по элементарной математике, 1978, с. 187..
  2. Выгодский М. Я. Справочник по элементарной математике, 1978, с. 189..
  3. Логарифмическая функция. // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 3.
  4. Элементарная математика, 1976, с. 94—100.
  5. Клейн Ф. Элементарная математика с точки зрения высшей, 1987, с. 406..
  6. История математики, том II, 1970, с. 62..
  7. Гнеденко Б. В. Очерки по истории математики в России, издание 2-е. — М.: КомКнига, 2005. — С. 66.. — 296 с. — ISBN 5-484-00123-4.
  8. Логарифмические таблицы // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.

Калькулятор десятичных логарифмов поможет найти логарифм по основанию 10

Обозначение десятичного логарифма

Для обозначения десятичного логарифма существует несколько способов:

  • lg
  • log10
  • log10

Так же возможно написание прописными буквами.

Что такое десятичный логарифм

Десятичный логарифм калькулятор

Десятичный логарифм

Десятичный логарифм очень прост для понимания. К примеру, десятичный логарифм числа 100 равен 2. А числа 100 000 — 5.  Таким образом,

10x = y

Здесь y — число, логарифм которого мы ищем, а x — это искомый логарифм.

То есть десятичный логарифм — это степень, в которую нужно возвести число 10 для получения исходного числа, логарифм которого мы ищем. Как мы видим, для чисел кратных 10 десятичный логарифм находится просто. Для чисел, не кратных 10 логарифм будет дробным. К примерку, десятичный логарифм числа 7 равен 0.84509804001426. И тут наш калькулятор поможет с расчетом.

Десятичный логарифм нуля не существует.

Для чисел меньше единицы десятичный логарифм отрицательный.

Таблица десятичных логарифмов некоторых чисел

1 0
2 0,301029996
3 0,477121255
4 0,602059991
5 0,698970004
6 0,77815125
7 0,84509804
8 0,903089987
9 0,954242509
10 1
100 2
1000 3
10000 4
100000 5

Ваша оценка

[Оценок: 1329 Средняя: 3.5]

Калькулятор десятичных логарифмов Автор admin средний рейтинг 3.5/5 1329 рейтинги пользователей

Посчитать логарифм

  1. Главная
  2. /
  3. Математика
  4. /
  5. Арифметика
  6. /
  7. Посчитать логарифм

Для того чтобы посчитать логарифм (log) любого числа по любому основанию просто воспользуйтесь нашим удобным онлайн калькулятором:

Онлайн калькулятор

Чему равен

log?

Ответ:

0

Округление ответа:

Просто введите число и основание логарифма, и получите ответ.

Логарифм числа b по основанию a определяется как степень, в которую нужно возвести основание a, чтобы получилось число b.

Формула

x = logab, при этом ax = b

Пример

К примеру, определим: 2 в какой степени будет 8? То есть посчитаем логарифм 8-ми по основанию 2:

log28 = 3, теперь проверим: 23 = 8

Посчитать натуральный логарифм

Чему равен

ln?

Ответ:

0

Округление ответа:

Натуральный логарифм – это логарифм с основанием e.

Формула

lnx = logex, где число e ≈ 2,718

Посчитать десятичный логарифм

Чему равен

lg?

Ответ:

0

Округление ответа:

Десятичный логарифм – это логарифм с основанием 10.

Формула

lgx = log10x

Посчитать двоичный логарифм

Чему равен

lb?

Ответ:

0

Округление ответа:

Двоичный логарифм – это логарифм с основанием 2.

Формула

lbx = log2x

См. также

Логарифмом положительного числа (c) по основанию (a) ((a>0, aneq1)) называется показатель степени (b), в которую надо возвести основание (a), чтобы получить число (c) ((c>0)), т.е.

(a^{b}=c)       (Leftrightarrow)       (log_{a}{c}=b)

Объясним проще. Например, (log_{2}{8}) равен степени, в которую надо возвести (2), чтоб получить (8). Отсюда понятно, что (log_{2}{8}=3).

Примеры:

                 

(log_{5}{25}=2)

         

т.к. (5^{2}=25)

(log_{3}{81}=4)

 

т.к. (3^{4}=81)

 

(log_{2})(frac{1}{32})(=-5)

 

т.к. (2^{-5}=)(frac{1}{32})

Аргумент и основание логарифма

Любой логарифм имеет следующую «анатомию»:

Аргумент и основание логарифма.png

Аргумент логарифма обычно пишется на его уровне, а основание – подстрочным шрифтом ближе к знаку логарифма. А читается эта запись так: «логарифм двадцати пяти по основанию пять».

Как вычислить логарифм?

Чтобы вычислить логарифм – нужно ответить на вопрос: в какую степень следует возвести основание, чтобы получить аргумент?

Например, вычислите логарифм:  а) (log_{4}{16})     б) (log_{3})(frac{1}{3})     в) (log_{sqrt{5}}{1})     г) (log_{sqrt{7}}{sqrt{7}})      д) (log_{3}{sqrt{3}})

а) В какую степень надо возвести (4), чтобы получить (16)? Очевидно во вторую. Поэтому: 

(log_{4}{16}=2)

б) В какую степень надо возвести (3), чтобы получить (frac{1}{3})? В минус первую, так как именно отрицательная степень «переворачивает дробь» (здесь и далее пользуемся свойствами степени).

(log_{3})(frac{1}{3})(=-1)

в) В какую степень надо возвести (sqrt{5}), чтобы получить (1)? А какая степень делает любое число единицей? Ноль, конечно!

(log_{sqrt{5}}{1}=0)

г) В какую степень надо возвести (sqrt{7}), чтобы получить (sqrt{7})? В первую – любое число в первой степени равно самому себе.

(log_{sqrt{7}}{sqrt{7}}=1)

д) В какую степень надо возвести (3), чтобы получить (sqrt{3})? Из свойств степени мы знаем, что корень – это дробная степень, и значит квадратный корень – это степень (frac{1}{2}).

(log_{3}{sqrt{3}}=)(frac{1}{2})

Пример: Вычислить логарифм (log_{4sqrt{2}}{8})

Решение:

(log_{4sqrt{2}}{8}=x)

                              

Нам надо найти значение логарифма, обозначим его за икс. Теперь воспользуемся определением логарифма:
(log_{a}{c}=b)       (Leftrightarrow)       (a^{b}=c)

((4sqrt{2})^{x}=8)

 

Что связывает (4sqrt{2}) и (8)? Двойка, потому что и то, и другое число можно представить степенью двойки:
(4=2^{2})         (sqrt{2}=2^{frac{1}{2}})         (8=2^{3})

({(2^{2}cdot2^{frac{1}{2}})}^{x}=2^{3})

 

Слева воспользуемся свойствами степени: (a^{m}cdot a^{n}=a^{m+n}) и ((a^{m})^{n}=a^{mcdot n})

(2^{frac{5}{2}x}=2^{3})

 

Основания равны, переходим к равенству показателей

(frac{5x}{2})(=3)

Умножим обе части уравнения на (frac{2}{5})

(x=1,2)

Получившийся корень и есть значение логарифма

Ответ: (log_{4sqrt{2}}{8}=1,2)

Foxford

Зачем придумали логарифм?

Чтобы это понять, давайте решим уравнение: (3^{x}=9). Просто подберите (x), чтобы равенство сработало. Конечно, (x=2).

А теперь решите уравнение: (3^{x}=8).Чему равен икс? Вот в том-то и дело.

Самые догадливые скажут: «икс чуть меньше двух». А как точно записать это число? Для ответа на этот вопрос и придумали логарифм. Благодаря ему, ответ здесь можно записать как (x=log_{3}{8}).

Хочу подчеркнуть, что (log_{3}{8}), как и любой логарифм – это просто число. Да, выглядит непривычно, но зато коротко. Потому что, если бы мы захотели записать его в виде десятичной дроби, то оно выглядело бы вот так: (1,892789260714…..)

Пример: Решите уравнение (4^{5x-4}=10)

Решение:

(4^{5x-4}=10)

                              

(4^{5x-4}) и (10) никак к одному основанию не привести. Значит тут не обойтись без логарифма.

Воспользуемся определением логарифма:
(a^{b}=c)       (Leftrightarrow)       (log_{a}{c}=b)

(log_{4}{10}=5x-4)

 

Зеркально перевернем уравнение, чтобы икс был слева

(5x-4=log_{4}{10})

 

Перед нами линейное уравнение. Перенесем (4) вправо.

И не пугайтесь логарифма, относитесь к нему как к обычному числу. 

(5x=log_{4}{10}+4)

 

Поделим уравнение на 5

(x=)(frac{log_{4}{10}+4}{5})

Вот наш корень. Да, выглядит непривычно, но ответ не выбирают.

Ответ: (frac{log_{4}{10}+4}{5})

Десятичный и натуральный логарифмы

Как указано в определении логарифма, его основанием может быть любое положительное число, кроме единицы ((a>0, aneq1)). И среди всех возможных оснований есть два встречающихся настолько часто, что для логарифмов с ними придумали особую короткую запись:

Натуральный логарифм: логарифм, у которого основание – число Эйлера (e) (равное примерно (2,7182818…)), и записывается такой логарифм как (ln{a}).

То есть, (ln{a}) это то же самое, что и (log_{e}{a}), где (a) – некоторое число.

Десятичный логарифм: логарифм, у которого основание равно 10, записывается (lg{a}).

То есть, (lg{a}) это то же самое, что и (log_{10}{a}), где (a) – некоторое число.

Основное логарифмическое тождество

У логарифмов есть множество свойств. Одно из них носит название «Основное логарифмическое тождество» и выглядит вот так:

Это свойство вытекает напрямую из определения. Посмотрим как именно эта формула появилась.

Вспомним краткую запись определения логарифма:

если     (a^{b}=c),    то   (log_{a}{c}=b)

То есть, (b) – это тоже самое, что (log_{a}{c}). Тогда мы можем в формуле (a^{b}=c) написать (log_{a}{c}) вместо (b). Получилось (a^{log_{a}{c}}=c) – основное логарифмическое тождество.

Остальные свойства логарифмов вы можете найти здесь. С их помощью можно упрощать и вычислять значения выражений с логарифмами, которые «в лоб» посчитать сложно.

Пример: Найдите значение выражения (36^{log_{6}{5}})

Решение:

(36^{log_{6}{5}}=)

                              

Сразу пользоваться свойством (a^{log_{a}{c}}=c) мы не можем, так как в основании степени и в основании логарифма – разные числа. Однако мы знаем, что (36=6^{2})

(=(6^{2})^{log_{6}{5}}=)

 

Зная формулу ((a^{m})^{n}=a^{mcdot n}), а так же то, что множители можно менять местами, преобразовываем выражение

(=6^{2cdotlog_{6}{5}}=6^{log_{6}{5}cdot2}=(6^{log_{6}{5}})^{2}=)

 

Вот теперь спокойно пользуемся основным логарифмическим тождеством.

(=5^{2}=25)

     

Ответ готов.

Ответ: (25)

Как число записать в виде логарифма?

Как уже было сказано выше – любой логарифм это просто число. Верно и обратное: любое число может быть записано как логарифм. Например, мы знаем, что (log_{2}{4}) равен двум. Тогда можно вместо двойки писать (log_{2}{4}). 

Но (log_{3}{9}) тоже равен (2), значит, также можно записать (2=log_{3}{9})  . Аналогично и с (log_{5}{25}), и с (log_{9}{81}), и т.д. То есть, получается  

(2=log_{2}{4}=log_{3}{9}=log_{4}{16}=log_{5}{25}=log_{6}{36}=log_{7}{49}…)

Таким образом, если нам нужно, мы можем где угодно (хоть в уравнении, хоть в выражении, хоть в неравенстве) записывать двойку как логарифм с любым основанием – просто в качестве аргумента пишем основание в квадрате.

Точно также и с тройкой – ее можно записать как (log_{2}{8}), или как (log_{3}{27}), или как (log_{4}{64})… Здесь мы как аргумент пишем основание в кубе:

(3=log_{2}{8}=log_{3}{27}=log_{4}{64}=log_{5}{125}=log_{6}{216}=log_{7}{343}…)

И с четверкой:

(4=log_{2}{16}=log_{3}{81}=log_{4}{256}=log_{5}{625}=log_{6}{1296}=log_{7}{2401}…)

И с минус единицей:

(-1=) (log_{2})(frac{1}{2})(=) (log_{3})(frac{1}{3})(=) (log_{4})(frac{1}{4})(=) (log_{5})(frac{1}{5})(=) (log_{6})(frac{1}{6})(=) (log_{7})(frac{1}{7})(…)

И с одной третьей:

(frac{1}{3})(=log_{2}{sqrt[3]{2}}=log_{3}{sqrt[3]{3}}=log_{4}{sqrt[3]{4}}=log_{5}{sqrt[3]{5}}=log_{6}{sqrt[3]{6}}=log_{7}{sqrt[3]{7}}…)

И так далее.

Любое число (a) может быть представлено как логарифм с основанием (b):       (a=log_{b}{b^{a}})

Пример: Найдите значение выражения (frac{log_{2}{14}}{1+log_{2}{7}})

Решение:

(frac{log_{2}{14}}{1+log_{2}{7}})(=)

          

Превращаем единицу в логарифм с основанием (2): (1=log_{2}{2})

(=)(frac{log_{2}{14}}{log_{2}{2}+log_{2}{7}})(=)

 

Теперь пользуемся свойством логарифмов:
(log_{a}{b}+log_{a}{c}=log_{a}{(bc)})

(=)(frac{log_{2}{14}}{log_{2}{(2cdot7)}})(=)(frac{log_{2}{14}}{log_{2}{14}})(=)

 

В числителе и знаменателе одинаковые числа – их можно сократить.

(=1)

 

Ответ готов.

Ответ: (1)

Смотрите также:
Логарифмические уравнения
Логарифмические неравенства

Десятичный логарифм

Навигация по странице:

  • Определение
  • Калькулятор
  • Свойства
  • Примеры

Определение. Логарифмом числа b по основанию a, где a > 0, a ≠ 1, b > 0, называется показатель степени, в которую нужно возвести основание a, чтоб получить число b.

Определение. Десятичный логарифм — логарифм по основанию 10.

Другими словами, десятичный логарифм числа b является решением уравнения 10x = b.

Обозначение. Десятичный логарифм обозначается lg x или log x.

Калькулятор десятичных логарифмов

lg 2

Свойства десятичного логарифмов

Для любых x > 0 и y > 0 выполняются следующие свойства десятичных логарифмов.

  1. lg x = log10 x – так как основание десятичного логарифма равно 10.

  2. 10lg b = b.

  3. lg 1 = 0

  4. lg 10 = 1

  5. lg 10n = n

  6. lg(x · y) = lg x + lg y

  7. lg xy = lg x – lg y

  8. lg xn = n lg x

  9. График функции y = lg x

  10. (lg x)′ = 1x ln 10

  11. lg x dx = x lg xxln 10 + C

Пример 1. Найти значения десятичного логарифма от чисел 100, 1000, 0.1, 0.01, 0.001.

lg 100 = lg 102 = 2

lg 1000 = lg 103 = 3

lg 0.1 = lg 10-1 = -1

lg 0.01 = lg 10-2 = -2

lg 0.001 = lg 10-3 = -3

Пример 2.

Доказать равенство: a lg b = b lg a.

Запишем очевидное равенство:

lg b · lg a = lg a · lg ab

Возведем 10 в соответствующие степени

10lg b · lg a = 10lg a · lg b

(10lg b)lg a = (10lg a)lg b

blg a = alg b

Равенство доказано.

Пример 3.

Зная, что lg 2 = a, lg 3 = b, lg 5 = c, выразить lg 6; lg 30; lg 16 через a, b, c.

Используем формулы логарифма произведения и степени получим:

lg 6 = lg (2·3)= lg 2 + lg 3 = a + b;

lg 30 = lg (5·2·3)= lg 5 + lg 2 + lg 3 = a + b + c;

lg 16 = lg 24= 4 · lg 2 = 4a.

Пример 4.

Вычислить log9 5 · log25 27.

Перейдем к основе 10:

log9 5 · log25 27 = lg 5lg 9 · lg 27lg 25

Используем свойство логарифма степени lg xn = n lg x:

lg 5lg 9 · lg 27lg 25 = lg 5lg 32 · lg 33lg 52 = lg 52 lg 3 · 3 lg 32 lg 5 = 34

Пример 5.

Вычислить log30 8, если lg 5 = a, lg 3 = b.

Перейдем к основе 10:

log 30 8 = lg 8lg 30 = lg 23lg (3 · 10) =

Используем свойство логарифма степени, произведения, частного и то что 2= 105:

= 3 lg 2lg 3 + lg 10 = 3 lg 2lg 3 + 1 = 3 lg 105lg 3 + 1 = 3(lg 10 – lg 5)lg 3 + 1 = 3(1 – lg 5)lg 3 + 1 =

Подставим lg 5 = a, lg 3 = b:

= 3(1 – a)b + 1

Ответ:

log30 8 = 3(1 – a)b + 1

Добавить комментарий