Как найти логарифм от суммы чисел

Данная статья содержит сводку разнообразных алгебраических и аналитических тождеств, связанных с логарифмами. Эти тождества особенно полезны при решении алгебраических и дифференциальных уравнений, содержащих логарифмы.

Далее все переменные подразумеваются вещественными, основания логарифма и логарифмируемые выражения положительны, причём основание логарифма не равно 1. Обобщение на комплексные числа см. в статье Комплексный логарифм.

Алгебраические тождества[править | править код]

Из определения логарифма следует основное логарифмическое тождество[1]:

a^{log _{a}b}=b

Ещё несколько равенств, очевидных из определения логарифма:

{displaystyle log _{a}1=0}
{displaystyle log _{a}a=1}
{displaystyle log _{a}a^{b}=b}

Логарифм произведения, частного от деления, степени и корня[править | править код]

Сводка тождеств[2]:

Формула Пример Доказательство
Произведение {displaystyle log _{a}(xy)=log _{a}(x)+log _{a}(y)} {displaystyle log _{3}(243)=log _{3}(9cdot 27)=log _{3}(9)+log _{3}(27)=2+3=5}
Частное от деления {displaystyle log _{a}!left({frac {x}{y}}right)=log _{a}(x)-log _{a}(y)} lg left({frac {1}{1000}}right)=lg(1)-lg(1000)=0-3=-3
Степень {displaystyle log _{a}(x^{p})=plog _{a}(x)} {displaystyle log _{2}(64)=log _{2}(2^{6})=6log _{2}(2)=6}

Доказательство                                 

{displaystyle log _{a}{x^{p}}=y}
{displaystyle a^{y}=x^{p}}
{displaystyle a^{frac {y}{p}}=x}
{displaystyle log_{a}{x}={frac {y}{p}}}
{displaystyle pcdot log_{a}{x}=y}

Степень в основании {displaystyle log _{(a^{p})}(x)={frac {1}{p}}log _{a}(x)={frac {log _{a}(x)}{p}}} {displaystyle log _{2^{10}}{sin {({frac {pi }{6}})}}={frac {log _{2}{frac {1}{2}}}{10}}=-{frac {1}{10}}=-0.1}

Доказательство                                 

{displaystyle log _{a^{p}}{x}=y}
{displaystyle a^{ycdot p}=x}
{displaystyle log_{a}{x}=pcdot y}
{displaystyle {frac {log_{a}{x}}{p}}=y}

Корень {displaystyle log _{a}{sqrt[{p}]{(x)}}={frac {1}{p}}log _{a}(x)={frac {log _{a}(x)}{p}}} lg {sqrt {1000}}={frac {1}{2}}lg 1000={frac {3}{2}}=1.5

Доказательство                                 

{displaystyle log _{a}{sqrt[{p}]{x}}=y}
{displaystyle a^{y}={sqrt[{p}]{x}}}
{displaystyle a^{pcdot y}=x}
{displaystyle log_{a}{x}=pcdot y}
{displaystyle {frac {log_{a}{x}}{p}}=y}

Корень в основании {displaystyle log _{sqrt[{p}]{a}}(x)=plog _{a}(x)} {displaystyle log _{sqrt {pi }}{(4cdot arctan {1})}=2cdot log _{pi }{(4cdot {frac {pi }{4}})}=2cdot log _{pi }{(pi )}=2}

Доказательство                                 

{displaystyle log _{sqrt[{p}]{a}}{x}=y}
{displaystyle a^{frac {y}{p}}=x}
{displaystyle a^{y}=x^{p}}
{displaystyle a^{frac {y}{p}}=x}
{displaystyle log_{a}{x}={frac {y}{p}}}
{displaystyle pcdot log_{a}{x}=y}

Существует очевидное обобщение приведённых формул на случай, когда допускаются отрицательные значения переменных, например:

log _{a}|xy|=log _{a}|x|+log _{a}|y|
log _{a}!left|{frac {x}{y}}right|=log _{a}|x|-log _{a}|y|

Формулы для логарифма произведения без труда обобщаются на произвольное количество сомножителей:

log _{a}(x_{1}x_{2}dots x_{n})=log _{a}(x_{1})+log _{a}(x_{2})+dots +log _{a}(x_{n})
log _{a}|x_{1}x_{2}dots x_{n}|=log _{a}|x_{1}|+log _{a}|x_{2}|+dots +log _{a}|x_{n}|

Логарифм суммы и разности[править | править код]

Хотя логарифм суммы (или разности) не выражается через логарифмы слагаемых, приведенные ниже формулы могут оказаться полезными.

{displaystyle log _{a}(b+c)=log _{a}b+log _{a}left(1+{frac {c}{b}}right)}
{displaystyle log _{a}(b-c)=log _{a}b+log _{a}left(1-{frac {c}{b}}right),quad } здесь b>c

Обобщение:

{displaystyle log _{a}sum limits _{k=1}^{N}b_{k}=log _{a}b_{1}+log _{a}left(1+sum limits _{k=2}^{N}{frac {b_{k}}{b_{1}}}right)=log _{a}b_{1}+log _{a}left(1+sum limits _{k=2}^{N}a^{left(log _{a}b_{k}-log _{a}b_{1}right)}right)}

Замена основания логарифма[править | править код]

Логарифм log _{a}b по основанию a можно преобразовать[3] в логарифм по другому основанию c:

log _{a}b={frac {log _{c}b}{log _{c}a}}

Следствие (при b=c) — перестановка основания и логарифмируемого выражения:

log _{a}b={frac {1}{log _{b}a}}

Другие тождества[править | править код]

Если выражения для основания логарифма и для логарифмируемого выражения содержат возведение в степень, для упрощения можно применить следующее тождество:

{log _{a^{q}}{b}}^{p}={frac {p}{q}}log _{a}{b}

Это тождество сразу получается, если в логарифме слева заменить основание a^{q} на a по вышеприведённой формуле замены основания. Следствия:

log _{a^{k}}b={frac {1}{k}}log _{a}b;quad log _{sqrt[{n}]{a}}b=nlog _{a}b;quad log _{a^{k}}b^{k}=log _{a}b

Ещё одно полезное тождество:

c^{log _{a}b}=b^{log _{a}c}

Для его доказательства заметим, что логарифмы левой и правой частей по основанию a совпадают (равны {displaystyle log _{a}bcdot log _{a}c}), а тогда левая и правая части тождественно равны. Прологарифмировав предыдущее тождество по произвольному основанию d, получаем ещё одно тождество «обмена основаниями»:

{displaystyle log _{a}bcdot log _{d}c=log _{d}bcdot log _{a}c}

Это тождество легко распространить на любое число сомножителей, например:

{displaystyle log _{a}xcdot log _{b}ycdot log _{c}zcdot log _{d}w=log _{b}xcdot log _{d}ycdot log _{c}zcdot log _{a}w}

Другими словами, в произведении такого вида можно делать произвольную перестановку оснований логарифмов.

{displaystyle x^{frac {log _{a}b}{log _{a}x}}=b}

Это тождество также просто доказать, прологарифмировав обе части по основанию x.

{displaystyle log _{xy}a={frac {1}{{frac {1}{log _{x}a}}+{frac {1}{log _{y}a}}}}}

Для доказательства этого тождества надо дважды применить приведенное выше правило перестановки:

{displaystyle {frac {1}{log _{x}a}}=log _{a}x;quad {frac {1}{log _{y}a}}=log _{a}y;quad {frac {1}{log _{a}(xy)}}=log _{xy}a}

Аналитические тождества[править | править код]

Предельные соотношения[править | править код]

Приведём несколько полезных пределов, связанных с логарифмами[4]:

lim _{xto 0}{frac {log _{a}(1+x)}{x}}=log _{a}e={frac {1}{ln a}}
lim _{xto 0^{+}}x^{b}log _{a}x=0quad (b>0)
lim _{xto infty }{frac {log _{a}x}{x^{b}}}=0quad (b>0)
ln x=lim _{nto infty }nleft({sqrt[{n}]{x}}-1right)=lim _{nto infty }nleft(1-{frac {1}{sqrt[{n}]{x}}}right)
ln x=lim _{hto 0}{frac {x^{h}-1}{h}}

Производная и интеграл[править | править код]

Производная для логарифмической функции вычисляется по формуле:

{displaystyle {d over dx}ln x={1 over x},}
{displaystyle {d over dx}log _{a}x={1 over xln a}={log _{a}e over x}}

Определение логарифма через определённый интеграл:

{displaystyle ln x=int _{1}^{x}{frac {1}{t}}dt}

Первообразная для логарифма:

{displaystyle int log _{a}x,dx=x(log _{a}x-log _{a}e)+C}
{displaystyle int ln x,dx=x(ln x-1)+C}

Чтобы привести формулы для интегралов высоких порядков, обозначим {displaystyle H_{n} n-}е по порядку гармоническое число:

{displaystyle H_{n}={frac {1}{1}}+{frac {1}{2}}+{frac {1}{3}}+dots +{frac {1}{n}}}

Далее обозначим:

{displaystyle x^{left[0right]}=ln x}
{displaystyle x^{left[nright]}=x^{n}(ln x-H_{n});quad } ({displaystyle n=1,2,3dots })

Мы получаем последовательность функций:

{displaystyle x^{left[1right]}=xln x-x}
{displaystyle x^{left[2right]}=x^{2}ln x-{begin{matrix}{frac {3}{2}}end{matrix}},x^{2}}
{displaystyle x^{left[3right]}=x^{3}ln x-{begin{matrix}{frac {11}{6}}end{matrix}},x^{3}}

и т. д. Тогда имеют место тождества:

{displaystyle {frac {d}{dx}},x^{left[nright]}=n,x^{left[n-1right]};quad } ({displaystyle n=1,2,3dots })
{displaystyle int x^{left[nright]},dx={frac {x^{left[n+1right]}}{n+1}}+C;quad } ({displaystyle n=0,1,2,3dots })

Примечания[править | править код]

  1. Алгебра и начала анализа. Учебник для 10—11 классов. 12-е издание, М.: Просвещение, 2002. Стр. 233.
  2. Выгодский М. Я. Справочник по элементарной математике, 1978, с. 187.
  3. Корн Г., Корн Т. Справочник по математике, 1973, с. 34.
  4. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления, 1966, Том I, стр. 164.

Литература[править | править код]

  • Выгодский М. Я. Справочник по элементарной математике. — М.: Наука, 1978.
    • Переиздание: АСТ, 2003, ISBN 5-17-009554-6.
  • Зайцев В. В., Рыжков В. В., Сканави М. И. Элементарная математика. Повторительный курс. — Издание третье, стереотипное. — М.: Наука, 1976. — 591 с.
  • Корн Г., Корн Т. Справочник по математике (для научных работников и инженеров). — М.: Наука, 1973. — 720 с.
  • Свешников А. Г., Тихонов А. Н. Теория функций комплексной переменной. — М.: Наука, 1967. — 304 с.
  • Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. — изд. 6-е. — М.: Наука, 1966. — 680 с.
  • Шахмейстер А. Х. Логарифмы. Пособие для школьников, абитуриентов и преподавателей. — изд. 5-е. — СПб.: МЦНМО, 2016. — 288 с. — ISBN 978-5-4439-0648-5.

Ссылки[править | править код]

  • Weisstein, Eric W. Logarithm (англ.) на сайте Wolfram MathWorld.

Основные свойства логарифмов

2 февраля 2017

  • Скачать все формулы

Логарифмы, как и любые числа, можно складывать, вычитать и всячески преобразовывать. Но поскольку логарифмы — это не совсем обычные числа, здесь есть свои правила, которые называются основными свойствами.

Эти правила обязательно надо знать — без них не решается ни одна серьезная логарифмическая задача. К тому же, их совсем немного — все можно выучить за один день. Итак, приступим.

Сложение и вычитание логарифмов

Рассмотрим два логарифма с одинаковыми основаниями: loga x и loga y. Тогда их можно складывать и вычитать, причем:

  1. loga x + loga y = loga (x · y);
  2. loga x − loga y = loga (x : y).

Итак, сумма логарифмов равна логарифму произведения, а разность — логарифму частного. Обратите внимание: ключевой момент здесь — одинаковые основания. Если основания разные, эти правила не работают!

Эти формулы помогут вычислить логарифмическое выражение даже тогда, когда отдельные его части не считаются (см. урок «Что такое логарифм»). Взгляните на примеры — и убедитесь:

Задача. Найдите значение выражения: log6 4 + log6 9.

Поскольку основания у логарифмов одинаковые, используем формулу суммы:
log6 4 + log6 9 = log6 (4 · 9) = log6 36 = 2.

Задача. Найдите значение выражения: log2 48 − log2 3.

Основания одинаковые, используем формулу разности:
log2 48 − log2 3 = log2 (48 : 3) = log2 16 = 4.

Задача. Найдите значение выражения: log3 135 − log3 5.

Снова основания одинаковые, поэтому имеем:
log3 135 − log3 5 = log3 (135 : 5) = log3 27 = 3.

Как видите, исходные выражения составлены из «плохих» логарифмов, которые отдельно не считаются. Но после преобразований получаются вполне нормальные числа. На этом факте построены многие контрольные работы. Да что контрольные — подобные выражения на полном серьезе (иногда — практически без изменений) предлагаются на ЕГЭ.

Вынесение показателя степени из логарифма

Теперь немного усложним задачу. Что, если в основании или аргументе логарифма стоит степень? Тогда показатель этой степени можно вынести за знак логарифма по следующим правилам:

  1. loga xn = n · loga x;
  2. Вынесение показателя из основания логарифма
  3. Вынесение показателя одновременно из основания и из аргумента логарифма

Несложно заметить, что последнее правило следует их первых двух. Но лучше его все-таки помнить — в некоторых случаях это значительно сократит объем вычислений.

Разумеется, все эти правила имеют смысл при соблюдении ОДЗ логарифма: a > 0, a ≠ 1, x > 0. И еще: учитесь применять все формулы не только слева направо, но и наоборот, т.е. можно вносить числа, стоящие перед знаком логарифма, в сам логарифм. Именно это чаще всего и требуется.

Задача. Найдите значение выражения: log7 496.

Избавимся от степени в аргументе по первой формуле:
log7 496 = 6 · log7 49 = 6 · 2 = 12

Задача. Найдите значение выражения:

Частное двух логарифмов

[Подпись к рисунку]

Заметим, что в знаменателе стоит логарифм, основание и аргумент которого являются точными степенями: 16 = 24; 49 = 72. Имеем:

Преобразование частного двух логарифмов

[Подпись к рисунку]

Думаю, к последнему примеру требуются пояснения. Куда исчезли логарифмы? До самого последнего момента мы работаем только со знаменателем. Представили основание и аргумент стоящего там логарифма в виде степеней и вынесли показатели — получили «трехэтажную» дробь.

Теперь посмотрим на основную дробь. В числителе и знаменателе стоит одно и то же число: log2 7. Поскольку log2 7 ≠ 0, можем сократить дробь — в знаменателе останется 2/4. По правилам арифметики, четверку можно перенести в числитель, что и было сделано. В результате получился ответ: 2.

Переход к новому основанию

Говоря о правилах сложения и вычитания логарифмов, я специально подчеркивал, что они работают только при одинаковых основаниях. А что, если основания разные? Что, если они не являются точными степенями одного и того же числа?

На помощь приходят формулы перехода к новому основанию. Сформулируем их в виде теоремы:

Пусть дан логарифм loga x. Тогда для любого числа c такого, что c > 0 и c ≠ 1, верно равенство:

Переход к новому основанию в логарифме

[Подпись к рисунку]

В частности, если положить c = x, получим:

Когда основание и аргумент логарифма меняются местами

[Подпись к рисунку]

Из второй формулы следует, что можно менять местами основание и аргумент логарифма, но при этом все выражение «переворачивается», т.е. логарифм оказывается в знаменателе.

Эти формулы редко встречается в обычных числовых выражениях. Оценить, насколько они удобны, можно только при решении логарифмических уравнений и неравенств.

Впрочем, существуют задачи, которые вообще не решаются иначе как переходом к новому основанию. Рассмотрим парочку таких:

Задача. Найдите значение выражения: log5 16 · log2 25.

Заметим, что в аргументах обоих логарифмов стоят точные степени. Вынесем показатели: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

А теперь «перевернем» второй логарифм:

Пример перехода к новому основанию

[Подпись к рисунку]

Поскольку от перестановки множителей произведение не меняется, мы спокойно перемножили четверку и двойку, а затем разобрались с логарифмами.

Задача. Найдите значение выражения: log9 100 · lg 3.

Основание и аргумент первого логарифма — точные степени. Запишем это и избавимся от показателей:

Избавление от точных степеней

[Подпись к рисунку]

Теперь избавимся от десятичного логарифма, перейдя к новому основанию:

Еще один пример перехода к новому основанию

[Подпись к рисунку]

Основное логарифмическое тождество

Часто в процессе решения требуется представить число как логарифм по заданному основанию. В этом случае нам помогут формулы:

  1. n = loga an
  2. Логарифмический переход между числами

В первом случае число n становится показателем степени, стоящей в аргументе. Число n может быть абсолютно любым, ведь это просто значение логарифма.

Вторая формула — это фактически перефразированное определение. Она так и называется: основное логарифмическое тождество.

В самом деле, что будет, если число b возвести в такую степень, что число b в этой степени дает число a? Правильно: получится это самое число a. Внимательно прочитайте этот абзац еще раз — многие на нем «зависают».

Подобно формулам перехода к новому основанию, основное логарифмическое тождество иногда бывает единственно возможным решением.

Задача. Найдите значение выражения:

Задание из ЕГЭ с логарифмами

[Подпись к рисунку]

Заметим, что log25 64 = log5 8 — просто вынесли квадрат из основания и аргумента логарифма. Учитывая правила умножения степеней с одинаковым основанием, получаем:

Вычисление логарифмического выражения

[Подпись к рисунку]

Если кто-то не в курсе, это была настоящая задача из ЕГЭ 🙂

Логарифмическая единица и логарифмический ноль

В заключение приведу два тождества, которые сложно назвать свойствами — скорее, это следствия из определения логарифма. Они постоянно встречаются в задачах и, что удивительно, создают проблемы даже для «продвинутых» учеников.

  1. loga a = 1 — это логарифмическая единица. Запомните раз и навсегда: логарифм по любому основанию a от самого этого основания равен единице.
  2. loga 1 = 0 — это логарифмический ноль. Основание a может быть каким угодно, но если в аргументе стоит единица — логарифм равен нулю! Потому что a0 = 1 — это прямое следствие из определения.

Вот и все свойства. Обязательно потренируйтесь применять их на практике! Скачайте шпаргалку в начале урока, распечатайте ее — и решайте задачи.

Смотрите также:

  1. Тест к уроку «Что такое логарифм» (тяжелый)
  2. Как решать простейшие логарифмические уравнения
  3. Не пишите единицы измерения в задаче B12
  4. Что такое логарифм
  5. Сложные задачи на проценты
  6. Задача B4: экономика

Содержание:

Множеством (областью) значений показательной функции Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Такое значение аргумента единственное, так как если Логарифм - формулы, свойства и примеры с решением и Логарифм - формулы, свойства и примеры с решением то по следствию из п. 2.3 верно равенство c = d. Это единственное значение аргумента с называют логарифмом числа b по основанию a и обозначают Логарифм - формулы, свойства и примеры с решениемт. е.

Логарифм - формулы, свойства и примеры с решением

Таким образом, равенство Логарифм - формулы, свойства и примеры с решением означает, что Логарифм - формулы, свойства и примеры с решением Сформулируем определение логарифма еще раз.

Определение:

Пусть Логарифм - формулы, свойства и примеры с решением Логарифмом числа b по основанию а называется показатель степени, в которую нужно возвести число а, чтобы получить число b.

Приведем несколько примеров:

Нахождение логарифма числа называется логарифмированием.

Обозначим Логарифм - формулы, свойства и примеры с решением Тогда, согласно определению логарифма, верно равенство Логарифм - формулы, свойства и примеры с решениемт. е.

Логарифм - формулы, свойства и примеры с решением

Это равенство называется основным логарифмическим тождеством.

Согласно этому тождеству, например, имеем: Логарифм - формулы, свойства и примеры с решением Основное логарифмическое тождество позволяет данное число b представить в виде степени с любым положительным основанием.

Например: Логарифм - формулы, свойства и примеры с решением

История логарифма

Логарифмы были изобретены в 1614 г. шотландским математиком Д. Непером (1550—1617) и независимо от него на 6 лет позднее швейцарским механиком и математиком И. Бюрги (1552—1632).

Оба исследователя хотели найти новое удобное средство арифметических вычислений, но их определения логарифма различны и у обоих не похожи на современные. Понимание логарифма как показателя степени с данным основанием впервые появилось в XVIII в. в работах английского математика В. Гардинера (1742). Широкому распространению этого определения логарифма более других содействовал Jl. Эйлер, который впервые применил в этой связи и термин «основание».

Термин «логарифм» принадлежит Неперу. Он возник из сочетания греческих слов логос — отношение и аритмос — число. Слово «логарифм», таким образом, означало «число отношения».

Пример:

а) Записать число Логарифм - формулы, свойства и примеры с решением в виде логарифмов по основанию Логарифм - формулы, свойства и примеры с решением

б) Записать число -5 в виде логарифмов по основанию Логарифм - формулы, свойства и примеры с решением и х Логарифм - формулы, свойства и примеры с решением

Решение:

а) По определению логарифма имеем:

Логарифм - формулы, свойства и примеры с решением

б) По определению логарифма имеем:

Логарифм - формулы, свойства и примеры с решением

Пример:

Между какими целыми числами находится числоЛогарифм - формулы, свойства и примеры с решением

Решение:

Пусть Логарифм - формулы, свойства и примеры с решением тогда верно равенство Логарифм - формулы, свойства и примеры с решением Поскольку Логарифм - формулы, свойства и примеры с решением По свойствам показательной функции с основанием 2 имеем Логарифм - формулы, свойства и примеры с решением Значит,Логарифм - формулы, свойства и примеры с решениемнаходится между числами 4 и 5.

Ответ: Логарифм - формулы, свойства и примеры с решением

Пример:

Решить уравнение:

Логарифм - формулы, свойства и примеры с решением

Решение:

а) Поскольку Логарифм - формулы, свойства и примеры с решением то по определению логарифма имеем Логарифм - формулы, свойства и примеры с решением

б)Логарифм - формулы, свойства и примеры с решением

Ответ: Логарифм - формулы, свойства и примеры с решением

Логарифмы по основанию 10 имеют особое название — десятичные логарифмы. Десятичный логарифм числа b обозначается Логарифм - формулы, свойства и примеры с решением. Таким образом, Логарифм - формулы, свойства и примеры с решением

▲ Особое обозначение и название имеют не только десятичные логарифмы, но и логарифмы, основанием которых является число е:

Логарифм - формулы, свойства и примеры с решением

Такие логарифмы называются натуральными.

Логарифмы по основанию е позволяют выражать математическую зависимость, которая характеризует многие биологические, химические, физические, социальные и другие процессы. По-видимому, этим объясняется и название «натуральные логарифмы», т. е. естественные (этот термин ввел в 1659 г. итальянский математик П. Менголи). Натуральные и десятичные логарифмы имели большое значение для облегчения вычислений в XVII—XX вв. до создания мощных современных вычислительных средств. Натуральные логарифмы имеют и большое теоретическое значение.▲

Основные свойства логарифмов

Теорема:

При любых положительных значениях b и с верно равенство:

Логарифм - формулы, свойства и примеры с решением

Доказательство:

Докажем утверждение (1).

По основному логарифмическому тождеству

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решениемпо свойствам степениЛогарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Таким образом, имеем:

Логарифм - формулы, свойства и примеры с решением

Отсюда по следствию из п. 2.3 получаем равенство (1).

Докажем утверждение (2). Преобразуем левую часть равенства (2):

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решениемI используя равенство (1), получим Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Заметим, что равенство (2) можно доказать тем же способом, что и равенство (1), — сделайте это самостоятельно.

Равенство (1) означает, что логарифм произведения двух положительных чисел равен сумме логарифмов этих чисел.

Равенство (2) означает, что логарифм дроби с положительными. числителем и знаменателем равен разности логарифмов числителя и знаменателя.

Замечание. Равенства, доказанные в теореме 1 (как и другие равенства этого пункта), являются тождествами. Действительно, каждое из них превращается в верное числовое равенство при любых значениях a, b и с, для которых входящие в равенство выражения имеют смысл.

Теорема:

При любых значениях s и положительных значениях b верно равенство

Логарифм - формулы, свойства и примеры с решением

Доказательство:

По основному логарифмическому тождеству

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решениемпо свойствам степени Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Таким образом, имеем

Логарифм - формулы, свойства и примеры с решением

Отсюда по следствию из п. 2.3 получаем равенство (3).Логарифм - формулы, свойства и примеры с решением

Следствие 1. Если числа Логарифм - формулы, свойства и примеры с решением одного знака, то имеет место равенство

Логарифм - формулы, свойства и примеры с решением

Следствие 2. При любом целом Логарифм - формулы, свойства и примеры с решением имеет место равенство

Логарифм - формулы, свойства и примеры с решением

Пример №1

Найти значение выражения:

Логарифм - формулы, свойства и примеры с решением

Решение:

Логарифм - формулы, свойства и примеры с решением

Ответ: Логарифм - формулы, свойства и примеры с решением

Теорема:

При любых значениях Логарифм - формулы, свойства и примеры с решением и Логарифм - формулы, свойства и примеры с решением верно равенство

Логарифм - формулы, свойства и примеры с решением

Доказательство:

Способ 1. По основному логарифмическому тождеству имеем

Логарифм - формулы, свойства и примеры с решением

Прологарифмировав левую и правую части этого тождества по основанию а, получим

Логарифм - формулы, свойства и примеры с решением

Применив тождество (3), имеем

Логарифм - формулы, свойства и примеры с решением

Так как Логарифм - формулы, свойства и примеры с решением Поэтому левую и правую части этого равенства можно разделить на Логарифм - формулы, свойства и примеры с решением В результате получим тождество (6). Логарифм - формулы, свойства и примеры с решением

Способ 2. Пусть Логарифм - формулы, свойства и примеры с решением тогда Логарифм - формулы, свойства и примеры с решением Логарифмируя обе части этого равенства по основанию а, получаем

Логарифм - формулы, свойства и примеры с решением

Откуда имеем

Логарифм - формулы, свойства и примеры с решением

Итак, Логарифм - формулы, свойства и примеры с решением

Тождество (6) называется формулой перехода от логарифма по одному основанию к логарифму по другому основанию.

Обычно в таблицах, калькуляторах даются значения логарифмов по основанию 10, а когда нужно найти значение логарифма по другому основанию, пользуются формулой перехода от логарифма по одному основанию к логарифму по другому основанию.

Следствием из тождества (6) при основании а = с является формула

Логарифм - формулы, свойства и примеры с решением

(убедитесь в этом самостоятельно).

Пример №2

Найти значение выражения, если Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Решение:

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решениемсогласно тождеству (6) имеемЛогарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением используя тождество (3), получим Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решениемиспользуя тождество (1), имеемЛогарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решениемс учетом условия Логарифм - формулы, свойства и примеры с решением получимЛогарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

6)Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решениемна основании тождеств (6) и (7) получимЛогарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решениемпо тождеству (3) и с учетом условия имеемЛогарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Ответ: Логарифм - формулы, свойства и примеры с решением

Следствие 3. Имеют место тождества:

Логарифм - формулы, свойства и примеры с решением

Тождества (8) и (9) можно доказать, используя уже доказанные тождества из этого пункта.

Пример №3

Упростить выражение Логарифм - формулы, свойства и примеры с решением

Решение:

Используя определение логарифма, представим числа 1 и 3 в виде логарифмов по основанию 2:

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решениемпо свойству (2) логарифмов имеемЛогарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решениемвоспользовавшись формулой (7), получимЛогарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Ответ: Логарифм - формулы, свойства и примеры с решением

Развитие науки, прежде всего астрономии, уже в XVI в. привело к необходимости громоздких вычислений при умножении и делении многозначных чисел. Эти вычислительные проблемы были в некоторой степени решены с открытием логарифмов и созданием таблиц логарифмов.

Логарифмическая функция

Рассмотрим выражение Логарифм - формулы, свойства и примеры с решением где х — переменная, а — постоянная, Логарифм - формулы, свойства и примеры с решением Это выражение имеет смысл при любом значении х > 0 и не имеет смысла при любом значении Логарифм - формулы, свойства и примеры с решением Таким образом, естественной областью определения выражения Логарифм - формулы, свойства и примеры с решениемЛогарифм - формулы, свойства и примеры с решением является множество всех положительных действительных чисел, т. е. промежуток Логарифм - формулы, свойства и примеры с решением

Определение:

Логарифмической функцией называется функция вида Логарифм - формулы, свойства и примеры с решениемгде а — постоянная, Логарифм - формулы, свойства и примеры с решением

Область определения логарифмической функции — это естественная область определения выражения Логарифм - формулы, свойства и примеры с решением т.е. множество Логарифм - формулы, свойства и примеры с решением

Графики некоторых логарифмических функций изображены на рисунке 34. Эти изображения (как и для графиков других функций) можно было получить, строя их по точкам. Отметим некоторые особенности изображенных графиков.

График функции Логарифм - формулы, свойства и примеры с решением расположен справа от оси Оу и пересекает ось Ох в точке (1; 0).

Когда значения аргумента х уменьшаются, т. е. приближаются к нулю, то график этой функции «приближается» к оси Оу и при этом «круто» опускается вниз. А когда значения аргумента х увеличиваются, то график «медленно» поднимается вверх (ем. рис. 34). Аналогично для любой функции Логарифм - формулы, свойства и примеры с решением при а > 1 (рис. 35). График функции Логарифм - формулы, свойства и примеры с решением расположен справа от оси Оу и пересекает ось Ох в точке (1; 0) (см. рис. 34).

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Заметим, что когда значения аргумента х уменьшаются, т. е. приближаются к нулю, то график этой функции «приближается» к оси Оу и при этом «круто» поднимается вверх. А когда значения аргумента х увеличиваются, то график «медленно» опускается вниз. Аналогично для любой функции Логарифм - формулы, свойства и примеры с решением при 0 < а < 1 (рис. 36).

Теорема (о свойствах логарифмической функции Логарифм - формулы, свойства и примеры с решением)

  1. Областью определения логарифмической функции является интервал Логарифм - формулы, свойства и примеры с решением
  2. Множеством (областью) значений логарифмической функции является множество R всех действительных чисел.
  3. Логарифмическая функция не имеет ни наименьшего, ни наибольшего значений.
  4. График логарифмической функции пересекается с осью абсцисс в точке (1; 0) и не пересекается с осью ординат.
  5. Значение аргумента х = 1 является нулем логарифмической функции.
  6. 6. При а > 1 логарифмическая функция принимает отрицательные значения на интервале (0; 1) и принимает положительные значения на интервале Логарифм - формулы, свойства и примеры с решениемИ при 0 < а < 1 логарифмическая функция принимает отрицательные значения на интервале Логарифм - формулы, свойства и примеры с решением и принимает положительные значения на интервале (0; 1).
  7. Логарифмическая функция не является ни четной, ни нечетной.
  8. При а > 1 логарифмическая функция возрастает на всей области определения. При 0 < а < 1 логарифмическая функция убывает на всей области определения.
  9. Логарифмическая функция не является периодической.

Изображение графика логарифмической функции позволяет наглядно представить эти свойства.

Множество (область) значений логарифмической функции — проекция ее графика на ось Оу, а на рисунках 35 и 36 видно, что эта проекция есть ось Оу. Это значит, что для любой точки Логарифм - формулы, свойства и примеры с решением лежащей на оси Оу, найдется такая точка Логарифм - формулы, свойства и примеры с решениемпринадлежащая интервалу Логарифм - формулы, свойства и примеры с решением(свойство 2).

Множество (область) значений логарифмической функции — это множество всех действительных чисел, а в нем нет ни наименьшего числа, ни наибольшего (свойство 3).

График логарифмической функции проходит через точку (1; 0) и лежит в правой полуплоскости (свойства 4, 5).

При а > 1 график логарифмической функции лежит в IV координатном угле, когда Логарифм - формулы, свойства и примеры с решением и лежит в I координатном угле, когда Логарифм - формулы, свойства и примеры с решением При 0 < а < 1 график логарифмической функции лежит в I координатном угле, когда Логарифм - формулы, свойства и примеры с решением и лежит в IV координатном угле, когда Логарифм - формулы, свойства и примеры с решением(свойство 6).

Область определения логарифмической функции — интервал Логарифм - формулы, свойства и примеры с решением поэтому логарифмическая функция не является ни четной, ни нечетной, ни периодической (свойства 7, 9).

На рисунке 35 видно, что при а > 1 логарифмическая функция возрастает на области определения, а на рисунке 36 видно, что при 0 < а < 1 логарифмическая функция убывает на области определения (свойство 8).

Пусть точка Логарифм - формулы, свойства и примеры с решением лежит на графике функции Логарифм - формулы, свойства и примеры с решением Это значит, что верно числовое равенство Логарифм - формулы, свойства и примеры с решением следовательно, согласно определению логарифма верно числовое равенство Логарифм - формулы, свойства и примеры с решением В свою очередь, последнее равенство означает, что точка Логарифм - формулы, свойства и примеры с решением лежит на графике функции Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Заметим, что точки Логарифм - формулы, свойства и примеры с решением симметричны относительно прямой Логарифм - формулы, свойства и примеры с решениемТаким образом, каждой точке М на графике функции Логарифм - формулы, свойства и примеры с решением соответствует симметричная ей относительно этой прямой точка N на графике функции Логарифм - формулы, свойства и примеры с решениеми наоборот. Следовательно, графики функций Логарифм - формулы, свойства и примеры с решением симметричны относительно прямой у = х (рис. 37).

Последнее утверждение дает возможность, зная график функции Логарифм - формулы, свойства и примеры с решениемизобразить график функции Логарифм - формулы, свойства и примеры с решением (не используя построение по точкам).

▲ Симметричность графиков функций Логарифм - формулы, свойства и примеры с решением относительно прямой у=х означает, что эти функции взаимно обратны.

Функции Логарифм - формулы, свойства и примеры с решением называются взаимно обратными, если для любого Логарифм - формулы, свойства и примеры с решением верно равенствоЛогарифм - формулы, свойства и примеры с решением и для любого Логарифм - формулы, свойства и примеры с решением верно равенство Логарифм - формулы, свойства и примеры с решением

Покажем, что показательная и логарифмическая функции с одним, и тем же основанием а взаимно обратны.

Пусть Логарифм - формулы, свойства и примеры с решением Тогда Логарифм - формулы, свойства и примеры с решением

Для любого Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Для любого Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Покажем, что графики взаимно обратных функций Логарифм - формулы, свойства и примеры с решением симметричны относительно прямой у = х.

Пусть точка Логарифм - формулы, свойства и примеры с решением лежит на графике функции Логарифм - формулы, свойства и примеры с решением Это означает, что верно числовое равенство Логарифм - формулы, свойства и примеры с решением Тогда по определению взаимно обратных функций Логарифм - формулы, свойства и примеры с решением А равенство Логарифм - формулы, свойства и примеры с решением означает, что точка Логарифм - формулы, свойства и примеры с решением лежит на графике функции Логарифм - формулы, свойства и примеры с решением

Таким образом, каждой точке М на графике функции Логарифм - формулы, свойства и примеры с решением соответствует симметричная относительно прямой у = х точка N на графике функции Логарифм - формулы, свойства и примеры с решением и наоборот. Следовательно, графики функций Логарифм - формулы, свойства и примеры с решениемсимметричны относительно прямой Логарифм - формулы, свойства и примеры с решением

  • Заказать решение задач по высшей математике

Логарифмы и их свойства

В предыдущем параграфе вы находили корни уравнения вида Логарифм - формулы, свойства и примеры с решением Например: Логарифм - формулы, свойства и примеры с решением А какой корень имеет уравнение Логарифм - формулы, свойства и примеры с решением Графическим методом можно убедиться, что оно имеет единственное решение (рис. 28). Это число больше 2 и меньше 3, но как его записать?

Для записи корней показательного уравнения используют понятие «логарифм» и соответствующий символ. Корнем уравнения Логарифм - формулы, свойства и примеры с решением является число, которое записывают в виде Логарифм - формулы, свойства и примеры с решением и читают «логарифм числа 5 по основанию 2».

Рассмотрим общий случай-.

Пусть Логарифм - формулы, свойства и примеры с решением — действительные числа; Логарифм - формулы, свойства и примеры с решениемЛогарифм - формулы, свойства и примеры с решением Если Логарифм - формулы, свойства и примеры с решением то число Логарифм - формулы, свойства и примеры с решениемназывают логарифмом числа Логарифм - формулы, свойства и примеры с решением по основанию Логарифм - формулы, свойства и примеры с решением

Логарифмом числа Логарифм - формулы, свойства и примеры с решением по основанию Логарифм - формулы, свойства и примеры с решением называют показатель степени, в которую нужно возвести число Логарифм - формулы, свойства и примеры с решением чтобы получить Логарифм - формулы, свойства и примеры с решением

Логарифм числа Логарифм - формулы, свойства и примеры с решением по основанию Логарифм - формулы, свойства и примеры с решением обозначают символом Логарифм - формулы, свойства и примеры с решением

Примеры:

Логарифм - формулы, свойства и примеры с решением так как Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением  так как Логарифм - формулы, свойства и примеры с решением так как Логарифм - формулы, свойства и примеры с решением

Основанием логарифма может быть произвольное положительное число, кроме единицы. Как известно, если Логарифм - формулы, свойства и примеры с решением то область определения показательной функции Логарифм - формулы, свойства и примеры с решением — множество всех действительных чисел Логарифм - формулы, свойства и примеры с решением а область значений — множество всех положительных действительных чисел. Поэтому при таких значениях Логарифм - формулы, свойства и примеры с решением для любого положительного числа Логарифм - формулы, свойства и примеры с решением найдётся такое Логарифм - формулы, свойства и примеры с решением что Логарифм - формулы, свойства и примеры с решением Другими словами: при любом основании Логарифм - формулы, свойства и примеры с решением где Логарифм - формулы, свойства и примеры с решением существует логарифм каждого положительного числа. Логарифм отрицательного числа и нуля не существует.

Полезно помнить, что для каждого Логарифм - формулы, свойства и примеры с решением

 Логарифм - формулы, свойства и примеры с решением (почему?).

Нахождение логарифма числа называют логарифмированием. Эта операция обратная к операции возведения в степень с соответствующим основанием.

Логарифм - формулы, свойства и примеры с решением

Согласно определению логарифма, если Логарифм - формулы, свойства и примеры с решением Это разные записи одной зависимости. Из них следует равенство

Логарифм - формулы, свойства и примеры с решением

которое называют основным логарифмическим тождеством. Оно правильное для любых положительных Логарифм - формулы, свойства и примеры с решением

Например: Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

С помощью основного логарифмического тождества любое положительное число можно представить в виде степени, имеющей заданное основание.

Например: Логарифм - формулы, свойства и примеры с решением

Докажем ещё несколько важных свойств логарифмов (для положительных Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

1) По основному логарифмическому тождеству и основному свойству степени

Логарифм - формулы, свойства и примеры с решением

Итак, Логарифм - формулы, свойства и примеры с решением — показатель, в который нужно возвести число Логарифм - формулы, свойства и примеры с решением чтобы получить Логарифм - формулы, свойства и примеры с решением то есть

Логарифм - формулы, свойства и примеры с решением

Эту формулу можно обобщить на три и более множителя:

Логарифм - формулы, свойства и примеры с решением

Кратко говорят: логарифм произведения равен сумме логарифмов множителей.

2)    Доказательство аналогичное предыдущему:

Логарифм - формулы, свойства и примеры с решением

отсюда

Логарифм - формулы, свойства и примеры с решением

Кратко говорят: логарифм частного равен разности логарифмов делимого и делителя.

3)    Возведём обе части тождества Логарифм - формулы, свойства и примеры с решением в степень Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Итак,

Логарифм - формулы, свойства и примеры с решением

Доказанные формулы можно использовать и справа налево, например:

Логарифм - формулы, свойства и примеры с решением

В логарифмах переходить от одного основания к другому можно при помощи формулы перехода

Логарифм - формулы, свойства и примеры с решением

где Логарифм - формулы, свойства и примеры с решением

Докажем эту формулу. Поскольку положительные числа Логарифм - формулы, свойства и примеры с решением и Логарифм - формулы, свойства и примеры с решением равны, то равны и их логарифмы по основанию Логарифм - формулы, свойства и примеры с решением Поэтому

Логарифм - формулы, свойства и примеры с решением откуда и следует доказываемая формула.

Обратите внимание! Как следствия из формулы перехода можно получить следующие формулы:

Логарифм - формулы, свойства и примеры с решением

Докажите их самостоятельно.

Пример №4

Упростите выражение Логарифм - формулы, свойства и примеры с решением 

Решение:

Сведём все логарифмы к основанию 5. Имеем:
Логарифм - формулы, свойства и примеры с решением

Особенно часто используют логарифмы по основаниям 10 и Логарифм - формулы, свойства и примеры с решением их называют десятичными и натуральными логарифмами. Вместо Логарифм - формулы, свойства и примеры с решением пишут соответственно Логарифм - формулы, свойства и примеры с решением

 Рассмотренные в параграфе свойства логарифмов правиль-1 ные при условии, что переменные принимают положительные значения. С помощью модуля можно расширить использование некоторых формул. Например:

Логарифм - формулы, свойства и примеры с решением

 Для преобразования выражений, решения уравнений и неравенств используют и другие формулы, содержащие логарифмы:

Логарифм - формулы, свойства и примеры с решением

Докажите их самостоятельно.

Пример №5

Вычислите: Логарифм - формулы, свойства и примеры с решением

Решение:

Логарифм - формулы, свойства и примеры с решением

Пример №6

Решите уравнение: Логарифм - формулы, свойства и примеры с решением

Решение:

Пусть Логарифм - формулы, свойства и примеры с решением тогда Логарифм - формулы, свойства и примеры с решением Подставим Логарифм - формулы, свойства и примеры с решением в данное уравнение.

Получим: Логарифм - формулы, свойства и примеры с решением отсюда Логарифм - формулы, свойства и примеры с решением

Поскольку Логарифм - формулы, свойства и примеры с решением или Логарифм - формулы, свойства и примеры с решением

Ответ. Логарифм - формулы, свойства и примеры с решением

Пример №7

Найдите Логарифм - формулы, свойства и примеры с решением из равенства:

Логарифм - формулы, свойства и примеры с решением

Решение:

Логарифм - формулы, свойства и примеры с решением

Логарифм - формулы, свойства и примеры с решением

Поскольку Логарифм - формулы, свойства и примеры с решением

Ответ. Логарифм - формулы, свойства и примеры с решением

Пример №8

Вычислите Логарифм - формулы, свойства и примеры с решением если Логарифм - формулы, свойства и примеры с решением

Решение:

Логарифм - формулы, свойства и примеры с решением

Ответ. Логарифм - формулы, свойства и примеры с решением

  • Корень из числа – нахождение и вычисление
  • Теория множеств – виды, операции и примеры
  • Числовые множества
  • Вектор – определение и основные понятия
  • Бесконечно убывающая геометрическая прогрессия
  • Периодические дроби
  • Степень с рациональным показателем
  • Степень с действительным показателем

Все знакомы, что такое степень числа (если нет, то вам сюда). В таблице приведены различные степени числа 2. Глядя на таблицу, ясно, что, например, число 32 – это 2 в пятой степени, то есть двойка, умноженная на саму себя пять раз.

Теперь при помощи этой таблицы введем понятие логарифма.

Логарифм от числа 32 по основанию 2 ((log_{2}(32))) – это в какую степень нужно возвести двойку, чтобы получить 32. Из таблицы видно, что 2 нужно возвести в пятую степень. Значит наш логарифм равен 5:

$$ log_{2}(32)=5;$$

Аналогично, глядя в таблицу получим, что:

$$log_{2}(4)=2;$$
$$log_{2}(8)=3;$$
$$log_{2}(16)=4;$$
$$log_{2}(64)=6;$$
$$log_{2}(128)=7.$$

Естественно, логарифм бывает не только по основанию 2, а по любым основаниям больших 0 и неравных 1. Можете так же создавать таблицы для разных чисел. Но, конечно, со временем вы это будете делать в уме.

Теперь дадим определение логарифма в общем виде:

Логарифмом положительного числа (b) по основанию положительно числа (a) называется степень (c), в которую нужно возвести число (a), чтобы получить (b)

$$log_{a}(b)=c;$$
$$a^{c}=b.$$

Будьте внимательны! В первое время обычно путают, что такое основание и то, что стоит под логарифмом (аргумент). Логарифм – это всегда функция, зависящая от двух переменных. Чтобы их не путать, помните определение логарифма – это степень, в которую нужно возвести основание, чтобы получить аргумент.

Но, конечно, вы часто будете сталкиваться не с такими простыми логарифмами, как в примерах с двойкой, а очень часто будет, что логарифм нельзя в уме посчитать. Действительно, что скажете про логарифм пяти по основанию два:

$$log_{2}(5)=???$$

Как его посчитать? При помощи калькулятора. Он нам покажет, что такой логарифм равен иррациональному числу:

$$log_{2}(5)=2,32192809…$$

Или логарифм шести по основанию 4:

$$log_{4}(6)= 1.2924812…$$

На уроках математики пользоваться калькулятором нельзя, поэтому на экзаменах и контрольных принято оставлять такие логарифмы в виде логарифма – не считая его, это не будет ошибкой!

Но иногда можно столкнуться с заданием, где нужно примерно оценить значение логарифма – это очень просто! Давайте для примера оценим логарифм (log_{4}(6)). Необходимо подобрать слева и справа от 6 такие ближайшие числа, логарифм от которых мы сможем посчитать, другими словами, надо найти степени 4-ки ближайшие к 6-ке:

$$ log_{4}(4) lt log_{4}(6) lt log_{4}(16);$$
$$ 1 lt log_{4}(6) lt 2. $$

Значит (log_{4}(6)) принадлежите промежутку от 1 до 2:

$$ log_{4}(6) in (1;2). $$

Как посчитать логарифм

Перед тем, как научиться считать логарифмы, нужно ввести несколько ограничений. Дело в том, что функция логарифма (log_{a}(b)) существует только при положительных значениях основания (a) и аргумента (b). И кроме этого на основание накладывается условие, что оно не должно быть равно (1).

$$ log_{a}(b) quad существует,;при quad a gt 0; ;b gt 0 ;a neq 1.$$

Почему так? Это следует из определения показательной функций. Показательная функция не может быть (0). А основание не равно (1), потому что тогда логарифм теряет смысл – ведь (1) в любой степени это будет (1).

При этих ограничениях логарифм существует.

В дальнейшем при решении различных логарифмических уравнений и неравенств вам это пригодится для ОДЗ.

Обратите внимание, что само значение логарифма может быть любым. Это же степень, а степень может быть любой – отрицательной, рациональной, иррациональной и т.д.

$$log_{3}(frac{1}{3})=-1;$$

Так как (вспоминайте определение отрицательной степени)

$$3^{-1}=frac{1}{3};$$

Теперь давайте разберем общий алгоритм вычисления логарифмов:

  • Во-первых, постарайтесь представить основание и аргумент (то, что стоит под логарифмом) в виде степеней с одинаковым основанием. Параллельно с этим избавляемся от всех десятичных дробей – переводим их в обыкновенные.
  • Разобраться в какую степень (x) нужно возвести основание, чтобы получить аргумент. Когда у вас там и там степени с одинаковым основанием, это сделать довольно просто.
  • (x) и будет искомым значением логарифма.

Давайте разберем на примерах.

Пример 1. Посчитать логарифм (9) по основанию (3): (log_{3}(9))

  • Сначала представим аргумент и основание в виде степени тройки:
    $$ 3=3^1, qquad 9=3^2;$$
  • Теперь надо разобраться в какую степень (x) нужно возвести (3^1), чтобы получить (3^2)
    $$ (3^1)^x=3^2, $$
    $$ 3^{1*x}=3^2, $$
    $$ 1*x=2,$$
    $$ x=2.$$
  • Вот мы и решили:
    $$log_{3}(9)=2.$$

Пример 2. Вычислить логарифм (frac{1}{125}) по основанию (5): (log_{5}(frac{1}{125}))

  • Представим аргумент и основание в виде степени пятерки:
    $$ 5=5^1, qquad frac{1}{125}=frac{1}{5^3}=5^{-3};$$
  • В какую степень (x) надо возвести (5^1), чтобы получить (5^{-3}):
    $$ (5^1)^x=5^{-3}, $$
    $$ 5^{1*x}=5^{-3},$$
    $$1*x=-3,$$
    $$x=-3.$$
  • Получили ответ:
    $$ log_{5}(frac{1}{125})=-3.$$

Пример 3. Вычислить логарифм (4) по основанию (64): (log_{64}(4))

  • Представим аргумент и основание в виде степени двойки:
    $$ 64=2^6, qquad 4=2^2;$$
  • В какую степень (x) надо возвести (2^6), чтобы получить (2^{2}):
    $$ (2^6)^x=2^{2}, $$
    $$ 2^{6*x}=2^{2},$$
    $$6*x=2,$$
    $$x=frac{2}{6}=frac{1}{3}.$$
  • Получили ответ:
    $$ log_{64}(4)=frac{1}{3}.$$

Пример 4. Вычислить логарифм (1) по основанию (8): (log_{8}(1))

  • Представим аргумент и основание в виде степени двойки:
    $$ 8=2^3 qquad 1=2^0;$$
  • В какую степень (x) надо возвести (2^3), чтобы получить (2^{0}):
    $$ (2^3)^x=2^{0}, $$
    $$ 2^{3*x}=2^{0},$$
    $$3*x=0,$$
    $$x=frac{0}{3}=0.$$
  • Получили ответ:
    $$ log_{8}(1)=0.$$

Пример 5. Вычислить логарифм (15) по основанию (5): (log_{5}(15))

  • Представим аргумент и основание в виде степени пятерки:
    $$ 5=5^1 qquad 15= ???;$$
    (15) в виде степени пятерки не представляется, поэтому этот логарифм мы не можем посчитать. У него значение будет иррациональное. Оставляем так, как есть:
    $$ log_{5}(15).$$

Внимание!

Как понять, что некоторое число (a) не будет являться степенью другого числа (b). Это довольно просто – нужно разложить (a) на простые множители.

$$16=2*2*2*2=2^4,$$

(16) разложили, как произведение четырех двоек, значит (16) будет степенью двойки.

$$ 48=6*8=3*2*2*2*2,$$

Разложив (48) на простые множители, видно, что у нас есть два множителя (2) и (3), значит (48) не будет степенью.

Теперь поговорим о наиболее часто встречающихся логарифмах. Для них даже придумали специально названия – десятичный логарифм и натуральный логарифм. Давайте разбираться.

Десятичный логарифм

На самом деле, все просто. Десятичный логарифм – это любой обыкновенный логарифм, но с основанием 10. Обозначается – (lg(a)).

Пример 6

$$ log_{10}(100)= lg(100)=2;$$
$$log_{10}(1000)=lg(1000)=3;$$
$$log_{10}(10)=lg(10)=1.$$

Натуральный логарифм

Натуральным логарифмом называется логарифм по основанию (e). Обозначение – (ln(x)). Что такое (e)? Так обозначают экспоненту, число-константу, равную, примерно, (2,718281828459…). Это число известно тем, что используется в многих математических законах. Просто запомните, что логарифмы с основанием (e) часто встречаются, и поэтому им придумали специальное название – натуральный логарифм.

Пример 7

$$ log_{e}(e^2)=ln(e^2)=2;$$
$$ log_{e}(e)=ln(e)=1;$$
$$ log_{e}(e^5)=ln(e^5)=5.$$

Натуральные и десятичные логарифмы подчиняются тем же самым свойствам и правилам, что и обыкновенные логарифмы.

У логарифмов есть несколько свойств, по которым можно проводить преобразования и вычисления. Кроме этих свойств, никаких операций с логарифмами делать нельзя.

Свойства логарифмов

$$1. ; log_{a}(1)=0;$$
$$2. ; log_{a}(a)=1;$$
$$3. ; log_{a}(b*c)=log_{a}(b)+ log_{a}(c);$$
$$4. ; log_{a}(frac{b}{c})= log_{a}(b)- log_{a}(c);$$
$$5. ; log_{a}(b^m)= m*log_{a}(b);$$
$$6. ; log_{a^m}(b)=frac{1}{m}* log_{a}(b);$$
$$ 7. ; log_{a}(b)=frac{ log_{c}(b)}{ log_{c}(a)}, ; b gt 0; ; c gt 0; ; c neq 1; $$
$$ 8. ; log_{a}(b)=frac{1}{log_{b}(a)};$$
$$ 9. ; a^{ log_{a}(b)}=b.$$

Давайте разберем несколько примеров на свойства логарифмов.

Пример 8. Воспользоваться формулой (3). Логарифм от произведения – это сумма логарифмов.

$$log_{a}(b*c)=log_{a}(b)+ log_{a}(c);$$
$$ log_{3}(12)=log_{3}(3*4)=log_{3}(3)+log_{3}(4)=1+log_{3}(4);$$
$$ log_{3}(2.7)+log_{3}(10)=log_{3}(2.7*10)=log_{3}(27)=3;$$

Пример 9. Воспользоваться формулой (4). Логарифм от частного – это разность логарифмов.

$$ log_{a}(frac{b}{c})= log_{a}(b)- log_{a}(c);$$
$$ log_{7}(98)-log_{7}(2)=log_{7}(frac{98}{2})=log_{7}(49)=2;$$

Пример 10. Формула (5,6). Свойства степени.

$$log_{a}(b^m)= m*log_{a}(b);$$
$$log_{a^m}(b)=frac{1}{m}* log_{a}(b);$$

Логично, что будет выполняться и такое соотношение:

$$log_{a^m}(b^n)=frac{n}{m}* log_{a}(b);$$

И если (m=n), то:

$$log_{a^m}(b^m)=frac{m}{m}* log_{a}(b);=log_{a}(b)$$
$$log_{4}(9)=log_{2^2}(3^2)=log_{2}(3);$$

Пример 11. Формулы (7,8). Переход к другому основанию.

$$ log_{a}(b)=frac{ log_{c}(b)}{ log_{c}(a)}, ; b gt 0;c gt 0;c neq 1; $$
$$ log_{a}(b)=frac{1}{log_{b}(a)};$$
$$log_{4}(5)=frac{1}{log_{5}(4)};$$
$$log_{4}(5)=frac{log_{7}(5)}{log_{7}(4)};$$

Логарифмом положительного числа (c) по основанию (a) ((a>0, aneq1)) называется показатель степени (b), в которую надо возвести основание (a), чтобы получить число (c) ((c>0)), т.е.

(a^{b}=c)       (Leftrightarrow)       (log_{a}{c}=b)

Объясним проще. Например, (log_{2}{8}) равен степени, в которую надо возвести (2), чтоб получить (8). Отсюда понятно, что (log_{2}{8}=3).

Примеры:

                 

(log_{5}{25}=2)

         

т.к. (5^{2}=25)

(log_{3}{81}=4)

 

т.к. (3^{4}=81)

 

(log_{2})(frac{1}{32})(=-5)

 

т.к. (2^{-5}=)(frac{1}{32})

Аргумент и основание логарифма

Любой логарифм имеет следующую «анатомию»:

Аргумент и основание логарифма.png

Аргумент логарифма обычно пишется на его уровне, а основание – подстрочным шрифтом ближе к знаку логарифма. А читается эта запись так: «логарифм двадцати пяти по основанию пять».

Как вычислить логарифм?

Чтобы вычислить логарифм – нужно ответить на вопрос: в какую степень следует возвести основание, чтобы получить аргумент?

Например, вычислите логарифм:  а) (log_{4}{16})     б) (log_{3})(frac{1}{3})     в) (log_{sqrt{5}}{1})     г) (log_{sqrt{7}}{sqrt{7}})      д) (log_{3}{sqrt{3}})

а) В какую степень надо возвести (4), чтобы получить (16)? Очевидно во вторую. Поэтому: 

(log_{4}{16}=2)

б) В какую степень надо возвести (3), чтобы получить (frac{1}{3})? В минус первую, так как именно отрицательная степень «переворачивает дробь» (здесь и далее пользуемся свойствами степени).

(log_{3})(frac{1}{3})(=-1)

в) В какую степень надо возвести (sqrt{5}), чтобы получить (1)? А какая степень делает любое число единицей? Ноль, конечно!

(log_{sqrt{5}}{1}=0)

г) В какую степень надо возвести (sqrt{7}), чтобы получить (sqrt{7})? В первую – любое число в первой степени равно самому себе.

(log_{sqrt{7}}{sqrt{7}}=1)

д) В какую степень надо возвести (3), чтобы получить (sqrt{3})? Из свойств степени мы знаем, что корень – это дробная степень, и значит квадратный корень – это степень (frac{1}{2}).

(log_{3}{sqrt{3}}=)(frac{1}{2})

Пример: Вычислить логарифм (log_{4sqrt{2}}{8})

Решение:

(log_{4sqrt{2}}{8}=x)

                              

Нам надо найти значение логарифма, обозначим его за икс. Теперь воспользуемся определением логарифма:
(log_{a}{c}=b)       (Leftrightarrow)       (a^{b}=c)

((4sqrt{2})^{x}=8)

 

Что связывает (4sqrt{2}) и (8)? Двойка, потому что и то, и другое число можно представить степенью двойки:
(4=2^{2})         (sqrt{2}=2^{frac{1}{2}})         (8=2^{3})

({(2^{2}cdot2^{frac{1}{2}})}^{x}=2^{3})

 

Слева воспользуемся свойствами степени: (a^{m}cdot a^{n}=a^{m+n}) и ((a^{m})^{n}=a^{mcdot n})

(2^{frac{5}{2}x}=2^{3})

 

Основания равны, переходим к равенству показателей

(frac{5x}{2})(=3)

Умножим обе части уравнения на (frac{2}{5})

(x=1,2)

Получившийся корень и есть значение логарифма

Ответ: (log_{4sqrt{2}}{8}=1,2)

Foxford

Зачем придумали логарифм?

Чтобы это понять, давайте решим уравнение: (3^{x}=9). Просто подберите (x), чтобы равенство сработало. Конечно, (x=2).

А теперь решите уравнение: (3^{x}=8).Чему равен икс? Вот в том-то и дело.

Самые догадливые скажут: «икс чуть меньше двух». А как точно записать это число? Для ответа на этот вопрос и придумали логарифм. Благодаря ему, ответ здесь можно записать как (x=log_{3}{8}).

Хочу подчеркнуть, что (log_{3}{8}), как и любой логарифм – это просто число. Да, выглядит непривычно, но зато коротко. Потому что, если бы мы захотели записать его в виде десятичной дроби, то оно выглядело бы вот так: (1,892789260714…..)

Пример: Решите уравнение (4^{5x-4}=10)

Решение:

(4^{5x-4}=10)

                              

(4^{5x-4}) и (10) никак к одному основанию не привести. Значит тут не обойтись без логарифма.

Воспользуемся определением логарифма:
(a^{b}=c)       (Leftrightarrow)       (log_{a}{c}=b)

(log_{4}{10}=5x-4)

 

Зеркально перевернем уравнение, чтобы икс был слева

(5x-4=log_{4}{10})

 

Перед нами линейное уравнение. Перенесем (4) вправо.

И не пугайтесь логарифма, относитесь к нему как к обычному числу. 

(5x=log_{4}{10}+4)

 

Поделим уравнение на 5

(x=)(frac{log_{4}{10}+4}{5})

Вот наш корень. Да, выглядит непривычно, но ответ не выбирают.

Ответ: (frac{log_{4}{10}+4}{5})

Десятичный и натуральный логарифмы

Как указано в определении логарифма, его основанием может быть любое положительное число, кроме единицы ((a>0, aneq1)). И среди всех возможных оснований есть два встречающихся настолько часто, что для логарифмов с ними придумали особую короткую запись:

Натуральный логарифм: логарифм, у которого основание – число Эйлера (e) (равное примерно (2,7182818…)), и записывается такой логарифм как (ln{a}).

То есть, (ln{a}) это то же самое, что и (log_{e}{a}), где (a) – некоторое число.

Десятичный логарифм: логарифм, у которого основание равно 10, записывается (lg{a}).

То есть, (lg{a}) это то же самое, что и (log_{10}{a}), где (a) – некоторое число.

Основное логарифмическое тождество

У логарифмов есть множество свойств. Одно из них носит название «Основное логарифмическое тождество» и выглядит вот так:

Это свойство вытекает напрямую из определения. Посмотрим как именно эта формула появилась.

Вспомним краткую запись определения логарифма:

если     (a^{b}=c),    то   (log_{a}{c}=b)

То есть, (b) – это тоже самое, что (log_{a}{c}). Тогда мы можем в формуле (a^{b}=c) написать (log_{a}{c}) вместо (b). Получилось (a^{log_{a}{c}}=c) – основное логарифмическое тождество.

Остальные свойства логарифмов вы можете найти здесь. С их помощью можно упрощать и вычислять значения выражений с логарифмами, которые «в лоб» посчитать сложно.

Пример: Найдите значение выражения (36^{log_{6}{5}})

Решение:

(36^{log_{6}{5}}=)

                              

Сразу пользоваться свойством (a^{log_{a}{c}}=c) мы не можем, так как в основании степени и в основании логарифма – разные числа. Однако мы знаем, что (36=6^{2})

(=(6^{2})^{log_{6}{5}}=)

 

Зная формулу ((a^{m})^{n}=a^{mcdot n}), а так же то, что множители можно менять местами, преобразовываем выражение

(=6^{2cdotlog_{6}{5}}=6^{log_{6}{5}cdot2}=(6^{log_{6}{5}})^{2}=)

 

Вот теперь спокойно пользуемся основным логарифмическим тождеством.

(=5^{2}=25)

     

Ответ готов.

Ответ: (25)

Как число записать в виде логарифма?

Как уже было сказано выше – любой логарифм это просто число. Верно и обратное: любое число может быть записано как логарифм. Например, мы знаем, что (log_{2}{4}) равен двум. Тогда можно вместо двойки писать (log_{2}{4}). 

Но (log_{3}{9}) тоже равен (2), значит, также можно записать (2=log_{3}{9})  . Аналогично и с (log_{5}{25}), и с (log_{9}{81}), и т.д. То есть, получается  

(2=log_{2}{4}=log_{3}{9}=log_{4}{16}=log_{5}{25}=log_{6}{36}=log_{7}{49}…)

Таким образом, если нам нужно, мы можем где угодно (хоть в уравнении, хоть в выражении, хоть в неравенстве) записывать двойку как логарифм с любым основанием – просто в качестве аргумента пишем основание в квадрате.

Точно также и с тройкой – ее можно записать как (log_{2}{8}), или как (log_{3}{27}), или как (log_{4}{64})… Здесь мы как аргумент пишем основание в кубе:

(3=log_{2}{8}=log_{3}{27}=log_{4}{64}=log_{5}{125}=log_{6}{216}=log_{7}{343}…)

И с четверкой:

(4=log_{2}{16}=log_{3}{81}=log_{4}{256}=log_{5}{625}=log_{6}{1296}=log_{7}{2401}…)

И с минус единицей:

(-1=) (log_{2})(frac{1}{2})(=) (log_{3})(frac{1}{3})(=) (log_{4})(frac{1}{4})(=) (log_{5})(frac{1}{5})(=) (log_{6})(frac{1}{6})(=) (log_{7})(frac{1}{7})(…)

И с одной третьей:

(frac{1}{3})(=log_{2}{sqrt[3]{2}}=log_{3}{sqrt[3]{3}}=log_{4}{sqrt[3]{4}}=log_{5}{sqrt[3]{5}}=log_{6}{sqrt[3]{6}}=log_{7}{sqrt[3]{7}}…)

И так далее.

Любое число (a) может быть представлено как логарифм с основанием (b):       (a=log_{b}{b^{a}})

Пример: Найдите значение выражения (frac{log_{2}{14}}{1+log_{2}{7}})

Решение:

(frac{log_{2}{14}}{1+log_{2}{7}})(=)

          

Превращаем единицу в логарифм с основанием (2): (1=log_{2}{2})

(=)(frac{log_{2}{14}}{log_{2}{2}+log_{2}{7}})(=)

 

Теперь пользуемся свойством логарифмов:
(log_{a}{b}+log_{a}{c}=log_{a}{(bc)})

(=)(frac{log_{2}{14}}{log_{2}{(2cdot7)}})(=)(frac{log_{2}{14}}{log_{2}{14}})(=)

 

В числителе и знаменателе одинаковые числа – их можно сократить.

(=1)

 

Ответ готов.

Ответ: (1)

Смотрите также:
Логарифмические уравнения
Логарифмические неравенства

Добавить комментарий