Пусть
функция
задана на множестве.
Определение
15.1. Точка
называется точкой глобального минимума
(максимума) функции,
если
.
(15.1)
Определение
15.2. Точка
называется точкой локального минимума
(максимума) функции,
если
.
(15.2)
Точки
глобального (локального) минимума и
максимума носят название точек
глобального (локального) экстремума.
Очевидно, что если
– точка глобального (локального) минимума
функции,
то– точка глобального (локального) максимума
функциии наоборот. Задачи нахождения точек
глобального и локального экстремума
функцииназываются экстремальными задачами
для этой функции. При этом сами точки
экстремума носят название решений
экстремальных задач. Заметим, что если
внутренняя точкамножестваG
есть точка глобального экстремума
функции
,
тоесть точка локального экстремума этой
функции. Обратное утверждение, вообще
говоря, неверно.
Формально
экстремальная задача на минимум
(максимум) функции
записывается так
,
.
(15.3)
Экстремальная
задача на минимум или максимум записывается
в виде
,
.
(15.4)
При
этом множество D
называется ограничением для данной
экстремальной задачи. Если
,
то (15.3) или (15.4) носит название задачи на
безусловный экстремум, а если,
то (15.3) или (15.4) носит название задачи на
условный экстремум. В зависимости от
способа построения подмножестваD
различают классические и неклассические
задачи на условный экстремум. В случае
строгих неравенств в (15.1) и (15.2) говорят
о строгом минимуме или максимуме.
В
настоящем параграфе будут рассмотрены
необходимые и достаточные условия
экстремума функции одной переменной.
Теорема
15.1.
(Необходимое
условие локального экстремума).
Если функция
в точкеимеет локальный экстремум, то производнаяфункциив этой точке равна нулю или не существует.
Доказательство.
Если
– точка локального экстремума функции,
то значениеявляется наименьшим или наибольшим
среди всех значений этой функции в
некоторой окрестности точки.
В самой точкефункциядифференцируема или нет. В первом случае
по теореме Ферма производная.
Приведем
пример недифференцируемой функции,
имеющей локальный экстремум. Функция
(см. рис. 15.1) в точкеимеет локальный минимум, но не
дифференцируема в этой точке.
Рис.
15.1
Обозначим
через
область определения функции.
Определение
15.3.
Точка
называется критической точкой функции,
если производная этой функции в точкеравна нулю или не существует.
Рис.
15.2
Согласно
теореме 15.1, локальный экстремум функция
может иметь только в критической точке,
однако не каждая критическая точка
функции
является точкой локального экстремума
этой функции. Например, производнаяфункциив точкеравна нулю, но локального экстремума в
этой точке нет (см. рис. 15.2).
В
связи с тем, что не во всякой критической
точке функция имеет локальный безусловный
экстремум, нужно дополнительно исследовать
вопрос о существовании локального
экстремума в критической точке. Для
этого следует установить достаточные
условия существования локального
экстремума.
Теорема
15.2.
(Достаточное
условие локального экстремума первого
рода). Пусть
в окрестности
точкифункциянепрерывна, а в проколотой окрестностиэтой точки дифференцируема. Тогда, если
в пределах окрестностипроизводнаяотрицательна (положительна) слева от
точкии положительна (отрицательна) справа
от точки,
то функцияв этой точке имеет локальный минимум
(максимум). Если же производнаяимеет один и тот же знак слева и справа
от точки,
то локального экстремума в этой точке
нет.
Доказательство.
1. Пусть производная
в проколотой окрестностиотрицательна (положительна) слева от
точкии положительна (отрицательна) справа
от точки.
Требуется доказать, что значениеявляется наименьшим (наибольшим) среди
всех значенийв окрестности.
Обозначим черезлюбое фиксированное значение аргумента
из окрестности.
Достаточно показать, что
.
(15.5)
.
(15.6)
Пусть
сначала
.
Применяя к функциина отрезкетеорему Лагранжа, будем иметь
,
(15.7)
где
с
некоторая точка интервала
.
Поскольку производнаяотрицательна (положительна) и,
то правая часть (15.7) и, следовательно,
левая часть (15.7) отрицательна (положительна),
т.е. справедливо (15.5) ((15.6)). Аналогичным
образом доказывается (15.5) ((15.6)) при.
2.
Пусть теперь производная
имеет один и тот же знак слева и справа
от точкии пусть– любое фиксированное значение аргумента
из окрестности.
Повторяя проведенные выше рассуждения,
получаем, что разностьимеет разные знаки прии при.
Это доказывает отсутствие локального
экстремума в точке.
Теорема
15.3.
(Достаточное
условие локального экстремума второго
рода). Если
функция
дважды дифференцируема в точке,
причем,
а,
то– точка локального безусловного минимума
(максимума).
Доказательство.
Для определенности рассмотрим случай
.
По определению производной второго
порядка
.
Отсюда
в силу условий теоремы ()
.
(15.8)
По
свойству предела на основании (15.8)
существует проколотая окрестность
точки,
в пределах которой справедливо неравенство
.
(15.9)
В
силу (15.9) в указанной окрестности
производная
отрицательна прии положительна при.
Но тогда по теореме 15.2 функцияимеет в точкелокальный минимум. Случайрассматривается аналогично.
Теорема
15.4 (
Достаточное условие локального экстремума
п-го рода).
Если функция
в некоторой окрестноститочкиимеет производную порядка 2п,
где п
– лобой фиксированный номер, причем
указанная производная непрерывна в
самой точке
и, кроме того,
,
,…,,,
(15.10)
то
– точка локального безусловного минимума
(максимума) этой функции.
Доказательство.
Для определенности рассмотрим случай
(в случаерассуждения аналогичные). Так как
производнаянепрерывна в точкеи положительна в этой точке, то по теореме
об устойчивости знака непрерывной
функции найдется некоторая окрестностьточки,
в пределах которой эта производная
положительна. Разложим функциюв окрестностипо формуле Тейлора с остаточным членом
в форме Лагранжа. Учитывая соотношения
(15.10), будем иметь
или
,
(15.11)
где
с
лежит между
их.
Поскольку значение
положительно, то правая часть (15.11), а
следовательно, и левая часть положительна.
Это и доказывает, что функцияв точкеимеет локальный минимум.
Соседние файлы в папке Лекции. Математика
- #
- #
- #
- #
- #
- #
Содержание:
- Необходимое условие экстремума
- Первое достаточное условие экстремума
- Второе достаточное условие экстремума
Определение
Точка $x_{0}$ называется точкой локального максимума
функции $f(x)$, если существует такая окрестность
этой точки, что для всех $x$ из этой окрестности
выполняется неравенство: $f(x) leq fleft(x_{0}right)$.
Точка $x_{0}$ называется точкой локального минимума
функции $f(x)$, если существует такая окрестность этой
точки, что для всех $x$ из этой окрестности
$f(x) geq fleft(x_{0}right)$.
Значение функции в точке максимума называется локальным максимумом, значение функции в точке минимума –
локальным минимумом данной функции. Локальные максимум и минимум функции называются локальными экстремумами.
Точка $x_{0}$ называется точкой строгого локального
максимума функции $y=f(x)$, если для всех
$x$ из окрестности этой точки будет справедливо
строгое неравенство $f(x) lt fleft(x_{0}right)$.
Точка $x_{0}$ называется точкой строгого локального
минимума функции $y=f(x)$, если для всех
$x$ из окрестности этой точки будет
справедливо строгое неравенство $f(x)>fleft(x_{0}right)$.
Наибольшее или наименьшее значение функции на промежутке называется глобальным экстремумом.
Замечание
Глобальный экстремум может достигаться либо в точках локального экстремума, либо на концах отрезка.
Необходимое условие экстремума
Теорема
(Необходимое условие экстремума)
Если функция $y=f(x)$ имеет экстремум в точке
$x_{0}$, то ее производная
$f^{prime}left(x_{0}right)$ либо равна нулю, либо не существует.
Точки, в которых производная равна нулю: $f^{prime}(x)=0$,
называются стационарными точками функции.
Точки, в которых выполняется необходимое условие экстремума для непрерывной функции, называются
критическими точками этой функции. То есть критические точки – это либо стационарные точки (решения
уравнения $f^{prime}(x)=0$), либо это точки, в которых производная
$f^{prime}(x)$ не существует.
Замечание
Не в каждой своей критической точке функция обязательно имеет максимум или минимум.
Первое достаточное условие экстремума
Теорема
(Первое достаточное условие экстремума)
Пусть для функции $y=f(x)$ выполнены следующие условия:
- функция непрерывна в окрестности точки $x_{0}$;
- $f^{prime}left(x_{0}right)=0$ или $f^{prime}left(x_{0}right)$ не существует;
- производная $f^{prime}(x)$ при переходе через точку $x_{0}$ меняет свой знак.
Тогда в точке $x=x_{0}$ функция
$y=f(x)$ имеет экстремум, причем это минимум, если
при переходе через точку $x_{0}$ производная меняет свой
знак с минуса на плюс; максимум, если при переходе через точку $x_{0}$
производная меняет свой знак с плюса на минус.
Если производная $f^{prime}(x)$ при переходе через точку
$x_{0}$ не меняет знак, то экстремума в точке
$x=x_{0}$ нет.
Таким образом, для того чтобы исследовать функцию $y=f(x)$
на экстремум, необходимо:
- найти производную $f^{prime}(x)$;
- найти критические точки, то есть такие значения $x$,
в которых $f^{prime}(x)=0$ или
$f^{prime}(x)$ не существует; - исследовать знак производной слева и справа от каждой критической точки;
- найти значение функции в экстремальных точках.
Пример
Задание. Исследовать функцию $y(x)=x^{4}-1$ на экстремум.
Решение. Находим производную заданной функции:
$y^{prime}=left(x^{4}-1right)^{prime}=4 x^{3}$
Далее ищем критические точки функции, для этого решаем уравнение $y^{prime}(x)=0$:
$y^{prime}=4 x^{3}=0 Rightarrow x=0$
Первая производная определена во всех точках. Таким образом, имеем одну критическую точку
$x=0$. Наносим эту точку на координатную прямую и
исследуем знак производной слева и справа от этой точки (для этого из каждого промежутка берем произвольное
значение и находим значение производной в выбранной точке, определяем знак полученной величины):
Так как при переходе через точку $x=0$ производная
сменила свой знак с “-” на “+”, то в этой точке функция достигает минимума (или минимального значения), причем
$y_{min }=y(0)=0^{4}-1=-1$.
Замечание. Также можно определить интервалы
монотонности функции: так как на интервале
$(-infty ; 0)$ производная
$y^{prime}(x) lt 0$, то на этом интервале функция
$y(x)=x^{4}-1$ является убывающей; на интервале
$(0 ;+infty)$ производная
$y^{prime}(x)>0$, значит заданная функция возрастает на нем.
Ответ. $y_{min }=y(0)=-1$
Второе достаточное условие экстремума
Теорема
(Второе достаточное условие экстремума)
Пусть для функции $y=f(x)$ выполнены следующие условия:
- она непрерывна в окрестности точки $x_{0}$;
- первая производная $f^{prime}(x)=0$ в точке $x_{0}$;
- $f^{prime prime}(x) neq 0$ в точке $x_{0}$ .
Тогда в точке $x_{0}$ достигается экстремум,
причем, если $f^{prime prime}left(x_{0}right)>0$, то в точке
$x=x_{0}$ функция
$y=f(x)$ имеет минимум; если
$f^{prime prime}left(x_{0}right) lt 0$, то в точке
$x=x_{0}$ функция
$y=f(x)$ достигает максимум.
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Пример
Задание. Исследовать функцию $y(x)=frac{x^{2}-1}{x^{2}+1}$ на экстремум с помощью второй производной.
Решение. Находим первую производную заданной функции:
$y^{prime}(x)=left(frac{x^{2}-1}{x^{2}+1}right)^{prime}=frac{2 xleft(x^{2}+1right)-left(x^{2}-1right) cdot 2 x}{left(x^{2}+1right)^{2}}=frac{4 x}{left(x^{2}+1right)^{2}}$
Находим точки, в которых первая производная равна нулю:
$y^{prime}(x)=0 Rightarrow frac{4 x}{left(x^{2}+1right)^{2}}=0 Rightarrow x=0$
Вторая производная заданной функции:
$y^{prime prime}(x)=left(frac{4 x}{left(x^{2}+1right)^{2}}right)^{prime}=frac{4left(x^{2}+1right)^{2}-4 x cdot 2left(x^{2}+1right) cdot 2 x}{left(x^{2}+1right)^{4}}=$
$=-frac{4left(3 x^{2}-1right)}{left(x^{2}+1right)^{3}}$
В стационарной точке $x=0$ вторая производная
$y^{prime prime}(0)=-frac{4 cdot(-1)}{1^{3}}=4>0$, а значит, в этой точке функция достигает
минимум, причем $y_{min }=y(0)=frac{0^{2}-1}{0^{2}+1}=-1$.
Ответ. $y_{min }=y(0)=-1$
Остались вопросы?
Здесь вы найдете ответы.
Что подразумевается под понятием «экстремум»?
Экстремум представляет собой значение функции на определенном интервале в
момент достижения им минимального или максимального показания. Под
понятием «экстремумы» или по-другому минимумы/максимумы подразумевается
значение функции (у).
Точка экстремума – что это такое?
Если в определенной точке достигается экстремум или, иными словами,
максимальное/минимальное значение функции на заданном интервале, то эта
точка носит название точки экстремума. Из этого следует, что при
достижении минимума, точка экстремума будет названа точкой минимума, и,
наоборот, при достижении максимума эта точка будет называться точкой
максимума. В случае, когда указываются точки экстремумов (или
минимумов/максимумов) подразумеваются иксы, в которых достигаются
минимальные или максимальные значения.
Что имеется в виду под понятием «точка минимума функции»?
Любая точка x₀ будет определена в качестве точки минимума функции y = f(x)
при соблюдении условия о том, что имеется такая V, представляющая собой
окрестность (x₀ – V; x₀+V) упомянутой ранее точки, из которой для каждого
значения x <> x₀ действительно следующее неравенство:
f(x)>f(x₀).
Как описать точку минимума функции?
Под понятием «минимум функции» имеется в виду та точка на ней, в которой
функция имеет значение, являющееся наименьшим среди всех значений,
приобретаемых ею в любой из других соседних точек. Другими словами, это
означает, что в случае, когда функция, достигнув определенной точки,
прекращает падать, а, наоборот, наблюдается ее рост, то данная точка и
представляет собой точку ее минимума.
Каким образом можно вычислить значение функции y=x⁴-4x³+6x²-4x, которого она
достигает в точке своего минимума?
Для ответа на поставленный вопрос нужно отыскать точку минимума указанной
функции, в которой ее значение перестает падать. Это можно сделать
следующим образом:
y’ = 4x³ – 12x² + 12x – 4
Предположив, что минимальное значение данной функции равно 0, можно
переписать равенство в следующем виде:
4x³ – 12x² + 12x – 4 = 0
Сократим данное уравнение на 4:
x³ – 3x² + 3x – 1 = 0
Получившееся равенство также может быть записано в следующем виде после
перемены местами слагаемых:
(x³ – 1) + (-3x² + 3x) = 0
Распишем слагаемые в ином виде, чтобы избавиться от третьей степени:
(x – 1)(x² + x + 1) -3x(x – 1) = 0
Это же уравнение может выглядеть так:
(x -1)(x² + x + 1- 3x) = 0
Произведем сложение слагаемых х и -3х:
(x – 1) (x² -2x + 1) = 0
Теперь для упрощения можно переписать уравнение в таком виде:
(x – 1)(x-1)² = 0
Получившееся равенство:
(x – 1)³ = 0
В этом случае х = 1
-∞ 1 +∞
Знаками «+» и «-» обозначены значения производной.
После проведенных вычислений было установлено, что х = 1, что является
точкой минимума функции:
у = 1⁴- 4*1³ + 6*1² – 4*1 = 1 – 4 +6 – 4 = -1
Какие расчеты нужно произвести, для того чтобы вычислить точку максимума для
функции y = -x/x²+484?
Точкой максимума называется то значение х, достигнув которого, производная
начинает менять свой знак с плюса на минус. Зная это, можно перейти к
поиску точки максимума для функции, указанной в задании.
Для этого нужно начать с поиска производной, используя следующую формулу:
(U/V)’ = (U’V – UV’)/V²
Подставляем приведенные в задании значения и получаем:
y’ = (-(x² + 484) – 2x)/(x² + 484)² = (-x²-484 -2x)/(x² +484)²
Теперь следует приравнять производную к 0 и начать решать получившееся
уравнение:
(-x²-484 -2x)/(x² +484)² = 0
Упростим уравнение и получим:
(-x²-484 -2x) = 0
(x² +484)² ≠ 0
-x²-484 -2x = 0
Избавимся от минусов в уравнении:
x² + 2x +484 = 0
D < 0
В результате вычислений стало ясно, что корней нет. Это значит, что
невозможно поставить их на числовой прямой, для того чтобы проверить знаки
производной по соседству с этими точками. На основании этого можно сделать
вывод о том, что указанная в задании функция не имеет точек экстремума.
Что представляет собой точка максимума функции?
Под точкой максимума функции понимается та точка, в которой она достигает
значения, являющегося наибольшим среди тех значений, что достигаются ею в
соседних точках. Это означает, что в точке, при пересечении которой
функция прекращает расти, и наблюдается ее падение, и достигается ее
максимум.
Имеется график производной функции. Каким образом можно вычислить точки ее
максимума и минимума?
В случае, если имеется график производной функции, и при этом требуется
определить ее экстремумы, то необходимо вычислить точки пересечения этого
графика производной с осью Ох. По-другому они называются «нулями»
производной. В случае, когда, пересекая конкретную точку, график
производной восходит из области со знаком «-» в область со знаком «+», и в
это время производная меняет свой знак на противоположный, функция также
изменяется с убывания на рост. В этом случае данная точка, которая
пересекается графиком производной, представляет собой точку минимума. Если
же при пересечении графиком производной какой-либо точки он идет из
положительной в отрицательную область, а функция из возрастания меняется
на убывание, то речь идет о точке ее максимума.
Как можно вычислить экстремумы и точки экстремума функции y=4x⁴+2x²+1?
Для того чтобы найти ответ на поставленный вопрос, сначала нужно
приравнять функцию к 0:
у = 0
Это же означает, что:
4X⁴ + 2X² + 1 = 0
Введем обозначения:
Х2 = А, при этом А больше 0.
С учетом введенных обозначений равенство будет иметь следующий вид:
4A² + 2A + 1 = 0
D = 4 – 4 = 0 ; √ D = 0
A = (- 2) : 4 = (- 0,5) (< 0) 1
Очевидно, что корней нет.
Ответ: х = 0, у = 1.
Дана функция y = x² -3x+2. Как можно вычислить экстремум этой функции?
Имеется функция y = x² -3x+2, которую также можно переписать в следующем
виде:
у = -0,25+ (x-1,5)²
Отсюда следует, что:
miny = – 0,25 при условии, что х-1,5 = 0
Можно сделать вывод о том, что х = 1,5.
Запишем производную данной функции:
y ‘= (x² -3x+2)’ =2x -3
А затем приравняем ее к 0:
y ‘ = 0, значит:
2x -3 = 0.
Это позволяет сделать вывод о том, что:
x = 3/2.
Получается, что, если x < 3/2, то производная y’ < 0, и при этом функция убывает.
Если же x >3/2, то производная y’ > 0, и в этом случае функция возрастает.
x =3/2=1,5 – это единственная точка экстремума, которая является точкой
минимума.
miny =(1,5)² -3*1,5+2 = -0,25.
Как раскрыть понятие «критическая точка функции»?
Критическая точка функции представляет собой ту точку, при пересечении с
которой производная данной функции становится равной 0, либо она вовсе не
существует.
Возможно ли привести доказательства того, что функция f(x) =2x – 3/x не
может иметь критической точки?
Для начала нужно определить, что под критической точкой функции
подразумевается та точка, при пересечении с которой производная
приобретает нулевое значение, либо же эта производная просто не существует
в этой точке, что означает, что функцию в данной точке невозможно
дифференцировать.
Проверим, применимо ли это утверждение к упомянутой в задании функции:
f ‘(x) =(sin2x – 3x)’ = 2sin2x-3
Приравняем производную функции к 0:
f ‘(x) = 0, это значит, что 2sin2x-3 = 0.
Следовательно:
sin2x= 3 2 не имеет решения
Ответ: заданная функция не имеет критических точек и существует при любых
х.
Каким способом можно определить критические точки функции y=|x|/1+x²?
Под критическими точками функции понимаются те точки, в которых ее
производная равна 0 или вовсе не существует.
В задании дана функция:
y=|x|/(1+x²)
Предположим, что x<0, тогда:
y=-x/(1+x²)
Запишем производную функции и приравняем ее к 0:
y`=(-1-x²+2x²)/(1+x²)²=(x²-1)/(1+x²)²=(x-1)(x+1)/(1+x²)²=0
х = 1 не соответствует условию, значит х = -1.
Теперь предположим, что x≥0.
Снова записываем производную имеющейся функции и приравниваем ее к 0:
y`=(1+x²-2x²)/(1+x²)²=(1-x²)/(1+x²)²=(1-x)(x+1)/(1+x²)²=0
х = – 1 не отвечает условию, значит х = 1.
Ответ: х = 1, х = -1.
Читать дальше: наибольшее и наименьшее значение функции.
Отыскание локальных максимумов и минимумов не обходится без дифференцирования и является необходимым при исследовании функции и построении ее графика.
Точка называется точкой локального максимума (или минимума) функции , сли существует такой окрестность этой точки, принадлежащий области определения функции, и для всех из этого окрестности выполняется неравенство (или ).
Точки максимума и минимума называются точками экстремума функции, а значения функции в экстремальных точках – ее экстремальными значениями.
НЕОБХОДИМОЕ УСЛОВИЕ ЛОКАЛЬНОГО ЭКСТРЕМУМА:
Если функция имеет в точке локальный экстремум, то либо производная равна нулю , либо не существует.
Точки которые удовлетворяют выписанным выше требованиям называют критическими точками.
Однако в каждой критической точке функция имеет экстремум. Ответ на вопрос: будет критическая точка точкой экстремума дает следующая теорема.
ДОСТАТОЧНОЕ УСЛОВИЕ СУЩЕСТВОВАНИЯ ЭКСТРЕМУМА ФУНКЦИИ
Теорема І. Пусть функция непрерывна в некотором интервале, содержащем критическую точку и дифференцированная во всех точках этого интервала (за исключением, возможно, самой точки ).
Тогда для точки функция имеет максимум, если для аргументов выполняется условие, что производная больше нуля , а для условие – производная меньше нуля .
Если же для производная меньше нуля , а для больше нуля , то для точки функция имеет минимум.
Теорема ІІ. Пусть функция дважды дифференцируема в окрестности точки и производная равна нулю . Тогда в точке функция имеет локальный максимум, если вторая производная меньше нуля и локальный минимум, если наоборот .
Если же вторая производная равна нулю , то точка может и не быть точкой экстремума.
При исследовании функций на экстремумы используют обе теоремы. Первая на практике проще, поскольку не требует нахождения второй производной.
ПРАВИЛА НАХОЖДЕНИЯ ЕКСТРЕМУМОВ (МАКСИМУМОВ И МИНИМУМОВ) С ПОМОЩЬЮ ПЕРВОЙ ПРОИЗВОДНОЙ
1) найти область определения ;
2) найти первую производную ;
3) найти критические точки;
4) исследовать знак производной на интервалах, которые получили от разбиения критическими точками области определения .
При этом критическая точка является точкой минимума, если при переходе через нее слева направо производная меняет знак с отрицательного на положительный , в противном случаэ является точкой максимума.
Вместо данного правила можно определять вторую производную и исследовать согласно второй теоремы.
5) вычислить значения функции в точках экстремума.
Рассмотрим теперь исследование функции на экстремумы на конкретных примерах.
———————————–
Примеры.
Сборник В.Ю. Клепко, В.Л. Голец “Высшая математика в примерах и задачах”
1. (4.53.7)
1) Областью определения будет множество действительных чисел
;
2) Находим производную
3) Вычисляем критические точки
Они разбивают область определения на следующие интервалы
4) Исследуем знак производной на найденных интервалах методом подстановки значений
Таким образом первая точка является точкой минимума, а вторая – точкой максимума.
5) Вычисляем значение функции
——————————
2. (4.53.9)
1) Областью определения будет множество действительных чисел , так корень всегда больше единицы
и функция арктангенс определена на всей действительной оси.
2) Находим производную
3) С условия равенства производной нулю находим критическую точку
Она разбивает область определения на два интервала
4) Определим знак производной в каждой из областей
Таким образом находим, что в критической точке функция принимает минимальное значение.
5) Вычислим экстремум функции
——————————
3. (4.53.13)
1) Функция определена когда знаменатель не превращается в ноль
Из этого следует, что область определения состоит из трех интервалов
2) Вычисляем производную
3) Приравниваем производную к нулю и находим критические точки.
4) Устанавливаем знак производной в каждой из областей, подстановкой соответствующих значений.
Таким образом точка является точкой локального максимума, а локального минимума. В имеем перегиб функции, но о нем будет больше материала в следующих статьях.
5) Находим значение в критических точках
Несмотря на то, что значение функции , первая точка является точкой локального максимума, а дуга – минимума. Не бойтесь, если у Вас выйдут подобные результаты, при определении локальных экстремумов такие ситуации допустимы.
———————————————-
Посмотреть материалы:
- Исследования функции и построения графика
- Интервалы монотонности функции
- Наибольшее и наименьшее значение функции на отрезке
- Выпуклость и вогнутисть графика функции
- Асимптоты функции
- Область определения функции