Как найти m hcl в химии

  • Относительная молекулярная масса HCl: 36.46094
  • Молярная масса HCl: 36.46094 г/моль (0.03646 кг/моль)
Элемент Всего атомов Атомная масса, а.е.м. Общая масса атомов, а.е.м.
H (водород) 1 1.00794 1.00794
Cl (хлор) 1 35.453 35.453
36.46094

Расчёт молярной и относительной молекулярной массы HCl

  • Mr[HCl] = Ar[H] + Ar[Cl] = 1.00794 + 35.453 = 36.46094
  • Молярная масса (в кг/моль) = Mr[HCl] : 1000 = 36.46094 : 1000 = 0.03646 кг/моль

Расчёт массовых долей элементов в HCl

  • Массовая доля водорода (H) = 1.00794 : 36.46094 * 100 = 2.764 %
  • Массовая доля хлора (Cl) = 35.453 : 36.46094 * 100 = 97.236 %

Калькулятор массы

Ответы Mail.ru


Домашние задания


Русский язык
Литература
Математика
Алгебра
Геометрия
Иностранные языки
Химия
Физика
Биология
История
Обществознание
География
Информатика
Экономика

Другие предметы

Вопросы – лидеры.

frenky

Срочно! Не могу разобраться с ответом


1 ставка

frenky

(СРОЧНО!!!) В таблице представлена часть данных о возможных вариантах ведения

бизнеса на предприятии «Бетон»


1 ставка

frenky

Помогите пожалуйста! СРОЧНО!!!!!
Сделайте развёрнуто и кратко.


1 ставка

frenky

Физика, найти нужный материал, откуда он взят


1 ставка

Лидеры категории

Лена-пена


Лена-пена

Искусственный Интеллект

М.И.


М.И.

Искусственный Интеллект

Y.Nine


Y.Nine

Искусственный Интеллект

king71alex
Куклин Андрей
Gentleman
Dmitriy
•••

dddddddddd dddddddddddd



Ученик

(20),
на голосовании



11 лет назад

Голосование за лучший ответ

Любаня

Мыслитель

(6755)


11 лет назад

Молекулярная масса = Н+Сl
Н=1 Cl= 35
1+35=36
Мr(HCl)=36

Наталья Рогова

Ученик

(199)


11 лет назад

по таблице Менделеева. Там написана масса каждого элемента. находишь массу водорода, массу хлора и складываешь их. 35г/моль + 1г/моль=36

Kate Chaban

Ученик

(114)


7 лет назад

Помогите найти Mr HCL ?

Николай Степанов

Ученик

(120)


7 месяцев назад

Mr(Al2S3)=27*2+32*3=258

Похожие вопросы

Соляная кислота
Изображение молекулярной модели
Hydrochloric acid 03.jpg
Общие
Систематическое
наименование
Хлороводородная кислота
Хим. формула HCl
Физические свойства
Состояние Жидкость
Молярная масса 36.46 г/моль
Плотность 1.19 г/см³
Термические свойства
Температура
 • плавления -30 °C
 • кипения 48 °C
Энтальпия
 • образования -605.22 кДж/моль
Давление пара 190 гПа[3]
Химические свойства
Константа диссоциации кислоты {displaystyle pK_{a}} -10
Растворимость
 • в воде Растворима
Классификация
Рег. номер CAS 7647-01-0
Рег. номер EINECS 933-977-5
Кодекс Алиментариус E507
RTECS MW4025000
Безопасность
Предельная концентрация 5 мг/м³[1]
Токсичность 3 класс опасности[2]
Пиктограммы СГС Пиктограмма «Череп и скрещённые кости» системы СГСПиктограмма «Коррозия» системы СГСПиктограмма «Восклицательный знак» системы СГСПиктограмма «Опасность для здоровья» системы СГСПиктограмма «Окружающая среда» системы СГС
NFPA 704

NFPA 704 four-colored diamond

0

3

1

ACID

Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
Логотип Викисклада Медиафайлы на Викискладе

Соля́ная кислота́ (также хлороводоро́дная, или хлористоводоро́дная кислота, химическая формула — HCl) — сильная химическая неорганическая кислота. Раствор хлороводорода в воде.

При стандартных условиях — это сильная одноосновная кислота. Бесцветная, прозрачная, едкая жидкость, «дымящаяся» на воздухе (техническая соляная кислота — желтоватого цвета из-за примесей железа, хлора и пр.). В концентрации около 0,5 % присутствует в желудке человека. Соли соляной кислоты называются хлоридами.

История[править | править код]

Впервые хлороводород получил алхимик Василий Валентин, нагрев гептагидрат сульфата железа с поваренной солью и назвав полученное вещество «духом соли» (лат. spiritus salis). Иоганн Глаубер в XVII веке получил соляную кислоту из поваренной соли и серной кислоты. В 1790 году британский химик Гемфри Дэви получил хлороводород из водорода и хлора, таким образом установив его состав. Возникновение промышленного производства соляной кислоты связано с технологией получения карбоната натрия: на первой стадии этого процесса поваренную соль вводили в реакцию с серной кислотой, в результате чего выделялся хлороводород. В 1863 году в Англии был принят закон «Alkali Act», согласно которому запрещалось выбрасывать этот хлороводород в воздух, а необходимо было пропускать его в воду. Это привело к развитию промышленного производства соляной кислоты. Дальнейшее развитие произошло благодаря промышленным методам получения гидроксида натрия и хлора путём электролиза растворов хлорида натрия[4].

Физические свойства[править | править код]

Физические свойства соляной кислоты сильно зависят от концентрации растворённого хлороводорода:

Концентрация (вес), мас. % Концентрация (г/л), кг HCl/м³ Плотность, кг/л Молярность, M, или моль/л Водородный показатель (pH) Вязкость, мПа·с Удельная теплоемкость, кДж/(кг·К) Давление пара, кПа Температура кипения, °C Температура плавления, °C
10 % 104,80 1,048 2,87 −0,4578 1,16 3,47 1,95 103 −18
20 % 219,60 1,098 6,02 −0,7796 1,37 2,99 1,40 108 −59
30 % 344,70 1,149 9,45 −0,9754 1,70 2,60 2,13 90 −52
32 % 370,88 1,159 10,17 −1,0073 1,80 2,55 3,73 84 −43
34 % 397,46 1,169 10,90 −1,0374 1,90 2,50 7,24 71 −36
36 % 424,44 1,179 11,64 −1,06595 1,99 2,46 14,50 61 −30
38 % 451,82 1,189 12,39 −1,0931 2,10 2,43 28,30 48 −26

При 20 °C, 1 атм (101,325 кПа)

При низкой температуре хлороводород с водой даёт кристаллогидраты составов {displaystyle {ce {HCl.H2O}}} (температура плавления −15,4 °С), {displaystyle {ce {HCl.2H2O}}} (температура плавления −18 °С), {displaystyle {ce {HCl.3H2O}}} (температура плавления −25 °С), {displaystyle {ce {HCl.6H2O}}} (температура плавления −70 °С). При атмосферном давлении (101,325 кПа) хлороводород с водой образуют азеотропную смесь с температурой кипения 108,6 °С и содержанием {displaystyle {ce {HCl}}} 20,4 мас. %[5].

Phase diagram HCl H2O s l.PNG

Химические свойства[править | править код]

  • Взаимодействие с металлами, стоящими в ряду электрохимических потенциалов до водорода, с образованием соли и выделением газообразного водорода:
{displaystyle {ce {2Na + 2HCl -> 2NaCl + H2 ^}}},
{displaystyle {ce {Mg + 2HCl -> MgCl2 + H2 ^}}},
{displaystyle {ce {2Al + 6HCl -> 2AlCl3 + 3H2 ^}}}.
  • Взаимодействие с оксидами металлов с образованием растворимой соли и воды:
{displaystyle {ce {Na2O + 2HCl -> 2NaCl + H2O}}},
{displaystyle {ce {MgO + 2HCl -> MgCl2 + H2O}}},
{displaystyle {ce {Al2O3 + 6HCl -> 2AlCl3 + 3H_2O}}}.
  • Взаимодействие с гидроксидами металлов с образованием растворимой соли и воды (реакция нейтрализации):
{displaystyle {ce {NaOH + HCl -> NaCl + H2O}}},
{displaystyle {ce {Ba(OH)2 + 2HCl -> BaCl2 + 2H_2O}}},
{displaystyle {ce {Al(OH)3 + 3HCl -> AlCl3 + 3H_2O}}}.
  • Взаимодействие с солями металлов, образованных более слабыми кислотами, например, с угольной кислотой:
{displaystyle {ce {Na2CO3 + 2HCl -> 2NaCl + H2O + CO2 ^}}}.
  • Взаимодействие с сильными окислителями (перманганат калия, диоксид марганца) с выделением газообразного хлора:
{displaystyle {ce {2KMnO4 + 16HCl -> 5Cl_2 ^ + 2MnCl2 + 2KCl + 8H2O}}}.

Соляная кислота (в стакане) взаимодействует с аммиаком

  • Взаимодействие с аммиаком с образованием густого белого дыма, состоящего из мельчайших кристаллов хлорида аммония[6]:
{displaystyle {ce {NH3 + HCl -> NH4Cl}}}.
  • Качественная реакция на соляную кислоту и её соли — взаимодействие кислоты с нитратом серебра, при котором образуется белый творожистый осадок хлорида серебра, нерастворимый в азотной кислоте[7]:
{displaystyle {ce {HCl + AgNO3 -> AgCl v + HNO3}}}.

Получение[править | править код]

Соляную кислоту получают растворением газообразного хлороводорода (HCl) в воде. Хлороводород получают сжиганием водорода в хлоре, полученная таким способом кислота называется синтетической. Также соляную кислоту получают из абгазов — побочных газов, образующихся при различных процессах, например, при хлорировании углеводородов. Хлороводород, содержащийся в этих газах, называется абгазным, а полученная таким образом кислота — абгазной. В последние десятилетия доля абгазной соляной кислоты в объёме производства постепенно увеличивается, вытесняя кислоту, полученную сжиганием водорода в хлоре. Но полученная методом сжигания водорода в хлоре соляная кислота содержит меньше примесей и применяется при необходимости высокой чистоты.

В лабораторных условиях используется разработанный алхимиками способ, заключающийся в действии концентрированной серной кислоты на твёрдую поваренную соль:

{displaystyle {ce {NaCl +H2SO4->[150~^{circ }{text{C}}]NaHSO4 +HCluparrow }}}.

При температуре выше 550 °C и избытке поваренной соли возможно взаимодействие:

{displaystyle {ce {2NaCl +H2SO4->[550~^{circ }{text{C}}]Na2SO4 +2HCl}}}.

Получение путём гидролиза хлоридов магния, алюминия (производится нагревание гидратированной соли):

{displaystyle {ce {MgCl2.6H2O->[t,~^{circ }{text{C}}]MgO +2HCl +5H2O}}},
{displaystyle {ce {AlCl3.6H2O->[t,~^{circ }{text{C}}]Al(OH)3 +3HCl +3H2O}}}.

Эти реакции могут идти не до конца с образованием основных хлоридов (оксихлоридов) переменного состава, например:

{displaystyle {ce {2MgCl2 + H2O -> Mg2OCl2 + 2HCl}}}[8]

В промышленности хлороводород получают реакцией горения водорода в хлоре:

{displaystyle {ce {H2 + Cl2 -> 2HCl ^}}}

Хлороводород хорошо растворим в воде. Так, при 0 °C один объём воды может поглотить 507 объёмов {displaystyle {ce {HCl}}}, что соответствует концентрации кислоты 45 %. Однако при комнатной температуре растворимость {displaystyle {ce {HCl}}} ниже, поэтому на практике обычно используют 36-процентную соляную кислоту.

Применение[править | править код]

Промышленность[править | править код]

  • Применяется в гидрометаллургии и гальванопластике (травление, декапирование), для очистки поверхности металлов при пайке и лужении, для получения хлоридов цинка, марганца, железа и др. металлов. В смеси с поверхностно-активными веществами используется для очистки керамических и металлических изделий (тут необходима ингибированная кислота) от загрязнений и дезинфекции.
  • В пищевой промышленности зарегистрирована как регулятор кислотности (пищевая добавка E507). Применяется для изготовления сельтерской (содовой) воды.

Медицина[править | править код]

  • Естественная составная часть желудочного сока человека. В концентрации 0,3—0,5 %, обычно в смеси с ферментом пепсином, назначается внутрь при недостаточной кислотности.

Особенности обращения[править | править код]

Skull and Crossbones.svg

Hazard C.svg

Hazard N.svg

Соляная кислота относится к веществам III класса опасности[2]. Рекомендуемая ПДК в рабочей зоне — 5 мг/м³[1].

Высококонцентрированная соляная кислота представляет собой едкое вещество. При попадании на кожу вызывает сильные химические ожоги. Особенно опасным считается попадание в глаза (в значительном количестве). Для нейтрализации ожогов применяют раствор слабого основания, или соли слабой кислоты, обычно пищевой соды.

При открывании сосудов с концентрированной соляной кислотой пары хлороводорода, притягивая влагу воздуха, образуют туман, раздражающий глаза и дыхательные пути человека.

Реагируя с сильными окислителями (хлорной известью, диоксидом марганца, перманганатом калия), образует токсичный газообразный хлор.

В РФ оборот соляной кислоты концентрации 15 % и более — ограничен[9].

Примечания[править | править код]

  1. 1 2 ГОСТ 12.1.005-76 “Воздух рабочей зоны. Санитарно-гигиенические требования”.
  2. 1 2 ГОСТ 12.1.007-76 “Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности”.
  3. https://gestis.dguv.de/data?name=520030
  4. Ullmann, 2000, p. 191.
  5. Ullmann, 2000, p. 194.
  6. Дым без огня: взаимодействие аммиака с хлороводородом Архивная копия от 4 марта 2016 на Wayback Machine — видеоопыт в Единой коллекции цифровых образовательных ресурсов
  7. Ходаков Ю.В., Эпштейн Д. А., Глориозов П. А. § 82. Соляная кислота // Неорганическая химия: Учебник для 7—8 классов средней школы. — 18-е изд. — М.: Просвещение, 1987. — С. 195—196. — 240 с. — 1 630 000 экз.
  8. page-book.ru — Реми Г. Курс неорганической химии (Том 1): Стр.301. Дата обращения: 23 августа 2012. Архивировано из оригинала 11 мая 2013 года.
  9. Постановление Правительства Российской Федерации от 3 июня 2010 года № 398 Архивировано 30 июня 2016 года.

Ссылки[править | править код]

  • Austin S., Glowacki A. Hydrochloric Acid (англ.) // Ullmann’s Encyclopedia of Industrial Chemistry. — Wiley, 2000. — doi:10.1002/14356007.a13_283.

Вычисление молярной массы

To calculate molar mass of a chemical compound enter its formula and click ‘Compute’. В химической формуле, вы можете использовать:

  • Любой химический элемент. Capitalize the first letter in chemical symbol and use lower case for the remaining letters: Ca, Fe, Mg, Mn, S, O, H, C, N, Na, K, Cl, Al.
  • Функциональные группы:D, Ph, Me, Et, Bu, AcAc, For, Ts, Tos, Bz, TMS, tBu, Bzl, Bn, Dmg
  • круглые () и квадратные [] скобки.
  • Общие составные имена.

Примеры расчета молярной массы:
NaCl,
Ca(OH)2,
K4[Fe(CN)6],
CuSO4*5H2O,
water,
nitric acid,
potassium permanganate,
ethanol,
fructose.

Molar mass calculator also displays common compound name, Hill formula, elemental composition, mass percent composition, atomic percent compositions and allows to convert from weight to number of moles and vice versa.

Вычисление молекулярной массы (молекулярная масса)

Для того, чтобы рассчитать молекулярную массу химического соединения, введите её формулу, указав его количество массы изотопа после каждого элемента в квадратных скобках.

Примеры молекулярные вычисления веса:
C[14]O[16]2,
S[34]O[16]2.

Определение молекулярной массы, молекулярный вес, молекулярная масса и молярная масса

  • Молекулярная масса ( молекулярной массой ) это масса одной молекулы вещества, выражающаяся в атомных единицах массы (и). (1 и равна 1/12 массы одного атома углерода-12)
  • Молярная масса ( молекулярной массой ) является масса одного моля вещества и выражается в г / моль.

Массы атомов и изотопов с NIST статью .

См. также: молекулярные массы аминокислот

В этой статье мы коснемся нескольких краеугольных понятий в химии, без которых совершенно невозможно
решение задач. Старайтесь понять смысл физических величин, чтобы усвоить эту тему.

Я постараюсь приводить как можно больше примеров по ходу этой статьи, в ходе изучения вы увидите множество примеров
по данной теме.

Моль в химии

Относительная атомная масса – Ar

Представляет собой массу атома, выраженную в атомных единицах массы. Относительные атомные массы указаны в периодической
таблице Д.И. Менделеева. Так, один атом водорода имеет атомную массу = 1, кислород = 16, кальций = 40.

Относительная молекулярная масса – Mr

Относительная молекулярная масса складывается из суммы относительных атомных масс всех атомов, входящих в состав вещества.
В качестве примера найдем относительные молекулярные массы кислорода, воды, перманганата калия и медного купороса:

Mr (O2) = (2 × Ar(O)) = 2 × 16 = 32

Mr (H2O) = (2 × Ar(H)) + Ar(O) = (2 × 1) + 16 = 18

Mr (KMnO4) = Ar(K) + Ar(Mn) + (4 × Ar(O)) = 39 + 55 + (4 * 16) = 158

Mr (CuSO4*5H2O) = Ar(Cu) + Ar(S) + (4 × Ar(O)) + (5 × ((Ar(H) × 2) +
Ar(O))) = 64 + 32 + (4 × 16) + (5 × ((1 × 2) + 16)) = 160 + 5 * 18 = 250

Моль и число Авогадро

Моль – единица количества вещества (в системе единиц СИ), определяемая как количество вещества, содержащее столько же структурных единиц
этого вещества (молекул, атомов, ионов) сколько содержится в 12 г изотопа 12C, т.е. 6 × 1023.

Число Авогадро (постоянная Авогадро, NA) – число частиц (молекул, атомов, ионов) содержащихся в одном моле любого вещества.

Число Авогадро

Больше всего мне хотелось бы, чтобы вы поняли физический смысл изученных понятий. Моль – международная единица количества вещества, которая
показывает, сколько атомов, молекул или ионов содержится в определенной массе или конкретном объеме вещества. Один моль любого вещества
содержит 6.02 × 1023 атомов/молекул/ионов – вот самое важное, что сейчас нужно понять.

Иногда в задачах бывает дано число Авогадро, и от вас требуется найти, какое вам дали количество вещества (моль). Количество вещества в химии
обозначается N, ν (по греч. читается “ню”).

Рассчитаем по формуле: ν = N/NA количество вещества 3.01 × 1023 молекул воды и 12.04 × 1023 атомов углерода.

Число Авогадро пример

Мы нашли количества вещества (моль) воды и углерода. Сейчас это может показаться очень абстрактным, но, иногда не зная, как найти
количество вещества, используя число Авогадро, решение задачи по химии становится невозможным.

Молярная масса – M

Молярная масса – масса одного моля вещества, выражается в “г/моль” (грамм/моль). Численно совпадает с изученной нами ранее
относительной молекулярной массой.

Рассчитаем молярные массы CaCO3, HCl и N2

M (CaCO3) = Ar(Ca) + Ar(C) + (3 × Ar(O)) = 40 + 12 + (3 × 16) = 100 г/моль

M (HCl) = Ar(H) + Ar(Cl) = 1 + 35.5 = 36.5 г/моль

M (N2) = Ar(N) × 2 = 14 × 2 = 28 г/моль

Полученные знания не должны быть отрывочны, из них следует создать цельную систему. Обратите внимание: только что мы рассчитали
молярные массы – массы одного моля вещества. Вспомните про число Авогадро.

Получается, что, несмотря на одинаковое число молекул в 1 моле (1 моль любого вещества содержит 6.02 × 1023 молекул),
молекулярные массы отличаются. Так, 6.02 × 1023 молекул N2 весят 28 грамм, а такое же количество молекул
HCl – 36.5 грамм.

Это связано с тем, что, хоть количество молекул одинаково – 6.02 × 1023, в их состав входят разные атомы, поэтому и
массы получаются разные.

Молярная масса

Часто в задачах бывает дана масса, а от вас требуется рассчитать количество вещества, чтобы перейти к другому веществу в реакции.
Сейчас мы определим количество вещества (моль) 70 грамм N2, 50 грамм CaCO3, 109.5 грамм HCl. Их молярные
массы были найдены нам уже чуть раньше, что ускорит ход решения.

Молярная масса и количество вещества

ν (CaCO3) = m(CaCO3) : M(CaCO3) = 50 г. : 100 г/моль = 0.5 моль

ν (HCl) = m(HCl) : M(HCl) = 109.5 г. : 36.5 г/моль = 3 моль

Иногда в задачах может быть дано число молекул, а вам требуется рассчитать массу, которую они занимают. Здесь нужно использовать
количество вещества (моль) как посредника, который поможет решить поставленную задачу.

Предположим нам дали 15.05 × 1023 молекул азота, 3.01 × 1023 молекул CaCO3 и 18.06 × 1023 молекул
HCl. Требуется найти массу, которую составляет указанное число молекул. Мы несколько изменим известную формулу, которая поможет нам связать
моль и число Авогадро.

Молярная масса, количество вещества и число Авогадро

Теперь вы всесторонне посвящены в тему. Надеюсь, что вы поняли, как связаны молярная масса, число Авогадро и количество вещества.
Практика – лучший учитель. Найдите самостоятельно подобные значения для оставшихся CaCO3 и HCl.

Молярный объем

Молярный объем – объем, занимаемый одним молем вещества. Примерно одинаков для всех газов при стандартной температуре
и давлении составляет 22.4 л/моль. Он обозначается как – VM.

Подключим к нашей системе еще одно понятие. Предлагаю найти количество вещества, количество молекул и массу газа объемом
33.6 литра. Поскольку показательно молярного объема при н.у. – константа (22.4 л/моль), то совершенно неважно, какой газ мы
возьмем: хлор, азот или сероводород.

Запомните, что 1 моль любого газа занимает объем 22.4 литра. Итак, приступим к решению задачи. Поскольку какой-то газ
все же надо выбрать, выберем хлор – Cl2.

Молярная масса, количество вещества, число Авогадро и молярный объем

Молярная масса, количество вещества, число Авогадро и молярный объем

Моль (количество вещества) – самое гибкое из всех понятий в химии. Количество вещества позволяет вам перейти и к
числу Авогадро, и к массе, и к объему. Если вы усвоили это, то главная задача данной статьи – выполнена 🙂

Количество вещества в химии

Относительная плотность и газы – D

Относительной плотностью газа называют отношение молярных масс (плотностей) двух газов. Она показывает, во сколько раз одно вещество
легче/тяжелее другого. D = M (1 вещества) / M (2 вещества).

В задачах бывает дано неизвестное вещество, однако известна его плотность по водороду, азоту, кислороду или
воздуху. Для того чтобы найти молярную массу вещества, следует умножить значение плотности на молярную массу
газа, по которому дана плотность.

Запомните, что молярная масса воздуха = 29 г/моль. Лучше объяснить, что такое плотность и с чем ее едят на примере.
Нам нужно найти молярную массу неизвестного вещества, плотность которого по воздуху 2.5

Плотность

Предлагаю самостоятельно решить следующую задачку (ниже вы найдете решение): “Плотность неизвестного вещества по
кислороду 3.5, найдите молярную массу неизвестного вещества”

Относительная плотность

Относительная плотность и водный раствор – ρ

Пишу об этом из-за исключительной важности в решении
сложных задач, высокого уровня, где особенно часто упоминается плотность. Обозначается греческой буквой ρ.

Плотность является отражением зависимости массы от вещества, равна отношению массы вещества к единице его объема. Единицы
измерения плотности: г/мл, г/см3, кг/м3 и т.д.

Для примера решим задачку. Объем серной кислоты составляет 200 мл, плотность 1.34 г/мл. Найдите массу раствора. Чтобы не
запутаться в единицах измерения поступайте с ними как с самыми обычными числами: сокращайте при делении и умножении – так
вы точно не запутаетесь.

Задача на плотность

Иногда перед вами может стоять обратная задача, когда известна масса раствора, плотность и вы должны найти объем. Опять-таки,
если вы будете следовать моему правилу и относится к обозначенным условным единицам “как к числам”, то не запутаетесь.

В ходе ваших действий “грамм” и “грамм” должны сократиться, а значит, в таком случае мы будем делить массу на плотность. В противном случае
вы бы получили граммы в квадрате 🙂

К примеру, даны масса раствора HCl – 150 грамм и плотность 1.76 г/мл. Нужно найти объем раствора.

Плотность раствора

Массовая доля – ω

Массовой долей называют отношение массы растворенного вещества к массе раствора. Важно заметить, что в понятие раствора входит
как растворитель, так и само растворенное вещество.

Массовая доля вычисляется по формуле ω (вещества) = m (вещества) / m (раствора). Полученное число будет показывать массовую долю
в долях от единицы, если хотите получить в процентах – его нужно умножить на 100%. Продемонстрирую это на примере.

Расчет массовой доли

Решим несколько иную задачу и найдем массу чистой уксусной кислоты в широко известной уксусной эссенции.

Массовая доля

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Добавить комментарий