Получим теорему о циркуляции магнитной индукции в вакууме в дифференциальной форме. Если контур L находится в сплошной проводящей среде, то значение полного тока, пронизывающего поверхность контура, можно определить, как поток вектора плотности тока через поверхность S, ограниченную этим контуром
k |
∫ jndS. |
||||||
∑Ii = |
(1.5.11) |
||||||
i=1 |
S |
||||||
Подставим выражение (1.5.11) в формулу (1.5.9) и применим тео- |
|||||||
H |
G |
||||||
рему Стокса ( v∫ Adl |
= ∫(rotA)ndS ). |
||||||
G G |
L |
S |
G |
G |
G |
(1.5.12) |
|
v∫ Bdl |
= μ0 ∫ jndS ∫(rotB)ndS = μ0 |
∫ jndS rotB = μ0 |
j. |
||||
L |
S |
S |
S |
||||
Результат подстановки – теорема о циркуляции вектора магнит- |
|||||||
ной индукции в вакууме в дифференциальной форме |
|||||||
rotB = μ0 j. |
(1.5.13) |
||||||
Теорема о циркуляции вектора напряженности магнитного поля в |
|||||||
дифференциальной форме будет иметь вид: |
|||||||
rotH = j. |
(1.5.14) |
Уравнение (1.5.14) математически выражает тот факт, что магнитное поле имеет вихревой характер и его источниками являются электрические токи.
Закон полного тока (1.5.10) часто используют для расчета индукции магнитного поля постоянного электрического тока. Для примера рассмотрим применение закона полного тока для расчета индукции магнитного поля соленоида и тороида.
Соленоид – это катушка индуктивности в виде намотанного на цилиндрическую поверхность изолированного проводника, по которому течет электрический ток. Рассмотрим соленоид длиной l, имеющей N витков. Длину соленоида считаем во много раз больше, чем диаметр его витков, то есть рассматриваемый соленоид бесконечно длинный. Внутри соленоида поле является однородным, вне соленоида – неоднородным и очень слабым, и чем длиннее соленоид, тем меньше магнитная индукция вне его. Поэтому будем считать, что поле бесконечно длинного соленоида сосредоточено целиком внутри него.
14
Для нахождения магнитной индукции выберем замкнутый прямоугольный контур ABCDA (рис. 1.6.1) Согласно теореме о цирку-
ляции вектора H:
ABCDA
D A
C B
Рис. 1.6.1
Интеграл по ABCDA можно представить в виде интегралов по AB; BC; CD; DA. На участках AB и CD контур перпендикулярен линиям магнитной индукции и Hl = 0. На участке CB вне соленоида Н = 0, а на участке DA контурG совпадает с линией магнитной индукции и циркуляция вектора H равна
v∫ Hl dl = Hl = NI. |
(1.6.2) |
DA |
Из последнего уравнения получаем, что напряженность магнитного поля соленоида:
NI |
(1.6.3) |
||
H = |
l = nI , |
||
где n – число витков соленоида, приходящихся на единицу длины. Используя формулу (1.1.1), выражаем индукцию магнитного поля
соленоида:
B = μμ0 |
N |
I = μμ0nI. |
(1.6.4) |
|
l |
||||
Тороид – это кольцевая катушка с витками, намотанными на сердечник, имеющий форму тора, по которому течет электрический ток.
Пусть R1 и R2 соответственно внешний и внутренний радиусы сечения тороида. Общее число витков тороида с током I равно N.
15
Если r < R2, то контур не охватывает проводники |
с током, |
N |
|
∑Ik = 0, и по закону полного тока |
|
i=1 |
|
v∫ Hdl cos α= 2πrH = 0 H = 0. |
(1.6.5) |
L |
Если r > R1, то контур охватывает 2N проводников с током I. Половина из них идет в одном направлении, а половина – в обратном направлении (рис. 1.6.2). Поэтому алгебраическая сумма токов во всех проводниках равна нулю, и поэтому
r
R2
R1
Рис. 1.6.2
Из полученного результата следует, что вне тороида магнитное поле отсутствует. Магнитное поле сосредоточено внутри объема (R2 ≤ r ≤ R1) тороида. Линии магнитной индукции в данном случае есть окружности, центры которых расположены на оси тороида. В этом случае контур радиуса r охватывает N проводников, токи в которых равны I и одинаково направлены. Поэтому по теореме о циркуляции
v∫ Hl dl = Hl = 2πrH = NI. |
(1.6.7) |
L |
||||
Отсюда напряженность магнитного поля внутри тороида: |
||||
NI |
(1.6.8) |
|||
H = |
2πr = nI, |
|||
где n – число витков тороида, приходящихся на единицу длины. Напряженность магнитного поля на осевой линии тороида равна:
Hср = |
NI |
. |
(1.6.9) |
2πr |
|||
ср |
16
dΦm = BdS = BndS,
Используя формулу (1.1.1), находим индукцию магнитного поля внутри тороида:
B = μμ0 |
NI |
= μμ0nI. |
(1.6.10) |
|
2πr |
||||
Индукция магнитного поля на осевой линии тороида равна:
B = μμ |
NI |
= μμ |
nI. |
(1.6.11) |
||
0 2πr |
||||||
cp |
0 |
|||||
cp |
1.7. Магнитный поток. Теорема Гаусса для магнитного поля в интегральной и дифференциальной формах.
Потоком вектора магнитной индукции (магнитным потоком) через площадку dS называется величина, равная:
(1.7.1)
где Bn = Bcosα – проекция вектора B на направление нормали nG к площадке dS, α − угол между векторами n и B (рис. 1.7.1). Магнитный поток равен числу линий магнитной индукции, пронизывающих замкнутую поверхность в направлении внешней нормали.
Bn
α B
n
dS
S
Рис. 1.7.1
Поток вектора магнитной индукции через произвольную поверхность S равен
Φm = ∫BdS = ∫BndS . |
(1.7.2) |
|
S |
S |
Если магнитное поле однородно (B =const), а поверхность S плоская, то магнитный поток равен
17
За единицу магнитного потока принимается магнитный поток сквозь плоскую поверхность единичной площади, расположенную перпендикулярно к однородному магнитному полю, индукция которого равна единице. В системе СИ единица магнитного потока называется
вебером [Вб].
Магнитный поток через поверхность, ограниченную замкнутым контуром, называется потокосцеплением ψ этого контура (потоком, сцепленным с контуром). Если контур имеет N витков, то потокосцепление этого контура:
где Фт − поток, пронизывающий один виток контура.
В природе отсутствуют элементарные «магнитные заряды», аналогичные электрическим зарядам, поэтому линии индукции В магнитного поля не имеют ни начала, ни конца, т. е. магнитные силовые линии замкнуты. Следовательно, поток Фт через любую замкнутую поверхность будет всегда равен нулю, так как число входящих линий
равно числу выходящих силовых линий: |
||
v∫ |
G |
|
BdS =0 или v∫ BndS = 0. |
(1.7.5) |
|
S |
S |
Теорема Гаусса для магнитного поля в интегральной форме:
поток вектора магнитной индукции сквозь любую замкнутую поверхность равен нулю.
Так как BG =μμ0HG, |
то поток вектора H через любую замкнутую |
|
поверхность также равенGнулю: |
||
v∫HdS =0 или v∫ HndS = 0. |
(1.7.6) |
|
S |
S |
Для записи теоремы Гаусса для магнитного поля в дифференциальной формеG воспользуемся теоремой Остроградского − Гаусса v∫ AndS = ∫divAdV .
S V
v∫ |
G G |
G |
G |
(1.7.7) |
BdS |
= 0 ∫divBdV = 0 |
divB = 0. |
S V
Для напряженности магнитного поля получится аналогичное выражение:
Выражения (1.7.7) и (1.7.8) являются дифференциальной формой теоремы Гаусса.
18
Соседние файлы в предмете Физика
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Главная
→
Примеры решения задач ТОЭ
→
РЕШЕНИЕ ЗАДАЧ ТОЭ — МЕТОДЫ, АЛГОРИТМЫ, ПРИМЕРЫ РЕШЕНИЯ
→
2 Магнитное поле и магнитные цепи при постоянных токах
→
2.1 Методы расчета магнитных цепей постоянного тока
2.1 Методы расчета магнитных цепей постоянного тока
Методы и примеры решения задач ТОЭ
→
РЕШЕНИЕ ЗАДАЧ ТОЭ — МЕТОДЫ, АЛГОРИТМЫ, ПРИМЕРЫ РЕШЕНИЯ
→
2 Магнитное поле и магнитные цепи при постоянных токах
Расчет магнитных цепей при постоянных токах
Основанием к расчету магнитных цепей служат: первый закон Кирхгофа для магнитных цепей и закон полного тока — второй закон Кирхгофа для магнитных цепей.
Первый закон Кирхгофа для магнитных цепей гласит: алгебраическая сумма магнитных потоков в узле магнитной цепи равна нулю.
Закон полного тока применяется к замкнутому контуру, образованному средними магнитными линиями магнитной цепи и имеет вид:
∫ H → ⋅ dl → = ∑ I⋅w ,
где
∫ H → ⋅ dl → = ∑ H⋅l — падение магнитного напряжения UM = H·l в контуре;
F= ∑ I⋅w — магнитодвижущая сила контура (м. д. с.).
Второй закон Кирхгофа для магнитных цепей сформулируем следующим образом: алгебраическая сумма магнитных напряжений UM = H·l в замкнутом контуре магнитной цепи ( ∑ U M = ∑ H⋅l ) равна алгебраической сумме магнитодвижущих сил F = I·w в том же контуре ( ∑ F = ∑ I⋅w ) :
∑ U M = ∑ F
или
∑ H⋅l = ∑ I⋅w .
Задачи на расчет магнитной цепи могут быть двух видов: прямая задача на расчет магнитной цепи — когда задан поток и требуется рассчитать магнитодвижущую силу (м. д. с.) и обратная задача на расчет магнитной цепи — когда по заданной м. д. с. требуется рассчитать магнитный поток.
В обоих случаях должны быть известны геометрические размеры магнитной цепи и заданы кривые намагничивания ее материалов.
Алгоритм прямой задачи расчета неразветвленной магнитной цепи
Дана конфигурация и геометрические размеры неразветвленной магнитной цепи, кривая (или кривые) намагничивания магнитного материала и магнитный поток или индукция магнитного поля в каком-либо сечении. Требуется найти магнитодвижущую силу, ток или число витков намагничивающей обмотки.
Расчет проводим в соответствии с алгоритмом:
1. Разбиваем магнитную цепь на однородные (из одного магнитного материала) участки постоянного сечения и определяем длины lk и площади поперечного сечения Sk участков. Длины участков (в метрах) берем по средней силовой линии.
2. Исходя из постоянства потока вдоль всей неразветвленной магнитной цепи, по заданному магнитному потоку Ф и сечениям Sk участков находим магнитные индукции на каждом участке:
B k = Ф S k .
Если задана магнитная индукция на каком-либо участке магнитной цепи, то магнитный поток вдоль всей неразветвленной цепи
Ф = Bk·Sk.
3. По найденным магнитным индукциям Bk участков цепи и кривой намагничивания материала k-го участка цепи (например, рис. 2.1, табл. 2.1) определяем напряженности поля Hk на каждом участке магнитной цепи.
Напряженность поля в воздушном зазоре находим по формуле
H возд = B возд μ 0 = B возд 4π⋅ 10 −7 .
4. Подсчитаем сумму падений магнитных напряжений UMk = Hk·lk вдоль всей магнитной цепи ∑ U Mk = ∑ H k ⋅ l k и на основании второго закона Кирхгофа для магнитной цепи приравниваем сумме магнитодвижущих сил Fk = Ik·wk вдоль всей магнитной цепи:
∑ H k ⋅ l k = ∑ I k ⋅ w k .
Основным допущением при расчете является то, что магнитный поток вдоль всей неразветвленной магнитной цепи полагаем неизменным. В действительности не большая часть потока всегда замыкается, минуя основной путь. Этот поток называют потоком рассеяния.
Единицы измерения магнитных величин
B — индукция магнитного поля, Тл (Тесла);
H — напряженность магнитного поля, А/м (Ампер/метр);
Ф — поток индукции магнитного поля, Вб (Вебер);
F = I·w — магнитодвижущая сила (м. д. с.), А (Ампер);
UM = H·l — магнитное напряжение, А (Ампер!).
Константы
μ 0 =4π⋅ 10 −7 Гн/м — магнитная постоянная.
Рис. 2.1 Кривые намагничивания стали и чугуна
Таблица 2.1 — Данные основной кривой намагничивания листовой электротехнической стали Э11
B, Вб/м2 |
H, А/м |
|||||||||
0,00 |
0,01 |
0,02 |
0,03 |
0,04 |
0,05 |
0,06 |
0,07 |
0,08 |
0,09 |
|
0,4 |
140 |
143 |
146 |
149 |
152 |
155 |
158 |
161 |
164 |
167 |
0,5 |
171 |
175 |
179 |
183 |
187 |
191 |
195 |
199 |
203 |
207 |
0,6 |
211 |
216 |
221 |
226 |
231 |
236 |
241 |
246 |
251 |
256 |
0,7 |
261 |
266 |
271 |
276 |
281 |
287 |
293 |
299 |
306 |
312 |
0,8 |
318 |
324 |
330 |
337 |
344 |
352 |
360 |
369 |
378 |
387 |
0,9 |
397 |
407 |
417 |
427 |
437 |
447 |
458 |
469 |
480 |
491 |
1,0 |
502 |
514 |
527 |
541 |
555 |
570 |
585 |
600 |
615 |
631 |
1,1 |
647 |
664 |
682 |
701 |
720 |
739 |
759 |
779 |
800 |
821 |
1,2 |
843 |
866 |
891 |
918 |
946 |
976 |
1010 |
1040 |
1070 |
1100 |
1,3 |
1140 |
1180 |
1220 |
1260 |
1300 |
1340 |
1380 |
1430 |
1480 |
1530 |
1,4 |
1580 |
1640 |
1710 |
1780 |
1860 |
1950 |
2050 |
2150 |
2260 |
2380 |
1,5 |
2500 |
2640 |
2790 |
2950 |
3110 |
3280 |
3460 |
3660 |
3880 |
4120 |
1,6 |
4370 |
4630 |
4910 |
5220 |
5530 |
5880 |
6230 |
6600 |
6980 |
7370 |
1,7 |
7780 |
8200 |
8630 |
9070 |
9630 |
10100 |
10600 |
11100 |
11600 |
12200 |
1,8 |
12800 |
13400 |
14000 |
14600 |
15200 |
15900 |
16600 |
17300 |
18000 |
18800 |
1,9 |
19700 |
20600 |
21600 |
22 600 |
23600 |
24600 |
25600 |
26800 |
28200 |
29600 |
2,0 |
31000 |
32500 |
34300 |
36500 |
39000 |
42000 |
45500 |
49500 |
54500 |
59500 |
Примеры пользования таблицей:
1) При B = 0,80 Вб/м2: H = 318 А/м; при B = 0,85 Вб/м2: H = 352 А/м.
2) При B = 1,13 Вб/м2: H = 701 А/м.
Решение задач на расчет магнитных цепей при постоянных токах
Задача 2.1. На рис. 2.2 изображен разрез трех катушек, по которым проходят токи I1 = 8 А, I2=10 А и I3 = 5 А.
Рис. 2.2
Катушки размещены на стальном сердечнике. Первая катушка (левая) w1 имеет 8 витков, вторая (средняя) w2 — 10 витков и третья (правая) w3 — 6 витков. Определить полную магнитодвижущую силу (м. д. с.) по замкнутым контурам а, b, с, d, е, f, показанным на рис. 2.2. Контур е охватывает катушки w’2 с 4 витками и w’3 с 2 витками.
Изменится ли результат решения задачи, если при тех же данных катушки разместить на сердечнике из другого магнитного материала?
Решение
Воспользуемся законом полного тока. Линейный интеграл вектора напряженности магнитного поля по замкнутому контуру равен алгебраической сумме токов, проходящих сквозь поверхность, ограничиваемую контуром интегрирования,
∫ H → ⋅ dl → = ∑ I⋅w .
Пользуясь законом полного тока, найдем:
∫ a H → ⋅ dl → = w 1 ⋅ I 1 =8⋅8=64 А; ∫ b H → ⋅ dl → =− w 1 ⋅ I 1 =−8⋅8=−64 А; ∫ c H → ⋅ dl → = w 2 ⋅ I 2 − w 1 ⋅ I 1 =10⋅10−8⋅8=36 А; ∫ d H → ⋅ dl → = w 1 ⋅ I 1 − w 2 ⋅ I 2 + w 2 ⋅ I 2 + w 3 ⋅ I 3 =8⋅8+6⋅5=94 А; ∫ e H → ⋅ dl → = w ′ 2 ⋅ I 2 − w ′ 3 ⋅ I 3 =4⋅10+2⋅5=50 А; ∫ f H → ⋅ dl → =2 w 3 ⋅ I 3 =2⋅6⋅5=60 А.
В правой части последнего выражения коэффициент 2 учитывает то обстоятельство, что витки w3 охватываются контуром интегрирования (циркуляции) дважды.
Следует заметить, что при пользовании правилом винта необходимо всегда сопоставлять направление обхода по контуру циркуляции с направлениями токов, пронизывающих поверхность, ограниченную контуром циркуляции.
Результаты решения задачи не изменятся, если катушки разместить на сердечнике из другого магнитного материала, так как м. д. с. определяется только величиной полного тока и не зависит от магнитных свойств вещества.
Задача 2.2. Определить магнитодвижущую силу (прямая задача расчета одноконтурной магнитной цепи), необходимую для получения магнитного потока в 5,9·10–4 Вб в кольцеобразном сердечнике, сечением S = 5 см2. Длина средней линии магнитной индукции l = 25 см.
Определить Н (напряженность магнитного поля в сердечнике) и μ r (относительная магнитная проницаемость материала сердечника). Материал сердечника — слаболегированная электротехническая листовая сталь Э11.
Решение
Найдем магнитную индукцию
B= Ф S = 5,9⋅ 10 −4 5⋅ 10 −4 =1,18 Вб м 2 .
По кривой намагничивания для стали Э11 найдем, что индукции B = 1,18 Вб/м2 соответствует H = 800 А/м.
Общая магнитодвижущая сила по второму закону Кирхгофа для магнитной цепи (закону полного тока)
F = H·l = 800·0,25 = 200 А.
Определим абсолютную магнитную проницаемость:
μ a = B H = 1,18 800 =1475⋅ 10 −6 Гн м .
Магнитная проницаемость (относительная магнитная проницаемость)
μ r = μ a μ 0 = 1475⋅ 10 −6 4π⋅ 10 −7 =1175.
Задача 2.3. На рис. 2.3 изображен электромагнит, сердечник которого изготовлен из слаболегированной листовой электротехнической стали Э11, а якорь — из литой стали.
Рис. 2.3
Какой ток должен быть пропущен через обмотку электромагнита (прямая задача расчета одноконтурной магнитной цепи), состоящую из w = 500 витков, для того, чтобы в якоре была создана магнитная индукция в 0,84 Вб/м2. Размеры на рис. 2.3 даны в миллиметрах. Длина воздушного зазора δ = 1 мм. Площадь сечения воздушного зазора считать равной площади сечения сердечника (пренебрегаем потоком рассеяния). Чему равна статическая индуктивность электромагнита?
Решение
Это пример прямой задачи на расчет магнитной цепи. На рис. 2.3 пунктиром проведена средняя линия магнитной индукции (приближенно). Длина проходящей вдоль сердечника части средней линии магнитной индукции abсd = l1 = 0,28 м. Сечение сердечника S1 = 2·2 = 4 см2 = 4·10–4 м2.
Сечение якоря S2 = 2·2,5 = 5 см2 = 5·10–4 м2, длина проходящей через него части средней линии магнитной индукции efgh = l2 = 0,16 м. Магнитная индукция в якоре B2 = 0,84 Вб/м2 (по условию задачи).
Из условия равенства магнитных потоков в якоре и в сердечнике (одноконтурная магнитная цепь, потоком рассеяния пренебрегаем)
Ф1 = B1·S1 = B2·S2
найдем магнитную индукцию в сердечнике:
B 1 = B 2 ⋅ S 2 S 1 = 0,84⋅5⋅ 10 −4 4⋅ 10 −4 =1,05 Вб м 2 .
Сечение воздушного зазора, длина проходящей в нем части линии магнитной индукции и магнитная индукция равны:
S 3 =4⋅ 10 −4 м 2 ; l 3 =2δ=2⋅ 10 −3 м; B 3 =1,05 Вб м 2 ,
напряженность магнитного поля в воздухе:
H 3 = B 3 μ 0 = 1,05 4π⋅ 10 −7 =84⋅ 10 4 А м .
Общая магнитодвижущая сила по второму закону Кирхгофа для магнитной цепи (закону полного тока)
F = H1·l1 + H2·l2 + H3·l3.
В целях большей наглядности расчеты удобно свести в таблицу, в которой данные для напряженности магнитного поля в отдельных элементах магнитопровода взяты по соответствующим кривым намагничивания. Так, для сердечника, изготовленного из стали Э11, находим, что индукции B1 = 1,05 Вб/м2 соответствует значение напряженности магнитного поля H1 = 570 А/м, а для якоря, изготовленного из литой стали, имеем, что величине B2 = 0,84 Вб/м2 соответствует значение H2 = 540 А/м.
Название участка |
Материал |
S, м2 |
l, м |
B, Вб/м2 |
H, А/м |
H·l, А |
Сердечник |
Сталь Э11 |
4·10–4 |
0,28 |
1,05 |
570 |
160 |
Якорь |
Литая сталь |
5·10–4 |
0,16 |
0,84 |
540 |
85 |
Воздушный зазор |
Воздух |
4·10–4 |
0,002 |
1,05 |
84·104 |
1680 |
F= ∑ H k ⋅ l k =160+85+1680=1925 А.
Искомый ток найдем, пользуясь формулой F = I·w:
I= F w = 1925 500 =3,85 А.
Статическая индуктивность электромагнита равна отношению потокосцепления (полного магнитного потока) к току:
L ст = Ψ I = w⋅Ф I = 500⋅4,2⋅ 10 −4 3,85 =0,053 Гн=053 мГн.
Задача 2.4. Найти магнитную индукцию в якоре электромагнита (обратная задача расчета одноконтурной магнитной цепи), изображенном на рис. 2.3, если на электромагнит намотано w = 250 витков, по которым проходит ток I = 4,4 А. Сердечник изготовлен из листовой электротехнической стали Э11, а якорь — из литой стали. Размеры сердечника и якоря те же, что и в предыдущей задаче. Длина воздушного зазора 0,5 мм. Площадь сечения воздушного зазора считать равной площади сердечника.
Решение
Это пример обратной задачи на расчет магнитной цепи. Для ее решения надо построить кривую зависимости магнитного потока Ф в функции магнитодвижущей силы F и на кривой найти рабочую точку.
Чтобы построить кривую Ф = f (F) будем задаваться различными величинами магнитных потоков Ф, по которым вычисляем соответствующие им значения магнитной индукции B в каждом из участков магнитной цепи. Затем по кривым намагничивания находим напряженность поля H, соответствующую каждому значению индукции B, и, наконец, вычисляем магнитодвижущую силу по второму закону Кирхгофа для магнитной цепи (закону полного тока)
F= ∑ H k ⋅ l k .
Так, например, примем Ф = 3,2·10–4 Вб. Тогда
B серд = Ф S серд = 3,2⋅ 10 −4 4⋅ 10 −4 =0,8 Вб м 2 ; B як = Ф S як = 3,2⋅ 10 −4 5⋅ 10 −4 =0,64 Вб м 2 ; B заз = B серд =0,8 Вб м 2 .
По кривым намагничивания находим напряженности магнитного поля:
H серд =318 А м ; H як =330 А м ; H заз = B заз μ 0 = 0,8 4π⋅ 10 −7 =64⋅ 10 4 А м .
Магнитодвижущая сила
F= H серд ⋅ l серд + H як ⋅ l як + H заз ⋅ l заз = =318⋅0,28+330⋅0,16+64⋅ 10 4 ⋅ 10 −3 =780 А.
Эта магнитодвижущая сила меньше заданной, которая равна
I·w = 4,4·250 = 1100 А.
Аналогично проводим расчеты для больших значений Ф, которые сведены в следующую таблицу:
Ф, Вб |
Bсерд, Вб/м2 |
Нсерд, А/м |
lсерд, м |
Bяк, Вб/м2 |
Hяк, А/м |
lяк, м |
Bзаз, Вб/м2 |
Hзаз, А/м |
lзаз, м |
F, А |
3,2·10–4 |
0,8 |
318 |
0,28 |
0,64 |
330 |
0,16 |
0,8 |
64·104 |
1·10–3 |
780 |
3,6·10–4 |
0,9 |
397 |
0,28 |
0,72 |
400 |
0,16 |
0,9 |
72·104 |
1·10–3 |
895 |
4,0·10–4 |
1,0 |
502 |
0,28 На http://www.online-invest.org проекты хайп. |
0,80 |
490 |
0,16 |
1,0 |
80·104 |
1·10–3 |
1020 |
4,4·10–4 |
1,1 |
647 |
0,28 |
0,88 |
600 |
0,16 |
1,1 |
88·104 |
1·10–3 |
1160 |
Мы остановились на величине Ф = 4,4·10–4 Вб потому, что для этого значения магнитного потока суммарная магнитодвижущая сила равна 1160 А, что больше заданных 1100 А. По данным расчетов построена кривая Ф = f (F) и на ней определена рабочая точка, которая при F = 1100 А соответствует значению магнитного потока в 4,24·10–4 (рис. 2.4).
Рис. 2.4
Следовательно, искомая индукция в якоре электромагнита
B як = Ф S як = 4,24⋅ 10 −4 5⋅ 10 −4 =0,848 Вб м 2 .
Обычно в технических расчетах значения магнитной индукции округляют до сотых долей Вб/м2 (целые сотни гауссов); поэтому считаем Bяк = 0,85 Вб/м2.
Укажем, что задача могла бы быть решена и другим путем — методом проб: суть его состоит в том, что так же, как и выше, задаются некоторым значением магнитного потока Ф, для которого подсчитывают магнитодвижущую силу F. Если она окажется меньше заданной, то берут большие значения Ф до тех пор, пока не получат F больше заданной величины. После этого значения Ф, соответствующие большим и меньшим против заданного значениям F сужают до тех пор, пока для одного из сечений магнитной цепи полученные значения магнитной индукции будут различаться друг от друга не более чем на 0,1 Вб/м2 (1000 Гс). Искомое значение Ф можно затем найти путем интерполирования.
Так, например, задаемся величиной Ф = 3,2·10–4 Вб, которой соответствует магнитодвижущая сила F = 780 А, что меньше заданного значения Fзад = 1100 А. Теперь зададимся Ф’ = 4,4·10–4 Вб, для которого найдем F’ = 1160 А; это больше заданной величины Fзад. Уменьшаем значение Ф, принимая его, например, равным 4·10–4 Вб; ему соответствует значение F” = 1020 А, что вновь меньше заданной величины магнитодвижущей силы. Итак, при Ф” = 4·10–4 Вб: B”як = 0,8 Вб/м2, а при Ф’ = 4,4·10–4 Вб: B’як = 0,88 Вб/м2.
Таким образом, значения магнитной индукции B в одном из сечений (в данном случае в якоре) отличаются одно от другого менее, чем на 0,1 Вб/м2 (0,88 — 0,8 = 0.08 Вб/м2).
Окончательное значение магнитного потока найдем линейным интерполированием.
Рис. 2.5
Из треугольника MNP (рис. 2.5) имеем:
ΔФ 4,4⋅ 10 −4 −4⋅ 10 −4 = 1100−1020 1160−1020 ,
отсюда
ΔФ=0,23⋅ 10 −4 Вб, а Ф=4⋅ 10 −4 +0,23⋅ 10 −4 =4,23⋅ 10 −4 Вб.
Искомая индукция в якоре
B як = Ф S як = 4,23⋅ 10 −4 5⋅ 10 −4 ≈0,85 Вб м 2 .
Задача 2.5. Найти магнитную индукцию в воздушном зазоре тороида (обратная задача расчета одноконтурной магнитной цепи), изготовленного из литой стали (рис. 2.6), если на тороид намотано w = 400 витков, по которым проходит ток I = 4 А. Воздушный зазор = 2 мм. Размеры тороида на рисунке даны в мм.
Рис. 2.6
Решение
Задача может быть решена аналогично предыдущей. Мы здесь укажем, как быстрее всего найти первое приближенное значение магнитного потока. Для этого предполагаем, что вся заданная магнитодвижущая сила F = I·w расходуется на ту часть магнитопровода, которая предполагается имеющей наибольшее магнитное сопротивление. Получаемое при этом значение магнитного потока будет завышено по сравнению с фактическим, ибо в расчете не были учтены магнитные сопротивления других участков цепи.
Полагая в нашем случае, что вся магнитодвижущая сила падает на магнитном сопротивлении воздушного зазора, запишем по второму закону Кирхгофа для магнитной цепи (закону полного тока):
F=I⋅w= H возд ⋅δ= B μ 0 ⋅δ,
откуда
B= I⋅w⋅ μ 0 δ = 4⋅400⋅4π⋅ 10 −7 2⋅ 10 −3 =1,0 Вб м 2 .
Так как это значение индукции, как указано выше, явно завышено, проведем новый расчет для меньшего значения магнитной индукции, например, для 0,8 Вб/м2. По кривой намагничивания для литой стали этой индукции соответствует величина напряженности магнитного поля Hст = 490 А/м.
Общая магнитодвижущая сила по второму закону Кирхгофа для магнитной цепи (закону полного тока) при этом будет равна
F= H ст ⋅ l ст + H возд ⋅δ=490⋅0,785+ 0,8 4π⋅ 10 −7 ⋅2⋅ 10 −3 =1650 А,
что превышает заданную величину 1600 А.
Теперь проведем расчет для еще меньшей индукции B = 0,7 Вб/м2. Для нее по кривой намагничивания напряженность Hст = 380 А/м. Общая магнитодвижущая сила в этом случае будет
F= H ст ⋅ l ст + H возд ⋅δ=490⋅0,785+ 0,7 4π⋅ 10 −7 ⋅2⋅ 10 −3 =1410 А,
что меньше заданной величины 1600 А.
Таким образом, истинная величина индукции находится в пределах от 0,7 до 0,8 Вб/м2. Ее мы найдем интерполированием (рис. 2.7).
Рис. 2.7
Искомая индукция B=0,7+ΔB, где ΔB находится из соотношения
ΔB 0,1 = 1600−1410 1650−1410 = 190 240 ,
откуда
ΔB= 190 240 ⋅0,1≈0,08 Вб м 2 .
Итак, искомая индукция равна 0,78 Вб/м2 (7800 Гс).
Задача 2.6. Определить все магнитные потоки и ток, проходящий через катушку, расположенную на среднем стержне сердечника, если в левом стержне имеется магнитная индукция в 0,95 Вб/м2. Размеры магнитопровода на рис. 2.8 даны в миллиметрах. Материал сердечника — листовая сталь Э11. Число витков катушки w = 500.
Рис. 2.8
Решение
Покажем на рисунке средние линии магнитной индукции. По данным задачи найдем их длины:
lA = 60 см; lB = 25 см; lC = 70 см.
Задачи на сложную разветвленную несимметричную магнитную цепь решаются на основании первого и второго законов Кирхгофа для магнитной цепи:
для узла n
ФB = ФA + ФC; (1)
для контура npqn
HB·lB + HC·lC = I·w; (2)
для контура npqmn
HC·lC — HA·lA = 0. (3)
В уравнениях (2) и (3) HA, HB и HC соответственно напряженности магнитного поля в стержнях A, B и C.
Для магнитной индукции в левом стержне BA = 0,95 Вб/м2 по кривой намагничивания для листовой стали найдем HA = 447 А/м.
Из уравнения (3) получим
H C = H A ⋅ l A l C = 447⋅60 70 =384 А м .
По кривой намагничивания находим, что H = 384 А/м соответствует индукция BC = 0,89 Вб/м2.
По уравнению (1) получим
Ф B = Ф A + Ф C = B A ⋅ S A + B C ⋅ S C = =0,95⋅20⋅ 10 −4 +0,89⋅20⋅ 10 −4 =36,8⋅ 10 −4 Вб.
Следовательно,
B B = Ф B S B = 36,8⋅ 10 −4 40⋅ 10 −4 =0,92 Вб м 2 .
Этой индукции по кривой намагничивания соответствует HB = 417 А/м. По уравнению (2) найдем
I·w = HB·lB + HC·lC = 417·0,25 + 384·0,7 = 373 А.
Искомый ток
I= F w = 373 500 ≈0,75 А.
Задача 2.7. Магнитная цепь изготовлена из листовой электротехнической стали Э11. На средний стержень сердечника намотана катушка, содержащая w = 930 витков, по которым проходит ток I = 1 А (рис. 2.8). На всем участке A сечение магнитной цепи считать SA = 20 см2, на участке B — SB = 40 см2, на участке С — SC = 20 см2. Длины средних линий магнитной индукции каждого из участков считать равными: lA = 55 см, lB = 25 см, lC = 80 см.
Найти значения магнитной индукции во всех стержнях.
Решение
Выберем на рис. 2.8 пути средних линий магнитной индукции и запишем уравнения:
для узла n
ФB = ФA + ФC; (1)
для контура npqn
HB·lB + HC·lC = I·w; (2)
для контура npqmn
HC·lC — HA·lA = 0. (3)
Построим кривые зависимостей
ФA = f1 (HA·lA) = f1 (UMnq);
ФB = f2 (I·w — HB·lB) = f2 (UMnq);
ФC = f3 (HC·lC) = f3 (UMnq).
Здесь UMnq — разность скалярных магнитных потенциалов точек n и q, или магнитодвижущая сила между теми же точками.
Для построения кривой f1 задаемся различными величинами магнитных потоков ФA, по которым находим соответствующие им значения магнитной индукции BA, для которых по кривой намагничивания определяем напряженность магнитного поля HA. Беря произведение HA·lA, находим для различных потоков значения магнитных напряжений на участке A. Результаты вычислений сводим в таблицу. Таким же путем производим расчет для построения кривой на участке C. Наконец, для построения кривой f2 (участок B) задаемся значениями ФB и по ним находим BB, HB, HB·lB и разность I·w — HB·lB. Указанные вычисления сведены в таблицу.
ФА, 10–4 Вб |
BA, Вб/м2 |
HA, А/м |
HAlA, А |
ФC, 10–4 Вб |
BC, Вб/м2 |
HC, А/м |
HClC, А |
ФB, 10–4 Вб |
BB, Вб/м2 |
HB, А/м |
HBlB, А |
Iw–HBlB, Смотрите на сайте tłumacz Warszawa. Вкусы одноразок. А |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
930 |
10 |
0,5 |
171 |
94 |
10 |
0,5 |
171 |
137 |
20 |
0,5 |
171 |
43 |
887 |
12 |
0,6 |
211 |
116 |
12 |
0,6 |
211 |
169 |
24 |
0,6 |
211 |
53 |
877 |
14 |
0,7 |
261 |
143 |
14 |
0,7 |
261 |
209 |
28 |
0,7 |
261 |
65 |
865 |
16 |
0,8 |
318 |
175 |
16 |
0,8 |
318 |
254 |
32 |
0,8 |
318 |
80 |
850 |
18 |
0,9 |
397 |
218 |
18 |
0,9 |
397 |
318 |
36 |
0,9 |
397 |
99 |
831 |
20 |
1,0 |
502 |
276 |
20 |
1,0 |
502 |
402 |
40 |
1,0 |
502 |
126 |
804 |
22 |
1,1 |
647 |
356 |
22 |
1,1 |
647 |
518 |
44 |
1,1 |
647 |
162 |
768 |
24 |
1,2 |
843 |
463 |
24 |
1,2 |
843 |
675 |
48 |
1,2 |
843 |
210 |
720 |
26 |
1,3 |
1140 |
626 |
26 |
1,3 |
1140 |
913 |
52 |
1,3 |
1140 |
285 |
645 |
28 |
1,4 |
1580 |
870 |
28 |
1,4 |
1580 |
1265 |
56 |
1,4 |
1580 |
395 |
535 |
30 |
1,5 |
2500 |
1375 |
30 |
1,5 |
2500 |
2000 |
60 |
1,5 |
2500 |
625 |
305 |
По этим данным построены кривые ФA, ФB, ФC (рис. 2.9).
Рис. 2.9
Так как величины магнитных потоков должны удовлетворять уравнению (1), то проводим еще одну вспомогательную кривую ФB = ФA + ФC; она строится путем суммирования ординат кривых ФA и ФC для одних и тех же значений абсцисс. Точка m ее пересечения с кривой ФB = f2 (I·w — HB·lB) определяет величину искомого потока
ФB = 50,4·10–4 Вб.
Перпендикуляр mm’, опущенный из m на ось абсцисс, пересечет кривую ФA в точке n, а кривую ФC — в точке p, отрезок nm’ выражает искомый магнитный поток в стержне A:
ФA = 26,4·10–4 Вб, а отрезок pm’ — поток ФC = 24·10–4 Вб.
По найденным потокам находим магнитные индукции в каждом из стержней:
B A = Ф A S A = 26,4⋅ 10 −4 20⋅ 10 −4 =1,32 Вб м 2 ; B B = Ф B S B = 50,4⋅ 10 −4 40⋅ 10 −4 =1,26 Вб м 2 ; B C = Ф C S C = 24,0⋅ 10 −4 20⋅ 10 −4 =1,20 Вб м 2 .
Проверка. Можно убедиться, что при найденных значениях магнитных индукций удовлетворяются уравнения (1) — (3). Для этого по кривой намагничивания надо найти для каждого значения B соответствующее значение H и подставить в указанные уравнения.
Задача 2.8. Сердечник собран из листов электротехнической стали марки Э11. Форма и размеры сердечника (в мм) указаны на рис. 2.10.
Рис. 2.10
Обмотка имеет w = 400 витков, по которым проходит ток I = 3,5 А. Длина воздушного зазора составляет 1 мм. Определить магнитный поток в сердечнике. При расчете следует считать, что сечение воздушного зазора равно сечению сердечника.
Задачу решить следующими аналитическими методами: а) линейной аппроксимации, б) кусочно-линейной аппроксимации, в) дробно-линейной аппроксимации.
Результаты, полученные для каждого из случаев, сравнить с теми, какие получаются при решении задачи обычным способом.
Решение
Найдем длину средней линии магнитной индукции и сечение стального сердечника (рис. 2.10):
l1 = 2· (90 — 8) + 2· (46 — 8) = 240 мм = 0,24 м;
S1 = 8·5 = 40 мм2 = 0,4·10–4 м2.
Длина средней линии магнитной индукции в воздушном зазоре и его сечение равны:
l2 = 1 мм = 1·10–3 м;
S2 = 8·5 = 40 мм2 = 0,4·10–4 м2.
Решая задачу способом, указанным в решении задачи 2.4, найдем магнитную индукцию B = 1,35 Вб/м2 и соответствующий магнитный поток
Ф = B·S = 1,35·0,4·10–4 = 0,54·10–4 Вб.
а) Расчет магнитной цепи методом линейной аппроксимации кривой намагничивания
Здесь расчет магнитной цепи основан на замене рабочей части кривой намагничивания прямой линией в некоторой области изменения магнитной индукции. Примем, например, что магнитная индукция изменяется в пределах от нуля до 1,5 Вб/м2. Заменим кривую намагничивания (рис. 2.11) прямой линией 0b.
Рис. 2.11
Ее уравнение B = k1·H, здесь коэффициент k1 равен тангенсу угла наклона прямой 0b к оси абсцисс и выражает приближенное значение абсолютной магнитной проницаемости стали в рассматриваемом интервале
μ a1 = μ r1 ⋅ μ 0 = k 1 = B H = 1,5 2500 =6⋅ 10 −4 Гн м .
Искомый магнитный поток определяем по уравнению:
Ф= I⋅w R M1 + R M2 ,
где
R M1 = l 1 μ a1 ⋅ S 1 = l 1 μ r1 μ 0 ⋅ S 1 ; R M2 = l 2 μ 0 ⋅ S 2 — магнитные сопротивления, соответственно стальной части и воздушного зазора.
Производим вычисления:
R M1 = l 1 μ a1 ⋅ S 1 = 0,24 6⋅ 10 −4 ⋅0,4⋅ 10 −4 =1,0⋅ 10 7 1 Гн ; R M2 = l 2 μ 0 ⋅ S 2 = 1⋅ 10 −3 4π⋅ 10 −7 ⋅0,4⋅ 10 −4 =1,98⋅ 10 7 1 Гн ; Ф= I⋅w R M1 + R M2 = 3,5⋅400 1,0⋅ 10 7 +1,98⋅ 10 7 =0,47⋅ 10 −7 Вб.
Ошибка в сравнении с результатами, полученными обычным способом, составляет
0,54⋅ 10 −4 −0,47⋅ 10 −4 0,54⋅ 10 −4 ⋅100%≈13%.
б) Расчет магнитной цепи методом кусочно-линейной аппроксимации кривой намагничивания
Здесь расчет магнитной цепи основан на замене рабочей части кривой намагничивания отрезками прямых линий, например, из двух прямых отрезков 0a и ab (рис. 2.11).
Предполагается, что рабочий режим лежит в области индукций между B1 и B2, соответствующих точкам a и b.
Уравнение прямой ab, выражающей зависимость магнитной индукции от напряженности магнитного поля в стали, имеет вид:
B ст = B 1 + k 2 ⋅ ( H ст − H 1 ), (1)
где k2 — тангенс угла наклона прямой ab с осью абсцисс:
k 2 = B 2 − B 1 H 2 − H 1 . (2)
Напряженность магнитного поля в воздухе может быть выражена следующим образом:
H в = B в μ 0 = Ф μ 0 ⋅ S 2 = B ст ⋅ S 1 μ 0 ⋅ S 2 = B ст μ ′ 0 , (3)
где ради краткости обозначено
μ ′ 0 = μ 0 ⋅ S 2 S 1 . (4)
Подставляя в уравнение (3) вместо Bст его значение из уравнения (1), получим:
H в =[ B 1 + k 2 ⋅ ( H ст − H 1 ) ]⋅ 1 μ ′ 0 . (5)
Для определения Hст воспользуемся уравнением второго закона Кирхгофа для магнитной цепи (законом полного тока)
Hст·l1 + Hв·l2 = I·w. (6)
Подставляя в уравнение (6) значение Нв из уравнения (5), будем иметь:
H ст ⋅ l 1 + B 1 ⋅ l 2 μ ′ 0 + k 2 ⋅ l 2 μ ′ 0 ⋅ ( H ст − H 1 )=I⋅w.
Решая это алгебраическое уравнение относительно Hст, найдем:
H ст = I⋅w⋅ μ ′ 0 − B ′ ⋅ l 2 μ ′ 0 ⋅ l 1 + k 2 ⋅ l 2 , (7)
где
B ′ = B 1 − k 2 ⋅ H 1 . (8)
Величина магнитной индукции в стали находится путем подстановки найденного значения Hс в уравнение (1):
B ст = μ ′ 0 ⋅ I⋅w⋅ k 2 + B ′ ⋅ l 1 μ ′ 0 ⋅ l 1 + k 2 ⋅ l 2 , (9)
Для нашей задачи выберем ломаную так, что:
в точке a
B1 = 1,2 Вб/м2, соответствующее H1 = 843 А/м,
в точке b
B2 = 1,5 Вб/м2, соответствующее H2 = 2500 А/м.
По формулам (2), (4), (8), (7) и (1) находим:
k 2 = B 2 − B 1 H 2 − H 1 = 1,5−1,2 2500−843 =18,15⋅ 10 −5 Гн м ; μ ′ 0 = μ 0 ⋅ S 2 S 1 = μ 0 ⋅ 0,4⋅ 10 −4 0,4⋅ 10 −4 = μ 0 =4π⋅ 10 −7 Гн м ; B ′ = B 1 − k 2 ⋅ H 1 =1,2−18,15⋅ 10 −5 ⋅843=1,05 Вб м 2 ; H ст = I⋅w⋅ μ ′ 0 − B ′ ⋅ l 2 μ ′ 0 ⋅ l 1 + k 2 ⋅ l 2 = 3,5⋅400⋅4π⋅ 10 −7 −1,05⋅1⋅ 10 −3 4π⋅ 10 −7 ⋅0,24+18,15⋅ 10 −5 ⋅1⋅ 10 −3 =1470 А м ; B ст = B 1 + k 2 ⋅ ( H ст − H 1 )=1,2+18,15⋅ 10 −5 ⋅ ( 1470−843 )=1,314 Вб м 2 .
И, наконец, искомый поток
Ф = Bст·S1 = 1,314·0,4·10–4 = 0,525·10–4 Вб.
Ошибка по сравнению с обычным способом расчета составляет
0,54⋅ 10 −4 −0,525⋅ 10 −4 0,54⋅ 10 −4 ⋅100%≈3%.
в) Расчет магнитной цепи методом дробно-линейной аппроксимации кривой намагничивания
Дробно-линейная аппроксимация делается посредством уравнения:
B ст = H ст α+β⋅ H ст . (10)
Входящие сюда коэффициенты α и β находятся из известных значений магнитной индукции и напряженности магнитного поля в двух выбранных точках кривой намагничивания, между которыми ожидается действительный режим работы стального участка магнитной цепи.
Для определения Нст поступим следующим образом: из уравнения (10) значение Вст подставим в уравнение (3), тогда получим:
H в = B ст μ ′ 0 = H ст μ ′ 0 ⋅ ( α+β⋅ H ст ) .
Это значение Нв подставим в уравнение (6) второго закона Кирхгофа для магнитной цепи (закона полного тока):
H ст ⋅ l 1 + H ст ⋅ l 2 μ ′ 0 ⋅ ( α+β⋅ H ст ) =I⋅w.
Решая относительно Нст это квадратное уравнение, найдем:
H ст = 1 2 ( I⋅w l 1 − 1+p q )+ 1 4 ( I⋅w l 1 − 1+p q ) 2 + I⋅w q⋅ l 1 . (11)
Второй корень квадратного уравнения, как не имеющий физического смысла, ввиду того что Нст должна выражаться положительным числом, опущен.
В уравнении (11) введены ради краткости обозначения:
p= l 2 ⋅ S 1 l 1 ⋅ S 2 ⋅ μ 0 ⋅α ; q= β α . (12)
Проведем числовые расчеты для нашей задачи, принимая для B и H те числовые значения, какие они имеют на границах рассматриваемого интервала в указанных выше точках a и b. По уравнению (10) имеем:
1,2= 843 α+β⋅843 ; 1,5= 2500 α+β⋅2500 .
Решая эти два уравнения, найдем:
α=213 м Гн ; β=0,581 м 2 Вб .
Далее по формулам (12), (13), (11) и (10) получим:
p= l 2 ⋅ S 1 l 1 ⋅ S 2 ⋅ μ 0 ⋅α = 1⋅ 10 −3 ⋅0,4⋅ 10 −4 0,24⋅0,4⋅ 10 −4 ⋅4π⋅ 10 −7 ⋅α 213=15,6; q= β α = 0,581 213 =2,73⋅ 10 −3 м А ; I⋅w q⋅ l 1 = 3,5⋅400 2,73⋅ 10 −3 ⋅0,24 =2,14⋅ 10 6 А 2 м 2 ; 1 2 ( I⋅w l 1 − 1+p q )= 1 2 ( 3,5⋅400 0,24 − 16,6 2,73⋅ 10 −3 )=−125; H ст = 1 2 ( I⋅w l 1 − 1+p q )+ [ 1 2 ( I⋅w l 1 − 1+p q ) ] 2 + I⋅w q⋅ l 1 = =−125+ 125 2 +2,14⋅ 10 6 =−125+1515=1390 А м ; B ст = H ст α+β⋅ H ст = 1390 213+0,581⋅1390 =1,363 Вб м 2 .
Искомый магнитный поток равен:
Ф = Bст·S1 = 1,363·0,4·10–4 = 0,545·10–4 Вб.
Ошибка в сравнении с обычным методом расчета магнитных цепей составляет:
0,545⋅ 10 −4 −0,54⋅ 10 −4 0,545⋅ 10 −4 ⋅100%≈0,9%.
Отметим, что расчет при помощи дробно-линейной аппроксимации приводит к удовлетворительным результатам даже в тех случаях, когда велико расстояние между граничными точками.
закон полного тока,
магнитная цепь,
расчет магнитной цепи,
методы расчета магнитных цепей,
решение задач магнитные цепи
Теорема о циркуляции вектора напряженности магнитного поля. Расчет полей соленоида и тороида
Построим картину линий напряженности магнитного ноля вокруг бесконечного прямолинейного проводника с током (рис. 22.4). По аналогии с циркуляцией вектора напряженности электростатического поля (17.7) введем понятие циркуляции вектора напряженности магнитного
Для простоты сначала в качестве контура выберем окружность, совпадающую с одной из линий напряженности магнитного поля. В соответствии с формулой (22.12) напряженность на этой окружности является константой. А в соответствии с рис. 22.4 вектор напряженности направлен но касательной к окружности. Эти соображения позволяют вычислить циркуляцию:
Принцип суперпозиции магнитных полей и рассуждения, аналогичные предпринятым в разделе о циркуляции вектора напряженности электростатического поля, позволяют обобщить полученное выражение на несколько токов и произвольный контур:
Это и есть теорема о циркуляции вектора напряженности магнитного поля: циркуляция вектора напряженности магнитного поля по произвольному контуру равна алгебраической сумме токов, охватываемых контуром.
Теперь домножением обеих частей уравнения (22.18) на р0ц получим теорему о циркуляции вектора магнитной индукции:
Искусство применения теоремы о циркуляции состоит в выборе удобного для расчета контура.
Применим теорему о циркуляции для вычисления напряженности магнитного поля длинного соленоида с током I. Соленоид — это провод, равномерно навитый на цилиндрический каркас (рис. 22.5). Будем считать, что диаметр каркаса много меньше его длины, а шаг плотной намотки (расстояние между витками) много меньше диаметра. При этих условиях поле внутри соленоида, как будет очевидно из результата, много больше поля вне соленоида и достаточно однородно (заметим, что поле вне соленоида можно определить по формуле для магнитного поля прямого тока (22.12)). Из соображений симметрии поле внутри соленоида направлено вдоль оси соленоида. Пусть плотность намотки витков (количество витков на единицу длины каркаса) равна п витков на метр.
В соответствии с рис 22.5 выберем прямоугольный контур, у которого малые (по сравнению с большими сторонами длиной /) стороны 2—3 и 4—1 в точке протыкания каркаса перпендикулярны каркасу, большая сторона 1—2 находится внутри каркаса, большая сторона 3—4 находится вне каркаса. В такой ситуации в циркуляции, состоящей из четырех интегралов по отрезкам, доминирует составляющая по отрезку 1—2. Составляющими по отрезкам 2—3 и 4—1 можно пренебречь вследствие малости отрезков. Составляющей по отрезку 3—4 можно пренебречь вследствие перпендикулярности (приблизительно) поля отрезку и малости этого поля. Внутрь контура попадает п! витков с током. Таким образом, циркуляция сводится к отрезку 1—2, но в соответствии с формулой (22.19) определяется полным током nil внутри контура:
Отметим, что это поле достаточно однородно по диаметру каркаса, ведь стороны 2—3 и 4— 1 малы лишь по сравнению с длиной каркаса, но могут быть сравнимы с диаметром каркаса и углубляться внутрь каркаса на любое расстояние.
Соответственно, магнитная индукция внутри длинного соленоида равна
Вычислим теперь магнитное иоле тороида. Тороид — это провод, навитый на тор (бублик). Его можно получить из соленоида, изогнув его в кольцевую катушку (рис. 22.6). Поле тороида похоже на поле соленоида, и линии напряженности тороида параллельны оси тороида. Покажем это, выбрав в качестве контура для вычисления циркуляции окружность радиуса г внутри тора с центром в центре тороида. По теореме о циркуляции для тороида с полным числом витков провода N
откуда магнитное поле внутри тороида
Если контур проходит вне тороида, то внутри него токи отсутствуют, т.е.
и поле из теоремы о циркуляции равно нулю. Таким образом, магнитное поле тороида локализовано внутри тороида и спадает по мере удаления от центра симметрии.
Если тороид тонкий и его радиус R
г много больше радиуса витка, то несложно получить, что поле внутри тороида (22.24) дается формулой, аналогичной формуле для поля соленоида (22.22):
Индуктивность и ее расчет
Содержание:
Индуктивность и ее расчет:
Основным соотношением для магнитного поля является принцип непрерывности магнитного потока:
На рис. 1.12, а и б проиллюстрировано различие между потоком и
потокосцеплением, причем число линий в условном масштабе равно
величине потока.
Индукция измеряется в тесла (тл), магнитный поток и потокосцепление — в веберах (вб).
Индуктивность уединенного контура, равная отношению потокосцепления к току:
пропорциональна магнитной проницаемости среды, в которой он находится, и определяется конфигурацией контура. Единицей индуктивности является генри (гн).
Для расчета индуктивности контура необходимо предварительно рассчитать его магнитное поле по основному соотношению — закону полного тока:
устанавливающему связь между напряженностью магнитного поля и полным током I — алгебраической суммой токов, сцепляющихся с путем интегрирования. При этом положительное направление тока I связано с направлением dI обхода правилом правого винта.
Напряженность магнитного поля измеряется в а/м, магнитная проницаемость — в гн/м.
Если потокосцепление контура изменяется во времени, то в контуре появляется э. д. с. индукции е, величина и направление которой определяется законом электромагнитной индукции:
где Е — вектор напряженности наведенного в контуре электрического поля.
Таким образом, закон электромагнитной индукции связывает между собой изменение магнитного поля с возникающим электрическим полем.
Максвеллом было постулировано обобщение этого закона, заключающееся в том, что электрическое поле возникает при изменении магнитного поля в любой среде, а не только в проводящем контуре.
Закон электромагнитной индукции, открытый Фарадеем в 1831 г., был дополнен Ленцем в 1832— 1834 гг. Им было установлено общее правило: з. д. с. индукции всегда стремится создать ток, направленный так, чтобы препятствовать изменению потока, сцепляющегося с контуром.
При изменении тока в контуре изменяется потокосцепление ψL созданное этим током, и в контуре наводится э. д. с. самоиндукции
Индуктивность тороида и соленоида
Если на кольцевой сердечник — тороид, выполненный из материала проницаемостью µ > µ0, нанести обмотку не по всей его длине (рис. 1.13), то только часть потока проходит по сердечнику, остальная часть — поток рассеяния — замыкается в воздухе. Тороид же, содержащий витки, плотно и равномерно распределенные по всей длине сердечника (рис. 1.14), замечателен тем, что практически весь магнитный поток сосредоточивается в сердечнике, т. е. потока рассеяния нет. Линии вектора напряженности поля представляют собой окружности, сцепляющиеся со всеми витками. Ввиду симметрии напряженность поля в каждой точке окружности по величине постоянна; по направлению она совпадает с касательной к окружности.
Тороиды широко применяются в трансформаторах, магнитных усилителях и электроизмерительных приборах.
Пусть тороид имеет прямоугольное сечение высотой Н, с радиусами г1 и г2, магнитная проницаемость материала µ.
По закону полного тока для окружности с радиусом
т. е. напряженность поля убывает по мере приближения к наружному краю тороида. Это в равной мере относится и к индукции
Поток в сердечнике тороида
Отсюда индуктивность тороида
Если расчет вести для средней линии I и приближенно считать поле в тороиде распределенным равномерно, то напряженность
где w0 — число витков на единицу длины, а магнитный поток и индуктивность, соответственно,
Обычно в реальных тороидах отношение что приводит при этих приближенных формулах к погрешности, не превышающей 1,2 %. Последняя формула для индуктивности может быть применена и к длинному соленоиду, рассматриваемому как часть тороида бесконечно большого радиуса. Для соленоида конечной длины µ=µ0
где k µ0. Посередине между проводами поле минимально, но в нуль не обращается. Поле также не равно нулю на осях проводов.
На внутренней стороне проводов напряженность поля и индукция больше, чем на внешней. В отличие от напряженности поля индукция имеет разрыв у поверхности проводов. Для вычисления индуктивности линии необходимо найти потокосцепление. Элементарный поток, проходящий через площадку Idx в воздухе между проводами,
Весь поток между проводами – внешний поток
одновременно является внешним потокосцеплением, так как сцепляется с контуром один раз. Поэтому
а соответствующая ему внешняя индуктивность
Для большинства линий расстояние d между проводами значительно превышает радиус r0 проводов. В этом случае
Для определения внутренней индуктивности, соответствующей внутреннему потоку, при d > r0 поле внутри провода линии может вычисляться как поле уединенного провода, так как поле, создаваемое вторым проводом внутри первого, по сравнению с полем первого, пренебрежимо мало. Тогда элементарный поток внутри провода
Так как поток dФi охватывает не весь ток, а только его часть [см. формулу (1.3)], элементарное потокосцепление
Весь поток между проводами — внешний поток
Соответственно, внутренняя индуктивность
Суммарная индуктивность линии
При медных или алюминиевых проводах () в большинстве случаев вторым членом можно пренебречь по сравнению с первым и тогда
Для стальных проводов () основной частью потока является
внутренний поток и индуктивность
практически не будет зависеть от расстояния между проводами.
Взаимоиндуктивность и ее расчет
Для двух контуров, имеющих w1 и w2 витков с токами I1 и I2 (рис. 1.17), поток первого контура, определяемый током этого контура, — поток самоиндукции Ф1l—может быть разложен на поток рассеяния Ф1s, пронизывающий только этот контур, и поток взаимоиндукции Ф1m, пронизывающий также и второй контур:
Потокосцепление, соответствующее потоку Ф11 (при условии, что этот поток пронизывает все витки первого контура, равно
а потокосцепление рассеяния
Аналогично для второго контура
Потокосцепление второго контура, определяемое током первого,
а потокосцепление первого контура, определяемое током второго,
Можно показать, что
Величина M называется взаимоиндуктивностью и определяется конфигурацией контуров, их взаимным расположением и магнитной проницаемостью среды. Взаимоиндуктивность также измеряется в генри (гн).
Суммарный поток, пронизывающий первый контур,
Суммарное потокосцепление первого контура
и соответственно для второго контура
В этих алгебраических суммах первый член всегда положителен, а знак перед вторым членом определяется направлением токов в контурах; положительный знак соответствует случаю совпадения направлений потоков Ф1м и Ф2м (см. рис. 1.17).
Из изложенного видно, что
Таким образом, взаимоиндуктивность и индуктивности всегда удовлетворяют неравенству
а используемый в технических расчетах коэффициент связи двух контуров
Аналогично, в системе многих контуров потокосцепление контура определяется токами всех контуров:
где Lq — индуктивность q-то контура, Мqp = Мрq — взаимоиндуктивность q- и р-го контуров. Общий прием расчета взаимоиндуктивности контуров заключается
в нахождении потокосцепления, пронизывающего контур q, но созданного током р-го контура, и делении его на этот ток.
Взаимоиндуктивность двух параллельных двухпроводных линий
Пусть две параллельные двухпроводные линии расположены симметрично так, как это было показано на рис. 1.4. При условии d> г0 внутренним потоком в проводах по сравнению с внешним можно пренебречь.
Магнитный поток, пронизывающий первую линию и созданный током I2 второй, может быть найден как сумма потоков, создаваемых каждым из проводов второй линии в отдельности.
Тогда магнитный поток, пронизывающий первую линию,
расстояния от провода линии 1 до проводов линии 2 .
Магнитный поток Ф одновременно является потокосцеплением первой линии, так как сцепляется с ней один раз; поэтому
Для уменьшения коэффициента связи между линиями связи l и передачи 2 применяют транспозицию линии связи, заключающуюся в перекрещивании проводов линии связи через равные расстояния; тогда суммарное потокосцепление будет равно нулю.
Линейные и нелинейные катушки индуктивности
У линейных материалов магнитная проницаемость µ, не зависит от напряженности поля и характеристика для них изображается прямой линией (рис. 1.18, а). Магнитная проницаемость пропорциональна тангенсу угла а наклона этой прямой:
где k — масштабный коэффициент.
К нелинейным материалам относятся ферромагнетик и — железо, никель, кобальт и гадолиний. Важное значение в электротехнике имеют первые три элемента, главным образом в виде сплавов. У нелинейных материалов магнитная проницаемость очень велика и зависит от напряженности поля.
Подобно нелинейным диэлектрикам по кривой первоначальногo намагничивания В (Н) (рис. 1.18, б) могут быть определены статическая магнитная проницаемость
и дифференциальная, а при быстрых изменениях поля — динамическая магнитная проницаемость
На рис. 1.18, б эти проницаемости представлены в функции напряженности поля. Максимальные значения магнитной проницаемости в очень чистом железе и в некоторых сплавах, например в пермаллое (сплав железа и-никеля с различными присадками), в сотни тысяч раз превышают магнитную постоянную равную
магнитной проницаемости вакуума.
В переменных магнитных полях в ферромагнетиках имеет место явление магнитного гистерезиса (рис. 1.19), заключающееся в несовпадении кривой В (Н) при возрастании напряженности поля с кривой при убывании поля.
Кривая, соединяющая вершины петель гистерезиса, называется основной кривой намагничивания и практически совпадает с кривой первоначального намагничивания, Ферромагнитные свойства зависят от температуры и проявляются лишь в определенном ее интервале.
Для расчета индуктивности основной является зависимость потокосцепления ψ от тока I, называемая веберамперной характеристикой.
В зависимости от материала сердечника тороиды по виду своей веберамперной характеристики будут также линейными или нелинейными. В качестве примера рассматривается нелинейный тороид.
Для тороида и веберамперные характеристики ψ (I) в соответствующем масштабе совпадают с кривыми В (H); поэтому прямая и кривые на рис. 1.18 а и б соответствуют также веберамперным характеристикам при величинах, указанных в скобках.
Для нелинейных тороидов вводятся понятия статической индуктивности
и дифференциальной, а также динамической индуктивности
являющихся функциями тока (см. рис. 1.18, б); для линейных тороидов эти индуктивности совпадают.
Аналогично индуктивностям в нелинейных системах контуров вводятся статическая взаимоиндуктивность
и дифференциальная, взаимоиндуктивность, а также динамическая
Индуктивность нелинейного тороида
Расчет нелинейного тороида может быть произведен, если задана зависимость В (H) или µ(H). Так как эти зависимости теоретически не выводятся, то для приближенного решения подбирают по кривой В(H) аппроксимирующую функцию.
Пусть аппроксимирующая функция для характеристики В (H) (рис. 1.20)
материала сердечника тороида будет
где а и b — постоянные.
Так как для тороида с ферромагнитным однородным cердечником напряженность поля по-прежнему определяется формулой
то индукция будет равна
откуда статическая индуктивность
а дифференциальная индуктивность
Кривые зависимости этих индуктивностей от тока представлены
на рис. 1.20.
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Энергия в электрических цепях
- Линейные электрические цепи
- Нелинейные электрические цепи
- Магнитные цепи и их расчёт
- Электрическая ёмкость и ее расчет
- Линейные н нелинейные диэлектрики и конденсаторы
- Сопротивление и его расчет
- Линейные и нелинейные резисторы
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Закон полного тока для магнитного поля
В электрических цепях всегда присутствует магнитное поле, которое оказывает электромагнитное взаимодействие с токами этих цепей. Данный фактор учитывается при расчетах цепей, а закон полного тока для магнитного поля является инструментом для подобных вычислений.
Если поднести магнитную стрелку к проводнику, по которому течёт ток, её положение изменится. Это говорит о наличии вокруг проводника кроме электрического ещё и магнитного поля. В результате многочисленных исследований электромагнитных явлений установлено, что существует взаимное влияние полей, имеющих электрическую и магнитную природу.
Физический смысл закона
Рассмотрим упрощённый вариант влияния магнитной индукции на электрическое поле. Для этого представим себе два параллельных проводника, по которым циркулируют постоянные токи, например, I1 и I2. Вблизи этих проводников образуется поле, которое мысленно можно ограничить неким контуром L – воображаемой замкнутой фигурой, плоскость которой пересекает потоки движущихся зарядов.
В пределах плоскости, охватываемой контуром L, формируется магнитное поле, напряжённость которого распределена в соответствии с направлениями токов. При этом циркуляция вектора магнитного поля в плоскости замкнутого контура прямо пропорциональна сумме токов, пронзающих данный контур. Полный электрический ток равен векторной сумме его составляющих:
Направления векторов I1 и I2 определяется по правилу буравчика.
Приведённые выше рассуждения можно рассматривать в качестве примера изображающего упрощённую модель частного случая рассматриваемого закона. В действительности же, процессы взаимного влияния магнитных и электрических полей намного сложнее, и они описываются интегральными и дифференциальными уравнениями Максвелла.
Упрощенный подход
Выразить закон в дифференциальном представлении довольно сложно. Потребуется вводить дополнительные компоненты. Необходимо учитывать влияние молекулярных токов. Наличие вихревых токов является причиной образования магнитного вихревого поля в пределах контура.
Вектор электрического смещения сравним с вектором напряжённости присутствующего магнитного поля H. При этом Ориентация вектора смещения зависит от быстроты изменения магнитной индукции.
Для упрощения вычислений на практике часто пользуются формулами закона для магнитного поля полных токов, представленных в виде суммирования предельно малых участков контура, с учётом влияния вихревых полей. При реализации этого метода контур мысленно разбивают на бесконечно малые отрезки. На этих отрезках проводники считаются прямолинейными, а магнитное поле на таких участках контура считают однородным.
На одном дискретном участке вектор напряженности Um определяется по формуле: Um= HL×ΔL, где HL– циркуляция вектора напряжённости на участке ΔL контура L. Тогда суммарная напряжённость UL вдоль всего контура вычисляется по формуле: UL= Σ HL× ΔL.
Закон в интегральном представлении
Рассмотрим бесконечно прямой проводник, по которому циркулирует электрический ток, образующий поле, ограниченное контуром в виде окружности. Плоскость, пронизывающая проводник, – это круг, очерчённый линией данной окружности (см. рис. 1).
Рис. 1. Поле бесконечно прямого тока
Воспользуемся методом разбиения контура на мизерные участки dl (элементарные векторы длины контура). Пусть φ – угол между векторами dl и B. В нашем случае, при суммировании отрезков, вектор индукции B поворачивается так, что он очерчивает круг, то есть угол φ → 2π.
Из теоремы Остроградского-Гаусса вытекает формула:
Учитывая, что cos φ = 1,
Данная формула – постулат, подтверждённый экспериментально. Согласно этому постулату, циркуляция вектора B по окружности, то есть по замкнутому контуру, равна μ0I, где μ0 = 1/c 2 ε0 – магнитная постоянная.
Ориентация вектора dB определяется путём применения правила буравчика. Это направление всегда перпендикулярно вектору плотности. Если проводников будет несколько (например, N), тогда
Каждый ток, с учётом знака, необходимо учитывать такое количество раз, которое соответствует числу его охватов контуром.
Ток берётся со знаком «+», если он по направлению обхода образует правовинтовую систему. При этом, отрицательным считается ток противоположного направления.
Заметим, что формула справедлива только для вакуума. В обычных условиях необходимо учитывать проницаемость среды.
Если ток распределён в пространстве (произвольный ток), тогда
где S – натянутая на контур поверхность, j – объёмная плотность тока. С учётом последнего выражения, формулу полного тока в вакууме можно записать:
Рис. 2. Иллюстрация закона для вакуума
- Закон справедлив не только для бесконечно прямолинейного проводника, но и для контуров, произвольной конфигурации.
- Циркуляция вектора магнитной индукции B сориентированного вдоль магнитных линий, всегда отлична от нуля.
- Ненулевая циркуляция свидетельствует о том, что магнитное поле прямолинейного, бесконечно длинного проводника не потенциально. Такое поле называют вихревым, либо соленоидным.
Влияние среды
На результат взаимодействия магнитных потоков и постоянных токов влияет среда. Вещества обладают магнитной проницаемостью в потоке вектора индукции, что вносит коррективы на взаимодействие магнитной среды с токами проводимости. В однородной изотопной среде, где значение вектора электромагнитной индукции одинаково во всех точках, векторы B и H связаны между собой следующим соотношением:
где H — напряжённость магнитного поля, символом μ обозначена магнитная проницаемость.
Носители электрических зарядов создают собственные микротоки. Циркуляция вектора, характеризующего электростатическое поле, всегда нулевая. Поэтому электростатические поля, в отличие от магнитных, являются потенциальными.
Вектор B отображает результирующее значение полей макро- и микротоков. Линии электростатической индукции всегда остаются замкнутыми, в том числе и на положительных зарядах.
Рис. 3. Закон полного тока в веществе
Для полей, которые действуют в среде, состоящей из разных веществ, необходимо учитывать микротоки, характерные именно для конкретных структур, образующих данную среду.
Утверждение, изложенное выше, верно для полей соленоидов или любой другой структуры, обладающей свойствами конечной магнитной проницаемости.
Торойд
В электротехнике часто приходится иметь дело с катушками разных видов и размеров. Катушка, образованная витками намотанными на сердечник тороидальной формы (в виде бублика), называется тороидом. Важными характеристиками сердечника тора являются его радиусы — внутренний (R1) и внешний (R2).
Поле внутри соленоида на расстоянии r от центра равно:
Выводы
На основании изложенного, приходим к заключению:
- Закон полного тока устанавливает зависимость между напряжённостью магнитного поля и перемещением в этом поле электрических зарядов.
- Действие закона распространяется на все среды, при допустимых плотностях тока.
- Закон также выполняется в полях постоянных магнитов.
При вычислениях не имеет значения, какую формулу мы используем – суть закона остаётся неизменной: он выражает взаимодействия, которые происходят между токами и создаваемыми ими магнитными полями, пронизывающими замкнутый контур.
Выводы закона учитываются при конструировании электромагнитных устройств. Наличие завихрений в электромагнитных полях приводит к снижению КПД. Кроме того, вихревые поля негативно влияют на работоспособность электронных элементов, расположенных в зоне их действий.
Конструкторы электротехнических приборов стремятся свести к минимуму таких влияний. Например, вместо обычных соленоидов применяют тороидальные катушки, за пределами которых отсутствуют электромагнитные поля.
[spoiler title=”источники:”]
http://www.evkova.org/induktivnost-i-ee-raschet
http://www.asutpp.ru/zakon-polnogo-toka-dlya-magnitnogo-polya.html
[/spoiler]
51. Магнитное поле тороида и соленоида
Тороидом называется последовательность
круговых токов, центры которых расположены на окружности (рис.58).
Рис.58
Из симметрии тороида очевидно, что во
всех точках окружности, центр которой совпадает с центром тороида, индукция
магнитного поля имеет одинаковое значение. Магнитное напряжение вдоль
окружности равно. Эта окружность охватывает все витки
тороида. Если полное число витков обозначить как N, а силу тока в витках как I, то окружность охватывает полный ток NI, поэтому , откуда
. (11)
Заметим, что поле внутри тороида не вполне
однородно. Индукция поля больше с внутренней стороны тороида и меньше с наружной.
Относительная разность индукций поля равна .
Соленоидом называется последовательность
круговых токов, центры которых расположены на прямой. Мы рассмотрим бесконечно
длинный соленоид, удовлетворяющий условию l>>d, где l и d – длина и диаметр соленоида соответственно.
Индукцию магнитного поля в соленоиде можно получить из формулы для тороида,
если радиус тороида увеличить неограниченно. Тогда тороид становится
соленоидом и стремится к нулю, поле внутри соленоида
становится однородным. Индукция магнитного поля в соленоиде найдем из формулы
для тороида, замечая, что , где n – число витков на единицу длины
соленоида.
,
(12)
Индукция магнитного поля в соленоиде
пропорционально числу ампер-витков на метр ((А-в)/м).
Тема: Определить индукцию и напряжённость магнитного поля на оси тороида? (Прочитано 8996 раз)
0 Пользователей и 1 Гость просматривают эту тему.
Определить, пользуясь теоремой о циркуляции вектор B, индукцию и напряжённость магнитного поля на оси тороида, без сердечника, на обмотке которого содержащей N = 350 витков протекает ток I = 1,5 А. Внешний диаметр тороида D1 = 65 см, внутренний D2 = 45 см. Сделать рисунок.
« Последнее редактирование: 18 Ноября 2014, 21:26 от Сергей »
Записан
Решение.
Тороид – это катушка, которая имеет замкнутый сердечник в форме кольца или тора. Пусть на сердечник намотано N витков провода, по которому течет ток I. Каждый виток создаёт магнитное поле, и результирующее магнитное поле сконцентрировано внутри сердечника. Вектор магнитной индукции B направлен по касательной к осевой линии тора и по величине является постоянным во всех точках осевой линии: B = const. Вычислим циркуляцию вектора B по осевой линии тора:
[ begin{align}
& ointlimits_{L}{Bdl={{mu }_{0}}}sumlimits_{k=1}^{N}{{{I}_{k}}}, \
& Bcdot 2cdot pi cdot r={{mu }_{0}}cdot Ncdot I (1). \
end{align} ]
μ0 = 4∙π∙10-7 Н/А2 – магнитная постоянная.
r = D1 – D2 (2).
Подставим (2) в (1) выразим индукцию магнитного поля:
[ B=frac{{{mu }_{0}}cdot Ncdot I}{2cdot pi cdot ({{D}_{1}}-{{D}_{2}})}. ]
В = 52,5∙10-5 Тл.
Напряженность магнитного поля определим по формуле:
[ H=frac{B}{{{mu }_{0}}}. ]
Н = 417 А/м.
Ответ: 0,525 мТл, 417 А/м.
« Последнее редактирование: 01 Декабря 2014, 07:37 от alsak »
Записан