Чтобы использовать имеющийся в запасах силовой трансформатор, необходимо как можно точнее узнать его ключевые характеристики. С решением этой задачи практически никогда не возникает затруднений, если на изделии сохранилась маркировка. Требуемые параметры легко можно найти в Сети, просто введя в строку поиска выбитые на трансформаторе буквы и цифры.
Однако довольно часто маркировки нет – надписи затираются, уничтожаются коррозией и так далее. На многих современных изделиях (особенно на дешевых) маркировка не предусмотрена вообще. Выбрасывать в таких случаях трансформатор, конечно же, не стоит. Ведь его цена на рынке может быть вполне приличной.
Наиболее важные параметры силовых трансформаторов
Что же нужно знать о трансформаторе, чтобы корректно и, самое главное, безопасно использовать его в своих целях? Чаще всего это ремонт какой-либо бытовой техники или изготовление собственных поделок, питающихся невысоким напряжением. А знать о лежащем перед нами трансформаторе нужно следующее:
- На какие выводы подавать сетевое питание (230 вольт)?
- С каких выводов снимать пониженное напряжение?
- Каким оно будет (12 вольт, 24 или другим)?
- Какую мощность сможет выдать трансформатор?
- Как не запутаться, если обмоток, а соответственно, и попарных выводов – несколько?
Все эти характеристики вполне реально вычислить даже тогда, когда нет абсолютно никакой информации о марке и модели силового трансформатора.
Для выполнения работы понадобятся простейшие инструменты и расходные материалы:
- мультиметр с функциями омметра и вольтметра;
- паяльник;
- изолента или термоусадочная трубка;
- сетевая вилка с проводом;
- пара обычных проводов;
- лампа накаливания;
- штангенциркуль;
- калькулятор.
Еще понадобится какой-либо инструмент для зачистки проводов и минимальный набор для пайки – припой и канифоль.
Определение первичной и вторичной обмоток
Первичная обмотка понижающего трансформатора предназначена для подачи сетевого питания. То есть именно к ней необходимо подключать 230 вольт, которые есть в обычной бытовой розетке. В самых простых вариантах первичная обмотка может иметь всего два вывода. Однако бывают и такие, в которых выводов, например, четыре. Это значит, что изделие рассчитано на работу и от 230 В, и от 110 В. Рассматривать будем вариант попроще.
Итак, как определить выводы первичной обмотки трансформатора? Для решения этой задачи понадобится мультиметр с функцией омметра. С его помощью нужно измерить сопротивление между всеми имеющимися выводами. Где оно будет больше всего, там и есть первичная обмотка. Найденные выводы желательно сразу же пометить, например, маркером.
Определить первичную обмотку можно и другим способом. Для этого намотанную проволоку внутри трансформатора должно быть хорошо видно. В современных вариантах чаще всего так и бывает. В старых изделиях внутренности могут оказаться залитыми краской, что исключает применение описываемого метода. Визуально выделяется та обмотка, диаметр проволоки которой меньше. Она является первичной. На нее и нужно подавать сетевое питание.
Осталось вычислить вторичную обмотку, с которой снимается пониженное напряжение. Многие уже догадались, как это сделать. Во-первых, сопротивление у вторичной обмотки будет намного меньше, чем у первичной. Во-вторых, диаметр проволоки, которой она намотана – будет больше.
Задача немного усложняется, если обмоток у трансформатора несколько. Особенно такой вариант пугает новичков. Однако методика их идентификации тоже очень проста, и аналогична вышеописанному. В первую очередь, нужно найти первичную обмотку. Ее сопротивление будет в разы больше, чем у оставшихся.
В завершение темы по обмоткам трансформатора стоит сказать несколько слов о том, почему сопротивление первичной обмотки больше, чем у вторичной, а с диаметром проволоки все с точностью до наоборот. Это поможет начинающим детальнее разобраться в вопросе, что очень важно при работе с высоким напряжением.
На первичную обмотку трансформатора подается сетевое напряжение 220 В. Это значит, что при мощности, например, 50 Вт через нее потечет ток силой около 0,2 А (мощность делим на напряжение). Соответственно, большое сечение проволоки здесь не нужно. Это, конечно же, очень упрощенное объяснение, но для начинающих (и решения поставленной выше задачи) этого будет достаточно.
Во вторичной обмотке токи протекают более значительные. Возьмем самый распространенный трансформатор, который выдает 12 В. При той же мощности в 50 Вт ток, протекающий через вторичную обмотку, составит порядка 4 А. Это уже довольно большое значение, потому проводник, через который будет проходить такой ток, должен быть потолще. Соответственно, чем больше сечение проволоки, тем сопротивление ее будет меньше.
Пользуясь этой теорией и простейшим омметром можно легко вычислять, где какая обмотка у понижающего трансформатора без маркировки.
Определение напряжения вторичной обмотки
Следующим этапом идентификации «безымянного» трансформатора будет определение напряжения на его вторичной обмотке. Это позволит установить, подходит ли изделие для наших целей. Например, вы собираете блок питания на 24 В, а трансформатор выдает только 12 В. Соответственно, придется искать другой вариант.
Для определения напряжения, которое возможно снять со вторичной обмотки, на трансформатор придется подавать сетевое питание. Это уже довольно опасная операция. По неосторожности или незнанию можно получить сильный удар током, обжечься, повредить проводку в доме или сжечь сам трансформатор. Потому не лишним будет запастись несколькими рекомендациями относительно техники безопасности.
Во-первых, при тестировании подсоединять трансформатор к сети следует через лампу накаливания. Она подключается последовательно, в разрыв одного из проводов, идущих к вилке. Лампочка будет служить в роли предохранителя на случай, если вы что-то сделаете неправильно, или же исследуемый трансформатор неисправен (закорочен, сгоревший, намокший и так далее). Если она светится, значит что-то пошло не так. На лицо короткое замыкание в трансформаторе, потому вилку из розетки лучше сразу же вытянуть. Если лампа не светится, ничего не воняет и не дымит – работу можно продолжать.
Во-вторых, все соединения между выходами и вилкой должны быть тщательно заизолированы. Не стоит пренебрегать этой рекомендацией. Вы даже не заметите, как рассматривая показания мультиметра, например, возьметесь поправлять скручивающиеся провода, получите хорошенький удар током. Это опасно не только для здоровья, но и для жизни. Для изолирования используйте изоленту или термоусадочную трубку соответствующего диаметра.
Теперь сам процесс. К выводам первичной обмотки припаивается обычная вилка с проводами. Как указано выше, в цепь добавляется лампа накаливания. Все соединения изолируются. К выводам вторичной обмотки подсоединяется мультиметр в режиме вольтметра. Обратите внимание на то, чтобы он был включен на измерение переменного напряжения. Начинающие часто допускают тут ошибку. Установив ручку мультиметра на измерение постоянного напряжения, вы ничего не сожжете, однако, на дисплее не получите никаких вменяемых и полезных показаний.
Теперь можно вставлять вилку в розетку. Если все в рабочем состоянии, то прибор покажет вам выдаваемое трансформатором пониженное напряжение. Аналогично можно измерить напряжение на других обмотках, если их несколько.
Простые способы вычисления мощности силового трансформатора
С мощностью понижающего трансформатора дела обстоят немного сложнее, но некоторые простые методики, все же, есть. Самый доступный способ определить эту характеристику – измерение диаметра проволоки во вторичной обмотке. Для этого понадобится штангенциркуль, калькулятор и нижеприведенная информация.
Сначала измеряется диаметр проволоки. Для примера возьмем значение в 1,5 мм. Теперь нужно вычислить сечение проволоки. Для этого необходимо половину диаметра (радиус) возвести в квадрат и умножить на число «пи». Для нашего примера сечение будет около 1,76 квадратных миллиметров.
Далее для расчета понадобится общепринятое значение плотности тока на квадратный миллиметр проводника. Для бытовых понижающих трансформаторов это 2,5 ампера на миллиметр квадратный. Соответственно, по второй обмотке нашего образца сможет «безболезненно» протекать ток силой около 4,3 А.
Теперь берем вычисленное ранее напряжение вторичной обмотки, и умножаем его на полученный ток. В результате получим примерное значение мощности нашего трансформатора. При 12 В и 4,3 А этот параметр будет в районе 50 Вт.
Мощность «безымянного» трансформатора можно определить еще несколькими способами, однако, они более сложные. Желающие смогут найти информацию о них в Сети. Мощность узнается по сечению окон трансформатора, с помощью программ расчета, а также по номинальной рабочей температуре.
Заключение
Из всего вышесказанного можно сделать вывод, что определение характеристик трансформатора без маркировки является довольно простой задачей. Главное – соблюдать правила безопасности и быть предельно внимательным при работе с высоким напряжением.
В соответствии с «Правилами устройства электроустановок» все силовые трансформаторы должны иметь защиту от коротких замыканий и ненормальных режимов [1]. Для выбора видов защиты и расчета их характеристик срабатывания необходимо прежде всего точно знать тип и параметры защищаемого трансформатора.
Самые важные параметры трансформатора отражены в его условном обозначении, которое имеется и в паспорте, и на паспортной табличке, прикрепленной к трансформатору на видном месте. В соответствии с ГОСТ 11677—85 «Трансформаторы силовые» принята единая структурная схема условного обозначения трансформаторов. Буквы в начале обозначают однофазный (О) или трехфазный (Т) трансформатор, указывают вид изолирующей и охлаждающей среды (например, буква М соответствует масляному трансформатору с естественной циркуляцией воздуха и масла, буква С — сухому трансформатору), а также исполнение трансформатора и вид переключения ответвлений: буква 3 — защитное исполнение, Г — герметичное, Н — возможность регулирования напряжения под нагрузкой.
После буквенной части обозначения через тире указывается номинальная мощность трансформатора в киловольт-амперах (кВ-А), затем через дробь — класс напряжения стороны высшего напряжения (ВН) в киловольтах (кВ) и далее через тире — климатическое исполнение и категория размещения оборудования по ГОСТ 15150—69. Согласно этому стандарту буквой У обозначают исполнение для умеренного климата, ХЛ — холодного, Т — тропического. Категории размещения обозначаются цифрами: 1—для работы на открытом воздухе, 2 — для работы в помещениях, где температура и влажность такие же, как на открытом воздухе, 3 — для закрытых помещений с естественной вентиляцией, 4 — для работы в помещениях с искусственным регулированием климата, 5 — для работы в помещениях с повышенной влажностью.
Например, условное обозначение трансформатора трехфазного масляного с охлаждением при естественной циркуляции воздуха и масла, двухобмоточного, мощностью 250 кВ-А, класса напряжения 10 кВ, исполнения У категории 3 (для умеренного климата и закрытых помещений) имеет следующий вид:
ТМ-250/10-УЗ.
Трансформатор трехфазный сухой с естественным воздушным охлаждением при защищенном исполнении, двухобмоточный, мощностью 400 кВ-А, класса напряжения 10 кВ, исполнения У категории 3 имеет такое условное обозначение:
ТСЗ-400/10-УЗ.
В паспортной табличке указываются и другие параметры трансформатора, необходимые для выбора его защиты:
номинальные напряжения трансформатора (сторон ВН и НН для двухобмоточных трансформаторов);
номинальные токи обмоток ВН и НН;
условное обозначение схемы и группы соединения обмоток;
напряжение короткого замыкания ик (в процентах) на основном ответвлении обмотки ВН (для трехобмоточных трансформаторов указывают напряжение короткого замыкания всех пар обмоток).
Номинальные напряжения трансформатора. Трансформаторы с высшим номинальным напряжением 10 кВ, которым посвящена эта книга, выпускаются с номинальным напряжением стороны низшего напряжения, равным 0,4 или 0,69 кВ, — для питания электроприемников, а также 3,15 или 6,3 кВ, или 10,5 кВ — для связи питающих электрических сетей разных напряжений, а иногда и для питания крупных электродвигателей напряжением выше 1000 В. Например, на подстанции 110/10кВ электродвигатели напряжением 6 кВ могут работать только через трансформаторы 10/6,3 кВ. Однако большинство трансформаторов 10 кВ выпускается с низшим напряжением 0,4 кВ для питания электроприемников напряжением 380 и 220 В.
В обмотке ВН трансформаторов 10 кВ, как масляных, так и сухих, предусматривается возможность изменения напряжения ВН в диапазоне ±5 % номинального ступенями по 2,5%. Изменяют напряжения переключением ответвлений обмотки ВН, что производится обязательно при отключении всех обмоток трансформатора от сети. Вид, диапазон и число ступеней регулирования напряжения на стороне ВН условно обозначаются буквами и цифрами: ПБВ ± ±2X2,5 %, где ПБВ означает переключение без возбуждения (в отличие от РПН — регулирования под напряжением, которое выполняется на трансформаторах более высоких классов напряжения, начиная с 35 кВ).
Номинальные значения мощности и тока. Номинальные мощности трансформаторов должны соответствовать ГОСТ 9680—77. Трансформаторы масляные 10 кВ для питания электроприёмников выпускаются с номинальной мощностью до 2,5 MB-А, а для связи между электросетями разных напряжений — до 6,3 МВ-А: например, 25, 40, 63, 100, 160, 250, 400, 630 кВ-А, а также 1; 1,6 и 2,5 МВ-А. Трансформаторы сухие (ТСЗ) выпускаются с номинальной мощностью 160, 250, 400, 630 кВ-А, а также 1 и 1,6 МВ-А.
Мощность (в вольт-амперах) трехфазного трансформатора при равномерной нагрузке фаз определяется выражением
где U—номинальное междуфазное напряжение, В; / — ток в фазе, А.
Из выражения (1) по известным из паспортных данных номинальным значениям мощности и напряжений сторон ВН и НН могут быть определены значения номинальных токов (в амперах) обмоток ВН и НН трансформатора
где Sном.указывается в киловольт-амперах (кВ-А), а Uном — в киловольтах (кВ),
Например, для трансформатора мощностью 400 кВ-А с напряжением стороны ВН, равным 10 кВ, и стороны НН, равным 0,4 кВ, номинальные токи обмоток:
Как правило, во время работы трансформаторы не должны перегружаться, т. е. значения рабочих токов в обмотках трансформатора не должны превышать поминальные. Однако допускаются в определенных пределах кратковременные и длительные перегрузки (§ 2).
Схемы и группы соединения обмоток. Трансформаторы 10 кВ выпускаются со следующими схемами и группами соединения обмоток:
звезда — звезда с выведенной нейтралью Y/Y-0; треугольник — звезда с выведенной нейтралью ∆/Y-11; звезда с выведенной нейтралью — треугольник Y/∆-11; звезда—зигзаг Y/ Y
Трансформаторы 10/0,4 кВ со схемой соединения обмоток Y/Y-0 подключаются к питающей трехфазной сети 10 кВ, работающей с изолированной нейтралью, и питают трехфазную четырех проводную сеть с наглухо заземленной нейтралью, в которой номинальное напряжение между линейными проводами равно 0,38 кВ, а между каждым линейным и нулевым проводом (нейтралью трансформатора)—0,22 кВ. При симметричной нагрузке всех фаз ток в нулевом проводе (нейтрали) невелик и называется током небаланса. Значение тока небаланса у трансформаторов Y/Y не должно превышать 0,25 номинального тока обмотки НН во избежание перегрева и повреждения трансформатора (ГОСТ 11677—85). На практике не всегда удается выполнить это условие. По этой и некоторым другим причинам (см. § 4 и 9) трансформаторы со схемой соединения обмоток Y/Y не должны применяться начиная с мощности 400 кВ-А и более.
Трансформаторы со схемой и группой соединения обмоток ∆/Y-11 подключаются таким же образом, как и трансформаторы Y/Y-0. Особенность схемы и группы соединения ∆/Y-11 состоит в том, что между векторами напряжений и токов на сторонах НН и ВН существует фазовый сдвиг на угол 30°, Поэтому трансформаторы ∆/Y-11 не могут работать параллельно с трансформаторами Y/Y-0, у которых нет фазового сдвига между этими векторами. При ошибочном включении их на параллельную работу фазовый сдвиг на угол 30° между векторами вторичных напряжений этих трансформаторов вызовет уравнительный ток между трансформаторами одинаковой мощности, примерно в 5 раз превышающий номинальный ток каждого из них.
Благодаря соединению обмотки ВН в треугольник для этих трансформаторов допускается продолжительная несимметрия нагрузки и ток в нейтрали обмотки НН до 0,75 номинального тока в обмотке НН (ГОСТ 11677—85). Соединение обмотки ВН в треугольник обеспечивает также значительно большие значения токов при однофазных КЗ на землю в сети НН, работающей с заземленной нейтралью, чем при питании сети НН через трансформатор с такими же параметрами, но со схемой соединения Y/Y-0. Это способствует падежной работе устройств релейной защиты от однофазных КЗ (§ 3). Поэтому начиная с мощности 400 кВ-А должны применяться трансформаторы 10/0,4 кВ со схемой соединения обмоток ∆/Y-11 (как сухие, так и масляные). Трансформаторы с этой схемой соединения обмоток могут выпускаться также с номинальным напряжением обмотки НН, равным 0,69 кВ.
Для связи между сетями разных напряжений и для питания крупных электродвигателей выше 1000 В выпускаются трансформаторы 10/3,15, 10/6,3 и 10/10,5 кВ со схемой и группой соединения обмоток Y/∆-11; некоторые трансформаторы для специального назначения могут иметь схемы соединения Y/Y-0, ∆/∆-0, а также Y/∆-11 (обмотки ВН с выведенной нейтралью применяются в трансформаторах, например для включения дугогасящего реактора в сети 10 кВ с компенсированной нейтралью). Особую группу составляют трансформаторы для собственных нужд электростанций, релейная защита которых в этой книге не рассматривается.
Трансформаторы 10 кВ небольшой мощности для сельских электросетей могут выпускаться с особой схемой соединения обмотки НН, называемой зигзаг.Обмотка ВН при этом соединяется в звезду: Y/ Y. Соединение вторичной обмотки понижающего трансформатора в зигзаг обеспечивает более равномерное распределение несимметричной нагрузки НН между фазами первичной сети ВН. При этом обеспечиваются наиболее благоприятные условия работы трансформатора. Для выполнения схемы зигзаг вторичная обмотка каждой фазы составляется из двух половин, одна из которых расположена на одном стержне магнитопровода, вторая — на другом. Выполнение трансформаторов со схемой соединения обмотки НН в зигзаг обходится дороже, чем со схемой соединения обмотки НН в звезду (Y/Y), так как соединение в зигзаг требует большего (на 15%) числа витков обмотки НН. Это объясняется тем, что ЭДС обмоток, расположенных на разных стержнях, складываются геометрически под углом 120° и их суммарное значение на 15% меньше, чем при алгебраическом сложении ЭДС двух обмоток, расположенных на одном стержне магнитопровода. Чтобы получить ЭДС одного и того же значения при соединении в зигзаг, нужно на 15 % больше витков, чем при соединении обмотки НН в звезду. Из-за большей сложности изготовления и более высокой стоимости трансформаторы звезда — зигзаг применяются редко.
Напряжение короткого замыкания. Этот важнейший параметр трансформатора необходим для расчетов токов КЗ на выводах вторичной обмотки НН трансформатора и в питаемой сети НН. Напряжение короткого замыкания соответствует значению междуфазного напряжения, которое надо приложить к выводам обмотки ВН трансформатора для того, чтобы при трехфазном замыкании на выводах НН через трансформатор прошел ток КЗ, равный его номинальному значению. Напряжение короткого замыкания обозначается Uk и выражается в процентах номинального значения напряжения обмотки ВН. Если, например, Uk= 5 %, это означает, что к обмотке ВН трансформатора 10 кВ при закороченной обмотке НН надо приложить напряжение 0,5 кВ, чтобы ток трансформатора был равен номинальному.
По значению напряжения короткого замыкания, как следует из определения этого параметра, можно вычислить максимальное значение тока при трехфазном КЗ на стороне НН трансформатора, причем как без учета сопротивления питающей энергосистемы до шин 10 кВ, где включен трансформатор, так и с учетом этого сопротивления. По значению Ukвычисляется и полное сопротивление трансформатора Zтр(§ 3). Значения Ukприводятся в стандартах, а также в паспортах и на паспортных табличках каждого трансформатора (по результатам заводских испытаний). Средние значения Ukдля масляных трансформаторов 10 кВ равны примерно 4,5 % —при мощности до 400 кВ-А, 5,5% — при мощности 630 кВ-А и 1 MB-А и 6,5 % — при мощности более 1 МВ-А. У сухих трансформаторов мощностью от 160 кВ-А до 1,6 MB-А значения напряжения короткого замыкания равны примерно 5,5 %.
Сложные многофункциональные устройства, способные преобразовывать электроэнергию из одной величины в другую, на языке электротехники, называют трансформаторами. Для создания такого оборудования, в зависимости от конкретных величин преобразования, применяется специальный расчет. Как правильно проводить расчет трансформаторов, знать в нем основные параметры и формулы, правильно их использовать, уметь пользоваться упрощенной системой проектирования трансформаторов распространенных энерговеличин и становится целью содержания этой статьи.
Содержание
- Принцип работы
- Конструкция
- Особенности
- Формулы расчета силового трансформатора
- Мощность вторичной обмотки
- Общая мощность
- Сечение сердечника
- Количество витков
- Выбор пластин для сердечника
- Определение толщины набора сердечника
- Как рассчитать габаритную мощность
- Правильный расчет по сечению сердечника
- Как определить число витков обмотки
- Упрощенный расчет 220/36 Вольт
- 1 этап
- 2 этап
- 3 этап
- 4 этап
- 5 этап
- 6 этап
- Как рассчитать Ш-образный трансформатор
- Определение параметров ТТ
- Особенности расчета сетевого трансформатора
- Выбор магнитопровода
- Технология изготовления
- Формы серденичков
- Варианты размещения катушек
- Краткая справка о материалах магнитопровода
- Исходные данные
- Как посчитать магнитопровод
- 1 шаг
- 2 шаг
- 3 шаг
- Определение параметров обмоток
- Мощность потерь
- Особенности расчета автотрансформатора
- Как посчитать пленочный трансформатор
- Обзор онлайн сервисов
- Примеры расчета
- Расчет силового трансформатора, который должен запитывать N-оборудование
- Условия и исходные данные для расчета
- Расчет силового трансформатора пошагово
Принцип работы
Любая энергосистема, установка, особенно в сети трехфазного (3ф) тока и напряжения просто не могла и не может обойтись без такого функционального устройства, как трансформатор. В высоковольтных сетях он производит повышение напряжения, получая его непосредственного из недр генератора и направляя в высоковольтные линии электропередач. На том конце линий тоже стоят трансформаторы высокого напряжения, которые уже производят процесс понижения его величины для подачи на объекты, которыми являются обычные потребители.
Трансформаторы тока в тех же мощных электроустановках производят преобразования первоначальной токовой величины в номинальные его значения, допустимые для питания контрольных и измерительных приборов, защит, учетных систем и прочих энергетических элементов.
В бытовых нуждах, однофазного тока и напряжения широко используют различные трансформаторы, которые преобразуя электрические величины обеспечивают питанием многие бытовые приборы, являются источником различного освещения, питают системы электроники и мультимедиа. В целом, без таких преобразователей в электричестве никуда.
Конструкция
На примере простейшего однофазного трансформатора возможно подробно рассмотреть его основные конструктивные элементы и узнать основы принципа его работы. Конструктивно такой трансформатор состоит из трех главных элементов:
- Первичная обмотка – катушка с изолированными проводниками, намотанная в определенном порядке, выводы которой являются принимающим определенную величину электроэнергии. Проводники первичной обмотки передают электроэнергию дальше, для проведения ее трансформации;
- Магнитопровод или сердечник – выполненный из специальной шихтованной (слоенной) электротехнической стали, различной конструкции и формы. На его части с одной и другой стороны наматываются проводники обмоток и именно в нем происходит бесконтактное явление трансформации величины электроэнергии;
- Вторичная обмотка – изолированные проводники, с намоткой на вторую часть сердечника в определенном количестве, с конкретной толщиной. Выводы вторичных проводников передают выходную величину энергии к потребителю или другому энерго устройству, в цепь которого был установлен преобразователь.
Особенности
Принцип работы любого трансформатора основан на явлении электромагнитной индукции, в замкнутом контуре магнитопровода, сквозь намотанные на него проводники первичной и вторичной обмотки. Подключенная к сети переменного тока первичная обмотка создает в замкнутом контуре магнитное поле с движущимся по кольцу магнитопровода магнитным потоком. Его движение проходит, через обе намотки обмоток и согласно закону индукции, создает в них электродвижущую силу (ЭДС).
Величина ЭДС напрямую зависит от количества витков в обмотках, сечения проводников и отличительными особенностями между первичной и вторичной обмотками. ЭДС, в системе трансформатора, это и есть выходное напряжение на выводах преобразователя. Чтобы ее величина стала меньше входного сигнала – количество витков вторичной обмотки должно быть меньше первичной катушки трансформатора.
Проектирование функций устройств преобразования, точное определение способности преобразования электровеличины – мощности трансформатора, количества витков обмоток, формы их намотки, выбор материала магнитопровода, его форма и размеры как раз и определяется в процессе расчета трансформатора.
Формулы расчета силового трансформатора
В силовой энерго установки при проектировании модели и типа трансформатора применяются основные формулы расчета его главных параметров и конструктивных величин. Как выполнить в некоторых подробностях стоит разобрать ниже.
Мощность вторичной обмотки
В зависимости от того, в какой сети (однофазной или трехфазной) участвует трансформатор, какой по типу трансформации – повышающей или понижающей, будет являться его вторичная обмотка, а так же при наличии конкретных данных указанных величин возможно произвести расчет мощности вторичной обмотки, согласно известной формулы электротехники.
Формула 1. Мощность вторичной обмотки трансформатора:
P2 = U2 X I2, где
P2 – величина электрической мощности вторичной обмотки, единицы измерения – Вт;
U2 – напряжение сети вторичной обмотки, на выходе трансформатора, единицы измерения – В;
I2 – ток вторичной обмотки, возникшей на выходе трансформатора, и предназначенный для питания подключенного к нему потребителя и другого энергоустройства.
Общая мощность
Для силовых трансформаторов, особенно повышающего типа, всегда стоит учитывать потери, возникающие в проводниках обмоток, стали магнитопровода, которые влияют на коэффициент полезного действия устройства. Поданная мощность на первичную обмотку трансформатора, за счет электрических потерь в устройстве преобразователя всегда будет больше ее вторичного выходного сигнала. Отсюда КПД силового трансформатора будет равен 0,8-0,85 от ее величины.
При расчете общей мощности трансформатора потери и оставшееся полезное действие на выходе электроагрегата стоит учитывать в виде произведения полученной мощности вторичной обмотки P2 и КПД устройства.
Формула 2. Полная мощность с учетом КПД:
Pрасч2 = P2 х КПД
Это будет более реальная величина мощности выходной обмотки трансформатора. Остальные параметры в расчетных формулах будут зависеть от количества витков первичной и вторичной обмоток, их сечения, материала проводников. Строение, материал и форма сердечников в свою очередь тоже имеет немаловажное значение в проведении точных и верных расчетов силовых трансформаторов.
Понятие полной мощности трансформатора так же включает в себя более широкое понятие мощностных характеристик в зависимости от типа устройства. Если трансформатор имеет несколько вторичных обмоток, то его полная мощность (Sполн.) будет равна сумме активных мощностей этих обмоток (P2.1+P2.2+….+P2.N), умноженных на коэффициент мощности (Км).
Формула 3. Полная мощность с коэффициентом мощности:
Sполн. = (P2.1+P2.2+…. +P2.N) * Км
В любом случае в ее расчет всегда закладывают величины активной мощности – энергии, которая продуктивно потратится на питание электро потребителей или других электро систем в составе установки, а так же реактивную составляющую мощности, выраженную в простейших расчетах в виде КПД трансформатора, а боле детальных формулах представляющих собой коэффициент мощности. Так в общей мощности участвуют активная и реактивные составляющие трансформатора, единицы измерения ее представлены в вольтамперном произведении – ВА.
Это значение реактивной составляющей является справочным табличным значением в зависимости от трансформатора, строения, сечения и материала его сердечника.
Сечение сердечника
Строение сердечника в любом трансформаторе в зависимости от его назначения имеет несколько основных видовых особенностей. Магнитопроводы преобразователей электро энергетических величин всегда выполняются из прессованных (шихтованных) железных или стальных пластин. Отказ в применении монолитного сердечника в трансформаторе, выбор в пользу пластинчато-прессованного его строения связан, с уменьшением потерь выходных величин трансформатора, уменьшением вихревых токов в магнитопроводе, а значит повышением его КПД.
От того, где преимущественно будет использован трансформатор, применяют три основных конструктивных формы строения его сердечника:
- броневые – на Рис. 1 модели «1» и «4»;
- стержневые – на Рис. 1 модели «2» и «5»;
- кольцевые. – на Рис. 1 модели «3» и «6»;
Методы изготовления каждого из них в зависимости от детальных форм и различий выполняют производственными процессами типа штамповки или навивания стальной проволоки.
Рисунок 1. Типы сердечников и параметры расчета сечения магнитопровода
На Рис. 1 подробно представлены формы каждого из строений сердечника, обозначены два параметра (A и B), измеряемые в сантиметрах, посредством которых производят расчет сечение конкретного магнитопровода.
Формула 4. Площадь сечения сердечника трансформатора:
S = A x B
Единицы измерения – сантиметры в квадрате см2
Произведением этих двух величин можно получить значение сечения магнитопровода, которое будет крайне необходимо для проведения остальных расчетов трансформатора.
Количество витков
Первоначальный этап расчета трансформатора электроэнергии. От значения зависят величины трансформации энергии оборудования, а также изменения выходных номиналов на клеммах вторичных обмоток.
Вычисления количества витков в намотке первичной и вторичной обмотки тесно связаны с предыдущем понятием – сечения магнитопровода. Производится по двум формулам: начальной и конечной. В состав расчета начальной формулы входит выяснения расчетного значения витков обмоток трансформаторов на единицу напряжения, равную 1В. Формула в составе имеет справочный коэффициент сердечника.
Формула 5. Количество витков в обмотке на 1В:
N1v = K / S, где
N1v – количество витков обмотки на единицу напряжения равную 1 В;
K – технический коэффициент формы магнитопровода: для Ш-образного сердечника значение принято – 60; П-образного из пластин – 50; кольцевого – 40.
S – сечение сердечника, полученного из расчета, выполненного ранее и описанного выше.
Конечная формула расчета сводится к применению следующей формулы, из которой можно получить значение количества витков в полном объеме.
Формула 6. Количество витков обмоток трансформаторов:
Wv = N х U, где
Wv -значение количества витков в обмотке;
N – количество витков на 1В полученное в начальной формуле;
U – величина напряжения обмотки без нагрузки (на холостом ходу).
После применения подобного расчета количества витков в обмотках, особенно в проектировании трансформаторов минимальной мощности, применяют 5% компенсационный коэффициент падений напряжения на обмотках. Тем самым расчетные значения увеличивают на 5% от их расчетной величины.
Выбор пластин для сердечника
Зависимость применения различных материалов самих магнитопроводов, их форм, конструкции и производству пластин сердечника трансформаторов, строится на уменьшении потерь различного рода в результате преобразовательных процессов работы устройства, уменьшении значения вихревых токов на сердечнике, по средствам увеличения электрического сопротивления сердечника.
Для производства, создания сердечников силовых трансформаторов применяются разнообразные типы электротехнической стали. Из нее производят пластины, которые после изолировании между собой производят сборку определенных форм магнитопровода. Самые распространенные виды сердечников выполняются из:
- Ш-образных стальных пластин – тип сердечника трансформатора, выполненного по технологии штамповки пластин между собой, предварительно качественно изолировав их друг от друга. Имеют два отличия соединения стержней с ярмом сердечника. Могут собираться встык или вперемешку. По форме пластины такого рода напоминают букву «Ш», от которой и получили свое название.
- П – образных пластин – так же штампованный тип сердечника, по форме напоминающий букву «П». Несколько мене распространен в производстве магнитопровода, так как имеет хуже магнитные характеристики.
- «Торро» или кольцевая форма – сердечник выполнен не штамповкой, а навиванием стальной проволоки. По магнитным характеристикам имеют самые лучшие показатели, но на практике не смогли получить широкого распространения в связи с сложным процессом их производства и включения в состав трансформатора, как готового устройства.
Оценивая при расчете параметры напряжения, тока, мощности в значениях активной и реактивной энергии, выяснив количество витков обмотки и сечение магнитопровода стоит обратится к детальному выбору пластин сердечника и его оптимальной формы в конкретике расчетного проекта конкретного преобразователя.
Определение толщины набора сердечника
Один из окончательных расчетов геометрии сердечника, который выполняется в большинстве случаев, обращаясь к справочной технической литературе, где указаны табличные значения геометрии шаблонных форматов сердечников разного вида пластин и их материала.
Формулы расчета этого параметра существуют, исходят из показателей диаметра стержня магнитопровода, толщины листа пластин при их сборке, специальных коэффициентов заполнения в зависимости от толщины листа и прочих технически сложных параметров.
Формула 7. Площадь сечения Ш-образного сердечника:
S ш = 1,2 , где
S ш – значение площади сечение Ш-образного магнитопровода;
Полная мощность трансформатора, если имеет место двух катушечный тип устройства рассчитывается по Формуле 2, если вторичных обмоток много – рассчитывается по Формуле 3.
А уже после возможно определить значение толщины пластин сердечника по формуле.
Формула 8. Толщина пластин Ш-образного сердечника:
Tш = 100 х S ш / А, где
Tш – толщина пластин сердечника, мм;
S ш – площадь сечения Ш-образного сердечника, см2;
A – ширина среднего лепестка Ш-образного сердечника, мм.
Для сборки в заводских условиях подобные расчеты имеют автоматизированный характер, если значения необходимы радиолюбителям или начинающим электронщикам – проще обратится к стандартным базовым шаблонам того или иного сердечника. Получить такие параметры из справочника возможно, зная значение диаметр стержня сердечника.
Как рассчитать габаритную мощность
Окончательный геометрический параметр трансформатора зависит от комплекса всех ранее рассчитанных величин магнитопровода, добавляя к ним электромагнитные справочные значения, а также значения проводников первичной и вторичной обмоток, их сечения, материал и остальное.
Существует вариант определения мощности, на которую максимально рассчитан трансформаторный материал сердечника, его сталь, по величине сечения магнитопровода. Такой вариант расчета мощности магнитопровода является крайне наглядным. Ошибки в нем могут составлять до 50%. Поэтому лучше, воспользовавшись несколькими основными геометрическими величинами и справочными данными произвести расчет геометрической мощности по формуле.
Формула 9. Габаритная мощность трансформатора:
Pгеом. = B x S2 / 1.69, где
Pгеом. – величина геометрической мощности для понижающего или повышающего типа трансформатора;
B – справочное значение и параметр индукции, наводящейся в конкретном магнитопроводе, измеряется в Тесла;
S – сечение магнитопровода, расчет которой по Формуле 4;
1,69 – постоянный поправочный коэффициент из технических справочников.
Зная параметры геометрии проектируемого трансформатора, используя приведенную формулу достаточно легко рассчитать геометрическую мощность трансформаторного изделия, с целью понимания его максимальных значений и возможностей в размерном эквиваленте.
Главный фактор в расчете параметра мощности геометрии трансформатора – превышение ее расчетной величины над значением электрической мощности.
Этот электромеханический параметр очень важный при дальнейшем определении параметров проводников в обмотках. Зная геометрическую мощность проекта преобразователя, уже точно нельзя будет ошибиться с диаметром проводника в расчетах обмоточных данных устройства.
Правильный расчет по сечению сердечника
Из электротехнических научных опытов, практики работы с трансформаторами известно, что стержневые сердечники в преобразователях энергии целиком носят обе обмотки на стержнях конструкций магнитопроводов, броневые конструкции лишь частично охватываются намоткой первичных и вторичных проводников катушек, и наиболее равномерное распределение, а значит и самые лучшие магнитные свойства устройства имеют кольцевые сердечники энергоагрегатов преобразования энергии, но они в связи со многими сложными пунктами своего строения, а главное тяжести сборки все меньше и меньше участвуют в реальной работе.
Электротехническая сталь тонкими пластинами, изолированными между друг другом различными диэлектриками образуют строение наиболее популярных сердечников стержневого и броневого типа. Площадь поперечного сечения для таких сердечников оказывает громадное влияние на электрическую мощность трансформатора.
Рассматривая стандартный Ш-образный магнитопровод, зная, что сечение его сердечника рассчитывается по Формула 4, и не имея других электрических параметров, таких как допустимый ток первичной или вторичной обмотки, напряжение на обоих выводах, вполне точно и правильно возможно вычислить электрическую мощность устройства.
Формула 10. Расчет электрической мощности по сечению сердечника:
Pтр-р = (S)2, где
Pтр-р – электрическая мощность расчетного сердечника, Вт;
S – площадь сечения магнитопровода оборудования, см2.
Зависимость двух мощностей в расчетном проекте преобразователя энергии видно из формулы достаточно наглядно.
Учет площади сечения сердечника к тому же еще необходим для недопущения попадания стали магнитопровода в большую зону магнитного насыщения. Неправильный расчет площади может привезти именно к этому. Создать режим трансформатора от микроволновки, но обеспечения кратковременного режима работы. А это значит получение режима перегрузки в работе, износ, потери на выходе вторичной обмотки.
Окончательный показатель, оценивающий важность верного расчета площади сечения сердечника, называется коэффициентом заполняемости окна сердечника проводниковой медью первичной и вторичных обмоток. Если сравнивать по этому параметру кольцевой трансформатор с броневым или стержневым – значения конечно же сильно будут разница в пользу тороидального трансформатора, но для двух последних этот коэффициент как раз можно улучшить вышеприведенным расчетом.
Как определить число витков обмотки
В Формула 5 и Формула 6 приведены расчетные способы в начальной и конечной технологии, для математического определения необходимого количества витков на вторичной обмотке трансформатора.
Первичная намотка проводников оборудования тоже имеет определенное количество витков в своем номинале. Чем больше витков на этой обмотке – тем больше электрическое сопротивление ввода, а значит меньше нагрев. Определить количество витков обоих обмоток в процессе проекта расчета трансформатора возможно по отношению следующих равенств.
Формула 11. Расчет количества витков первичной обмотки:
N1 / U1 = N2 / U2, где
N1, N2 – количество витков намотки первичной и вторичной катушек трансформатора;
U1, U2 – номинальные напряжение обмоток трансформатора.
Из такого равенства отношений, особенно, когда уже успешно посчитано количество витков вторичной обмотки, используя математику, можно вывести формулу расчета витков обмотки на вводе трансформатора.
Формула 12. Количество витков в намотке первичной обмотки:
N1 = U1 x N2 / U2
Если проект имеет не только теоретическое обоснование, но и практическую составляющую в виде реального трансформатора, то с помощью медного проводника в изоляции (если позволяет конструкция устройства) и мультиметра возможно измерениями получить это же значение витков трансформатора на вводной обмотке, отталкиваясь от количества витков на 1В, и разматывая старую или наматывая новую первичную обмотку.
Упрощенный расчет 220/36 Вольт
Всю теорию легко показывать и пояснять на практическом примере ведения расчета трансформаторного устройства.
Итак, в качестве примера поставлена следующая задача: необходимо рассчитать самый простой понижающий трансформатор двухкатушечного типа с номинальным значением напряжений 220/36В.
Трансформатор будет использоваться в качестве источника слаботочного освещения мощностью 75Вт, напряжения 36В:
1 этап
По Формуле 1 известно, что электрическая мощность вторичной цепи: P2 = 75Вт;
Отсюда, воспользовавшись справочником по трансформаторам возьмем значение КПД, исходя из значения до 100 Вт, которое равно 0,8;
Следовательно, можем определить электрическую мощность P1 вводной обмотки трансформатора по формуле.
Формула 13. Расчет мощности первичной обмотки:
P1 = P2 / КПД
P1 = 75Вт / 0,8 = 94 Вт
2 этап
Теперь рассмотрим электромеханические характеристики, исходя из того, что сердечник расчетного трансформатора имеет Ш-образную форму. На его поверхности с двух сторон будут располагаться первичная и вторичные обмотки оборудования.
Поэтому расчет площади сечения магнитопровода Sсерд. необходимы в обязательном порядке. Ее значение имеет квадратичную зависимость от мощности первичной обмотки , исходя из принципа работы трансформатора, как электротехнического устройства.
Формула 14. Расчет площади сечения исходя из мощности первичной обмотки:
Sсерд. = 1,2 х
Sсерд. = 1,2 х = 1,2 х 9,7 = 11.63 см2
3 этап
Следующий шаг так же направлен на просчет параметров первичной обмотки – количество витков в ней на единицу напряжения 1В по Формуле 5:
N1v = 60 / 11,63 = 5,16 витка
На единицу напряжения количество витков получено. Используя его значение по Формула 6 найдем значение витков на вводной обмотке оборудования преобразования всего:
Wv1 = 5.16 x 220 = 1135 витков – первичная обмотка посчитана по количеству витков, аналогичные действия проведем для вторички, используя тоже количество витков на 1В и Формуле 6:
Wv2 = 5.16 x 36 = 186 витков – намотка вторичной обмотки по виткам тоже стала известна.
4 этап
Номинальные токи нагрузки трансформатора тоже необходимо узнать, чтобы провести проверку трансформатора согласно методике испытаний. Исходя из Форм. 1 можно вывести формулу токового значения.
Формула 15. Расчет номинального тока обмоток трансформатора:
I1 = P1 / U1
I2 = P2 / U2, где
I1, I2 – номинальные токи трансформаторных обмоток;
P1, P2 – электрические мощности ввода и вывода устройства;
U1, U2 – номинальные напряжения первичной и вторичной стороны трансформатора.
I1 = 94 / 220 = 0,43А;
I2 = 75 / 36 = 2,08А.
5 этап
Новые параметр, которые не рассматривался ранее – это диаметр проводника обмоток трансформатора (зависит от номинального тока на каждой обмотке).
Формула 16. Расчет диаметра проводника обмоток трансформатора:
D1 = 0,8
D2 = 0,8 , где
D1, D2 – диаметр проводника первичной и вторичной обмоток;
I1, I2 – номинальные токи обмоток первичной и вторичной намотки;
0,8 – постоянный поправочный коэффициент расчетов диаметров.
D1 = 0,8 = 0,8*0,66 = 0,5 мм.
Для проводников первичной и для проводника вторичной обмоток:
D2 = 0,8 = 0,8*1,44 = 1,15 мм.
6 этап
В электротехнике кабельно-проводниковая продукция всегда представлена в значения площади поперечного сечения жилы, а значит, чтобы не возникало проблем с реальным подбором проводника требуется перевести полученные диаметры в площадь поперечного сечения с помощью электронных конвекторов по Формуле 17. Перевод из диаметра в сечение провода:
SКПП= D2 * 0.8
Отсюда для каждого из диаметров получаем:
- SКПП1= (0,5)2 * 0.8 = 0,2 мм2 – провод для первичной обмотки;
- SКПП2= (1,15)2 * 0.8 = 1,0 мм2 – провод для вторичной обмотки.
Далее получив все расчетные значения по трансформатору из примера, приступают к практической части намотки витков с обеих сторон одновременно, коммутации их выводов и другим работам.
Как рассчитать Ш-образный трансформатор
Универсальность конструкции Ш-образного магнитопровода позволяет одинаково эффективно использовать, закладывать форму сердечника в проекты расчета, как импульсных– современных трансформаторов, участвующих в процессах обеспечения питания электронной бытовой и мультимедийной техники, так и проводить серьезные проектные расчеты силовых трансформаторов напряжения, находящийся в составе высоковольтных подстанций, основного и аварийного питания значительного количества потребителей (в случае двух трансформаторной структуры энергоснабжения).
Расчеты Ш-образного трансформатора по своим характеристикам ничем особенным не может отличаться от основных пунктов упрощенного или детального расчета преобразователей энергии. Для него могут использоваться формулы нахождения параметрических величин или применяться расчеты онлайн автоматизации проектов. Второй метод несколько универсален и быстротечен, в том плане, что для его использования достаточно знать исходную геометрию и номинальные значения выходных величин, что авто программа расчетов смогла предоставить необходимые значения для оборудования.
Единственным нюансом для Ш-образного магнитопровода может быть расчет номинальной мощности вторичных обмоток, если у него она не одна, тогда расчет мощности можно выполнить по Формуле 3. И расчет толщины набора сердечника будет зависеть от расчетов и данных Ш-образного магнитопровода по Формула 8
В остальном в зависимости от параметров можно применять все вышеуказанные формулы, исходя из конкретных электрических величин Ш-образного сердечника.
Определение параметров ТТ
Измерительный преобразователь тока, в основном принципе своей работы имеет некоторые важные отличительные особенности по сравнению с силовыми трансформаторами питания электропотребителей или трансформаторов напряжения.
Отличия заключаются в токовой величине его вторичной обмотки. Ток «вторички» ТТ независим от нагрузки цепей в ней, и имеет сопротивление, которое всегда соответствует количеству витков первичной обмотки с минимальным значением по величине в сравнении с сопротивлением силовых цепей первичного подключения.
Рисунок 2. Принципиальная схема трансформатора тока.
К тому же протекающий ток I2 через цепь вторичной обмотки имеет постоянное направление, при помощи которого производится размагничивание сердечника данного устройства. I1 обозначено направление тока первичной обмотки ТТ.
В связи с условием что верхний конец первичной обмотки находится там же, где и верхний конец первичной обмотки, учитывая из физики равенства магнитных потоков его обмоток можно составить определенный алгоритм расчета такого оборудования преобразования тока с учетом нюансов изделия:
- Определяется номинальное напряжение первичного обмотки ТТ – величина выбор которой производится из стандартных паспортных значений таблиц и измеряется в киловольтах: 0,66/ 3/6/10/15/20/24/ 27/ 35/ 110/ 150/ 220/ 330/ 750.
- Второй важный параметр токового устройство – определение номинального тока первичной обмотки – учитывая перегрузочные способности, данная величина рассчитывается большей или равной (> =) номинального тока первичной цепи электроустановки. Его токовый ряд первичной обмотки выбирается из ГОСТ значений: 1, 5, 10, 15, 20, 30, 40, 50, 75, 80, 100, 150, 200, 300, 400, 500, 600, 750, 800, 1000, 1200, 1500, 1600, 2000, 3000, 4000, 5000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000, 25000, 28000, 30000, 32000, 35000, 40000. Измеряется в амперах и кило амперах. В случае выбора ТТ на пусковое, генераторное оборудование к его номинальному току прибавляется 10% значение и от полученной суммы выбирается первичный ток ТТ.
- Ведут проверки преобразователя по термической и электродинамической стойкости согласно формулам из паспортных формуляров проверок.
- Выбирается и проверяется ТТ по мощности вторичных нагрузок – учитывая формулу 18:
Sном2 > Sнагр2, где
Sном2 – номинальная мощность вторичной обмотки;
Sнагр2 – мощность вторичной нагрузки, где будет установлен ТТ.
Кроме основных параметров выбора ТТ – это измерительное оборудование, учитывая значение номинала класса точности выбирается для питания и защиты цепей РЗиА, а так же преобразователи с завышенным коэффициентом трансформации и повышенным классом точности подбирают для питания токовых обмоток энергоучета.
Трансформаторы тока подключаются по каждому изделию на каждую фазу для включения в состав защитных, измерительных или учетных цепей.
Важное для расчета ТТ должно выполняться равенство по форм. 19:
(I1*N1) – (I2*N2) = 0, где
I1, I2 – значения токов первичной и вторичной обмотки;
N1, N2 – количество витков в обмотках ТТ.
Отсюда для вычисления количество витков в обмотке вторичного подключения определяется его токовое значение, совместно с основными понятиями магнитных характеристик:
- Lind – значения индуктивности ТТ;
- XLreac – сопротивления реактивной мощности ТТ;
- Rc – сопротивления нагрузки вторичной цепи.
Вычисления значений по формулам достаточно трудоемкий факт работы, поэтому в большинстве случаев, чтобы получить понимание выбора определенного трансформатора тока пользуются или целиком справочно-паспортными значениями их выбора или калькуляторами расчета параметров устройств.
Сердечники трансформаторов могут изготавливаться из ферромагнитных материалов или пластин Ш-образной формы электротехнической стали. Возможны кольцевые магнитопроводы из ленточно-проволочных материалов производства.
Особенности расчета сетевого трансформатора
Трансформаторы типа сетевой являют собой преобразователи напряжения, участвующие в цепях питания различных маломощных, относительно электроустановок силовых трансформаторов, энергопотребителей, приборов и устройств автоматики, контроля, телемеханики. Они очень популярны и широко распространены в мире подобного оборудования.
В связи с этим их выбор должен обладать определенными критериями по мимо основных номинальных электрических величин:
- номинальные токи первичной и вторичной обмотки;
- номинальные напряжения первичной и вторичной обмотки;
- мощности первичной и вторичной обмотки;
- полной мощности трансформатора;
Их выбор может варьироваться от отличий параметров конструкции и их различных типов. Главные из которых выделено рассматриваются ниже.
Выбор магнитопровода
Этот центральный элемент устройства обладает сразу несколькими характеристиками выбора.
Прежде всего, в зависимости от места установки и сферы применения сердечник трансформатора должен отвечать параметрам прочности, износостойкости, электрической прочности, экономичности.
Технология изготовления
Следующий параметр выбора зависит от его электромагнитных свойств. Технология изготовления делит магнитопроводы на два типа:
- Пластинчатые – выполненные из пластин электротехнической стали, изолированных и спрессованных между собой в определенные формы, габаритные размеры.
- Ленточные – выполнение из навивки стальной проволоки (менее распространены).
Формы серденичков
Каждый из двух видов в свою очередь подразделяется на формы и конструктивные различия стержней, окон для намотки проводников обмоток, диаметры которых зависят от электрических параметров оборудования. Формы сердечников бывают:
- Стержневые – в пластинчатом исполнении производятся из пластин П-образной формы одинаковой ширины. Имеют одно окно с определенным размером прохода намотки обмоток. Замыкаются прямоугольными пластинами.
- Броневые – Ш-образные пластины собираются в двух оконный магнитопровод, который замыкается прямоугольными пластинами из стали. Набираются переплетом для уменьшения магнитного сопротивления в местах стыка. С целью уменьшения вихревых токов производятся методом прессования.
Что касается таких же форм ленточных сердечников – набираются прямоугольной формы с разрезами вдоль и поперек. Для уменьшения магнитного сопротивления их сердечники подвергаются шлифовки.
Существуют еще кольцевые формы сердечников, которые обладают отличными магнитными свойствами в работе, но трудоемки в своем изготовлении. Некоторое время их производили в виде трансформаторов для питания освещения, но в настоящее время используют редко.
Самыми популярными в зависимости от токовых и мощностных характеристик выступают Ш-образные и П-образные сердечники при изготовлении сетевых трансформаторов. Для вторичных цепей много катушечного характера используют стержневой тип сердечников. Броневое исполнение содержит на каждой стороне только по одной катушке, что является его ограничительным фактором применения.
Варианты размещения катушек
С учетом конструктивных исполнений магнитопровода, электромагнитных характеристик устройства, его механики, следует различать несколько основных типов размещения обмоток:
- прямоугольный провод класс «Цилиндр – 1-2слоя» – преимущества – имеет хорошее охлаждение при эксплуатации, простота изготовления. К недостаткам относится малая прочность;
- прямоугольный провод класс «Цилиндр – многослой» – достоинства имеет в отличных магнитных свойствах системы, простоте изготовления. Минусы вида обмотки в плохом охлаждении в момент работы;
- круглый провод класс «Цилиндр – многослой» – плюсы варианта в простоте изготовления, минусы в плохой теплоотдаче, возможности перегрева;
- прямоугольный провод класс «Винтовая на 1-2 или многоход» – достоинства состоят в высокой прочности отличной изоляции, хорошем охлаждении. Минус в дороговизне при производстве;
- прямоугольный провод класс «Непрерывный» – механическая и электрическая прочность, хорошее охлаждение придают этому варианту положительных характеристик, но неудобство при обслуживании относят к недостаткам;
- алюминиевая фольга класс «Катушечный многослой или цилиндр» – достоинства в механической прочности, магнитных свойствах. Минус в сложности изготовления.
Так же есть катушки в виде дискового формата. Соединяемые между собой. В целом тип катушки и форма обмотки выбирается от электрических параметров необходимых в конкретном применении с учетом экономичной стороны и технологий.
Краткая справка о материалах магнитопровода
Для изготовления сердечников трансформаторов в обязательном порядке отбирают материалы, имеющие высокую магнитную проницаемость, малую площадь петли гистерезиса, минимальные энергетические потери при возникновении в них вихревых токов.
Сталь низкоуглеродистого состава – основа для производства сердечников. Мощные трансформаторы, которые имеют сложные структуры магнитопроводов, в генераторных системах и подобных им имеют сердечники, изготовленные из малоуглеродистых стальных материалов.
Для эксплуатации в высокочастотных режимах работы преобразователей энергии, их сердечник выполняют из ферритов или подобных им композитов (прессованные порошки с свойствами магнитной мягкости по типу магнетитов или карбонильного железа). Такие системы связывают с диэлектрической структурой в виде эпоксидных смол. В итоге получается собрание мелкозернистого порошка ферромагнитного (вещества в твердом состоянии, кристаллах, обладающих свойством намагниченности) состава, изолированного друг друга токопроводящей смолой.
Распространенная технология сердечников связана с набором отдельных пластин в пакетную стальную структуру с малым содержанием углерода
Исходные данные
Для выполнения проектных расчетов силовых агрегатов преобразования энергии, сетевых трансформаторов напряжения, импульсных энергетических преобразователей необходимо иметь часть справочно-табличных данных, исходя из составов материалов проводов обмоток, изоляции, стали сердечников, таких как:
- Величина максимальной индуктивности – для точного расчета габаритной мощности.
- Значение плотности тока – аналогичное участие справочного значения в расчете размерной мощности изделия.
- Коэффициенты мощности конкретного устройства – для расчета мощностного параметра.
- Сопротивления материалов сердечников и значение в проводниках обмоток для возможности расчета полной мощности.
Необходимы номинально-заданные параметры оборудования исходя из конкретного применения, нагрузки, которая будет использоваться в расчетном преобразователи:
- габаритные размеры сердечника и материалы из чего он изготовлен, тип и форма – размеры окна магнитопровода по длине и ширине особенно важны, т.к. связаны с площадью сечения магнитопровода, от которой идут дальнейшие расчеты;
- номинальные токи обмоток первичной и вторичной стороны устройства;
- номинальные напряжения в сети со стороны первичной и вторичной обмотки;
- значение и функционал трансформатора, на который направлен расчет;
- мощность по активной составляющей (первичной или вторичной обмотки)
- количество обмоток со стороны нагрузок;
- прочие детали или возможные подробности по изделию и функционалу его применения.
На основании исходных данных номинального и справочного характера вполне реально произвести ручной расчет трансформатора согласно формулам или воспользоваться автоматизированным сервисам в сети Интернет.
Как посчитать магнитопровод
В совокупности справочных и расчетных материалов, параметрических значений расчета трансформатора достаточно несложно произвести расчет его магнитопровода.
1 шаг
Расчету подвергается произведение площади сечения стержня Sст на площадь сердечника Sсер согласно равенству форм. 20:
Sст x Sсер = Pгаб x 102 / (2,22F х B х j x КПД x Nster x Kc x Km), где:
- Pгаб – габаритная мощность рассчитываемого трансформатора;
- F – частота переменного тока 50Гц
- B – максимальная индукция трансформатора, Тл;
- J – значение плотности тока А/м2;
- КПД – базовый коэффициент полезного действия устройства;
- Nster – Число стержней сердечника;
- Kc – коэффициент заполнения сечения сердечника магнитной сталью;
- Km – коэффициент заполнения окна стержня магнитной сталью;
Частично данные берутся из исходных номинальных значений оборудования, но большая часть вытекает из технической справочной литературы и табличных параметров и величин согласно указанному сердечнику изделия. В них входят: индукция, КПД оборудования, плотность тока, А/м2, коэффициенты заполнения сердечника и его окна.
2 шаг
Следующий шаг в расчете предполагает получение значения толщины сечения сердечника по Формуле 8, опубликованной в обзоре выше.
3 шаг
Последним шагом для расчета магнитопровода необходимо посчитать еще одно равенство значений узнав ширину ленты сердечника по форм. 21:
Bline= Sст x Sсер / (A x С x H), где
- Bline – ширина ленты сердечника для расчета, мм;
- Sст x Sсер -площади сечения стержня и самого сердечника, см2;
- A x С x H – размеры сторон сердечника, мм.
После чего, имея на руках три основных параметра магнитопровода с помощью литературы подбора, методом сравнительного анализа полученного значения с ближайшим стандартом производится выбор марки, размеров и всех данных магнитопровода трансформатора.
Определение параметров обмоток
Параметрические составляющие в обмотках в расчете ручных формул начинаются с определения ЭДС одного витка обмотки Е по формуле 22:
Е = 4,44 x F x В х Sст x Kc x 10-4, где
- F -частота переменного тока, ГЦ;
- В – максимум индукции, ТЛ;
- Sст –площадь сечения стержня;
- Kc – – коэффициент заполнения стержня.
Следующим расчетным показателем требуется получить падения напряжения на каждой обмотке трансформатора по формуле 23:
^U1 = 1,5*U1 *J*A*10-3
^U2 = 1,5*U2 *J*A*10-3
А от падения напряжения рассчитываются количество витков первичной и вторичной обмотки по новым формулам.
Формула 24. Расчет количества витков на основе падения напряжения:
N1= (U1- ^U1) / E
N2= (U2- ^U2) / E
Получив количество витков возможно узнать диаметры проводников (форм. 25):
D1 = 1.13
D2 = 1.13
Обычно при этом расчет обмоток завершается по проектному трансформатору, однако в его содержании возможно еще высчитывать средние длины витка обмоток, длины витков каждой обмотки и их массы. Допустимо вывести расчет и массы магнитопровода, для более детальных и точных вычислений.
Мощность потерь
Их зависимость просматривается от воздействия силы магнитного поля на сердечник. Деление по виду потерь сердечника происходит в двух формациях:
- Статические потери Pstat – перемагничивание магнитопровода. Они прямо пропорциональны длине петли магнитного потока Sпетли, частоте переменного тока F и весу магнитопровода G:
Pstat = Sпетли х F х G (форм. 26)
Еще их называют потерями на гистерезисе. При уменьшении толщины ленты начинает рост таких потерь, аналогично при росте петли, частоты сети или весу сердечника.
Второй тип потерь:
- Динамические потери – потери, которые происходят при возникновении в сердечники вихревых токов.
Постоянный ток имеет нулевую частоту петли гистерезиса, как только частота начинает расти – идет возникновение динамических потерь в сердечнике.
Особенности расчета автотрансформатора
Автотрансформатор – преобразователь напряжений, имеющий в отличии от обычного трансформатора, единую и единственную обмотку с одним или несколькими промежуточными выводами.
Рисунок 3. Внешний вид автотрансформатора.
Если коэффициент трансформации нагруженного электротехнического устройства малого значения – автотрансформатор становится более экономически выгодным обычного преобразователя напряжения, т.к. расход медного провода его катушки заметно меньше, чем у двух обмоточного обычного трансформатора.
Рисунок 4. Принципиальная схема автотрансформатора.
В общей точке обмотки судя по схеме на Рисунок 4 обмотки устройства протекает ток с определенным значением дельты:
Важно! Вход и Выход изделия напрямую связаны. Это означает опасность и запрет в проведении защитного заземления схемы, в которую включен нагруженный автотрансформатор.
Устройство автотрансформатора в нагруженном состоянии или в режиме холостого хода имеет дополнительную обмотку, без какой-либо связи с основной. И как только значение мощности дополнительной катушки больше мощности основной обмотки – экономическая и выгода автотрансформатора падает с критической скоростью.
Для расчета мощности во вторичной обмотке устройства представляет собой сумму двух значений:
Preborn = Uii x I + Pprox= Uii x I1, где
- Ppreborn – преобразовательная мощность, величина проходящая в зону вторичной обмотки по средствам магнитной связи;
- Pprox – проходящая мощность во вторичную обмотку посредством электрической связи
- Uii, I – напряжение, ток автотрансформатора.
Расчет автотрансформатора похож систему расчета силового преобразователя напряжения с одной поправкой – магнитопровод автотрансформатора рассчитывается на единицу значения преобразовательной мощности:
Ppreborn = 1,1*Pa * , где
Pa – мощность автотрансформатора, общая, Вт;
коэффициент трансформации оборудования.
Автотрансформаторы, как бы парадоксальны их свойства и устройства не были, в однофазных и трехфазных сетях низковольтного и высоковольтного напряжения достаточно популярны за счет своих характеристик и возможности изменять выходную электрическую величину, низкой стоимости и коэффициентом полезного действия около 99%.
Мощные автотрансформаторы, начиная с напряжения 110 кВ используются в регулировочных ступенчатых узлах распределительных установок.
Слабые устройства, небольшой мощности, внешнего вида, как на Рисунок 3 стали очень популярны в научно-исследовательских организациях, как стендовое оборудование, позволяющее проводить многие тесты. Это касается и учебных заведениях. В них используются лабораторные автотрансформаторы (ЛАТР) для проведения работ и испытаний с целью обучения молодых специалистов.
Как посчитать пленочный трансформатор
Инновация в разработках сверхпроводников, в области криоэлектроники представлена в виде криогенного устройства на сверхпроводниках. Схематически его основные элементы представлены ниже на Рисунке 5 Это и есть – пленочный трансформатор магнитного потока.
Рисунок 5. Схематика пленочного трансформатора.
Квадратообразный обруч с активной полоской, изолирующей пленку, помещается между активной полосой трансформатора магнитного потока и магниточувствительным элементом.
С помощью преобразовательного устройства на сверхпроводниках происходит повышение умножение трансформатора магнитного потока.
Сверхпроводниковый трансформатор магнитного потока – пленочный трансформатор – устройство разработанная в научно-исследовательских институтах, имеет определенные свойства и преимущества:
- увеличение чувствительности датчиков;
- расширение динамического диапазона;
- увеличение помехозащищенности.
Пленочные трансформаторы сверхпроводимости нашли широкое применение в медицине в магнита-резонансных установках, позволяющих снять информацию сразу по всему организму и телу человека.
Рисунок 6. Схематика пленочного трансформатора с движением потока.
Однородность магнитного поля в активной полосе трансформатора увеличивается как показано на Рис. 7.
Рисунок 7. Схемы активных пластин.
Концентрация магнитного поля имеет определенный темп увеличения эффективности, рассчитываемый по формуле:
Наконец-то на последней схематике приведен эскиз активной полосы и приведены ее основные параметры для расчета:
В настоящее время на сверхпроводниках реализованы лишь пленочные трансформаторы способные увеличивая магнитный поток воздействовать на магниточувствительным элемент для проведения определенной работы. Если сверхпроводимость войдет в нашу жизнь для любого материала изменится не только конкретный преобразователь энергии, но и весь человеческий мир.
Обзор онлайн сервисов
Произвести расчеты трансформаторов любого типа, их составных частей или комплектующих помимо технических справок и таблиц, научной литературы в настоящее время довольно много качественных онлайн сервисов расчет электротехнических параметров или оборудования по конкретному запросу.
Если брать расчет трансформаторов – онлайн площадки в богатом остатке предлагают различные онлайн калькуляторы, расчетам которых вполне можно доверять.
Они не требуют никаких сложных значений или данных – достаточно иметь несколько основных исходных параметров электрических величин и знания геометрии оборудования.
Несколько вариантов онлайн площадок расчета трансформаторов предлагается в обзоре статьи на справедливую оценку и тестирование любым радиолюбителем или бывалым специалистом электронщиком:
- Интересная программа онлайн доступа и расчета с возможностью провести расчет как по стержневому виду, так и броневому виду сердечника, что увеличивает функционал и улучшает поддержку: Калькулятор расчета трансформатора №1.
- Помощь в расчете «Пуш-Пулл» трансформатора – простота и умение наращивать мощность являются основными преимуществами трансформаторов «Push-Pull», что в переводе с английского языка означает – двухтактный – трансформатор напряжения использующий импульсный трансформатор и становится трансформатор с двунаправленным возбуждением. Расчет такого устройства по формулам в ручном режиме может занять весомую часть времени. Помочь в этом может автоматизация расчета программой «ExcellentIT».
- Любые расчеты преобразователей электрической энергии, блоков питания, сложных устройств, которые так хочется собрать многими радиолюбителями и электронщиками-самоучками, но не хватает технической базы и формул, теперь возможно производить с помощью «Сборника Расчетных программ».
Но не стоит автоматизированные, онлайн сервисы делать панацеей в расчетах и проектировании преобразующих, питающих энергоустройств и систем электроники. Нужно помнить, что любая автоматика или компьютеризация без человека – оператора не стоит и не может ничего.
Примеры расчета
Для получения практических навыков расчета преобразователей напряжения упрощенными формулами в ручном режиме произведем:
Расчет силового трансформатора, который должен запитывать N-оборудование
Условия и исходные данные для расчета
- Тип оборудования: трансформатор напряжения силовой;
- Напряжение обмотки ВН: 660В;
- Ток обмотки ВН: 60mA;
- Напряжение обмотки НН: 12В;
- Ток обмотки НН: 6А;
- Тип сердечника: П-образный / коэффициентом количества витков на 1В = 50;
- Размеры окна сердечника: А = 10 см, И = 3 см.
Расчет силового трансформатора пошагово
- Т.к. обмотки ВН и НН в единственном экземпляре определить общую мощность трансформатора можно по формуле:
Pобщ = (Uвн * Iвн) + (Uнн * Iнн);
Pобщ = (660 * 0,06) + (12 * 6) = 39,6 + 72 = 111,6 Вт;
- Следующий шаг определение мощности первичной цепи обмотки по формуле:
P1 = 1,25 * Pобщ;
P1 = 1,25 * 111,6 = 139,5 Вт;
- Третий шаг определить площадь сечения сердечника из формулы:
- Определение количества витков на 1В и номинальный ток первичной обмотки можно:
N1v = K / Sсеч = 50 / 11,8 = 4,2;
I1 = P1 / Uнн = 139,5 / 220 = 0,63А;
- Остается найти число витков и диаметр проводников для первичной и вторичной обмотки:
- N1 = N1v * Uнн = 4,2 * 220 = 924 витков;
- D1 = 0,8 * = 0,8 * = 0,8 * 0,79 = 0,63 mm;
- N2 = N1v * Uвн = 4,2 * 660 = 2772 витка;
- D2 = 0,8 * = 0,8 * = 0,8 * 0,24 = 0,2 mm;
- С учетом того, что в исходных данных у нас есть размеры окна сердечника найдем ее площадь поперечного сечения, через который проверим войдут ли проводники в заданную площадь:
Sser = A * В = 10 * 3 = 30 см2 = 3000 мм2
Зная параметры диаметра проводников на каждой обмотке, можно вычислить опытную площадь проводников, которая должна быть меньше расчетной окна сердечника.
Этот расчет является защитным и проверочным предохранителем от ненужной траты сил и материалов по заранее ошибочным расчетным данным:
- S1 Первичная: 0,8 * D1 * N1 = 0,8 * 0,63 * 924 = 465 мм2;
- S2 Вторичная: 0,8 * D2 * N2 = 0,8 * 0,2 * 2772 = 444 мм2;
- Sser> (S1 + S2) – Необходимое условие
«Что и требовалось доказать»
3000> (444 + 465) – условие правильности расчета выполняется.
Остальные расчеты трансформаторов напряжения проводятся примерно в таком же формате, что и пример выше. Если позволяется – используют калькуляторы расчета в сети интернет.
Оборудование преобразования других величин электрической энергии проверяется расчетными методами по своим правилам и формулам или в тех же сервисах компьютерных программ.
Содержание
- 1. Общая часть
- 2. Методика определения вторичной нагрузки для основных вторичных
обмоток трансформаторов напряжения - 3. Определение вторичных токов нагрузки в цепях трансформаторов напряжения
- 4. Определение нагрузки Sнагр. трансформаторов напряжения при разных
схемах соединения - 4.1 При схеме соединения трех однофазных трансформаторов напряжения в звезду (рис.2)
- 4.2 При схеме соединения двух однофазных трансформаторов напряжения
в открытый треугольник (рис.3) - 4.3 При соединении трансформаторов напряжения в звезду
с четырехпроводными вторичными цепями (рис.4) - 5. Определение нагрузки для дополнительных обмоток трансформаторов напряжения
- 6. Рекомендации по сопоставлению расчетной мощности нагрузки
с мощностью применяемого типа трансформатора напряжения
1. Общая часть
Для того чтобы трансформатор напряжения (ТН) работал в требуемом классе точности, а также для выбора сечения жил контрольного кабеля в их вторичных цепях по потере напряжения в этих кабелях необходимо определять нагрузку ТН.
Для обеспечения работы трансформаторов напряжения (ТН) в требуемом классе точности, а также для выбора сечения соединительных проводов в их вторичных цепях по потере напряжения в этих проводах необходимо определять нагрузку ТН.
Потребление релейной и измерительной аппаратуры выражается в вольт-амперах (ВА). Для измерительных приборов оно равно Uном=100 В, а для реле – часто и при других величинах напряжения.
Когда нужно рассчитать потребление всей аппаратуры, которое включено на линейное напряжение, его нужно привести к напряжению 100 В, а аппаратуры включенной на фазное напряжение, — к напряжению 100√3 В.
Если нужно пересчитать с другого напряжения на расчетное, производим по формуле:
где:
- SU- потребление, заданное при напряжении U;
- Sрасч. –потребление при расчетном (линейном или фазном) напряжении Uрасч.
Следует отметить, что на практике всегда имеется некоторая неравномерность нагрузки по отдельным фазам (обмоткам) трансформатора напряжения. При расчете нагрузки необходимо определить ее величину для наиболее загружено фазы трансформатора напряжения и сопоставить ее с мощностью применяемого трансформатора напряжения в требуемом классе точности.
В связи с тем, что точный расчет нагрузки весьма сложен в практических расчетах, допускается упрощение:
- суммирование потребляемой мощности производится арифметически, без учета разных коэффициентов мощности (cos φ) отдельных нагрузок.
- неравномерность нагрузки учитывается приближенно.
Применяя эти упрощения, мы создаем некоторый расчетный запас.
2. Методика определения вторичной нагрузки для основных вторичных обмоток трансформаторов напряжения
Для определения вторичной нагрузки трансформаторов напряжения необходимо определить величину вторичных токов нагрузки в цепях трансформаторов напряжения, так как нагрузка определяется произведением приложенного напряжения на этот ток. Для трехпроводных цепей напряжения используется расчетная схема и векторные диаграммы, приведенные на рис.1.
Рис.1 — Расчетная схема и векторные диаграммы для трехпроводных цепей напряжения:
а) расчетная схема; б) диаграмма линейных напряжений; в) линейные напряжения и токи нагрузки;
г) приближенное построение вектора тока нагрузки в фазе A
Для определения максимальной нагрузки трансформатора напряжения подсчитываются суммарные нагрузки Saв, Sвc, Sca, приведенные к линейным напряжениям согласно выражения (1).
Наиболее нагруженной фазой будет та, которой проходит наибольший ток.
Токи Iab, Ibc, Ica создаются линейными напряжениями Uaв, Uвc, Uca, показанными на рис.1 (б).
Для более наглядного рассмотрения диаграммы векторы тока и напряжения на рис.1 (в) перемещены так, что образуют симметричную звезду. Токи Iaв, Iвc, Ica показаны неравными, но отстающими от соответствующих им напряжений Uaв, Uвc, Uca на один и тот же угол φ=120 гр.
(это – допущение, так как в действительности эти углы не одинаковы).
3. Определение вторичных токов нагрузки в цепях трансформаторов напряжения
В соответствии с токораспределением, приведенным на рис.1 (а)
İав = İо + İса, отсюда İа = İав – İса.
Если бы ток İав был равен по величине току İса, то векторная разность этих токов была бы равна √3 İса (см. рис.1). Прибавив к вектору √3 İса разницу в величинах токов İав и İса (см. рис. 1 г), получим некоторый вектор İa, величина которого определяется по выражению:
İa = √3 İса + (İав — İса) (2)
Приняв İa = Iа, можно приближенно по выражению (2) определить величину тока Iа. Аналогично можно определить тока Iв и Iс.
Заменяя в выражении (2) Iа на Iф – ток в любой фазе, Iав на Iмакс – больший на двух токов междуфазных нагрузок -, Iса на Iмин – меньший из этих двух токов -, получим общее выражение для определения тока нагрузки любой фазы трансформатора.
Iф = √3 Iмин + (Iмакс. – Iмин.) = Iмакс. + 1,73*Iмин – Iмин
или Iф = Iмакс. + 0,73*Iмин. (3)
4. Определение нагрузки Sнагр. трансформаторов напряжения при разных схемах соединения
4.1 При схеме соединения трех однофазных трансформаторов напряжения в звезду (рис.2)
Рис.2 — Схема соединения трех однофазных трансформаторов напряжения в звезду
Мощность нагрузки основных обмоток, соединенных в звезду, каждого из трансформаторов напряжения определяется по выражению:
где:
- Uм.ф. – междуфазное напряжение, В;
- Iф – ток в любой фазе, А;
Подставив значение тока Iф из выражения (3), получим
или
где:
- Sнагр. – мощность, которую потребляет от трансформатора напряжения любая из фаз междуфазной нагрузки вторичных цепей;
- Sмакс.м.ф и Sмин.м.ф. –мощности большей и меньшей на двух междуфазных нагрузок.
4.2 При схеме соединения двух однофазных трансформаторов напряжения в открытый треугольник (рис.3)
Рис.3 — Схема соединения соединения двух однофазных трансформаторов напряжения в открытый треугольник
Мощность нагрузки каждого из трансформаторов напряжения определяется по выражению:
Подставив значение тока Iф из выражения (3), получим:
где:
Sмакс.м.ф и Sмин.м.ф. –мощности большей и меньшей из двух междуфазных нагрузок, подключенных к данной фазе (а или с)
При равномерной нагрузке (одинаковый ток во всех трех фазах)
Sмакс.м.ф= Sмин.м.ф.= Sм.ф.
При этом нагрузка на каждый трансформатор напряжения согласно выражения (7) Sн=1,73* Sм.ф.
Если ту же нагрузку (∑Sнагр.=3*Sм.ф.) равномерно распределить между фазами так, чтобы Sав= Sвс, а Sса=0, то нагрузка на каждый трансформатор напряжения составит половину всей нагрузки (∑Sнагр.=3*Sм.ф.).
В этом случае Sнагр.=0,5*3*Sм.ф.=1,5*Sм.ф.<1,73*Sм.ф. Поэтому при схеме открытого треугольника следует по возможности равномерно распределить нагрузку между напряжениями Uав и Uвс и не включать нагрузку на напряжение Uса.
4.3 При соединении трансформаторов напряжения в звезду с четырехпроводными вторичными цепями (рис.4)
Рис.4 — Схема соединения трансформаторов напряжения в звезду с четырехпроводными вторичными цепями
В четырехпроводных вторичных цепях при наличии нагрузок, включенных на фазные напряжения, потребляемая ими мощность Sнагр.=Sм.ф., приведенная к фазному напряжению согласно выражению (1), должна суммироваться с мощностью междуфазной нагрузки Sнагр. соответствующих фаз. При этом полная мощность нагрузки любой из фаз основных вторичных обмоток трансформаторов напряжения определяется по выражению:
где:
Sмакс.м.ф и Sмин.м.ф. –мощности большей и меньшей из двух междуфазных нагрузок.
Пример расчета нагрузки обмоток ТН рассмотрен в статье «Расчет нагрузки для основной и дополнительной обмотки трансформатора напряжения типа ЗНОМ-20»
5.Определение нагрузки для дополнительных обмоток трансформаторов напряжения
Нагрузка на дополнительные обмотки трансформаторов напряжения, соединенные по схеме разомкнутого треугольника, определяется расчетным потреблением реле и приборов, подсоединенных к этим обмоткам. Результаты расчета сопоставляются с допустимой мощностью соответствующего класса данного типа трансформатора напряжения. При подключении к дополнительным обмоткам только релейной аппаратуры требуется его работа в классе точности 3, а при подключении измерительных приборов в классе точности 0,2; 0,5.
6. Рекомендации по сопоставлению расчетной мощности нагрузки с мощностью применяемого типа трансформатора напряжения
На основании результатов расчета мощность загруженной фазы, подсчитанная по вышеприведенным выражениям (5, 7, 8), сопоставляется с мощностью применяемого типа трансформатора напряжения в требуемом классе точности.
В случае, если расчетная нагрузка превосходит допустимую для данного трансформатора напряжения в соответствующем классе точности, то необходимо предусмотреть возможность уменьшения нагрузки путем применения приборов с меньшим потреблением.
Если невозможно уменьшить расчетную нагрузку (реле и измерительные приборы), то следует рассмотреть возможность установки дополнительного трансформатора напряжения на отдельных присоединений.
Всего наилучшего! До новых встреч на сайте Raschet.info.
Как узнать мощность трансформатора?
Определение мощности силового трансформатора
Для изготовления трансформаторных блоков питания необходим силовой однофазный трансформатор, который понижает переменное напряжение электросети 220 вольт до необходимых 12-30 вольт, которое затем выпрямляется диодным мостом и фильтруется электролитическим конденсатором.
Эти преобразования электрического тока необходимы, поскольку любая электронная аппаратура собрана на транзисторах и микросхемах, которым обычно требуется напряжение не более 5-12 вольт.
Чтобы самостоятельно собрать блок питания, начинающему радиолюбителю требуется найти или приобрести подходящий трансформатор для будущего блока питания. В исключительных случаях можно изготовить силовой трансформатор самостоятельно. Такие рекомендации можно встретить на страницах старых книг по радиоэлектронике.
Но в настоящее время проще найти или купить готовый трансформатор и использовать его для изготовления своего блока питания.
Полный расчёт и самостоятельное изготовление трансформатора для начинающего радиолюбителя довольно сложная задача. Но есть иной путь. Можно использовать бывший в употреблении, но исправный трансформатор. Для питания большинства самодельных конструкций хватит и маломощного блока питания, мощностью 7-15 Ватт.
Если трансформатор приобретается в магазине, то особых проблем с подбором нужного трансформатора, как правило, не возникает. У нового изделия обозначены все его главные параметры, такие как мощность, входное напряжение, выходное напряжение, а также количество вторичных обмоток, если их больше одной.
Но если в ваши руки попал трансформатор, который уже поработал в каком-либо приборе и вы хотите его вторично использовать для конструирования своего блока питания? Как определить мощность трансформатора хотя бы приблизительно? Мощность трансформатора весьма важный параметр, поскольку от него напрямую будет зависеть надёжность собранного вами блока питания или другого устройства. Как известно, потребляемая электронным прибором мощность зависит от потребляемого им тока и напряжения, которое требуется для его нормальной работы. Ориентировочно эту мощность можно определить, умножив потребляемый прибором ток (Iн на напряжение питания прибора (Uн). Думаю, многие знакомы с этой формулой ещё по школе.
P=Uн * Iн
,где Uн – напряжение в вольтах; Iн – ток в амперах; P – мощность в ваттах.
Рассмотрим определение мощности трансформатора на реальном примере. Тренироваться будем на трансформаторе ТП114-163М. Это трансформатор броневого типа, который собран из штампованных Ш-образных и прямых пластин. Стоит отметить, что трансформаторы такого типа не самые лучшие с точки зрения коэффициента полезного действия (КПД). Но радует то, что такие трансформаторы широко распространены, часто применяются в электронике и их легко найти на прилавках радиомагазинов или же в старой и неисправной радиоаппаратуре. К тому же стоят они дешевле тороидальных (или, по-другому, кольцевых) трансформаторов, которые обладают большим КПД и используются в достаточно мощной радиоаппаратуре.
Итак, перед нами трансформатор ТП114-163М. Попробуем ориентировочно определить его мощность. За основу расчётов примем рекомендации из популярной книги В.Г. Борисова «Юный радиолюбитель».
Для определения мощности трансформатора необходимо рассчитать сечение его магнитопровода. Применительно к трансформатору ТП114-163М, магнитопровод – это набор штампованных Ш-образных и прямых пластин выполненных из электротехнической стали. Так вот, для определения сечения необходимо умножить толщину набора пластин (см. фото) на ширину центрального лепестка Ш-образной пластины.
При вычислениях нужно соблюдать размерность. Толщину набора и ширину центрального лепестка лучше мерить в сантиметрах. Вычисления также нужно производить в сантиметрах. Итак, толщина набора изучаемого трансформатора составила около 2 сантиметров.
Далее замеряем линейкой ширину центрального лепестка. Это уже задача посложнее. Дело в том, что трансформатор ТП114-163М имеет плотный набор и пластмассовый каркас. Поэтому центральный лепесток Ш-образной пластины практически не видно, он закрыт пластиной, и определить его ширину довольно трудно.
Ширину центрального лепестка можно замерить у боковой, самой первой Ш-образной пластины в зазоре между пластмассовым каркасом. Первая пластина не дополняется прямой пластиной и поэтому виден край центрального лепестка Ш-образной пластины. Ширина его составила около 1,7 сантиметра. Хотя приводимый расчёт и является ориентировочным, но всё же желательно как можно точнее проводить измерения.
Перемножаем толщину набора магнитопровода (2 см.) и ширину центрального лепестка пластины (1,7 см.). Получаем сечение магнитопровода – 3,4 см2. Далее нам понадобиться следующая формула.
,где S – площадь сечения магнитопровода; Pтр – мощность трансформатора; 1,3 – усреднённый коэффициент.
После нехитрых преобразований получаем упрощённую формулу для расчёта мощности трансформатора по сечению его магнитопровода. Вот она.
Подставим в формулу значение сечения S = 3,4 см2, которое мы получили ранее.
В результате расчётов получаем ориентировочное значение мощности трансформатора ~ 7 Ватт. Такого трансформатора вполне достаточно, чтобы собрать блок питания для монофонического усилителя звуковой частоты на 3-5 ватт, например, на базе микросхемы усилителя TDA2003.
Вот ещё один из трансформаторов. Маркирован как PDPC24-35. Это один из представителей трансформаторов – «малюток». Трансформатор очень миниатюрный и, естественно, маломощный. Ширина центрального лепестка Ш-образной пластины составляет всего 6 миллиметров (0,6 см.).
Толщина набора пластин всего магнитопровода – 2 сантиметра. По формуле мощность данного мини-трансформатора получается равной около 1 Вт.
Данный трансформатор имеет две вторичные обмотки, максимально допустимый ток которых достаточно мал, и составляет десятки миллиампер. Такой трансформатор можно использовать только лишь для питания схем с малым потреблением тока.
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
-
Как определить мощность резистора?
-
Как проводить измерение сопротивления цифровым мультиметром?
-
Зачем нужен супрессор?