Как найти максимальную частоту контура

Колебательный контур LC

Колебательный контур — электрическая цепь, в которой могут возникать колебания с частотой, определяемой параметрами цепи.

Простейший колебательный контур состоит из конденсатора и катушки индуктивности, соединенных параллельно или последовательно.

– Конденсатор C – реактивный элемент. Обладает способностью накапливать и отдавать электрическую энергию.
– Катушка индуктивности L – реактивный элемент. Обладает способностью накапливать и отдавать магнитную энергию.

Рассмотрим, как возникают и поддерживаются свободные электрические колебания в параллельном контуре LC.

Основные свойства индуктивности

– Ток, протекающий в катушке индуктивности, создаёт магнитное поле с энергией .
– Изменение тока в катушке вызывает изменение магнитного потока в её витках, создавая в них ЭДС, препятствующую изменению тока и магнитного потока.

Природа электромагнитных колебаний в контуре

Период свободных колебаний контура LC можно описать следующим образом:

Если конденсатор ёмкостью C заряжен до напряжения U, потенциальная энергия его заряда составит.
Если параллельно заряженному конденсатору подключить катушку индуктивности L, в цепи пойдёт ток разряда конденсатора, создавая магнитное поле в катушке.

Внешний магнитный поток создаст ЭДС в направлении противоположном току в катушке, что будет препятствовать нарастанию тока в каждом витке, поэтому конденсатор разрядится не мгновенно, а через время t1,
которое определяется индуктивностью катушки и ёмкостью конденсатора из расчёта t1 = .
По истечении времени t1, когда конденсатор разрядится до нуля, ток в катушке и магнитная энергия будут максимальны.
Накопленная катушкой магнитная энергия в этот момент составит.
В идеальном рассмотрении, при полном отсутствии потерь в контуре, EC будет равна EL.
Таким образом, электрическая энергия конденсатора перейдёт в магнитную энергию катушки.

Далее изменение (уменьшение от максимума) магнитного потока накопленной энергии катушки будет создавать в ней ЭДС,
которая продолжит ток в том же направлении и начнётся процесс заряда конденсатора индукционным током. Уменьшаясь от максимума до нуля в течении времени t2 = t1, он перезарядит конденсатор от нулевого до максимального отрицательного значения (-U).
Так магнитная энергия катушки перейдёт в электрическую энергию конденсатора.

Описанные интервалы t1 и t2 составят половину периода полного колебания в контуре.
Во второй половине процессы аналогичны, только конденсатор будет разряжаться от отрицательного значения, а ток и магнитный поток сменят направление.
Магнитная энергия вновь будет накапливаться в катушке в течении времени t3, сменив полярность полюсов.

В течении заключительного этапа колебания (t4),
накопленная магнитная энергия катушки зарядит конденсатор до первоначального значения U
(в случае отсутствия потерь) и процесс колебания повторится.

В реальности, при наличии потерь энергии на активном сопротивлении проводников,
фазовых и магнитных потерь, колебания будут затухающими по амплитуде.
Время t1 + t2 + t3 + t4 составит период колебаний .
Частота свободных колебаний контура ƒ = 1 / T

Частота свободных колебаний является частотой резонанса контура,
на которой реактивное сопротивление индуктивности XL=2πfL равно реактивному сопротивлению ёмкости XC=1/(2πfC).


Расчёт частоты резонанса LC-контура:

Предлагается простой онлайн-калькулятор для расчёта резонансной частоты колебательного контура.

Необходимо вписать значения и кликнуть мышкой в таблице.
При переключении множителей автоматически происходит пересчёт результата.

Расчёт частоты:

Частота резонанса колебательного контура LC.
ƒ = 1/(2π√(LC))


Расчёт ёмкости:

Ёмкость для колебательного контура LC
C = 1/(4𲃲L)


Расчёт индуктивности:

Индуктивность для колебательного контура LC
L = 1/(4𲃲C)



Похожие страницы с расчётами:

Рассчитать импеданс.

Рассчитать реактивное сопротивление.

Рассчитать реактивную мощность и компенсацию.


Замечания и предложения принимаются и приветствуются!

В прошлой статье мы с вами рассмотрели последовательный колебательный контур, так как все участвующие в нем радиоэлементы соединялись последовательно. В этой же статье мы  рассмотрим параллельный колебательный контур, в котором катушка и конденсатор  соединяются параллельно.

Параллельный колебательный контур

Идеальный колебательный контур

На схеме идеальный колебательный контур выглядит вот так:

идеальный параллельный колебательный контур

где

L — индуктивность, Генри

С — емкость, Фарад

Реальный колебательный контур

В реальности у нас катушка обладает приличным сопротивлением потерь, так как намотана из провода, да и конденсатор тоже имеет некоторое сопротивление потерь. Потери в емкости очень малы и ими обычно пренебрегают. Поэтому оставим только одно сопротивление потерь катушки R. Тогда схема реального колебательного контура примет вот такой вид:

реальный паралельный колебательный контур

где

R — это сопротивление потерь контура, Ом

L — индуктивность, Генри

С — емкость, Фарад

Принцип работы параллельного колебательного контура

Давайте подцепим к генератору частоты реальный параллельный колебательный контур

паралельный колебательный контур в цепи генератора частоты

Что будет, если мы подадим на контур ток с частотой в ноль Герц, то есть постоянный ток? Он спокойно побежит через катушку и будет ограничиваться лишь сопротивлением потерь R самой катушки. Через конденсатор ток не побежит, потому что конденсатор не пропускает постоянный ток. Об это я писал еще в статье конденсатор в цепи постоянного и переменного тока.

Давайте тогда будем добавлять частоту. Итак, с увеличением частоты у нас конденсатор и катушка начнут оказывать реактивное сопротивление электрическому току.

Реактивное сопротивление катушки выражается по формуле

реактивное сопротивление катушки

а конденсатора по формуле

реактивное сопротивление конденсатора

Более подробно про это можно прочитать в этой статье.

Если плавно увеличивать частоту, то можно понять из формул, что в самом начале при плавном увеличении частоты конденсатор будет оказывать бОльшее сопротивление, чем катушка индуктивности. На какой-то частоте реактивные сопротивления катушки XL и конденсатора XC уравняются. Если далее увеличивать частоту, то уже катушка уже будет оказывать большее сопротивление, чем конденсатор.

Резонанс параллельного колебательного контура

Очень интересное свойство параллельного колебательного контура заключается в том, что при ХL = ХС   у нас колебательный контур войдет в резонанс. При резонансе колебательный контур начнет оказывать большее сопротивление переменному электрическому току. Еще часто это сопротивление называют резонансным сопротивлением контура и оно выражается формулой:

формула резонансного сопротивления

где

Rрез  — это сопротивление контура на резонансной частоте

L — собственно сама индуктивность катушки

C — собственно сама емкость конденсатора

R — сопротивление потерь катушки

Формула резонанса

Для параллельного колебательного контура также работает формула Томсона для резонансной частоты как и для последовательного колебательного контура:

формула резонанса параллельного колебательного контура

где

F — это резонансная частота контура, Герцы

L — индуктивность катушки, Генри

С — емкость конденсатора, Фарады

Как найти резонанс параллельного колебательного контура на практике

Ладно, ближе к делу. Берем паяльник в руки и спаиваем катушку и конденсатор параллельно. Катушка на 22 мкГн, а конденсатор на 1000пФ.

параллельный колебательный контур

Итак, реальная схема этого контура будет вот такая:

Параллельный колебательный контур

Для того, чтобы все показать наглядно и понятно, давайте добавим к контуру последовательно резистор на 1 КОм и соберем вот такую схему:

Параллельный колебательный контур

Параллельный колебательный контур

На генераторе мы будет менять частоту, а с клемм X1 и X2 мы будем снимать напряжение и смотреть его на осциллографе.

Нетрудно догадаться, что у нас сопротивление параллельного колебательного контура будет зависеть от частоты генератора, так как в этом колебательном контуре мы видим два радиоэлемента, чьи реактивные сопротивления напрямую зависит от частоты, поэтому заменим колебательный контур эквивалентным сопротивлением контура Rкон.

Упрощенная схема будет выглядеть вот так:

Параллельный колебательный контур

Интересно, на что похожа эта схема? Не на делитель ли напряжения? Именно! Итак, вспоминаем правило делителя напряжения: на меньшем сопротивлении падает меньшее напряжение, на бОльшем сопротивлении падает бОльшее напряжение. Какой вывод можно сделать применительно к нашему колебательному контуру? Да все просто: на резонансной частоте сопротивление Rкон будет максимальным, вследствие чего у нас на этом сопротивлении «упадет» бОльшее напряжение.

У нас есть калькулятор резисторов по цветам. Самый крутой подборник.

Начинаем наш опыт. Поднимаем частоту на генераторе, начиная с самых маленьких частот.

200 Герц.

Параллельный колебательный контур

Как вы видите, на колебательном контуре «падает» малое напряжение, значит, по правилу делителя напряжения, можно сказать, что сейчас у контура малое сопротивление Rкон

Добавляем частоту. 11,4 Килогерца

Параллельный колебательный контур

Как вы видите, напряжение на контуре поднялось. Это значит, что  сопротивление  колебательного контура увеличилось.

Добавляем еще частоту. 50 Килогерц

Параллельный колебательный контур

Заметьте, напряжение на контуре повысилось еще больше. Значит его сопротивление еще больше увеличилось.

723 Килогерца

Параллельный колебательный контур

Обратите внимание на цену деления одного квадратика по вертикали, по сравнению с прошлым опытом. Там было 20мВ на один квадратик, а сейчас уже 500 мВ на один квадратик. Напряжение выросло, так как сопротивление колебательного контура стало еще больше.

И вот я поймал такую частоту, на которой получилось максимальное напряжение на колебательном контуре. Обратите внимание на цену деления по вертикали. Она равняется двум Вольтам.

частота резонанса

Дальнейшее увеличение частоты приводит к тому, что напряжение начинает падать:

Параллельный колебательный контур

Снова добавляем частоту и видим, что напряжение стало еще меньше:

Параллельный колебательный контур

Что происходит на резонансной частоте в параллельном колебательном контуре

Давайте более подробно рассмотрим эту осциллограмму, когда у нас было максимальное напряжение с контура.

Параллельный колебательный контур

Что здесь у нас произошло?

Так как на этой частоте был всплеск напряжения, следовательно, на этой частоте параллельный колебательный контур имел самое  высокое сопротивление Rкон. На этой частоте ХL = ХС. Потом с ростом частоты сопротивление контура снова упало. Это и есть то самое резонансное сопротивление контура, которое выражается формулой:

Параллельный колебательный контур

Резонанс токов

Итак, давайте допустим, мы вогнали наш колебательный контур в резонанс:

резонанс параллельного колебательного контура

Чему будет равняться резонансный ток  Iрез ? Считаем по закону Ома:

Iрез = Uген /Rрез  , где  Rрез = L/CR.

Но самый прикол в том, что у нас при резонансе в контуре появляется свой собственный контурный ток Iкон , который не выходит за пределы контура и остается только в самом контуре! Так как с математикой у меня туго, поэтому я не буду приводить различные математические выкладки с производными и комплексными числами и объяснять откуда берется контурный ток при резонансе. Именно поэтому резонанс параллельного колебательного контура называется резонансом токов.

Добротность параллельного колебательного контура

Кстати, этот контурный ток будет намного больше, чем ток, который проходит через контур. И знаете во сколько раз? Правильно, в Q раз.  Q — это и есть добротность! В параллельном колебательном контуре она показывает во сколько раз сила  тока в контуре  Iкон  больше сила тока в общей цепи Iрез

Или формулой:

добротность паралелльного колебательного контура

Если сюда еще прилепить сопротивление потерь, то формула примет вот такой вид:

формула добротности

где

Q — добротность

R — сопротивление потерь на катушке, Ом

С — емкость, Ф

L — индуктивность, Гн

Применение параллельного колебательного контура

Параллельный колебательный контур применяется в радиоприемном оборудовании, где надо выделить частоту какой-либо станции. Также с помощью колебательного контура можно построить различные резонансные фильтры.

Также смотрите видео:

Описанные в статье способы определения частоты и добротности контура основаны на анализе осциллограмм затухающих колебаний,
возникающих в LC-контуре после отключения внешнего источника, передавшего контуру энергию перед отключением.
Эти колебания (собственные или резонансные) с течением времени затухают и по скорости их затухания
определяется добротность контура, а по периоду колебаний – резонансная частота контура.


Рисунок 1 – Схема экспериментального макета

Генератор

Источником, передающим энергию контуру в данном случае служит генератор ударного возбуждения.
Генератор подключается к испытуемому параллельному LC-контуру и подает на него импульсы тока.
Длительность одиночного импульса генератора много больше периода собственных колебаний контура,
поэтому перед спадом импульса ток в индукторе успевает установиться и достичь максимума, а на контурном конденсаторе при этом напряжение равно падению напряжения на активном сопротивлении индуктора (далее считаем нулевым).
К моменту окончания импульса в индукторе запасается энергия, пропорциональная индуктивности и квадрату протекающего на данный момент тока (ограниченного прежде всего сопротивлением R1).
Далее импульс прерывается со скоростью dI/dt (≈500нс), что приводит к возникновению в индукторе ЭДС самоиндукции,
которая начинает заряжать конденсатор контура. После передачи всей энергии индуктора в кондерсатор, ток заряда прекращается и
конденсатор уже начинает “разряжаться” на индуктор и электрическая энергия снова перетекает в индуктор. По пути часть энергии уходит на
нагрев активного сопротивления и на излучение электромагнитных волн, поэтому с каждым новым колебанием
амплитуда тока и напряжения снижается.


Рисунок 2 – Схема генератора ударного возбуждения

Генератор на базе таймера NE555 (КР1006ВИ1) собран в виде макета. Резистором RP1 регулируется длительность импульса в пределах 0-7,5 мс.
Резистором RP2 регулируется период 8,3-18 мс, что соответвтвует 55-120 Гц. Ключом служит транзистор VT1, рассчитанный на 400В 10А.
Резистор R1 ограничивает выходной ток до 100 мА при напряжении питания 12В, чего хватает для поставленных задач.
Диод VD1 препятствует прохождению тока обратной полярности через внутренний диод сток-исток транзистора VT1 при колебаниях в испытуемом LC-контуре после закрытия VT1.
С учетом того, что к выходу генератора могут подключаться нагрузки с индуктивной составляющей, а прерывание импульса происходит достаточно быстро,
то транзистор и диод VD1 должны быть рассчитаны на обратное напряжение в несколько сотен вольт.
Снабберы в данном случае не применяются намеренно, поскольку они внесут искажения в эксперименты.

 

Рисунок 3 – Осциллограммы напряжения на затворе VT1 на настроенном генераторе

Испытуемый контур

В качестве испытуемого используется параллельный LC-контур, у которого необходимо определить резонансную частоту
и добротность. Контур состоит из индуктора без сердечника, намотанного на бумажной трубке.
Контурный конденсатор, емкостью C=100нФ установлен параллельно подключенному индуктору на одной макетной плате с генератором.

 

Рисунок 4 – Фото экспериментального макета

Перед измерениями рассчитаем индуктивность индуктора и частоту контура (необязательно), чтобы потом сравнить с измеренной величиной частоты:

Гн

Гц

Измерение частоты

На макете, собранном по схеме (рис. 1) снимем осциллограмму собственных колебаний контура.
Если осциллограф имеет более одного луча, то одиним лучом можно выводить управляющий сигнал с затвора генератора
и по нему же синхронизироваться, настроив триггер по спаду этого сигнала.
А вторым лучом выводить напряжение на конденсаторе контура, которое покажет собственные колебания контура.
Так как в осциллографе общие (минусовые) концы щупов не развязаны, то подключить одновременно один к минусу,
а второй к стоку или к +Vdc нельзя, будет практически КЗ. Поэтому минусовые выводы обоих щупов подключаем к +Vdc (рис. 1).
Луч управляющего сигнала окажется смещен вниз на величину Vdc. Триггер также нужно перенастроить с учетом смещения сигнала.
Синхронизироваться можно не используя сигнал с генератора, настроив триггер по пику первого колебания. Но, тогда при изменении
параметров контура, амплитуда колебаний будет меняться и синхронизация будет каждый раз сбиваться.

 

Рисунок 5 – Осциллограмма собственных колебаний контура

По периоду между пиками колебаний (вторая осциллограмма рис. 5) определяем собственную частоту колебаний контура.
Хотя, на второй осциллограмме пики отмечены вручную, а период и частота уже измерены осциллографом, ниже показаны вычисления вручную.
Период T=3,6клетки*1,0мкс=3,6мкс.
В формулу расчета частоты подставляем уточненное по осциллографу значение периода 3,56мкс, тогда частота F и погрешность расчета δF составит:

Гц

Измерение добротности

    По осциллограмме затухающих колебаний добротность можно определить несколькими способами:

  1. По числу колебаний, за которое амплитуда снижается в e раз (при низкой добротности точность невысока);
  2. По логарифмическому декременту затухания λ, рассчитанному по амплитудам двух колебаний, идущих одно за другим;
  3. По коэффициенту затухания β, подобранному при аппроксимации огибающей затухания.

Способ 1

На осциллограмме рис.6 максимальная амплитуда колебания составляет 400мВ, тогда нижний предел, до которого нужно считать колебания, будет на уровне 400/e≈400/2,72≈147мВ.
Этот предел отмечаем на графике осцилляций (красной линией) и считаем число периодов с амплитудами колебаний выше этого предела,
по графику это Ne=3. Тогда добротность будет приблизительно равна:

Рисунок 6 – Осциллограмма затухающих колебаний

Способ 2

На осциллограмме затухающих колебаний определяем амплитуды двух первых колебаний (необязательно первых), идущих одно за другим.
На рисунке 5 они отмечены (Va=400mV, Vb=284mV).
Рассчитаем логарифмический декремент затухания λ и добротность Q:

Способ 3

Для вычисления добротности нужно найти коэффициент затухания β.
Зная, что огибающая затухающих колебаний описывается экспоненциальным законом (рис. 7), можно подобрать
искомый коэффициент затухания, с которым уравнение станет наиболее точно описывать экспериментальную кривую.
Это можно делать в Excel, MathCad и другими средствами. Если делать это в Excel, то нужно подбирать коэффициенты,
пока расхождения между искомым и расчетным графиками не станут минимальными.

Рисунок 7 – Экспоненциальный закон затухания

Ниже приводится пример аппроксимации в MathCad.
Для этого зафиксируем точки огибающей затухания в таблицу, в MathCad’е формируем два вектора X и Y и передаём функции expfit().
Результатом является вектор Z с найденными коэффициентами экспоненциальной функции f(t)=Aeβt+C.
Время в таблице фиксируется относительно начала колебаний, а напряжение относительно нуля. Хотя значения напряжения могут быть занесены со смещением, тогда будет найдена функция со смещением C, что не повлияет на искомый β.

Рисунок 8 – Точки кривой затухания

Время, с Напряжение, В
0,000001 0,4
0,000004 0,284
0,000008 0,22
0,000011 0,16
0,000026 0,05
0,000036 0,02

Рисунок 9 – Аппроксимация по экспериментальным данным

В результате аппороксимации получены коэффициенты функции, которая рисует график максимально близкий к заданным точкам (рис. 7).
Получен коэффициент затухания |β|=92290, с учетом которого определим добротность контура:

Выводы:
Точность определения добротности всеми способами ограничивается точностью измерения исходных параметров. Так для 1-го способа подходят
случаи с относительно высокой добротностью, когда учитывается большое число целых периодов Ne.
Способ 2 удобен для случаев с относительно низкой добротностью, когда различима разность амплитуд между двумя полуволнами,
чтобы измерить их с достаточной точностью.



Комментарии

Добавление комментария
Имя:
E-mail:
Сообщение:

Параллельный и последовательный колебательный контур


Что такое колебательный LC-контур?  Принцип работы, формулы расчёта основных
параметров.   Онлайн калькулятор резонансной 
частоты  колебательного  контура,
добротности и коэффициента затухания в зависимости от величин индуктивности,
ёмкости и сопротивления потерь

Колебательный контур – это пассивная электрическая цепь, состоящая из конденсатора и катушки индуктивности, в которой
возможно возбудить свободные электромагнитные колебания.
Если конденсатор и катушка соединены параллельно, то контур называется параллельным, при последовательном соединении элементов колебательный
контур называется последовательным.

Для начала рассмотрим параллельный колебательный контур, который в радиотехнике используется как основа частотно-избирательных цепей и встречается намного
чаще последовательного.

Параллельный колебательный контур, изображение на схеме (идеальный контур), реальный контур

Рис.1 Параллельный колебательный контур, его изображение на схеме (идеальный
колебательный контур), реальный колебательный контур

При анализе цепи колебательного контура обычно используется реалистичная модель (Рис.1 справа), состоящая из идеальных пассивных элементов и активного
сопротивления потерь катушки – Rпот.
Сопротивление потерь катушки Rпот складывается из потерь в проводах, диэлектрике, сердечнике и экране (если он есть).

Поскольку потери в контурном конденсаторе на порядки меньше, чем потери в катушке, то его сопротивление потерь при расчётах обычно не учитывается.

Так, за счёт чего в колебательном контуре возникают свободные колебания? Для того чтобы ответить на этот вопрос, давайте соберём простейшую схему (Рис.2)

Колебательный процесс в параллельном колебательном контуре

Колебательный процесс в параллельном колебательном контуре

Рис.2 Колебательный процесс в параллельном колебательном контуре

Для возбуждения в контуре колебаний конденсатор следует предварительно зарядить, сообщая его обкладкам заряд
qmax от внешнего источника Bat напряжением
Umax.
После того как конденсатор будет заряжен, переводим переключатель в правое по схеме положение, отключая контур от источника, и наблюдаем возникшие в цепи затухающие
электромагнитные колебания, при которых происходит превращение энергии электрического поля в энергию магнитного поля и наоборот (Рис.2 справа).

Из-за потерь, возникающих в элементах контура, электромагнитные колебания в цепи всегда будут затухающими. Скорость их затухания зависит от величины этих потерь,
суммарное значение которых характеризуются параметром, называемым добротностью колебательного контура Q. Численно добротность равна числу
колебаний от момента возбуждения свободных колебаний до момента, когда их амплитуда уменьшится в
еπ = 23,14 раз. Для желающих поподробнее познакомиться с тем, что такое добротность и как её
измерить, имеет смысл посетить страницу – ссылка на страницу.

А мы тем временем рассмотрим последовательные фазы колебаний, происходящие в контуре после зарядки конденсатора.

Фазы колебаний, происходящих в колебательном контуре

Рис.3 Фазы колебаний, происходящих в колебательном контуре за полный период

Электромагнитные колебания, а также описывающие их уравнения во многом подобны механическим колебаниям.

Опишем стадии колебательного процесса за полный период колебаний:

1. t = 0 – начало разрядки конденсатора (энергия электрического поля, запасённая в конденсаторе, равна
W = q2/2C ).
Через катушку начинает течь ток. При этом катушка оказывает сопротивление моментальному росту тока, поскольку в ней присутствует ЭДС
самоиндукции, препятствующая этому росту.

2. t = 0,25Т – конденсатор полностью разряжен.
Ток через катушку максимален, так как вся энергия из конденсатора перешла в энергию магнитного электрического поля катушки
W = L*I2/2.
Начиная с этого момента, эта энергия начинает опять перетекать в конденсатор, перезаряжая его потенциалом обратной полярности.

3. t = 0,5Т – конденсатор опять полностью заряжен, но потенциалом противоположной полярности. Ток через
катушку индуктивности равен нулю. Начинается фаза, описанная в п.1, но с током, текущем в обратном направлении.

4. t = 0,75Т – конденсатор вновь полностью разряжен, ток через катушку максимален и направлен
в противоположную (по отношению к п.2) сторону.

5. t = Т – всё начинается сначала, т. е. аналогично 1п.

А теперь – формулы, которые могут понадобиться при расчёте колебательного LC контура:

Период колебаний: T0 = 2π√LC ;

Частота: F0 = 1/T0 ;

Круговая (циклическая) частота: ω0 = 2π/T0 =
2πF0
;

Максимальный заряд конденсатора: qmax = UmaxC ;

Максимальная сила тока через катушку: Imax = ωqmax .

Добротность колебательного контура:
Колебательный процесс в параллельном колебательном контуре ;

Мгновенные значения напряжения, силы тока и энергии можно рассчитать по формулам:

Заряд: q(t) = qmax cos(ωt) ;

Напряжение: U(t) = Umax cos(ωt) ;

Сила тока: I(t) = Imax sin(ωt) ;

Энергия: W(t) = I(t)2L/2 + q(t)2/(2C) .

Все приведённые формулы хороши для идеального колебательного контура, в котором нет потерь, а соответственно, и нет затухания колебаний. Для реальных же контуров
(с потерями) вводятся дополнительные параметры, характеризующие скорость затухания колебаний. Одними из таких параметров являются коэффициент затухания
β и логарифмический декремент колебаний λ.

Коэффициент затухания β – это величина, характеризующая скорость затухания колебаний и обратно
пропорциональная времени τ, по истечении которого амплитуда колебаний убывает в
е раз.
Для колебательного контура данная величина вычисляется по формуле:
β = Rпотерь /(2L).

Логарифмическим декрементом затухания λ называется величина, равная натуральному логарифму отношения
двух последовательных амплитуд, отстоящих друг от друга на период колебаний. Численно логарифмический декремент колебаний равен коэффициенту затухания,
умноженному на период колебаний:
λ = βT.

С учётом коэффициента затухания наши формулы приобретают следующий вид:

Заряд: q(t) = qmax cos(ωt) e(-βt) ;

Напряжение: U(t) = Umax cos(ωt) e(-βt) ;

Сила тока: I(t) = Imax sin(ωt) e(-βt) ;

Энергия: W(t) = I(t)2L/2 + q(t)2/(2C) ;

Период:
Колебательный процесс в параллельном колебательном контуре ;

Круговая (циклическая) частота:
Колебательный процесс в параллельном колебательном контуре ;

Добротность: Q = Lω/R .

При относительно высокой добротности цепи, то есть когда колебания затухают не слишком быстро и выполняется условие
β2 << ω02, круговая частота контура равна
ω ≈ ω0 ,
а формулы по расчёту резонансной частоты и добротности принимают привычный вид, приведённый выше на синем фоне.

Для проверки знаний, полученных в рамках данной статьи, приведём онлайн калькулятор для расчёта основных параметров колебательного контура.

РАСЧЁТ РЕЗОНАНСНОЙ ЧАСТОТЫ, ДОБРОТНОСТИ И КОЭФФИЦИЕНТА ЗАТУХАНИЯ КОНТУРА


   Ёмкость конденсатора контура   
     

   Индуктивность катушки контура L   
     

   Сопротивление потерь Rпот   
     

  

   Резонансная частота   
     

   Добротность = кол-во колебаний  
     

  Коэффициент затухания β (сек-1)  
     

Для последовательного колебательного контура резонансная частота (период и круговая частота) не зависит от сопротивления потерь, однако остальные приведённые
выше параметры описываются теми же формулами, что и для параллельного. При этом в составе частотно-избирательных цепей эти контуры ведут себя по-разному и
имеют значительно отличающиеся друг от друга передаточные характеристики. Какие это характеристики? – рассмотрим в рамках отдельной статьи.

А на следующей странице рассмотрим, как на добротность LC-контура влияют сопротивления нагрузки и источника сигнала.

cdcaed2a

Содержание

  • 1 Эффект резонанса
  • 2 Определение колебательного контура
  • 3 Подключение к цепи индуктивной катушки
    • 3.1 Параллельный КК
    • 3.2 Последовательный КК
  • 4 Резонансная частота
  • 5 Применение колебательных контуров
  • 6 Условие отсутствия резонанса
  • 7 Амплитуда резонанса
    • 7.1 Амплитуда тока
    • 7.2 Амплитуда напряжения
  • 8 Видео

Галилео Галилей, исследуя маятники и музыкальные струны, описал явление, которое впоследствии стали называть резонансом. Оно проявляется не только в акустике, но и в механике, электронике, оптике и астрофизике. Резонансный эффект имеет как положительные, так и отрицательные воздействия на колебательные системы.

Резонанс

Эффект резонанса

Ярким примером механического класса резонаторов является пружинный маятник. Профессор из технологического Массачусетского института (в Америке), В. Левин, акцентирует внимание своих студентов на то, что резонанс (resonance) – это эффект, сопряжённый с увеличением амплитуды. Для демонстрации явления используется установка. Она состоит из следующих компонентов:

  • электродвигатель;
  • механизм, превращающий вращение в возвратно-поступательное движение;
  • ЛАТР – лабораторный автотрaнcформатор;
  • медная пружина из проволоки с набором грузиков;
  • направляющая для пружины.

Направление колебания пружины – вертикальное. Вращение вала мотора заставляет пружину совершать колебания. С помощью автотрaнcформатора присутствует возможность регулировать напряжение. Регулировка позволяет варьировать частоту вращения вала и колебаний маятника. При изменении частоты вращения вала амплитуда возвратно-поступательного движения остаётся неизменной.

Перед опытом замеряется удлинение медной пружины под действием грузиков (для оценки резонансной частоты пружины). Изменение скорости вращения вала заставляет амплитуду колебания конца пружины с грузом изменяться. Амплитуда увеличивается и на 1-м герце частоты становится максимальной (~30 см).

Важно! При дальнейшем увеличении скорости вращения вала амплитуда конца пружины начинает уменьшаться. Это означает, что resonance пройден. Если уменьшать напряжение, а с ним и частоту вращения двигателя, снова можно наблюдать эффект resonance колебания пружины.

Пружинный маятник

Добротность пружины Q определяется как отношение амплитуды колебания пружины Aпр к амплитуде колебания вынуждающей силы Aвс. В этом случае Q = Aпр/Aвс = 30/5 = 6, где Aвс = 5.

Определение колебательного контура

Частота вращения: формула

Резонансные явления, отмеченные в электротехнике, ярко выражены в схемах колебательных контуров (КК). Подобные конструкции представляют собой элементарные системы, способные осуществлять свободные колебания электромагнитной природы. Сам КК в цепи состоит из следующих элементов:

  • конденсатора;
  • катушки индуктивности;
  • источника тока.

Внимание! Выводы элементов схемы могут соединяться друг с другом параллельно или последовательно. Все зависит от того, какого результата нужно добиться от резонанса в КК.

Подключение к цепи индуктивной катушки

Резонанс в электрической цепи

Включение в ёмкостную цепь катушки индуктивности сразу превращает её в КК. В зависимости от схемы подключения, различают два вида КК 1 класса: параллельный и последовательный.

Параллельный КК

В данной схеме конденсатор С соединён с катушкой L параллельно. Если заряженный конденсатор присоединить к катушке, то энергия, запасённая в нём, передастся ей. Через индуктивную катушку L потечёт ток, вызывая электродвижущую силу (ЭДС).

ЭДС самоиндукции L будет направлена на снижение тока в параллельной цепи. Ток, созданный этой ЭДС, и ток разряда ёмкости сначала одинаковы, а их суммарное значение равно нулю. Конденсатор передаст свою энергию Ec в катушку и полностью разрядится. Индуктивность, получив максимальную магнитную энергию EL, начнёт заряжать ёмкость напряжением уже другой полярности. Когда вся энергия из индуктивности перейдёт в ёмкость, конденсатор будет полностью заряжен. В цепи появляются колебания, такой контур называется колебательным.

Параллельный КК

К сведению. Если бы в такой цепи отсутствовали потери, то такие колебания никогда не стали затухать. На пpaктике, продолжительность процесса зависит от потери энергии. Чем больше потери, тем меньше длительность колебаний.

Параллельное соединение C и L вызывает резонанс токов. Это значит, что токи, проходящие через C и L, выше по значению, чем ток через сам контур, в конкретное число раз. Это число носит название добротности Q. Оба тока (емкостной и индуктивный) остаются внутри цепи, потому что они находятся в противофазе, и происходит их обоюдная компенсация.

Стоит отметить! На fрез величина R КК устремляется к бесконечности.

Последовательный КК

В этой схеме соединены последовательно друг с другом катушка и конденсатор.

Последовательный КК

В такой схеме происходит resonance напряжений, R контура устремляется к нулю в случае образования резонансной частоты (fрез). Это позволяет использовать подобную систему резонанса в качестве фильтра.

Резонансная частота

При подаче на два КК (параллельного и последовательного) переменного напряжения с изменяющейся частотой их реактивные сопротивления C и L будут меняться. Изменения происходят следующим образом:

  • с увеличением f – ёмкостное сопротивление уменьшается, а индуктивное увеличивается;
  • с уменьшением f – ёмкостное сопротивление увеличивается, а индуктивное уменьшается.

Резонанс — что это такое

Частота, при которой реактивные сопротивления обоих элементов контура равны, называется резонансной.

Важно! При fрез сопротивление параллельного КК будет максимальным, а последовательного КК – минимальным.

Резонансная частота формула, которой имеет вид:

fрез = 1/2π*√L*C,

где:

  • L – индуктивность, Гн;
  • C – ёмкость, Ф.

Подставляя известные значения ёмкости и индуктивности в формулу резонансной частоты колебательного контура любой конфигурации, можно рассчитать этот параметр.

Для определения периода колебаний КК и частоты резонанса можно воспользоваться онлайн калькулятором на соответствующем портале в сети. Профессиональная программа имеет несложный интерфейс.

Пример интерфейса онлайн калькулятора LC-контура

Применение колебательных контуров

Подробный расчет колебательного контура позволяет точно подбирать величину необходимых элементов КК. Это позволяет использовать их в схемах электроники в виде:

  • частотных фильтров – в радиоприёмниках, генераторах сигналов, преобразователях и выпрямителях;
  • колебательных контуров – для выделения и настройки на определённую частоту станции вещания;
  • силовых resonance-фильтров – для формирования напряжения синусоидальной формы.

На самолётах гражданской авиации КК применяется в блоках регулировки частоты генераторов.

Условие отсутствия резонанса

Для того чтобы возник резонанс формула которого для тока равна ω0*C = 1/ ω0*L, необходимо выполнения этого равенства. Существуют условия для невозможности появления этого эффекта, а именно:

  • отсутствие у системы собственных колебаний;
  • невозможность совпадения частоты внешнего воздействия с собственной частотой системы.

Амплитуда резонанса

В КК при подаче переменного напряжения от внешнего источника наблюдаются два вида резонанса и резкое увеличение двух видов амплитуды: амплитуды тока и амплитуды напряжения.

Амплитуда тока

Амплитуда тока резко возрастает при резонансе напряжений в последовательном контуре (последовательный резонанс). Источник переменной ЭДС включён в цепь, где нагрузкой служат последовательно включённые элементы L и С.

В этом случае в цепь входят сопротивления: активное r и реактивное x, равное:

x = xL – xC.

Так как для внутренних колебаний xL и xC равны, то для тока, поступающего от генератора, при резонансе (когда частоты совпадают) эти значения тоже одинаковы. Поэтому x = 0. В итоге полное сопротивление цепи будет состоять только из небольшого активного сопротивления. Ток при этом получается максимальным.

Схема (а) и резонансные кривые (б) для резонанса напряжений

Амплитуда напряжения

Резонанс токов (параллельный резонанс) является условием резкого возрастания амплитуды напряжения. Источник ЭДС подключается вне контура и нагружен параллельно соединёнными элементами L и С. В этом случае на эффект резонанса влияет внутреннее сопротивление генератора. Амплитуда напряжения на контуре максимальна при малом отличии напряжения контура от напряжения генератора. Это возможно при малом Ri.

Внимание! Изменение частоты генератора меняет ток, а амплитуда напряжения на контуре не отстаёт по величине от напряжения на генераторе. Если, U = Е – I*Ri, где Е – ЭДС, I – ток, то при малом Ri U = Е.

Схема (а) и резонансные кривые (б) для резонанса токов

Формула для определения расчётной резонансной частоты для разных колебательных систем различается по входящим в неё параметрам. Несмотря на все различия, суть остаётся неизменной: эффект резонанса наступает тогда, когда частота внутренних колебаний системы и внешних воздействий становятся равны друг другу.

Видео

Примеры магнитной (диамагнитной) левитации, диамагнетизм

Примеры магнитной (диамагнитной) левитации, диамагнетизм
Определение магнитной (диамагнитной) левитации. Магнитная левитация: эксперименты в домашних условиях. Как сделать левитирующий магнит своими руками. Применение магнитов в подшипниках. Как используют магнитную левитацию в ветрогенераторах….

09 05 2023 14:15:16

Измерение единицы работы силы в физике

Измерение единицы работы силы в физике
Физические термины и терминология. Работа сил, приложенных к системе материальных точек. Работа силы – измерение в физике. Влияние на силу электрического тока физических величин: напряжений и сопротивлений….

18 04 2023 11:30:18

Чертежи станка по разделке (зачистке) провода от изоляции

Чертежи станка по разделке (зачистке) провода от изоляции
Почему выгодна разделка кабелей и проводов. Виды оборудования: от простых устройств к универсальным стpиппepам. Порядок изготовления самодельного стpиппepа. Чертежи станка для разделки кабеля своими руками….

17 04 2023 13:41:56

Добавить комментарий