Как найти максимальную мощность в физике

Формула полезной мощности в физике

Формула полезной мощности

Определение и формула полезной мощности

Определение

Мощность – это физическая величина, которую использует как основную характеристику любого устройства, которое применяют
для совершения работы. Полезная мощность может быть использована для выполнения поставленной задачи.

Отношение работы ($Delta A$) к промежутку времени за которое она выполнена ($Delta t$) называют средней мощностью ($leftlangle Prightrangle $) за это время:

[leftlangle Prightrangle =frac{Delta A}{Delta t}left(1right).]

Мгновенной мощностью или чаще просто мощностью называют предел отношения (1) при $Delta tto 0$:

[P={mathop{lim }_{Delta tto 0} frac{Delta A}{Delta t} }=A'(t)left(2right).]

Приняв во внимание, что:

[Delta A=overline{F}cdot Delta overline{r }left(3right),]

где $Delta overline{r }$ – перемещение тела под действием силы $overline{F}$, в выражении (2) имеем:

[P={mathop{lim }_{Delta tto 0} left(frac{overline{F}cdot Delta overline{r }}{Delta t}right) }=overline{F}{mathop{lim }_{Delta tto 0} left(frac{Delta overline{r }}{Delta t}right)= }overline{F}cdot overline{v}left(4right),]

где $ overline{v}-$ мгновенная скорость.

Коэффициент полезного действия

При выполнении необходимой (полезной) работы, например, механической, приходится выполнять работу большую по величине, так как в реальности существуют силы сопротивления и часть энергии подвержена диссипации (рассеиванию). Эффективность совершения работы определяется при помощи коэффициента полезного действия ($eta $), при этом:

[eta =frac{P_p}{P}left(5right),]

где $P_p$ – полезная мощность; $P$ – затраченная мощность. Из выражения (5) следует, что полезная мощность может быть найдена как:

[P_p=eta P left(6right).]

Формула полезной мощности источника тока

Пусть электрическая цепь состоит из источника тока, имеющего сопротивление $r$ и нагрузки (сопротивление $R$). Мощность источника найдем как:

[P=?I left(7right),]

где $?$ – ЭДС источника тока; $I$ – сила тока. При этом $P$ – полная мощность цепи.

Обозначим $U$ – напряжение на внешнем участке цепи, тогда формулу (7) представим в виде:

[P=?I=UI+I^2r=P_p+P_0left(8right),]

где $P_p=UI=I^2R=frac{U^2}{R}(9)$ – полезная мощность; $P_0=I^2r$ – мощность потерь. При этом КПД источника определяют как:

[eta =frac{P_p}{P_p+P_0}left(9right).]

Максимальную полезную мощность (мощность на нагрузке) электрический ток дает, если внешнее сопротивление цепи будет равно внутреннему сопротивлению источника тока. При этом условии полезная мощность равна 50% общей мощности.

При коротком замыкании (когда $Rto 0;;Uto 0$) или в режиме холостого хода $(Rto infty ;;Ito 0$) полезная мощность равна нулю.

Примеры задач с решением

Пример 1

Задание. Коэффициент полезного действия электрического двигателя равен $eta $ =42%. Какой будет его полезная мощность, если при напряжении $U=$110 В через двигатель идет ток силой $I=$10 А?

Решение. За основу решения задачи примем формулу:

[P_p=eta P left(1.1right).]

Полную мощность найдем, используя выражение:

[P=IUleft(1.2right).]

Подставляя правую часть выражения (1.2) в (1.1) находим, что:

[P_p=eta IU.]

Вычислим искомую мощность:

[P_p=eta IU=0,42cdot 110cdot 10=462 left(Втright).]

Ответ. $P_p=462$ Вт

Пример 2

Задание. Какова максимальная полезная мощность источника тока, если ток короткого замыкания его
равен $I_k$? При соединении с источником тока сопротивления $R$, по цепи (рис.1) идет ток силой $I$.

Формула полезной мощности, пример 1

Решение. По закону Ома для цепи с источником тока мы имеем:

[I=frac{varepsilon}{R+r}left(2.1right),]

где $varepsilon$ – ЭДС источника тока; $r$ – его внутреннее сопротивление.

При коротком замыкании считаем, что сопротивление внешней нагрузки равно нулю ($R=0$), тогда сила тока короткого замыкания равна:

[I_k=frac{varepsilon}{r} left(2.2right).]

Максимальная полезная мощность в цепи рис.1 электрический ток даст, при условии:

[R=r left(2.3right).]

Тогда сила тока в цепи равна:

[I’=frac{varepsilon}{r+r}=frac{varepsilon}{2r}left(2.4right).]

Максимальную полезную мощность найдем, используя формулу:

[P_{p max}={I’}^2r={left(frac{varepsilon}{2r}right)}^2cdot r=frac{varepsilon^2}{4r}=frac{varepsilon^2}{4R}left(2.5right).]

Мы получили систему из трех уравнений с тремя неизвестными:

[left{ begin{array}{c}
I’=frac{varepsilon}{2r}, \
I_k=frac{varepsilon}{r}, \
P_{p max}={left(I’right)}^2r end{array}
left(2.6right).right.]

Используя первое и второе уравнения системы (2.6) найдем $I’$:

[frac{I’}{I_k}=frac{varepsilon}{2r}cdot frac{r}{varepsilon}=frac{1}{2}to I’=frac{1}{2}I_kleft(2.7right).]

Используем уравнения (2.1) и (2.2) выразим внутреннее сопротивление источника тока:

[varepsilon=Ileft(R+rright);; I_kr=varepsilon to Ileft(R+rright)=I_krto rleft(I_k+Iright)=IRto r=frac{IR}{I_k-I}left(2.8right).]

Подставим результаты из (2.7) и (2.8) в третью формулу системы (2.6), искомая мощность будет равна:

[P_{p max}={left(frac{1}{2}I_kright)}^2frac{IR}{I_k-I}.]

Ответ. $P_{p max}={left(frac{1}{2}I_kright)}^2frac{IR}{I_k-I}$

Читать дальше: формула равнодействующей всех сил.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Что важно знать о полезной мощности двигателя в физике

Содержание:

  • Определение и формула полезной мощности
  • Взаимосвязь полезной мощности и КПД
  • Достижение максимального КПД
  • Примеры задач с решением

Определение и формула полезной мощности

Мощность является физической величиной, применяемой в качестве ключевого параметра какого-либо устройства, которое предназначено для совершения работы.

Полезной мощностью называют такую мощность, которую можно использовать, чтобы выполнить некую поставленную задачу.

Средняя мощность (leftlangle Prightrangle) представляет собой отношение работы (Delta A) к временному интервалу (Delta t), в течение которого данная работа была выполнена:

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

(leftlangle Prightrangle =frac{Delta A}{Delta t})

Мгновенную мощность чаще всего называют просто мощностью, данная величина обозначает предел отношения (leftlangle Prightrangle =frac{Delta A}{Delta t}left(1right) при Delta tto 0:)

(P={mathop{lim }_{Delta tto 0} frac{Delta A}{Delta t} }=A'(t))

Заметим, что:

(Delta A=overline{F}cdot Delta overline{r })

Здесь (Delta overline{r }) обозначает перемещение, совершаемое неким телом под воздействием  силы (overline{F}). В таком случае, можно преобразовать выражение:

(P={mathop{lim }_{Delta tto 0} left(frac{overline{F}cdot Delta overline{r }}{Delta t}right) }=overline{F}{mathop{lim }_{Delta tto 0} left(frac{Delta overline{r }}{Delta t}right)= }overline{F}cdot overline{v})

Здесь ( overline{v}) является мгновенной скоростью.

Рассмотрим такое понятие, как полезная мощность электрического источника. Представим, что некая активная цепь включает в себя источник тока с сопротивлением r. Пусть нагрузка при этом равна сопротивлению R. В результате формула мощности такого источника примет вид:

P=EI

Здесь E представляет собой ЭДС источника тока, I обозначает силу тока. При этом P является полной мощностью цепи.

Введем обозначение U в качестве напряжения на внешнем участке цепи, и перепишем формулу мощности таким образом:

(P=EI=UI+I^2r=P_p+P_0)

Здесь (P_p=UI=I^2R=frac{U^2}{R}) определяется, как полезная мощность, (P_0=I^2r) является мощностью потерь.

Исходя из представленных формул, можно вывести определение для коэффициента полезного действия:

(eta =frac{P_p}{P_p+P_0}left(9right).)

Максимальная величина полезной мощности (или мощности на нагрузке) электрического тока достижима при равенстве внешнего сопротивления цепи внутреннему сопротивлению источника тока. В этом случае, полезная мощность составит 50 % от общей мощности. При возникновении короткого замыкания (то есть (Rto 0;;Uto 0)), либо при холостом ходу (то есть (Rto infty ;;Ito 0)), полезная мощность принимает нулевое значение.

Взаимосвязь полезной мощности и КПД

В процессе выполнения нужной (полезной) работы, в том числе механической, требуется выполнять большую работу. Это связано с существованием силы сопротивления в реальных условиях и частичной подверженности энергии диссипации, то есть рассеиванию.

Коэффициент полезного действия (eta) обозначает эффективность совершения работы:

(eta =frac{P_p}{P}left(5right))

Здесь (P_p) определяется, как полезная мощность, P является мощностью, которая была затрачена.

С помощью записанной формулы можно преобразовать уравнение для расчета мощности:

(P_p=eta P)

Справедливыми являются и такие соотношения:

(eta =frac{A_1}{W}cdot 100%)

(eta =frac{N_1}{N_2}cdot 100%)

Здесь (N_1) и (N_2) будут называться полезной и затраченной мощностью соответственно.

Достижение максимального КПД

Разные двигатели характеризуются определенным КПД. Запишем некоторые примеры:

  • электрический двигатель до 98 %;
  • двигатель внутреннего сгорания до 40 %;
  • паровая турбина до 30 %.

Существует зависимость КПД от мощности. Так коэффициент полезного действия можно рассчитать, как отношение полезной мощности к полной мощности, выдаваемой источником. В любых условиях (eta leq 1. ) С целью увеличения коэффициента полезного действия таких агрегатов, как подъемные краны, насосные установки нагнетательного типа, моторы самолетов, асинхронные двигатели, требуется снизить силу трения механизмов или сопротивления воздуха. Задача решается с помощью: использования разнообразных смазочных материалов, подшипников повышенного класса (что позволяет заменить скольжение качением); изменения геометрических параметров крыла.

Максимальные показатели энергии или мощности на выходе источника питания достигаются за счет согласования сопротивления нагрузки Rн и внутреннего сопротивления R0. При равенстве данных характеристик КПД достигает 50 %, что является приемлемым значением в случае слаботочных цепей и радиотехники.

Подобное решение не реализуемо для электрических установок, в том числе нагревателей. С целью снизить бесполезное потребление больших мощностей подбирают такой эксплуатационный режим генераторов, выпрямителей, трансформаторов, электрических двигателей, при котором коэффициент полезного действия стремится к 95 % и более.

Добиться высокого КПД для теплового двигателя можно с помощью следующих решений:

  • введение в цикл расширения дополнительного рабочего тела, обладающего другими физическими свойствами;
  • максимально полно перед расширением использовать два вида энергии рабочего тела;
  • выполнять генерацию дополнительного рабочего тела непосредственно при расширении газообразного.

Известно, что КПД в случае ДВС можно увеличить с помощью нагнетателя турбонаддува, многократного или распределенного впрыска, увеличения влажности воздуха, перевод топлива при впрыске в парообразное состояние. Однако подобные меры не позволяют существенно повысить значение коэффициента полезного действия.

Примеры задач с решением

Задача 1

Имеется электродвигатель, КПД которого равен 42 %. Если напряжение составляет 110 В, то двигатель пропускает через себя ток силой 10 А. Требуется определить полезную мощность силового агрегата.

Решение

Запишем формулу для нахождения мощности:

(P_p=eta P left(1.1right))

Рассчитаем, чему равна полная мощность:

(P=IUleft(1.2right))

Путем подстановки получим:

(P_p=eta IU)

Определим искомую мощность:

(P_p=eta IU=0,42cdot 110cdot 10=462 left(Втright))

Ответ: (P_p=462 Вт)

Задача 2

Существует некий источник электрического тока с показателем тока короткого замыкания, равным . При включении источника тока в цепь с сопротивлением R, как показано на рисунке, сила тока составляет I. Требуется рассчитать самое большое значение, которое может принимать полезная мощность рассматриваемого источника.

Задача 2

Источник: www.webmath.ru

Решение

Вспомним закон Ома, знакомый с уроков по физике:

(I=frac{varepsilon}{R+r}left(2.1right))

Здесь (varepsilon) является ЭДС источника тока, r представляет собой внутреннее сопротивление источника.

Если возникает короткое замыкание, то сопротивление внешней нагрузки принимает нулевое значение. В таком случае, силу тока короткого замыкания можно определить по формуле:

(I_k=frac{varepsilon}{r} left(2.2right).)

Максимальное значение полезной мощности в цепи достигается, если соблюдается условие:

(R=r left(2.3right))

Определим силу тока:

(I’=frac{varepsilon}{r+r}=frac{varepsilon}{2r}left(2.4right))

Вычислим максимальное значение полезной мощности:

(P_{p max}={I’}^2r={left(frac{varepsilon}{2r}right)}^2cdot r=frac{varepsilon^2}{4r}=frac{varepsilon^2}{4R}left(2.5right).)

Получилась система с тремя уравнениями и тремя неизвестными:

(left{ begin{array}{c}
I’=frac{varepsilon}{2r}, \
I_k=frac{varepsilon}{r}, \
P_{p max}={left(I’right)}^2r end{array}.right.)

Вычислим I’:

(frac{I’}{I_k}=frac{varepsilon}{2r}cdot frac{r}{varepsilon}=frac{1}{2}to I’=frac{1}{2}I_k)

Далее составим выражение для внутреннего сопротивления источника тока:

(varepsilon=Ileft(R+rright);; I_kr=varepsilon to Ileft(R+rright)=I_krto rleft(I_k+Iright)=IRto r=frac{IR}{I_k-I})

Методом подстановки найдем искомую мощность:

(P_{p max}={left(frac{1}{2}I_kright)}^2frac{IR}{I_k-I})

Ответ: (P_{p max}={left(frac{1}{2}I_kright)}^2frac{IR}{I_k-I}.)

Задача 3

Электропоезд благодаря моторам движется со скоростью 54 км/ч. При этом его полезная мощность составляет 720 кВт. Нужно найти силу тяги моторов.

Решение

Запишем формулу для определения мощности двигателей электропоезда:

(N=Fcdot v)

Тогда сила тяги моторов составит:

(F=frac{N}{v})

Выполним перевод единиц измерения в СИ:

(v=54 км/ч =15 м/с)

В результате:

(N=720 kBt=720000 Bt)

Выполним вычисления:

(F=frac{720000}{15}=48000 H=48 kH)

Ответ: сила тяги моторов равна 48 КН.

Задача 4

Масса машины составляет 2200 кг. Трогаясь с места, автомобиль осуществляет подъем в гору с углом наклона 0,018. Преодолев путь в 100 м, машина приобретает скорость 32,4 км/ч. Коэффициент трения равен 0,04. Требуется вычислить среднюю мощность, которую развивает двигатель автомобиля в процессе движения.

Решение

Формула средней мощности двигателя во время движения машины:

(leftlangle Nrightrangle =Fcdot leftlangle vrightrangle)

Автомобиль движется со средней скоростью:

(leftlangle vrightrangle =frac{v}{2})

Отметим на рисунке все силы, под действием которых находится автомобиль:

Отметим на рисунке все силы, под действием которых находится автомобиль

Перечислим все силы:

  • сила тяжести (moverline{g};)
  • сила реакции опоры (overline{N};)
  • сила трения ({overline{F}}_{fr};)
  • сила тяги двигателей (overline{F}.)

Уравнение второго закона Ньютона:

(moverline{g}+overline{N}+{overline{F}}_{fr}+overline{F}=moverline{a})

Если спроецировать записанное соотношение на координатные оси, получим:

({ begin{cases} F-F_{fr}-mgsinalpha =ma \ N-mgcosalpha =0 end{cases}})

Заметим, что:

(N=mgcosalpha)

(F_{fr}=mu N=mu mgcosalpha)

Преобразуем уравнение:

(F-mu mgcosalpha -mgsinalpha =ma)

Таким образом:

(F=mleft(mu gcosalpha +gsinalpha +aright))

Рассчитаем ускорение машины:

(a=frac{v^2}{2s})

Заметим, что:

(cosalpha =sqrt{1-{sin}^2alpha })

Выполним подстановку:

(F=mleft(mu gsqrt{1-{sin}^2alpha }+gsinalpha +frac{v^2}{2s}right))

Двигатель в процессе движения развивает среднюю мощность:

(leftlangle Nrightrangle =mleft(mu gsqrt{1-{sin}^2alpha }+gsinalpha +frac{v^2}{2s}right)cdot frac{v}{2})

Известно, что ускорение свободного падения равно (9,8 м/с ^{2}). Переведем единицы измерения в СИ:

(v=32,4 км/ч =9 м/с.)

Выполним вычисления:

(leftlangle Nrightrangle =2200cdot left(0,04cdot 9,8cdot sqrt{1-{0,018}^2}+9,8cdot 0,018+frac{9^2}{2cdot 100}right)cdot frac{9}{2}=9512,9 Bt=9,5 kBt)

Ответ: мотор машины имеет среднюю мощность 9,5 кВт.

рисунок к задаче Резистор, сопротивление которого постоянно, и реостат подсоединены к источнику постоянного напряжения, как показано на рисунке. При силе тока в цепи I1 = 2 A на реостате выделяется мощность P1 = 48 Вт, а при силе тока I2 = 5 A на нем выделяется мощность P2 = 30 Вт.

  1. Определите напряжение источника и сопротивление резистора.
  2. Найдите силу тока в цепи, когда сопротивление реостата равно нулю.
  3. Найдите максимальную мощность, которая может выделиться на реостате. Чему равно сопротивление Rм реостата в этом случае?

Решение

1. Пусть в первом случае сопротивление реостата равно R1, во втором — равно R2. По закону Ома имеем систему:

где:

R2 =  P2 = 6 Ом.
I22 5

Решая систему (1), получим:

U = P1I22 − P2I12 = 36 B,
I1I2(I2 − I1)
r = P1I2 − P2I1 = 6 Ом.
I1I2(I2 − I1)

2. Если сопротивление реостата равно нулю, то:

максимальная мощность3. В общем случае мощность, которая выделяется на переменном напряжении R, можно представить в виде:

или

где IU — мощность, развиваемая источником. На рисунке представлена зависимость PR(I). Эта парабола, вершина которой соответствует Pmax при силе тока:

Следовательно:

Pmax = U2 = U2Rм     =>     Rм = r.
4r (Rм + r)2

Итак,

Далее: максимальная сила тока в предохранителе   [тема: задачи на минимум и максимум]


Теги:

  • задачи с решениями
  • электродинамика
  • законы постоянного тока
Полезная мощность. Полная мощность. КПД электрической цепи

Для школьников.

Полезная мощность. Полная мощность. КПД электрической цепи

На рисунке изображена замкнутая электрическая цепь, состоящая из источника постоянного тока и переменной нагрузки во внешней части цепи.

Источником постоянного тока может быть электрическая машина, о которой говорится в статье “Искровой разряд“; батарея гальванических элементов, аккумулятор и др.

Роль источника тока заключается в создании (генерировании) электрической энергии: в разделении положительных и отрицательных зарядов; в создании и поддерживании разности потенциалов между конечными точками цепи, в которую включена нагрузка (электрическая лампочка, электроплитка. электродвигатель и т. д.).

При прохождении тока через нагрузку электрическая энергия превращается в другие виды энергии :тепловую (в электроплитке); в тепло и свет (в электрической лампе); в механическую энергию (в электродвигателе).

Превращение энергии из одного вида в другой всегда связано с работой.

При прохождении тока по проводнику совершается работа, её совершают электрические силы (или электрическое поле). Кратко эту работу называют работой тока.

Рассматривая участок цепи, по которому проходит ток, получим следующее выражение для работы тока:

Полезная мощность. Полная мощность. КПД электрической цепи

Работа тока равна произведению напряжения между концами участка на протекающий ток и время его протекания.

В случае, если участок цепи однородный (не содержит источника тока), то

Полезная мощность. Полная мощность. КПД электрической цепи

тогда получим ещё две формулы для работы тока:

Полезная мощность. Полная мощность. КПД электрической цепи
Полезная мощность. Полная мощность. КПД электрической цепи

Если ток проходит через неподвижный проводник, то единственным результатом работы тока является его нагревание. Тогда количество выделившейся теплоты

Полезная мощность. Полная мощность. КПД электрической цепи

Это запись закона Джоуля – Ленца.

Если кроме нагревания ток совершает ещё механическую работу, например, приводя в действие электродвигатель (мотор), то работа

Полезная мощность. Полная мощность. КПД электрической цепи

лишь частично переходит в тепло.

В этом случае работа тока больше количества выделившейся теплоты, но закон Джоуля – Ленца выполняется.

Работа, совершаемая током в единицу времени, называется мощностью тока:

Полезная мощность. Полная мощность. КПД электрической цепи

Единицей мощности тока является 1 Вт:

1 Вт – мощность выделяемая током 1 А в проводнике, между концами которого поддерживается напряжение 1 В.

Основная формула мощности для участка цепи:

Полезная мощность. Полная мощность. КПД электрической цепи

Мощность постоянного тока на любом участке цепи выражается произведением силы тока на напряжение между концами участка цепи.

Так как для однородного участка цепи

Полезная мощность. Полная мощность. КПД электрической цепи

то мощность можно найти ещё по формулам:

Полезная мощность. Полная мощность. КПД электрической цепи

Обычно говорят не о работе, а о потребляемой из сети некоторым прибором (электроплитка, лампочки и др.) или двигателем (мотором) мощности электрического тока. Говоря о мощности (например, электродвигателя), отмечают, что работа двигателя совершается за счёт тока.

На приборах часто отмечается потребляемая ими мощностьмощность, необходимая для нормальной работы этого прибора.

Согласно закону сохранения энергии, для замкнутой электрической цепи можно записать:

Полезная мощность. Полная мощность. КПД электрической цепи

Здесь

Полезная мощность. Полная мощность. КПД электрической цепи

есть полная или затраченная работа, совершаемая сторонними силами, существующими внутри источника, по переносу заряда по цепи.

В гальваническом элементе такими силами являются силы химической реакции.

Полезная мощность. Полная мощность. КПД электрической цепи

– это полезная работа, совершаемая электрическим полем при прохождении тока через нагрузку;

Полезная мощность. Полная мощность. КПД электрической цепи

это работа, совершаемая внутри источника, по преодолению его внутреннего сопротивления.

Так как работа, совершённая за единицу времени, есть мощность, то из уравнения (1) получим выражение для мощности:

Полезная мощность. Полная мощность. КПД электрической цепи

Здесь

Полезная мощность. Полная мощность. КПД электрической цепи

есть полная или затраченная мощность, это мощность развиваемая источником тока.

Полезная мощность. Полная мощность. КПД электрической цепи

это мощность выделяемая внутри источника тока

Полезная мощность. Полная мощность. КПД электрической цепи

это полезная мощность, создаваемая во внешней части цепи (на нагрузке).

Здесь U – напряжение на зажимах источника при замкнутой цепи (при разомкнутой цепи оно равно ЭДС источника).

Полезная мощность. Полная мощность. КПД электрической цепи

Так как для однородного участка цепи напряжение равно произведению тока на сопротивление, то полезную мощность можно найти ещё по следующей формуле:

Полезная мощность. Полная мощность. КПД электрической цепи

Ток в замкнутой цепи

Полезная мощность. Полная мощность. КПД электрической цепи

тогда формулу для полезной мощности можно записать так:

Полезная мощность. Полная мощность. КПД электрической цепи

Проанализируем зависимость полезной мощности от сопротивления нагрузки.

Полезная мощность. Полная мощность. КПД электрической цепи

При коротком замыкании вся развиваемая источником мощность выделяется на его внутреннем сопротивлении в виде теплоты.

Таким образом, полезная мощность, развиваемая во внешней цепи, достигает максимального значения тогда, когда сопротивление нагрузки равно внутреннему сопротивлению источника.

На следующем рисунке показан график зависимости полезной мощности от сопротивления нагрузки.

Полезная мощность. Полная мощность. КПД электрической цепи

Получена формула для нахождения максимальной полезной мощности

Полезная мощность. Полная мощность. КПД электрической цепи

При этом ток в цепи в два раза меньше тока короткого замыкания:

Полезная мощность. Полная мощность. КПД электрической цепи

Но чему при этом будет равно КПД источника?

Коэффициент полезного действия (КПД) источника показывает, какая часть затраченной (полной) работы источника пошла на пользу или КПД есть отношение полезной работы к затраченной:

Полезная мощность. Полная мощность. КПД электрической цепи
Полезная мощность. Полная мощность. КПД электрической цепи
Полезная мощность. Полная мощность. КПД электрической цепи

Получается, что если добиваться максимальной мощности во внешней цепи, то получим КПД работы всего 50%, то есть половина затраченной мощности источника расходуется бесполезно – переходит в тепло, нагревая источник тока.

Выгоднее брать сопротивление нагрузки больше внутреннего сопротивления источника. Тогда ток в цепи уменьшится, а КПД источника увеличится.

Подумайте над решением следующих задач.

1. ЭДС аккумулятора 2 В, его внутреннее сопротивление 0,4 Ом, сопротивление внешней цепи 1 Ом. Найти разность потенциалов на зажимах аккумулятора и КПД его работы. Ответ: 1,43 В; 71 %.

2. Какую максимальную полезную мощность может выделить аккумулятор с ЭДС 10 В и внутренним сопротивлением 1 Ом? Каково при этом сопротивление внешней цепи? Ответ: 25 Вт; 1 Ом.

3. КПД источника тока, замкнутого на внешнее сопротивление R, равно 60%. Каков будет КПД источника, если внешнее сопротивление увеличить в 6 раз? Ответ: 90%.

Полезная мощность. Полная мощность. КПД электрической цепи

Ответ: 7,7 Вт; 12 Вт; 40%; 25%.

Полезная мощность. Полная мощность. КПД электрической цепи

Ответ: 2,7 10 4 кг.

К.В. Рулёва, к. ф.-м. н., доцент. Подписывайтесь на канал. Ставьте лайки. Пишите комментарии. Спасибо.

Предыдущая запись: Работа и мощность электрического тока. Лампы накаливания.

Следующая запись: Ещё раз о зарядке и разрядке конденсатора.

Ссылки на занятия до электростатики даны в Занятии 1.

Ссылки на занятия (статьи), начиная с электростатики, даны в конце Занятия 45.

Ссылки на занятия (статьи), начиная с теплового действия тока, даны в конце Занятия 58.

Содержание:

Мощность:

Одинаковую работу можно совершить за разные промежутки времени. Например, можно поднять груз за минуту, а можно поднимать этот же груз в течение часа.

Физическую величину, равную отношению совершенной работы Мощность в физике - виды, формулы и определение с примерами

Единицей мощности в SI является джоуль в секунду (Дж/с), или ватт (Вт), названный так в честь английского изобретателя Дж. Уатта. Один ватт — это такая мощность, при которой работу в 1 Дж совершают за 1 с. Итак, Мощность в физике - виды, формулы и определение с примерами

Человек может развивать мощность в сотни ватт. Чтобы оценить, насколько могущество человеческого разума, создавшего двигатели, больше «могущества» человеческих мускулов, приведем такие сравнения:

  • мощность легкового автомобиля примерно в тысячу раз больше средней мощности человека;
  • мощность авиалайнера примерно в тысячу раз больше мощности автомобиля;
  • мощность космического корабля примерно в тысячу раз больше мощности самолета.

Мощность

Механическая работа всегда связана с движением тел. А движение происходит во времени. Поэтому и выполнение работы, как и превращение механической энергии, всегда происходит на протяжении определенного времени.

Работа выполняемая на протяжении определенного времени:

Простейшие наблюдения показывают, что время выполнения работы может быть разным. Так, школьник может подняться по лестнице на пятый этаж за 1-2 мин, а пожилой человек — не меньше чем за 5 мин. Грузовой автомобиль КрАЗ может перевезти определенный груз на расстояние 50 км за 1 ч. Но если этот груз частями начнет перевозить легковой автомобиль с прицепом, то потратит на это не меньше 12 ч.

Для описания процесса выполнения работы, учитывая его скорость, используют физическую величину, которая называется мощностью.

Что такое мощность

Мощность – это физическая величина, которая показывает скорость выполнения работы и равна отношению работы ко времени, за которое эта работа выполняется.

Так как при выполнении работы происходит превращение энергии, то можно считать, что мощность характеризует скорость превращения энергии.

Как рассчитать мощность

Для расчета мощности нужно значение работы разделить на время, за которое эта работа была выполнена:

Мощность в физике - виды, формулы и определение с примерами

Если мощность обозначить латинской буквой Мощность в физике - виды, формулы и определение с примерами, то формула для расчета мощности будет такой

Мощность в физике - виды, формулы и определение с примерами

Единицы мощности

Для измерения мощности используется единица ватт (Вт). При мощности 1 Вт работа 1 Дж выполняется за 1 с:

Мощность в физике - виды, формулы и определение с примерами

Единица мощности названа в честь английского механика Джеймса Уатта, который внес значительный вклад в теорию и практику построения тепловых двигателей.

Мощность в физике - виды, формулы и определение с примерамиДжеймс Уатт (1736-1819) – английский физик и изобретатель. 

Главная заслуга Уатта в том, что он отделил водяной конденсатор от нагревателя и сконструировал насос для охлаждения конденсатора. Фактически он увеличил разность температур между нагревателем и конденсатором (холодильником), благодаря чему увеличил экономичность паровой машины. Позже теоретически это обоснует Сади Карно.

Он один из первых высказал предположение, что вода – это сложное вещество, состоящее из водорода и кислорода.

Как и для других физических величин, для единицы мощности существуют производные единицы:

Мощность в физике - виды, формулы и определение с примерами

Пример №1

Определить мощность подъемного крана, если работу 9 МДж он выполняет за 5 мин.

Дано:

Мощность в физике - виды, формулы и определение с примерами

Решение

По определению Мощность в физике - виды, формулы и определение с примерами поэтому

Мощность в физике - виды, формулы и определение с примерами

Ответ. Мощность крана 30 кВт.

Пример №2

Человек массой 60 кг поднимается на пятый этаж дома за 1 мин. Высота пяти этажей дома равна 16 м. Какую мощность развивает человек?

Дано:

Мощность в физике - виды, формулы и определение с примерами

Решение

По определению Мощность в физике - виды, формулы и определение с примерами

Работа определяется Мощность в физике - виды, формулы и определение с примерамиМощность в физике - виды, формулы и определение с примерами

Тогда Мощность в физике - виды, формулы и определение с примерами

Мощность в физике - виды, формулы и определение с примерами

Ответ. Человек развивает мощность 160 Вт.

Зная мощность и время, можно рассчитать работу:

Мощность в физике - виды, формулы и определение с примерами

Скорость движения зависит от мощности

Мощность связана со скоростью соотношением:

Мощность в физике - виды, формулы и определение с примерами

где Мощность в физике - виды, формулы и определение с примерами — сила, которая выполняет работу; Мощность в физике - виды, формулы и определение с примерами — скорость движения.

Если известны мощность двигателя и значения сил сопротивления, то можно рассчитать возможную скорость автомобиля или другой машины, которая выполняет работу:

Мощность в физике - виды, формулы и определение с примерами

Таким образом, из двух автомобилей при равных силах сопротивления большую скорость будет иметь тот, у которого мощность двигателя больше.

Каждый конструктор знает, что для увеличения скорости движения автомобиля, самолета или морского корабля нужно или увеличивать мощность двигателя, или уменьшать силы сопротивления. Поскольку увеличение мощности связано с увеличением потребления топлива, то средствам современного транспорта, как правило, придают специфическую обтекаемую форму, при которой сопротивление воздуха будет наименьшим, а все подвижные части изготавливают так, чтобы сила трения была минимальной.

Итоги:

  • Существуют два вида механической энергии: кинетическая и потенциальная.
  • Если тело перемещается или деформируется под действием силы, то выполняется механическая работа.
  • Простыми механизмами являются рычаги и блоки.
  • Ни один простой механизм не дает выигрыша в работе.
  • Качество механизма определяется коэффициентом полезного действия, который определяет часть полезной работы в общей выполненной работе.
  • Тело, при перемещении которого может быть выполнена работа, обладает энергией.
  • Взаимодействующие тела обладают потенциальной энергией.
  • Движущееся тело обладает кинетической энергией, которая зависит от скорости и массы тела.
  • Потенциальная и кинетическая энергии могут превращаться друг в друга. Такие превращения происходят в равной мере, если отсутствуют силы трения.
  • Сумму кинетической и потенциальной энергий называют полной механической энергией системы.
  • В замкнутой системе при отсутствии сил трения сумма кинетической и потенциальной энергий остается постоянной.
  • Закон сохранения и превращения энергии подтверждает невозможность существования вечного двигателя (perpetuum mobile).
  • Мощность характеризует скорость превращения одного вида энергии в другой.

Механическая работа и мощность

С помощью импульса невозможно описать все случаи взаимодействия. Поэтому в физике применяют еще и понятие механической работы.
В механике работа зависит от значения и направления силы, а также перемещения точки ее приложения. Из курса физики 8 класса вам известно, что

A = Fs,

где F – значение силы, действующей на тело; s – модуль перемещения тела.

Мощность в физике - виды, формулы и определение с примерами

Если сила F постоянна, а перемещение Мощность в физике - виды, формулы и определение с примерами прямолинейное (рис. 2.65), то работа Мощность в физике - виды, формулы и определение с примерами

где s = Мощность в физике - виды, формулы и определение с примерами – угол между направлением действия силы и перемещения.

Робота является величиной скалярной. Произведение Мощность в физике - виды, формулы и определение с примерами – проекция действующей силы на направление перемещения.

Легко заметить, что если Мощность в физике - виды, формулы и определение с примерами < 90°, то работа силы положительная, при Мощность в физике - виды, формулы и определение с примерами = 90° (сила перпендикулярна к перемещению) работа равна нулю, а при Мощность в физике - виды, формулы и определение с примерами – отрицательная.

Пример №3

Девочка тянет санки равномерно, прикладывая к веревке силу 50 Н. Веревка натягивается под углом 30° к горизонту (рис. 2.66). Какую работу выполнит девочка, переместив санки на 20 м?
Дано:

F = 50 Н,

s = 20 м, Мощность в физике - виды, формулы и определение с примерами = 30°.
А-?
 

Решение

По определению Мощность в физике - виды, формулы и определение с примерами

Соответственно Мощность в физике - виды, формулы и определение с примерами
Ответ: А = 870 Дж (работа силы положительная, поскольку cos 30° > 0).
Мощность в физике - виды, формулы и определение с примерами

  • Заказать решение задач по физике

Пример №4

Решим предыдущую задачу для случая, когда девочка удерживает санки, съехавшие с горки (рис. 2.67). В данном случае Мощность в физике - виды, формулы и определение с примерами = 150°.
Дано:

F = 50 Н, s = 20 м,

Мощность в физике - виды, формулы и определение с примерами = 150°.

А – ?
 

Решение

А = Fscosa;

А = 50 Н • 20 м • (-0,87) Мощность в физике - виды, формулы и определение с примерами -870 Дж.

Ответ: А = -870 Дж (работа силы отрицательная, поскольку cos 150° < 0).

Таким образом, в зависимости от направления действия силы по отношению к перемещению работа может иметь положительные и отрицательные значения.

Например, работа, которую выполняет двигатель автомобиля, будет положительной, поскольку направление силы тяги автомобиля совпадает с направлением его движения. Положительной будет и работа человека, поднимающего какой-либо груз с земли на определенную высоту. Силы трения, действующие на автомобиль, выполняют отрицательную работу, поскольку направлены в противоположном направлении к перемещению.

Возможны случаи, когда работа равна нулю, хотя перемещение тела происходит. Например, если Мощность в физике - виды, формулы и определение с примерами = 90°, то работа силы равна нулю, поскольку cos90° = 0. Сила тяжести, действующая на спутник Земли, который движется по круговой орбите, работы не выполняет.

Мощность — это физическая величина, характеризующая скорость совершения работы. Поскольку во время выполнения работы происходит превращение энергии, можно сделать вывод, что мощность показывает скорость превращения одного вида энергии в другой.

В механике мощность обозначают буквой N и рассчитывают по формуле

N= — =—,

t t

где Мощность в физике - виды, формулы и определение с примерами – изменение энергии; А – работа; t – время.

Если известны мощность и время, за которое совершена работа, то можно рассчитать и саму работу:
A = Nt.

Основная единица измерения мощности – ватт (Вт):
Мощность в физике - виды, формулы и определение с примерами

Всё о мощности

Одна и та же работа в разных случаях может быть выполнена за различные промежутки времени, т. е. она может совершаться неодинаково быстро. Например, при подъеме груза на определенную высоту подъемным краном (рис. 148) будет затрачено гораздо меньше времени, чем при использовании лебедки.

Для характеристики процесса выполнения работы важно знать не только ее численное значение, но и время, за которое она выполняется. Очевидно, что чем меньшее время требуется для выполнения данной работы, тем эффективнее работает машина, механизм и др.

Величина, характеризующая быстроту совершения работы, называется мощностью. Ее обычно обозначают буквой Р.

Если в течение промежутка времени Δt была совершена работа А, то средняя мощность равна отношению работы к этому промежутку времени:
Мощность в физике - виды, формулы и определение с примерами

Из определения видно, что мощность численно равна работе, совершаемой в единицу времени. Таким образом, единицей мощности является джоуль в секунду  Мощность в физике - виды, формулы и определение с примерами. Эта единица получила название ватт (Вт): 1 Вт = 1 Мощность в физике - виды, формулы и определение с примерами. Это название дано в честь английского ученого Джеймса Уатта — изобретателя универсального парового двигателя. Уаттом была впервые введена единица мощности, которая и до сих пор используется для характеристики мощности различных двигателей — 1 лошадиная сила (1 л. с. = 736 Вт).

Понятно, что во времена Уатта на заре технической революции мощность построенной паровой машины было естественно сравнить с мощностью лошади — единственным в то время «двигателем».

Может ли человек развивать мощность, равную 1 л. с.? Ответ на этот вопрос положительный. Рассмотрим разбег спортсмена на короткие дистанции. Хорошие спортсмены дистанцию в 100 м пробегают за 10 с, т. е. их средняя скорость 10 Мощность в физике - виды, формулы и определение с примерами. Разбег длится 3 с, а работа A, которую совершают мышцы спортсмена, не может быть меньше, чем кинетическая энергия Мощность в физике - виды, формулы и определение с примерами, приобретенная им за время разбега. Следовательно, средняя мощность не меньше, чем

Мощность в физике - виды, формулы и определение с примерами

Если предположить, что масса спортсмена т = 80 кг, то
Мощность в физике - виды, формулы и определение с примерами

Разумеется, развивать такую мощность длительное время не сможет даже очень тренированный человек.Если известна мощность, то работа выражается равенством:
A = P∆t.    (2)

Это позволяет ввести еще одну единицу работы (а значит, и энергии) следующим путем. За единицу работы можно принять работу, которая совершается некоторой силой в течение 1 с при мощности в 1 Вт. Она называется ватт-секундой. Понятно, что 1 Вт.c = 1 Дж. Часто используются более крупные внесистемные единицы работы и энергии: киловатт-час (кВт.ч) и мегаватт-час (МВт . ч):

1 кВт .ч= 1000кВт.3600 с = 3,6∙ 106 Дж;

1 МВт.ч= 1000кВт.3600 с = 3,6∙ 109 Дж.

При движении любого тела на него в общем случае действует несколько сил. Каждая сила совершает работу, и, следовательно, для каждой силы мы можем вычислить мощность.

Наиболее общее выражение для работы постоянной силы, направленной под углом Мощность в физике - виды, формулы и определение с примерами к направлению движения. А = F∆rcosМощность в физике - виды, формулы и определение с примерами. Поэтому средняя мощность этой силы:
Мощность в физике - виды, формулы и определение с примерами   (3)

так как Мощность в физике - виды, формулы и определение с примерами — модуль средней скорости тела.

Ясно, что если модуль силы в некоторой момент времени равен F и модуль мгновенной скорости υ, а угол между ними Мощность в физике - виды, формулы и определение с примерами, то мгновенное значение мощности этой силы:
P = FυcosМощность в физике - виды, формулы и определение с примерами.    (4)

Как следует из формулы (4), при заданной мощности мотора сила тяги тем меньше, чем больше скорость движения автомобиля. Вот почему водители при подъеме в гору, когда нужна наибольшая сила тяги, переключают двигатель на пониженную передачу. Для движения по горизонтальному участку с постоянной скоростью достаточно, чтобы сила тяги преодолевала силу сопротивления движению. Формула (4) позволяет объяснить, что быстроходные поезда, автомобили, корабли, самолеты нуждаются в двигателях большой мощности и конструкции, обеспечивающей как можно меньшую силу сопротивления.

Любой двигатель или механическое устройство предназначены для выполнения определенной механической работы. Эта работа называется полезной работой. Для двигателя автомобиля — это работа по его перемещению, для токарного станка — работа по вытачиванию детали и т. п.
В любой машине, в любом двигателе полезная работа всегда меньше той энергии, которая затрачивается для приведения их в действие, потому что всегда существуют силы трения, работа которых приводит к нагреванию каких-либо частей устройства. А нагревание нельзя считать полезным результатом действия машины.

Поэтому каждое устройство характеризуется особой величиной, которая показывает, насколько эффективно используется подводимая к нему энергия. Эта величина называется коэффициентом полезного действия (КПД) и обычно обозначается греческой буквой η (эта).

Коэффициентом полезного действия называется отношение полезной )аботы, совершенной машиной за некоторый промежуток времени, ко всей утраченной работе (подведенной энергии) за тот же промежуток времени:
Мощность в физике - виды, формулы и определение с примерами   (5)

Коэффициент полезного действия обычно выражается в процентах, поскольку и полезную, и затраченную работы можно представить как произведение мощности на промежуток времени, в течение которого работала машина, то коэффициент полезного действия можно определить следующим образом:
Мощность в физике - виды, формулы и определение с примерами
где Pn и Р3 — полезная мощность и затраченная мощность соответственно.

Главные выводы:

  1. Мощность численно равна работе, которую совершает сила в единицу времени.
  2. Мощность силы равна произведению силы на скорость тела и косинус угла между направлением силы и скорости в данный момент времени.
  3. Коэффициентом полезного действия называется отношение полезной работы, совершенной машиной за некоторый промежуток времени, ко всей затраченной работе (подведенной энергии) за тот же промежуток времени.
  • Взаимодействие тел
  • Механическая энергия и работа
  • Золотое правило механики
  • Потенциальная энергия
  • Криволинейное движение
  • Ускорение точки при ее движении по окружности
  • Инерциальные системы отсчета
  • Энергия в физике

Добавить комментарий