В этом уроке будем учиться строить эпюры для балок, работающих на поперечный изгиб — эпюры поперечных сил и изгибающих моментов. Важно уметь правильно построить и проанализировать эти эпюры, потому что большинство современных инженерных сооружений состоят из элементов, которые работают на изгиб.
В статье рассмотрим 2 примера: один попроще — консольная балка, загруженная сосредоточенными силами и моментом, другой посложнее — двухопорная балка, загруженная распределённой нагрузкой.
Чтобы освоить материал этого урока, уже нужно знать, как определяются опорные реакции. Умеешь — отлично, но если же нет, то можешь изучить этот урок.
Подробно рассматривать в этом уроке нахождения реакций не будем, я буду приводить только их расчёт.
Поперечные силы и изгибающие моменты
При поперечном изгибе, в поперечных сечениях балки, возникает два внутренних силовых фактора (ВСФ) – поперечная сила (Q) и изгибающий момент (Mизг).
Наша задача, научиться определять их и строить эпюры. Чтобы потом, используя полученные эпюры, можно было проводить различные расчёты. Например, подбирать размеры поперечных сечений балки или проверять прочность балки, если эти размеры уже заданы и т. д.
Поперечные силы и изгибающие моменты определяются с помощью метода сечений. Когда балка мысленно рассекается на две части. Затем действие частей балки друг на друга заменяется внутренними силовыми факторами (ВСФ) – поперечными силами и изгибающими моментами. Потом путём рассмотрения равновесия одной из частей находятся ВСФ.
Если пока не очень понятно — это нормально, когда начнём это всё делать на практике, ты обязательно всё поймёшь!
Обозначения поперечных сил и изгибающих моментов
Теперь поговорим по поводу обозначений для поперечных сил и изгибающих моментов. Как правило, задачи в сопромате, и механике в целом, решаются относительно каких-то координатных осей. А поперечные силы и изгибающие моменты, имеют индексы в зависимости от выбранной системы координат.
Например, если выбрать следующие обозначения для координатных осей:
То, поперечная сила, будет обозначаться, как Qy (параллельна оси y), а изгибающий момент, как Mx (поворачивает относительно оси x). Это наиболее частый вариант. Однако, можно встретить обозначения – Qy, Mz или Qz, Mx. Самые ленивые, предпочитают подписывать данные величины, как просто Q и M. Как видишь, здесь всё зависит от предпочтений твоего преподавателя. Чтобы изучая этот урок, ты не привыкал (- а) к каким-то индексам, т. к. твой преподаватель тебя всё равно будет учить по-своему, я решил использовать в статье для поперечной силы, просто букву – Q, а для изгибающего момента – Mизг. Такое обозначение изгибающего момента, тоже используется часто, а сам индекс «изг» нужен, чтобы не путать внутренний – изгибающий момент, с внешними моментами, которые почти всегда подписываются просто буквой – M.
Расчётная схема балки
Также нужно понимать, что когда мы рассчитываем поперечные силы и изгибающие моменты, мы считаем их непросто для какой-то линии:
А подразумеваем, что мы рассчитываем некоторый элемент конструкции — балку, которая обязательно имеет некоторую форму, либо для которой впоследствии будет рассчитана эта форма, в зависимости от целей расчёта.
К примеру, балка может иметь прямоугольное поперечное сечение:
Если в расчётах эпюр при растяжении (сжатии) или кручении, форма стержня указывалась явно, и в этом был определённый смысл, так как те стержня имели ступенчатую форму – разную жёсткость на участках. То здесь, как правило, балки имеют одинаковое сечение, по всей длине, поэтому для экономии времени, балку показывают в виде такой линии. Затем, после построения эпюр, традиционно, для балки либо подбирается поперечное сечение из условия прочности, либо проверяется прочность уже заданного сечения.
Правила знаков для поперечных сил и изгибающих моментов
В этом разделе поговорим о правилах знаков для поперечных сил и изгибающих моментов. Для примера возьмём самую простую расчётную схему — консольную балку, загруженную сосредоточенной силой (F).
Расчётная схема
Предположим, что нужно определить поперечную силу и изгибающий момент в каком-то поперечном сечении. Пока не будем строить никаких эпюр, а просто поставим перед собой простейшую задачу — рассчитать внутренние силовые факторы (Q и Мизг) для одного, конкретного сечения. Например, рассмотрим сечение в заделке (А).
Чтобы вычислить внутренние силовые факторы для этого сечения, нужно учесть всю внешнюю нагрузку, либо справа от сечения, либо слева. Если учитывать нагрузку справа — нужно учесть силу F, а если учитывать нагрузку слева — нужно учесть тогда реакции в заделке. Чтобы не вычислять реакции, пойдём по короткому пути и учтём всю нагрузку — справа.
Правило знаков для поперечных сил
Поперечная сила в сечении будет равна алгебраической сумме всех внешних сил (с учётом знака) по одну сторону от рассматриваемого сечения.
А знаки внешних сил определяются следующим образом — если внешняя сила, относительно рассматриваемого сечения, стремится повернуть:
• ПО часовой стрелке, то её нужно учесть с «плюсом»;
• ПРОТИВ часовой стрелки — учитываем её с «минусом».
Таким образом, для нашего случая, поперечная сила в сечении A будет равна:
Правило знаков для изгибающих моментов
Изгибающий момент в сечении будет равен алгебраической сумме всех моментов внешних сил (с учётом знака) по одну сторону от рассматриваемого сечения.
Перед тем как поговорить о правилах знаков для изгибающих моментов. Необходимо понять ещё одну особенность — когда на балку действует какая-то внешняя нагрузка, балка деформируется. При деформации балки принято различать «верхние волокна» и «нижние волокна», относительно линии (нейтральной оси), проходящей через центр тяжести поперечного сечения балки.
Одни волокна при поперечном изгибе, будут растягиваться, а другие сжиматься.
В нашем случае, «верхние волокна», как видишь, будут растянуты, а нижние – сжаты.
На основании этой особенности, часто используется следующее правило для изгибающих моментов — если момент силы стремится растянуть:
• верхние волокна, то учитываем его с «минусом»;
• нижние волокна, то нужно учесть его с «плюсом».
Не забываем, что мы ведём расчёт моментов, поэтому все силы нужно умножать на соответствующие плечи.
Таким образом, в нашем случае, изгибающий момент в сечении A будет равен:
Если на балку действуют сосредоточенные моменты, то правило знаков аналогичное:
Сосредоточенные моменты, конечно, уже не нужно ни на что умножать. Например, для верхней схемы, изгибающий момент в сечении A будет равен:
Как построить эпюры поперечных сил и изгибающих моментов ?
В пределах участков, и эпюра Q и эпюра M меняются по определённому закону. Границами участков являются точки приложения сил, моментов, а также начало и конец распределённой нагрузки (будем рассматривать во второй задаче). Поэтому, чтобы построить эпюры в пределах участка, сначала необходимо написать уравнения, которые будут описывать изменение поперечных сил и изгибающих моментов в пределах участка. А затем, подставляя в уравнения координаты начала и конца участка, получить значения на эпюрах в характерных точках, и построить эпюры на участке. Рассчитав таким образом все участки, можно построить эпюры для балки.
Чувствую, опять перегрузил тебя информацией…давай лучше, наконец, посмотрим, как это всё делается на практике 😉
Построение эпюр для консольной балки
В качестве первого примера, возьмём консольную балку, жёстко закреплённую с левого торца и загруженной следующим образом:
Будем рассчитывать балку справа налево.
Рассмотрим первый участок
Обозначим некоторое сечение 1-1 на расстоянии x1, от свободного торца балки, при этом x1 будет находиться в диапазоне: 0 ≤ x1 ≤ 4м.
Так как расчёт выполняется справа налево, то в уравнениях необходимо учесть всю нагрузку, которая находится правее рассматриваемого сечения. Как видишь, на этом участке действует всего лишь одна сила F. Её и будем учитывать.
Поперечные силы на первом участке
Сила F, относительно сечения 1-1, поворачивает ПО часовой стрелке, поэтому с учётом правила знаков, записываем её с «плюсом»:
Как видишь, поперечная сила будет постоянна на первом участке:
Уже можем отразить это на эпюре поперечных сил:
Изгибающие моменты на первом участке
Теперь запишем уравнение для изгибающих моментов. Сила F растягивает верхние волокна, поэтому с учётом правила знаков, нужно учесть момент силы F со знаком «минус»:
Здесь уже изгибающие моменты будут меняться по линейному закону. Как я уже писал, чтобы построить эпюру изгибающих моментов на участке, нужно вычислить значения на границах участка:
Откладываем полученные значения:
Расчёт второго участка
Переходим ко второму участку. Также будем рассматривать некоторое сечение 2-2, на расстоянии x2 от начала участка (0 ≤ x2 ≤ 6м). Здесь также нужно учесть ВСЮ нагрузку, которая находится справа от сечения 2-2.
Поперечные силы на втором участке
Теперь на участке будут действовать 2 силы (сосредоточенный момент — M, никак не влияет на эпюру поперечных сил), учитываем их с учётом правила знаков:
Теперь можем показать окончательную эпюру поперечных сил:
Изгибающие моменты на втором участке
Для изгибающих моментов, с учётом правила знаков, второе уравнение будет выглядеть следующим образом:
Вычисляем значения на границах второго участка:
Показываем окончательную эпюру изгибащих моментов:
Проверка построенных эпюр
Балку можно рассчитать и слева направо. При этом очевидно, должны получаться те же эпюры. Давай проверим себя и рассчитаем эту балку с другой стороны.
Определение реакций в жёсткой заделке
Первым делом, нам потребуется определить реакции в заделке:
Расчёт эпюр поперечных сил и изгибающих моментов
Рассчитываем все участки теперь слева направо:
Ожидаемо, получили те же эпюры поперечных сил и изгибающих моментов:
Причём не обязательно считать все участки балки только слева направо или справа налево. Можно считать балку с разных сторон:
Такой подход позволяет минимизировать расчёт: когда балка имеет много расчётных участков. Как раз так и будем считать вторую двухопорную балку.
Эпюра моментов со стороны растянутых или сжатых волокон
По построенной эпюре можно явно сказать, какие волокна балки будут растянуты, а какие сжаты. Это очень полезная информация, при проведении прочностных расчётов.
Причем сама эпюра была построенна со стороны растянутых волокон:
Однако, студентов некоторых специальностей учат строить эпюры, с другой стороны – со стороны сжатых волокон:
Как видишь, в первом случае, отрицательные значения на эпюре моментов откладываются выше нулевой линии, а во втором – ниже. При этом правила знаков для расчета эпюр и сами расчёты не меняются. Обычно эпюры «на растянутых волокнах» строят студенты — строители, а эпюры «на сжатых волокнах» строятся студентами машиностроительных специальностей. В конечном счёте с какой стороны ты будешь строить эпюры, будет зависеть от твоего преподавателя, как он учит. В своих уроках я буду строить эпюры моментов со стороны растянутых волокон.
Учёт распределённой нагрузки
Перед тем как пойдём дальше и рассмотрим вторую задачу – двухопорную балку, нужно научиться работать с распределённой нагрузкой.
Давай рассмотрим ещё одну простенькую схему — консольную балку, загруженную распределённой нагрузкой:
Определение поперечной силы и изгибающего момента в сечении A
Чтобы определить поперечную силу в сечении A, первым делом нужно «свернуть» распределённую нагрузку (q) до сосредоточенной силы. Для этого нужно интенсивность нагрузки (q) умножить на длину участка действия нагрузки.
После чего получим силу — ql, приложенную ровно посередине участка, на котором действует распределённая нагрузка:
Тогда поперечная сила QA будет равна:
Изгибающий момент Mизг, A будет равен:
Расчёт эпюр поперечных сил и изгибающих моментов
Для написания уравнений для расчёта эпюр рассмотрим сечение 1-1:
Уравнение для поперечных сил будет следующее:
Рассчитаем значения на эпюре поперечных сил:
Уравнение для изгибающих моментов будет следующее:
Тогда значения на эпюре будут такими:
На участке с распределённой нагрузкой, на эпюре изгибающих моментов всегда будет либо выпуклость, либо вогнутость. Так как эпюра на этом участке будет меняться по квадратичному закону.
Если эпюра моментов откладывается со стороны растянутых волокон, распределённая нагрузка будет направлена «внутрь вогнутости» (выпуклости) эпюры изгибающих моментов:
Если же эпюра моментов откладывается со стороны сжатых волокон, то наоборот:
Построение эпюр для двухопорной балки
А теперь давай рассмотрим более сложную схему – двухопорную балку, загруженную всеми типами нагрузок:
Определим реакции опор:
Рассчитываем первый участок:
Строим эпюры на первом участке:
Определение экстремума на эпюре моментов
Так как эпюра поперечных сил пересекает нулевую линию на первом участке, это значит, что в месте пересечения — на эпюре изгибающих моментов будет экстремум — точка, в которой эпюра моментов часто имеет наибольшее значение. Это значение, обязательно следует рассчитывать, потому — что экстремумы часто являются не только максимальными значениями в пределах участка, но и для всей балки в целом. Поэтому так важно, вычислять это значение, для дальнейшего проведения прочностных расчётов.
Чтобы найти экстремум, сначала нужно найти координату, где эпюра поперечных сил пересекает нулевую линию. Для этого уравнение для поперечных сил нужно приравнять к нулю:
Отсюда найти значение координаты:
Затем подставить это значение в уравнение для изгибающих моментов:
Теперь можем указать экстремум на эпюре:
Расчет эпюр на остальных участках
Расчёты остальных участков не вижу смысла комментировать, потому что здесь будет применяться всё то, о чём я уже рассказывал по ходу урока. Поэтому просто приведу решение:
Определение экстремума:
Оценка правильности построенных эпюр поперечных сил и изгибающих моментов
И напоследок хочу рассказать как можно проверить себя – оценить правильность построенных эпюр визуально. Собственно так, как проверяют эпюры — преподаватели, ведь они не проверяют у всех студентов каждое уравнение, каждый знак или цифру, т.к. это бы занимало слишком много времени.
Вот несколько признаков, правильно построенных эпюр:
- На эпюре поперечных сил, в местах приложения сосредоточенных сил, должны быть скачки на величину этих сил.
- На эпюре изгибающих моментов, в местах приложения сосредоточенных моментов, должны быть скачки на величину этих моментов.
- Эпюра поперечных сил, на участках без распределённой нагрузки, должна быть постоянна. А на участках, где действует распределённая нагрузка – меняться по линейному закону.
- Эпюра изгибающих моментов, на участках без распределённой нагрузки, должна меняться по линейному закону или быть постоянна (если действуют только сосредоточенные моменты). А на участках, где действует распределённая нагрузка – иметь вогнутость или выпуклость.
Определение поперечных сил и изгибающих моментов.
Как уже было сказано, при плоском
поперечном изгибе в поперечном сечении
балки возникают два внутренних силовых
фактора
и.
Перед определением
иопределяют реакции опор балки (рис. 6.3,
а), составляя уравнения равновесия
статики.
Для определения
иприменим метод сечений. В интересующем
нас месте сделаем мысленный разрез
балки, например, на расстоянииот левой опоры. Отбросим одну из частей
балки, например правую, и рассмотрим
равновесие левой части (рис. 6.3, б).
Взаимодействие частей балки заменим
внутренними усилиямии.
Установим следующие правила знаков для
и:
-
Поперечная сила
в сечении положительна, если ее векторы
стремятся вращать рассматриваемое
сечение по часовой стрелке; -
Изгибающий момент
в сечении положителен, если он вызывает
сжатие верхних волокон.
Рис. 6.3
Для определения данных усилий используем
два уравнения равновесия:
1.
;;.
2.
;
;
Таким образом,
а) поперечная сила
в поперечном сечении балки численно
равна алгебраической сумме проекций
на поперечную ось сечениявсех внешних сил, действующих по одну
сторону от сечения;
б) изгибающий момент в поперечном сечении
балки численно равен алгебраической
сумме моментов (вычисленных относительно
центра тяжести сечения) внешних сил,
действующих по одну сторону от данного
сечения.
При практическом вычислении руководствуются
обычно следующим:
-
Если внешняя нагрузка стремится
повернуть балку относительно
рассматриваемого сечения по часовой
стрелке, (рис. 6.4, б) то в выражении для
она дает положительное слагаемое. -
Если внешняя нагрузка создает относительно
рассматриваемого сечения момент,
вызывающий сжатие верхних волокон
балки (рис. 6.4, а), то в выражении для
в этом сечении она дает положительное
слагаемое.
Рис. 6.4
Построение эпюр ив балках.
Рассмотрим двухопорную балку
(рис. 6.5, а). На балку действует в точкесосредоточенный момент,
в точке– сосредоточенная силаи на участке– равномерно распределенная нагрузка
интенсивностью.
Определим опорные реакции
и(рис. 6.5, б).
Равнодействующая распределенной
нагрузки равна,
а линия действия ее проходит через центр
участка.
Составим уравнения моментов относительно
точеки.
Определим поперечную силу и изгибающий
момент в произвольном сечений,
расположенном на участке
на расстоянииот точки А(рис. 6.5, в).
Расстояниеможет изменяться в пределах ().
Значение поперечной силы не зависит
Изгибающий момент изменяется по
Для построения эпюры вычисляем ординаты
При
При |
Рис. 6.5 |
Определим поперечную силу и изгибающий
момент в произвольном сечений,
расположенном на участке
на расстоянииот точки(рис. 6.5, г).Расстояниеможет изменяться в пределах ().
Значение поперечной силы не зависит от
координаты сечения
,
следовательно, во всех сечениях участкапоперечные силы одинаковы и эпюраимеет вид прямоугольника. Изгибающий
момент
Изгибающий момент изменяется по линейному
закону. Определим ординаты эпюры для
границ участка.
Определим поперечную силу и изгибающий
момент в произвольном сечений,
расположенном на участке
на расстоянииот точки(рис. 6.5, д).Расстояниеможет изменяться в пределах ().
Поперечная сила изменяется по линейному
закону. Определим для границ участка.
Изгибающий момент
.
Эпюра изгибающих моментов на этом
участке будет параболической.
Чтобы определить экстремальное значение
изгибающего момента, приравниваем к
нулю производную от изгибающего момента
по абсциссе сечения
:
Отсюда
Для сечения с координатой
значение изгибающего момента будет
составлять
В результате получаем эпюры поперечных
сил (рис. 6.5, е) и изгибающих
моментов(рис. 6.5, ж).
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
При расчете стальных балок необходимо руководствоваться СП 16.13330 «Стальные конструкции».
В данном обзоре я рассмотрю расчет балок 1-го класса напряженно-деформированного состояния (напряжения по всей площади напряжения не превышают расчетного сопротивления стали). Расчёт подкрановых, бистальных, защемленных и многопролетных балок будет рассмотрен отдельно.
Элементы конструкции должны иметь запас прочности по 1-му и 2-му предельному состоянию.
По 1-му предельному состоянию проверяется прочность элементов. Нагрузки для расчета по 1-му предельному состоянию выше, чем по 2-му предельному состоянию т.к. используются коэффициенты запаса для нагрузок.
По 2-му предельному состоянию проверяются деформации конструкции.
Расчеты по 1-му предельному состоянию:
- Расчет на прочность при действии изгибающего момента
- Расчет на прочность при действии поперечной силы
- Расчет на прочность стенки балки при действии сосредоточенной силы
- Расчет на прочность в опорном сечении
- Расчет на общую устойчивость
- Расчет на устойчивость стенок и поясных листов балки
Расчеты по 2-му предельному состоянию:
- Расчет прогиба балки
1. Расчет на прочность при действии изгибающего момента
В первую очередь необходимо подобрать балку по изгибающему моменту.
Прочность стальной балки на изгиб проверяется по следующей формуле (п.8.2.1 СП 16.13330.2011 или 5.12 СНиП II-23-81*):
где M – максимальный момент, возникающий в балке (находится по эпюре моментов);
Wn,min – момент сопротивления сечения (находится по таблице или вычисляется для данного профиля), у сечения обычно 2-а момента сопротивления сечения, в расчетах используется Wx если нагрузка перпендикулярна оси х-х профиля или Wy если нагрузка перпендикулярна оси y-y;
Ry – расчетное сопротивление стали при изгибе (задается в соответствии с выбором стали);
γc – коэффициент условий работы (данный коэффициент можно найти в таблице 1 СП 16.13330.2011 Стальные конструкции либо таблице 6* СНиП II-23-81) для балок сплошного сечения коэффициент равен 0,9, при расчете по сечению, ослабленному отверстиями 1,1.
Из этой формулы можно вычислить минимально требуемый момент сопротивления сечения.
Вначале вычисляем максимальный момент от нагрузок. На этом этапе мы еще не знаем массу балки и ее можно не учитывать при предварительном расчете.
Далее выбираем марку стали. При выборе марки стали необходимо учитывать класс конструкции и климатические условия эксплуатации – если конструкция эксплуатируется в холодном климате в неотапливаемом здании, то марка стали не должна быть хрупкой. Прочность стали выбирается исходя из экономического расчета – несмотря на то, что с увеличением марки стали ее стоимость увеличивается, сечение балки из более прочной стали может быть меньше и соответственно будут меньше нагрузки. Для того, чтобы выбрать оптимальную марку стали необходимо сделать несколько расчетов и оценить их.
После того, как мы предварительно рассчитали минимальный момент сопротивления сечения (Wn) подбираем из сортамента профиль, имеющий W не много выше чем требуемый и имеющий наименьшую массу. Для балок оптимальным профилем является двутавр, швеллер. Возможно использование составного сечения из листов. При расчете важно правильно учесть положение профиля – Wx используется, если ось x-x перпендикулярна направлению приложения нагрузки. Соответственно профиль необходимо располагать так, чтобы момент сопротивления сечения был максимальным (от того как расположить профиль многое зависит).
После выбора сечения необходимо прибавить к изгибающему моменту момент, создаваемый массой балки и вновь проверить сечение.
Если балка расположена под углом, то расчет прочности при изгибе производят по следующей формуле:
где требуется разложить силу на направляющие по оси х-х и у-у и отдельно вычислить максимальные моменты Mx и My вокруг оси х-х и у-у соответственно.
В СП 16.13330.2011 дополнительно требуют учитывать бимомент, формула выглядит следующим образом:
где
x и y — расстояния от главных осей до рассматриваемой точки;
Ixn,Iyn — моменты инерции сечения, находятся по таблице согласно ГОСТ-у на выбранный профиль;
B — бимомент;
Iω — секториальный момент инерции сечения, можно найти в приложении 3 руководства по подбору сечений стальных конструкций;
ω — секториальная площадь.
Здесь рассматриваются несколько точек, как правило 4 крайние точки профиля и для них проверяют условия, знаки подбирают согласно эпюрам напряжения. Подробно расчет профилей с учетом бимомента расписано в книге Д.В.Бычкова Строительная механика стержневых тонкостенных конструкций.
Для прогонов наклонной кровли из швеллера для упрощения расчета бимомент можно не учитывать т.к. он разгружает профиль на 10-15%, и это будет запасом прочности. В других случаях рекомендуется принимать конструктивные меры препятствующие возникновению закручивающего момента.
2. Расчет на прочность при действии поперечной силы
Далее необходимо проверить профиль на действие касательных (поперечных) сил по формуле:
где Q – наибольшая поперечная сила (можно определить согласно эпюре Q), для балки наибольшее значение получается на опорах;
S – статический момент сдвигаемой части сечения (определяется по таблице для выбранного профиля);
I – момент инерции сечения (определяется по таблице для выбранного профиля);
tw – толщина стенки балки;
Rs — расчетное сопротивление стали сдвигу, равно 0,58 от Ry согласно Таблице 2 СП 16.13330.2011;
γc – коэффициент условий работы (данный коэффициент можно найти в таблице 1 СП Стальные конструкции) для балок сплошного сечения коэффициент равен 0,9, при расчете по сечению, ослабленному отверстиями 1,1.
Если профиль не удовлетворяет условию, то необходимо увеличить сечение.
3. Расчет на прочность стенки балки при действии сосредоточенной силы
Расчет на прочность стенки балки, не укрепленной ребрами жесткости, при действии сосредоточенной силы и в опорных сечениях определяют по формуле:
где
здесь F – расчетное значение нагрузки;
lef – условная длина распределения нагрузки;
tw – толщина стенки балки.
Условную длину распределения нагрузки можно определить по формуле
для следующих случаев:
для прокатной балки:
где b – ширина полки швеллера
h – сумма толщины верхней полки и радиуса закругления
для сварной балки:
где h – сумма толщины верхней полки и катета сварного шва.
4. Расчет на прочность в опорном сечении
Расчет на прочность в опорном сечении балки (при Mx=0 и My=0) следует определять по формулам:
где Aw– площадь сечения стенки,
Af– площадь сечения полки,
Rs–расчетное сопротивление стали сдвигу.
При ослаблении стенки отверстиями для болтов левую часть формулы необходимо умножить на коэффициент α, который находиться по формуле:
где s – шаг отверстий в одном ряду;
d – диаметр отверстия.
Расчет на прочность для защемленных и неразрезных балок мы рассмотрим отдельно.
5. Расчет на общую устойчивость
Далее необходимо проверить балку на устойчивость.
Данный расчет можно не выполнять:
а) при передаче нагрузки через сплошной жесткий настил (плиты железобетонные, плоский или профилированный металлический настил, волнистая сталь и т.п.), непрерывно опирающийся на сжатый пояс балки и надежно с ним связанный (с помощью сварки, болтов, самонарезающих винтов), при этом силы трения учитывать не стоит;
б) если условная гибкость сжатого пояса балки меньше предельных значений. Условная гибкость вычисляется по формуле:
Предельное значение гибкости пояса вычисляется по формулам:
при приложении нагрузке к верхнему поясу
при приложении нагрузке к нижнему поясу
независимо от уровня приложения нагрузки при расчете участка балки между связями или при чистом изгибе
где b – ширина сжатого пояса;
t – толщина сжатого пояса;
h – расстояние (высота) между осями поясных листов.
Примечания
- Значения предельной гибкости определены при 1≤ h/b ≤6 и 15≤ b/t ≤35; для балок с отношением b/t<15 в формулах следует принимать b/t=15.
- Для балок с фрикционными поясными соединениями предельную гибкость следует умножать на 1,2
Проверка общей устойчивости при изгибе в плоскости стенки, совпадающей с плоскостью симметрии сечения, осуществляется по следующей формуле:
если изгиб происходит в 2-х плоскостях (и наличии секториальных напряжений), тогда проверку осуществляют по формуле:
где φb – коэффициент устойчивости при изгибе, подробный расчет коэффициента устойчивости (φb) приведен в приложении Ж СП 16.13330.2011 Стальные конструкции;
Wcx – момент сопротивления сечения относительно оси x-x, вычисленного для сжатого пояса;
Wy – момент сопротивления сечения относительно оси y-y, совпадающий с плоскостью изгиба;
Wω – секторальный момент сопротивления сечения.
При расчете значения φbза расчетную длину балки lef следует принимать расстояние между точками закрепления сжатого пояса от поперечных смещений. При отсутствии связей lef=l (где l – пролет балки).
Если в процессе расчета выясняется, что общая устойчивость балки не обеспечивается, то следует уменьшить расчетную длину сжатого пояса, изменив систему связей.
6. Расчет устойчивости стенок и поясных листов балки
Устойчивость стенок балок 1-го класса следует считать обеспеченной если условная гибкость стенки, вычисленная по формуле:
где:
hef — расчетная высота стенки, принимаемая согласно требованиям 7.3.1 СП 16.13330.2011;
tw — толщина стенки балки;
Ry — расчетно сопротивление стали при изгибе;
E — модуль упругости стали равный 210 ГПа (210 000 МПа)
Условная гибкость стенки не должна превышать значений:
3,5 – при отсутствии местного напряжения в балках с двухсторонними поясными швами;
3,2 – при отсутствии местного напряжения в балках с односторонними поясными швами;
2,5 – при наличии местного напряжения в балках с двухсторонними поясными швами.
Если условная гибкость стенки выше требуемой, то стенки необходимо усилить ребрами жесткости и сделать проверку согласно п. 8.5.3 СП 16.13330.2011.
7. Расчет прогиба балки
Расчет на 2-е предельное состояние балки заключается в расчете максимального прогиба.
Высокие деформации могут привезти к нарушению герметичности, невозможности эксплуатации, плохому эстетическому восприятию конструкции, поэтому конструкция не должна сильно деформироваться. Предельные прогибы конструкций приведены в приложении Е СП 20.13330 Нагрузки и воздействия
К примеру, для балки покрытия, длиной 6 м, предельный прогиб составляет 1/200 длины пролета т.е. 30 мм.
Формула определения прогиба зависит от способа приложения нагрузки, например однопролетной шарнирно-закрепленной с равномерно-распределенной нагрузкой прогиб рассчитывается по формуле:
где q – равномерно-распределенная нагрузка, выраженная в кг/м (Н/м);
l – длина балки в метрах;
E – модуль упругости (для стали равен 200-210 ГПа);
I – момент инерции сечения.
Для других способов нагрузки балки формулы смотрите в справочниках по сопротивлению материалов.
Если расчетный прогиб больше допускаемого, то следует увеличить сечение балки.
____________________________________________________________
Как найти расчетный момент и поперечную силу читайте в статье Построение эпюр балки
Как правильно закрепить балку на колонне читайте в статье Опорные узлы балки
Как рассчитать балку в SCAD и подобрать сечение читайте в статье Расчет балки в SCAD
Пример решения задачи полного расчета на прочность и жесткость стальной двутавровой балки при заданной системе внешних изгибающих нагрузок.
Задача
Выполнить полный расчёт на прочность и проверить жёсткость стальной, двутавровой, статически определимой балки на двух опорах
при следующих данных:
Интенсивность равномерно распределенной нагрузки q=26кН/м, продольный размер a=0,6м, сосредоточенная сила F=2qa, изгибающий момент m=4qa2.
Допускаемые нормальные напряжения [σ]=160МПа,
Модуль упругости I рода Е=200ГПа.
Допустимый прогиб балки [f]=l/400.
Другие примеры решений >
Помощь с решением задач >
Последовательность решения задачи
Для расчета балки на прочность
- Вычерчивается схема нагружения в масштабе, с указанием числовых значений приложенных нагрузок;
- Строятся эпюры внутренних силовых факторов Qy и Mx;
- По условию прочности подбирается двутавровое сечение (№ двутавра) стальной балки:
- Для балки двутаврового профиля выполняется полная проверка на прочность, приняв
- Проверяется прочность по главным напряжениям в опасных точках сечения по III гипотезе прочности
- По результатам расчетов дается заключение о прочности балки при выбранном сечении.
- В случае невыполнения условия прочности по главным напряжениям, подбирается новый номер двутавра.
Для расчета балки на жесткость
- С использованием универсальных уравнений метода начальных параметров (МНП) определяются углы поворота θ над опорами и прогибы в характерных сечениях (2-3 сечения), а также, максимальные прогибы балки в пролете и консольной части;
- По этим данным, в соответствии с эпюрой Mx, строится линия изогнутой оси балки;
- Проверяется выполнение условия жесткости балки.
- Если условие жесткости не удовлетворяется, подбирается новое двутавровое сечение, обеспечивающее необходимую жесткость.
Решение
Рассчитаем численные значения силы F и момента m, которые были заданы в виде переменных.
Вычерчиваем расчетную схему нагружения балки в масштабе, с указанием числовых значений приложенных нагрузок.
Показываем оси системы координат y-z и обозначаем характерные сечения балки.
Полный расчет стальной балки на прочность
Определение реакций в шарнирных опорах балки
Направим реакции опор вверх и запишем суммы моментов относительно точек на опорах, нагрузок приложенных к балке
Из составленных уравнений выражаем и находим реакции.
Из первого уравнения
из второго
Положительные значения указывают на то, что произвольно заданное направление реакций вверх оказалось верным.
Выполним проверку найденных реакций опор спроецировав все силы на ось y
Равенство суммы проекций сил нулю говорит о том что реакции опор определены правильно.
Более подробно, пример определения опорных реакций для балки рассмотрен здесь
А также в нашем коротком видеоуроке:
Другие видео
Построение эпюр внутренних силовых факторов
Рассчитаем значения внутренних поперечных сил и изгибающих моментов в сечениях балки на каждом силовом участке методом сечений.
Балка имеет 4 силовых участка.
1 участок (AB)
2 участок (BC)
3 участок (CD)
4 участок (DK)
Здесь, значения Qy на границах участка имеют одинаковый знак, поэтому на этом участке, на эпюре Mx экстремума не будет.
Подробный пример построения эпюр поперечных сил Q и изгибающих моментов M для балки
По полученным данным строим эпюры внутренних поперечных сил Qy и изгибающих моментов Mx.
Проверка построенных эпюр:
— по дифференциальным зависимостям
— в сечениях балки, где приложены сосредоточенные силы, на эпюре Qy имеются скачки значений на величину соответствующей силы;
— в сечениях балки, где приложены изгибающие моменты, на эпюре Mx скачки значений на величину соответствующего момента.
Все условия выполнены, следовательно, эпюры построены верно.
По эпюрам видно, что опасным является сечение балки в точке C, где:
Mx=Mx max=-24,336кНм
Qy=-4,68кН
Подбор двутаврового сечения балки
Подберем двутаврового сечение балки по условию прочности по нормальным напряжениям
где
Mx max – максимальное значение внутреннего изгибающего момента в сечениях балки. Принимается с построенной эпюры Mx;
Wx – осевой момент сопротивления поперечного сечения балки относительно горизонтальной оси x;
[σ] – допустимые нормальные напряжения.
Подробнее о том, как подбирается сечение балки
Выразим и рассчитаем минимально необходимое значение осевого момента сопротивления поперечного сечения балки Wx обеспечивающего её прочность по нормальным напряжениям
По сортаменту прокатной стали выбираем номер двутавра имеющий осевой момент сопротивления близкий к расчетному Wx=152,1см3 в большую сторону.
Это двутавр №18а у которого Wx=159,0см3.
Максимальные нормальные напряжения в сечении
Этот двутавр будет работать при максимальных нормальных напряжениях в крайних слоях опасного сечения балки.
Максимальные нормальные напряжения выбранного номера двутавра не превышают допустимых значений, значит сечение подобрано верно.
Полная проверка на прочность двутаврового сечения
При изгибе тонкостенных прокатных профилей, таких как, например, двутавр или швеллер, в местах соединения стенки с полкой нормальные и касательные напряжения имеют не максимальные, но достаточно большие значения.
Их совместное действие, выраженное в виде главных (эквивалентных) напряжений, может превышать допустимые значения, что будет означать потерю прочности в этих точках поперечного сечения балки.
В отношении главных напряжений неблагоприятным является сечение балки B, в котором максимально значение поперечной силы при значительном изгибающем моменте:
Qy=-31,2кН
Mx=-18,72кНм
Для полной проверки на прочность построим эпюры нормальных и касательных напряжений в сечении B для выбранного номера двутавра.
Построение эпюр нормальных и касательных напряжений в сечении балки подробно рассмотрено здесь:
Построение эпюры нормальных напряжений
Построение эпюры касательных напряжений
Для выполнения расчетов, из сортамента выпишем необходимые геометрические характеристики выбранного номера двутавра:
Высота сечения
h=180мм;
Ширина сечения
b=100мм;
Толщина стенки
d=5,1мм;
Толщина полки
t=8,3мм;
Осевой момент инерции поперечного сечения
Ix=1430см4;
Статический момент сечения
Sx=89,8см3.
Двутавровое сечение по высоте имеет 5 характерных точек: верхнюю (1), нижнюю (5), среднюю (3) и две точки в местах перехода стенки в полку двутавра (2 и 4).
Для построения эпюр, определим значения напряжений в указанных точках сечения.
Нормальные напряжения в сечении балки распределяются по линейному закону, поэтому для построения эпюры достаточно найти максимальные значения
Касательные напряжения в характерных точках сечения рассчитываются по формуле Журавского
где
Qy — поперечная сила в данном сечении. Принимается с эпюры с учетом знака;
Ix – осевой момент инерции поперечного сечения;
by – ширина сечения на уровне рассматриваемой точки;
Sx* — статический момент части сечения, расположенной между уровнем рассматриваемой точки и верхним (нижним) краем сечения.
Рассчитаем значения касательных напряжений
В точках 1 и 5
Так как выше точки 1 и ниже точки 5 площадь сечения равна нулю, то статический момент Sx* для этих точек тоже равен нулю, следовательно
В точке 3
В точке 3 будут максимальные касательные напряжения, т.к. для неё статический момент сечения Sx максимальный при минимальной ширине сечения d
Видно, что прочность сечения по касательным напряжениям обеспечена.
В точках 2 и 4
В точках, где стенка двутавра переходит в полку, будут скачки напряжений, так как на уровне этих точек резко меняется ширина сечения
Рассчитаем значения напряжений в этих точках для стенки (с) и полки (п)
Статический момент полки двутавра
Касательные напряжения в точках 2 и 4 полки
Касательные напряжения в точках 2 и 4 стенки
По этим данным строим эпюры нормальных и касательных напряжений для выбранного номера двутавра.
Рассчитаем величину главных напряжений в точках соединения полки со стенкой двутавра (т. 2 и 4)
Нормальные напряжения в рассматриваемых точках
Эквивалентные напряжения в опасных точках сечения
Как видно, величина эквивалентных напряжений не превышает допустимых значений, следовательно, выбранный номер двутавра удовлетворяет условию прочности и по главным напряжениям.
Полный расчет балки на жесткость
Для того чтобы балка удовлетворяла условию жесткости, линейные перемещения (прогибы) балки yz не должны превышать заданных допустимых значений [f], т.е. должно выполняться условие жесткости
Расчет перемещений сечений балки
Расчет перемещений сечений балки выполним методом начальных параметров (МНП).
Шаблоны уравнений метода начальных параметров имеют вид:
Здесь:
θz — угловое перемещение (угол наклона) рассматриваемого сечения;
yz — вертикальное линейное перемещение (прогиб) рассматриваемого сечения балки;
z – расстояние от выбранного начала координат балки до рассматриваемого сечения (координата);
θ0, y0 — соответственно угловое и линейное перемещения балки в выбранном начале координат (начальные параметры);
E – модуль упругости I рода для материала балки;
Ix – осевой момент инерции сечения балки;
m, F, q – соответственно моменты, сосредоточенные силы и распределенные нагрузки, приложенные к балке (включая опорные реакции и компенсирующую распределенную нагрузку);
a, b – расстояние от начала координат до соответствующих моментов m и сил F;
c – расстояние от начала координат до сечения балки, где начинается действие распределенной нагрузки q.
Подробный пример расчета перемещений сечений балки методом начальных параметров.
Составляем уравнения МНП для заданной балки
Начало координат принимаем в крайнем правом сечении балки, так как оно расположено на опоре.
Распределенная нагрузка не доходит до конца балки, поэтому продляем её действие и на этой же длине добавляем компенсирующую нагрузку той же интенсивности но противоположного направления.
Запишем нагрузки в уравнения МНП последовательно по участкам с учетом знаков
Для определения начальных параметров θ0 и y0 запишем граничные условия.
На опорах прогибы балки равны нулю, т.е.
Из второго граничного условия, используя уравнение прогибов для точки B определим угол поворота сечения в начале координат θ0
Откуда, при z=3м
Для построения линии изогнутой оси балки определим углы наклона сечений балки на опорах θB, θK и прогибы в характерных сечениях yA, yC, yD.
Углы поворота сечений на опорах
Далее, для краткости, сократим дробь перед скобками
Линейные перемещения (прогибы) характерных сечений балки
Прогиб сечения A (yz при z=3,6м)
Прогиб сечения C (yz при z=1,8м)
Прогиб сечения D (yz при z=0,6м)
Расчет максимальных прогибов балки
Экстремумы прогибов балки будут в точках, где угол наклона сечения балки равен нулю.
Для их определения, приравниваем к нулю уравнения углов наклона сечений по каждому участку балки, откуда определяем координаты z экстремумов прогибов на участке (если они есть).
1 участок (KD).
Уравнение решений не имеет (т.е. экстремумов на участке нет), это значит, что максимальный прогиб на этом участке будет на его левой границе (в сечении D), так как правая точка участка расположена на опоре.
2 участок (DC).
То есть, экстремум прогибов на втором участке будет на расстоянии z2=0,782м от начала координат.
3 участок (CB).
Экстремум прогибов на третьем участке в сечении, на расстоянии z3=2,269м от начала координат.
4 участок (BA).
Данное уравнение решений также не имеет, следовательно, максимальный прогиб на конце консоли, так как на правой границе участка – опора.
Значения максимальных прогибов балки на втором и третьем участках определяем из соответствующих уравнений прогибов для найденных значений z.
По полученным данным строим линию изогнутой оси балки в соответствии с эпюрой изгибающих моментов Mx и с указанием углов поворота сечений на опорах.
Проверка балки на жесткость
Проверяем балку на жесткость, сравнивая по модулю максимальные значения прогибов ymax в пролёте и на консольной части с допустимыми [f].
Балка считается жесткой, если прогибы её сечений не превышают допустимых значений, т.е.
Рассчитаем абсолютные значения допустимых прогибов заданной балки:
В пролете
На консольной части
Для проверки на жесткость сравниваем величину рассчитанных ранее максимальных прогибов сечений балки с соответствующими допустимыми значениями.
В пролете
На консоли
Как видно, максимальный прогиб на конце консольной части балки превышает соответствующее допустимое значение, следовательно, балка не удовлетворяет заданному условию жесткости.
Жесткость балки можно увеличить до требуемого значения путем увеличения момента инерции её сечения, т.е. подбором сечения большего размера.
Подберем двутавр другого номера, который будет обеспечивать необходимую жесткость балки.
Определяем, во сколько раз надо уменьшить величину максимального перемещения сечения.
Тогда, расчетный момент инерции нового сечения балки
По сортаменту выбираем двутавр №20 с осевым моментом инерции сечения Ix=1840см4.
Выполняем проверку:
Для начала требуется пересчитать угол наклона сечения балки в начале координат.
Рассчитываем прогиб сечения A с новым размером сечения
Условие жесткости выполняется.
Таким образом, двутавр №20 обеспечивает необходимую прочность и жёсткость заданной балки.
Полный расчет заданной балки на прочность и жёсткость выполнен.
Другие примеры решения задач >
Расчет балки на прогиб нужно проводить практически для любой конструкции, чтобы проверить ее надежность и прочность. Под влиянием внешних, внутренних факторов, природных явлений балка подвержена деформации.
Балку сравнивают со стержнем, закрепленным на опорах. Чем больше опор, тем сложнее провести расчет самостоятельно. Основная нагрузка считается путем сложения сил, перпендикулярно направленных к сечению.
Данный расчет – основы сопромата, помогает определить наивысшую деформацию. Значения показателей должны входить в рамки допустимых величин.
Виды балок
При возведении зданий используется балки разных конфигураций, размеров, профиля, характера сечения. Их изготавливают из металла и дерева. Для любого вида используемого материала нужен индивидуальный расчёт изгиба.
Виды балок:
-
Деревянные – их используют в основном при строительстве индивидуальных построек. Они применяются при возведении полов, потолков, несущих перекрытий. Дерево – капризный материал и подвержено деформации. Для определения максимального изгиба, существенны такие параметры: используемый профиль, размер, нагрузка, характер поперечного сечения.
-
Металлические – такие балки изготавливают из сплава металлов и сечение у них сложное. Поэтому особое внимание уделяется жесткости, а также прочности соединений. Балки из металла применяются в возведении многоэтажек, сооружений, требующих высокой прочности.
Прочность и жесткость балки
При проектировании следует учесть изгиб балок, чтобы конструкция была надежная, качественная, прочная и практичная.
На эти параметры влияют следующие факторы:
-
величина наружных нагрузок, их положение;
-
параметры, характер, нахождение поперечного сечения;
-
продольные величины;
-
материал;
-
число опор, метод их закрепления.
Выделяют 2 метода исчисления: простой – применяется увеличительный коэффициент, и точный – дополнительно включает пограничные подсчеты.
Построение эпюр балки
Эпюра распределения величины нагрузки на объект:
Расчет на жесткость
Алгоритм исчисления:
В формуле обозначены:
-
M – max момент, возникающий в брусе;
-
Wn,min – момент сопротивления сечения (табличный показатель);
-
Ry – сопротивление на изгиб (расчётный показатель);
-
γc – показатель условий труда (табличный показатель).
Такой расчет не трудоемок, но для более верного значения требуется следующее:
-
рабочий план объекта;
-
определение характеристик балки, характер сечения;
-
определение max нагрузки, воздействующей на брус;
-
оценка точки max прогиба;
-
проверка прочности max изгибающего момента.
Расчет моментов инерции и сопротивления сечения
Алгоритм исчисления:
Где:
-
J – момент инерции сечения;
-
W – момент сопротивления.
Для определения данных параметров необходимо учитывать сечение по грани разреза. Если момент инерции возрастает, величина жесткости также возрастает.
Нахождение максимальной нагрузки и прогиба
Формула для вычисления:
Здесь обозначены:
-
q – нагрузка равномерно-распределенная;
-
E – гибкость (табличный показатель);
-
l – длина;
-
I – момент инерции сечения.
Нагрузки учитываются статические и периодические.
Расчет на прогиб и его особенности
Он необходим для всех перекрытий при высоких эксплуатационных нагрузках.
При применении соответствующих коэффициентов, придерживаются следующего:
-
балка, держащаяся на одной жесткой и одной шарнирной опоре, подвергающаяся воздействию сосредоточенной нагрузки;
-
балка, держащаяся на жесткой и шарнирной опоре, подвергающаяся воздействию распределенной нагрузки;
-
нагрузка консольного типа;
-
воздействие комплексной нагрузки.
Пример расчет балки на прогиб
Рассмотрим задачу из курса сопромата.
Дано: балка четырехугольного сечения 20 на 30 см; поперечная сила Q = 19 кН; изгибающий момент М = 28 кНм.
Необходимо рассчитать напряжение: нормальное и в пределе К, отдаленной на 11 см от оси, узнать прочность бруса из дерева, при [σ] = 10 МПа, [τ] = 3 МПа.
Решение.
Чтобы узнать σ(К), τ(К), σmax, τmax
определяем значение осевого момента инерции общего сечения IН.О., осевого момента сопротивления WН.О., статического момента отсеченного ряда и статического момента середины сечения Smax:
Из этого следует:
Определение прочности по нормальному напряжению:
Определение прочности по касательному напряжению:
Задача решена.
При проектировании конструкций важно соблюдать все физико-механические вычисления на прочность. Удобно и качественно произвести расчеты может онлайн, что существенно сократит временные сроки.
Калькулятор выполняет подробный подсчет на основе формул, эпюр усилий, подбирает номер сечения металлической балки из прокатных профильных, двутавровых материалов, а также из металлических труб.