Как найти максимальную силу fmax

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

поделиться знаниями или
запомнить страничку

  • Все категории
  • экономические
    43,655
  • гуманитарные
    33,653
  • юридические
    17,917
  • школьный раздел
    611,944
  • разное
    16,904

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах. 

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте. 

Как быстро и эффективно исправить почерк?  Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью. 



Ученик

(124),
на голосовании



11 лет назад

Дополнен 11 лет назад

найти максимальную силу Fmax действующую на точку, и полную энергию W колеблющейся точки, если масса точки= 10 гр колеблется по закону x=5sin (П/4t+П/12)

Голосование за лучший ответ

Трудное детство

Оракул

(70151)


11 лет назад

закон колебаний тела на пружине x=Xsin(wt+f), где X амплитуда колебаний, w=(k/m)^1/2 (1) циклическая частота, k жесткость пружины, f начальная фаза колебаний. из заданного закона находим что X=5м, w=П/4 1/с. из (1) можно найти k=w^2*m=6*10^(-3)H/м. максимальная сила F=-kX=-3*10^(-2)H, полная энергия равна максимальной потенциальной энергии, а она равна W=kX^2/2=7,5Дж

Страница 1 из 4

12.1. Написать уравнение гармонического колебательного движения с амплитудой A = 5см, если за время t = 1мин совершается 150 колебаний и начальная фаза колебаний φ = P/4. Начертить график этого движения.

12.2. Написать уравнение гармонического колебательного движения с амплитудой A = 0,1M, периодом T = 4с и начальной фазой φ = 0.

12.3. Написать уравнение гармонического колебательного движения с амплитудой A = 50мм, периодом T = 4с и начальной фазой φ = P/4 . Найти смещение х колеблющейся точки от положения равновесия при t = 0 и t= 1,5 с. Начертить график этого движения.

12.4. Написать уравнение гармонического колебательного движения с амплитудой А = 5 см и периодом Т = 8 с, если начальная фаза φколебаний равна: а) 0; б) P/2; в) P г) 3P/2 д) 2P. Начертить график этого движения во всех случаях.

12.5. Начертить на одном графике два гармонических колебания с одинаковыми амплитудами A1 = А2 = 2 см и одинаковыми периодами T1 = Т2 = 8 с, но имеющие разность фаз φ2φ1,

равную: а) P/4; о) P/2; в) P; г) 2P.

12.6. Через какое время от начала движения точка, совершающая гармоническое колебание, сместится от положения равновесия на половину амплитуды? Период колебаний Т = 24 с, начальная фаза φ = 0.

12.7. Начальная фаза гармонического колебания φ= 0. Через какую долю периода скорость точки будет равна половине ее максимальной скорости?

12.8. Через какое время от начала движения точка, совершающая колебательное движение по уравнению х = 7 sinP/2*t, проходит путь от положения равновесия до максимального смещения?

12.9. Амплитуда гармонического колебания /4 = 5 см, период Г = 4с. Найти максимальную скорость vmat колеблющейся Точ кн и ее максимальное ускорение aтах.

12.10. Уравнение движения точки дано в виде х = 2si>i^( + СМ‘ ^аити пеРП0а колебаний Г, максимальную скорость >тах и максимальное ускорение aта точки.

t2.ll. Уравнение движения точки дано в виде x = sin—t. > 6

ahftm моменты времени /, в которые достигаются максималь-

^шГскорость и максимальное ускорение.

12.12. Точка совершает гармоническое колебание. Период колебаний Т = 2 с, амплитуда А = 50 мм, начальная фаза = 0. .$айти скорость v точки в момент времени, когда смешение точ-;виот положения равновесия х = 25 мм.

12.13. Написать уравнение гармонического колебательного ^юкения, если максимальное ускорение точки aтах =49,3 см/с2,

период колебаний T = 2с и смещение точки от положения равновесия в начальный момент времени х0 = 25 мм.

12.14. Начальная фаза гармонического колебания φ= 0 . При смещении точки от положения равновесия х1 = 2,4 см скорость точки v1 = 3 см/с, а при смещении x2 = 2,8 см ее скорость v2 = 2 см/с. Найти амплитуду А и период Т этого колебания.

12.15. Уравнение колебания материальной точки массой

m=16г имеет вид х = 0,1 sin(P/8*t+P/4)- Построить график

зависимости от времени t ( в пределах одного периода) силы F, действующей на точку. Найти максимальную силу Fmax.

12.16. Уравнение колебаний материальной точки массой

m=10г имеет вид x=5sin(P/5*t+P/4) см. Найти максимальную силу Fmix, действующую на точку, и полную энергию Wколеблющейся точки.

12.17. Уравнение колебания материальной точки массой

m=16г имеет вид х = 2sin(P/4*t+P/4) см. Построить график зависимости от времени t ( в пределах одного периода) кинетической WK, потенциальной W„ и полной W энергии ТОЧКИ.

12.18. Найти отношение кинетической WK энергии точки, совершающей гармоническое колебание, к ее потенциальной энергии Wn для моментов времени: a) t = T/12; б) t=T/8 в) t= T/6 . Начальная фаза колебаний φ= 0.

12.19. Найти отношение кинетической энергии WK точки, совершающей гармоническое колебание, к ее потенциальной энергии Wa для моментов, когда смещение точки от положения равновесия составляет: а) х = A/4; б) х = A/2 ; в) х = А , где А — амплитуда колебаний.

12.20. Полная энергия тела, совершающего гармоническое колебательное движение, W=30 мкДж; максимальная сила, действующая на тело, Fmm. = 1,5 мН. Написать уравнение движения этого тела, если период колебаний Т = 2с и начальная фаза φ=P/3

Меню

  • Главная
  • Заказ решений
  • Готовые решения
  • Статьи
  • Новости
  • Авторы

 Есть идеи?

Решения Чертовасайт решений Чертова А.Г. Воробьева А.А.

Поиск

Глава10. Физика твердого тела (§ 49-51) >> §50 Тепловые свойства >> задача – 50.65


Условие:

Вычислить максимальную силу Fmax, возвращающую атом твердого тела в положение равновесия, если коэффициент гармоничности B=50Н/м, а коэффициент ангармоничности y=500ГПа.

При клике на картинку откроется ее увеличенная версия в новой вкладке.

Решение задачи 50.65. Чертов А.Г. Воробьев А.А.

Не забываем поделиться записью!

Последние статьи

  • Подходы к решению задач по физике
  • Что такое физика и какие задачи и вопросы она решает?
  • Общие рекомендации по решению статистических задач
  • Он-лаин или офф-лаин обучение? Что выбрать?
  • Изучение геометрии в восьмом классе без хлопот становится реальностью

Наши партнеры
Kwork.ru - услуги фрилансеров от 500 руб.

© 2012 Решения Чертова | Авторы Bandit & AJ Акции | Sitemap | FAQ&ask

Kwork.ru - услуги фрилансеров от 500 руб.

Решение: :  Рассмотрим уравнение координаты:

x = Xm∙соs(ω∙t + φ0),

где: х – координата тела, Хm – амплитуда, ω – угловая скорость, φ0 – начальная координата.
Для нахождения скорости возьмем первую производную по времени от х:

υ = – ω∙Хm∙sin(ω∙t+ φ0), υ = – 0,4∙π∙sin(4πt+π/4).

Для нахождения ускорения возьмем вторую производную по времени от х:

а = – ω2Хm∙соs(ω∙t+ φ0), а = -0,16∙π∙соs(4πt+π/4).

аmax = 0,5 м/с2, Fmax = m∙a, Fmax = 0,5 м/с2∙10∙10-3 кг, = 5∙10-3 Н.

[ {{E}_{Kmax }}=frac{mcdot upsilon _{max }^{2}}{2},  ]

υmax = 1,256 м/с, ЕКmax = 7,9∙10-3 Дж.    Ответ: 5∙10-3 Н, 7,9∙10-3 Дж. 
 

Добавить комментарий