Как найти малую дугу окружности

Как найти длину дуги окружности ?

r – радиус окружности

α – угол AOB, в градусах

Формула длины дуги ( L ):

Калькулятор для расчета длины дуги окружности :

Формулы для окружности и круга:

Площадь круга и его частей. Длина окружности и ее дуг

Основные определения и свойства

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки – центра окружности

Часть окружности, расположенная между двумя точками окружности

Конечная часть плоскости, ограниченная окружностью

Часть круга, ограниченная двумя радиусами

Часть круга, ограниченная хордой

Выпуклый многоугольник, у которого все стороны равны и все углы равны

Около любого правильного многоугольника можно описать окружность

Фигура Рисунок Определения и свойства
Окружность
Дуга
Круг
Сектор
Сегмент
Правильный многоугольник
Окружность

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки – центра окружности

Дуга

Часть окружности, расположенная между двумя точками окружности

Круг

Конечная часть плоскости, ограниченная окружностью

Сектор

Часть круга, ограниченная двумя радиусами

Сегмент

Часть круга, ограниченная хордой

Правильный многоугольник

Выпуклый многоугольник, у которого все стороны равны и все углы равны

Около любого правильного многоугольника можно описать окружность

Определение 1 . Площадью круга называют предел, к которому стремятся площади правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.

Определение 2 . Длиной окружности называют предел, к которому стремятся периметры правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.

Замечание 1 . Доказательство того, что пределы площадей и периметров правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон действительно существуют, выходит за рамки школьной математики и в нашем справочнике не приводится.

Определение 3 . Числом π (пи) называют число, равное площади круга радиуса 1.

Замечание 2 . Число π является иррациональным числом, т.е. числом, которое выражается бесконечной непериодической десятичной дробью:

Число π является трансцендентным числом, то есть числом, которое не может быть корнем алгебраического уравнения с целочисленными коэффициентами.

Формулы для площади круга и его частей

,

где R – радиус круга, D – диаметр круга

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Числовая характеристика Рисунок Формула
Площадь круга
Площадь сектора
Площадь сегмента
Площадь круга

,

где R – радиус круга, D – диаметр круга

Площадь сектора

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Площадь сегмента

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Формулы для длины окружности и её дуг

где R – радиус круга, D – диаметр круга

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Длина окружности

где R – радиус круга, D – диаметр круга

Длина дуги

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Площадь круга

Рассмотрим две окружности с общим центром ( концентрические окружности ) и радиусами радиусами 1 и R , в каждую из которых вписан правильный n – угольник (рис. 1).

Обозначим через O общий центр этих окружностей. Пусть внутренняя окружность имеет радиус 1 .

Поскольку при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса 1 , стремится к π , то при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса R , стремится к числу πR 2 .

Таким образом, площадь круга радиуса R , обозначаемая S , равна

Длина окружности

то, обозначая длину окружности радиуса R буквой C , мы, в соответствии с определением 2, при увеличении n получаем равенство:

откуда вытекает формула для длины окружности радиуса R :

Следствие . Длина окружности радиуса 1 равна 2π.

Длина дуги

Рассмотрим дугу окружности, изображённую на рисунке 3, и обозначим её длину символом L(α), где буквой α обозначена величина соответствующего центрального угла.

В случае, когда величина α выражена в градусах, справедлива пропорция

из которой вытекает равенство:

В случае, когда величина α выражена в радианах, справедлива пропорция

из которой вытекает равенство:

Площадь сектора

Рассмотрим круговой сектор, изображённый на рисунке 4, и обозначим его площадь символом S (α) , где буквой α обозначена величина соответствующего центрального угла.

В случае, когда величина α выражена в градусах, справедлива пропорция

из которой вытекает равенство:

В случае, когда величина α выражена в радианах, справедлива пропорция

из которой вытекает равенство:

Площадь сегмента

Рассмотрим круговой сегмент, изображённый на рисунке 5, и обозначим его площадь символом S (α), где буквой α обозначена величина соответствующего центрального угла.

Поскольку площадь сегмента равна разности площадей кругового сектора MON и треугольника MON (рис.5), то в случае, когда величина α выражена в градусах, получаем

В случае, когда величина α выражена в в радианах, получаем

Геометрия. Урок 5. Окружность

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Определение окружности
  • Отрезки в окружности

Определение окружности

Окружность – геометрическое место точек, равноудаленных от данной точки.

Эта точка называется центром окружности .

Отрезки в окружности

Радиус окружности R – отрезок, соединяющий центр окружности с точкой на окружности.

Хорда a – отрезок, соединяющий две точки на окружности.

Диаметр d – хорда, проходящая через центр окружности, он равен двум радиусам окружности ( d = 2 R ).

O A – радиус, D E – хорда, B C – диаметр.

Теорема 1:
Радиус, перпендикулярный хорде, делит пополам эту хорду и дугу, которую она стягивает.

Касательная к окружности – прямая, имеющая с окружностью одну общую точку.

Из одной точки, лежащей вне окружности, можно провести две касательные к данной окружности.

Теорема 2:
Отрезки касательных, проведенных из одной точки, равны ( A C = B C ).

Теорема 3:
Касательная перпендикулярна радиусу, проведенному к точке касания.

Дуга в окружности

Часть окружности, заключенная между двумя точками, называется дугой окружности .

Например, хорда A B стягивает две дуги: ∪ A M B и ∪ A L B .

Теорема 4:
Равные хорды стягивают равные дуги.

Если A B = C D , то ∪ A B = ∪ C D

Углы в окружности

В окружности существует два типа углов: центральные и вписанные.

Центральный угол – угол, вершина которого лежит в центре окружности.

∠ A O B – центральный.

Центральный угол равен градусной мере дуги, на которую он опирается . ∪ A B = ∠ A O B = α

Если провести диаметр, то он разобьёт окружность на две полуокружности. Градусная мера каждой полуокружности будет равна градусной мере развернутого угла, который на неё опирается.

Градусная мара всей окружности равна 360 ° .

Вписанный угол – угол, вершина которого лежит на окружности, а стороны пересекают окружность.

∠ A C B – вписанный.

Вписанный угол равен половине градусной меры дуги, на которую он опирается . ∠ A C B = ∪ A B 2 = α 2 ∪ A B = 2 ⋅ ∠ A C B = α

Теорема 5:
Вписанные углы, опирающиеся на одну и ту же дугу, равны .

∠ M A N = ∠ M B N = ∠ M C N = ∪ M N 2 = α 2

Теорема 6:
Вписанный угол, опирающийся на полуокружность (на диаметр), равен 90 ° .

∠ M A N = ∠ M B N = ∪ M N 2 = 180 ° 2 = 90 °

Длина окружности, длина дуги

Мы узнали, как измеряется градусная мера дуги окружности (она равна градусной мере центрального угла, который на нее опирается) и всей окружности целиком (градусная мера окружности равна 360 ° ). Теперь поговорим о том, что же такое длина дуги в окружности. Длина дуги – это значение, которое мы бы получили, если бы мерили дугу швейным сантиметром. Рассмотрим две окружности с разными радиусами, в каждой из которых построен центральный угол равный α .

Градусная мера дуги ∪ A B равна градусной мере дуги ∪ C D и равна α .

Но невооуруженным глазом видно, что длины дуг разные. Если градусная мера дуги окружности зависит только от величины центрального угла, который на неё опирается, то длина дуги окружности зависит ещё и от радиуса самой окружноси.

Длина окружности находится по формуле:

Длина дуги окружности , на которую опирается центральный угол α равна:

l α = π R 180 ∘ ⋅ α

Площадь круга и его частей

Теперь поговорим про площадь круга, площадь сектора и площадь сегмента.

Круг – часть пространства, которая находится внутри окружности.

Иными словами, окружность – это граница, а круг – это то, что внутри.

Примеры окружности в реальной жизни: велосипедное колесо, обруч, кольцо.

Примеры круга в реальной жизни: пицца, крышка от канализационного люка, плоская тарелка.

Площадь круга находится по формуле: S = π R 2

Сектор – это часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

Примеры сектора в реальной жизни: кусок пиццы, веер.

Площадь кругового сектора, ограниченного центральным углом α находится по формуле: S α = π R 2 360 ° ⋅ α

Сегмент – это часть круга, ограниченная дугой и хордой, стягивающей эту дугу.

Примеры сегмента в реальной жизни: мармелад “лимонная долька”, лук для стрельбы.

Чтобы найти площадь сегмента, нужно сперва вычислить площадь кругового сектора, который данный сегмент содержит, а потом вычесть площадь треугольника, который образован центральным углом и хордой.

S = π R 2 360 ° ⋅ α − 1 2 R 2 sin α

Теорема синусов

Если вокруг произвольного треугольника описана окружность, то её радиус можно найти при помощи теоремы синусов:

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R Достаточно знать одну из сторон треугольника и синус угла, который напротив неё лежит. Из этих данных можно найти радиус описанной окружности.

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с окружностями.

[spoiler title=”источники:”]

http://www.resolventa.ru/demo/diaggia6.htm

[/spoiler]

Длина дуги окружности

{L = dfrac{pi R alpha}{180degree}}

Длина дуги окружности – важный параметр, который используется в геометрии и математике для решения различных задач. На этой странице приведены две формулы для расчета длины дуги окружности – через радиус и угол между радиусами и по формуле Гюйгенса. Также вы можете рассчитать длину дуги окружности с помощью калькулятора, которые используют эти формулы.

Дуга — одно из двух подмножеств окружности, на которые её разбивают любые две различные принадлежащие ей точки. Любые две точки окружности разбивают её на две части, при этом каждая из частей является дугой.

Содержание:
  1. калькулятор длины дуги окружности
  2. формула длины дуги окружности через радиус и угол
  3. формула длины дуги окружности по формуле Гюйгенса
  4. примеры задач

Если обобщить, то дуга окружности – это часть окружности, ограниченная двумя ее точками. Ниже приведены несколько примеров дуг окружностей:

  • Полная окружность – это дуга, которая охватывает всю окружность. Угол, определяющий полную окружность, равен 360° или 2π радиан. Длина дуги полной окружности равна общей длине окружности, которая может быть вычислена по формуле L = 2πr, где r – радиус окружности.

    Полная окружность

  • Полуокружность – это дуга, которая охватывает половину окружности. Угол, определяющий полуокружность, равен 180° или π радиан. Длина дуги полуокружности равна половине общей длины окружности и может быть вычислена по формуле L = πr.

    Полуокружность

  • Сектор окружности – это область, ограниченная дугой окружности и двумя ее радиусами.

    Сектор окружности

Это только несколько примеров дуг окружности. Дуги могут быть разных размеров и форм, в зависимости от угла, определяющего их, и расположения на окружности.

Формула длины дуги окружности через радиус и угол

Длина дуги окружности через радиус и угол

{L = dfrac{pi R alpha}{180degree}}

R – радиус окружности

α – центральный угол (угол между радиусами) в градусах

{L = R alpha}

R – радиус окружности

α – центральный угол (угол между радиусами) в радианах

Формула длины дуги окружности по формуле Гюйгенса

Длина дуги окружности по формуле Гюйгенса

{L approxeq 2m + dfrac{2m-M}{3}}

m – длина хорды m

M – длина хорды M

Обратите внимание, что в данной формуле используется не привычный знак равно «=», а знак “равно или почти равно”, который записывается так – «approxeq». Это связано с тем, что формула Гюйгенса дает погрешность при вычислении. Хоть величина погрешности невелика, знать об этом надо.

Относительная погрешность формулы Гюйгенса составляет порядка 0,5% когда угол дуги равен 60°. Если же угловая мера дуги уменьшается, то уменьшается и погрешность. Например, для дуги в 45° относительная погрешность будет равна примерно 0,02%.

Примеры задач на нахождение длины дуги

Задача 1

Найдите длину дуги окружности радиуса 6см, если ее градусная мера равна 30.

Решение

Для решения этой задачи нам подойдет первая формула. Подставим в нее значение радиуса и угла и произведем вычисления:

L = dfrac{pi R alpha}{180degree} = dfrac{pi cdot 6 cdot 30degree}{180degree} = dfrac{pi cdot 180degree}{180degree} = pi : см approx 3.14 : см.

Ответ: {pi : см approx 3.14 : см.}

Введем известные значения в калькулятор для проверки полученного ответа.

Задача 2

Найдите длину дуги окружности радиуса 3см, если ее градусная мера равна 150 градусов.

Решение

Задача аналогична предыдущей. Также воспользуемся первой формулой.

L = dfrac{pi R alpha}{180degree} = dfrac{pi cdot 3 cdot 150degree}{180degree} = dfrac{pi cdot 3 cdot 5}{6} = dfrac{pi cdot 5}{2} = dfrac{5}{2} pi : см = 2.5 pi : см approx 7.85398 : см.

Ответ: {2.5 pi : см approx 7.85398 : см.}

В проверке ответа нам снова поможет калькулятор .

Длина дуги окружности имеет множество применений в математике и ее приложениях. Например, она используется для вычисления длины дуги графика функции, заданной в полярных координатах. Также длина дуги окружности используется при вычислении пути, пройденного телом при движении по окружности, а также для вычисления объема тела, полученного путем вращения дуги окружности вокруг ее диаметра.

Калькулятор длины дуги для круга

Длина дуги

сделано с ❤️

Оглавление

◦Что такое дуга в математике?
◦Какая длина дуги?
◦Как найти длину дуги?
◦Что такое измерение дуги?
◦Как найти измерение дуги?
◦Что такое центральный угол дуги?
◦Что такое вписанный угол дуги?
◦В чем разница между малой и большой дугой?
◦Что такое полукруглая дуга?
◦Что такое перехваченная дуга?
◦В чем разница между градусами и радианами?

Найти длину дуги довольно просто. Вы можете легко рассчитать длину дуги с помощью нашего калькулятора или следуя нашим инструкциям.

Вы также узнаете необходимые формулы для расчетов и полезную информацию о дугах.

Что такое дуга в математике?

Дуга – это часть окружности круга.

Дуга также может иметь изогнутую форму, например эллипс, но дуга почти всегда относится к кругу.

Определение дуги

Какая длина дуги?

Длина дуги – это длина ее части окружности.

Как найти длину дуги?

Длину дуги можно рассчитать с помощью центрального угла дуги и радиуса окружности.

Что такое измерение дуги?

Измерение дуги – это измерение в градусах, которое показывает центральный угол дуги. Обычно используется для определения длины окружности.

Как найти измерение дуги?

Измерение дуги можно легко найти, рассчитав его с длиной дуги и радиусом дуги.

Что такое центральный угол дуги?

Центральный угол дуги – это угол, вершина которого находится в центре круга, а концы – на окружности круга.

Центральный угол дуги

Что такое вписанный угол дуги?

Вписанные углы определяются как дуги, которые находятся на окружности и пересекают дугу на ней. Они измеряются как половина меры перехваченной дуги и половина меры центрального угла, который пересекает ту же самую дугу.

Вписанный угол дуги

В чем разница между малой и большой дугой?

Окружность круга можно разделить на две части, разрезав его на две части. Части окружности называются дугами.

Малая дуга – это более короткая дуга окружности окружностей. Размер этой дуги меньше 180 градусов.

Большая дуга – это более длинная дуга окружности окружностей. Угол большой дуги превышает 180 градусов.

Малая и большая дуга

Что такое полукруглая дуга?

Полукруглая дуга – это дуга, центральный угол которой равен 180 градусам.

Что такое перехваченная дуга?

Перехватываемая дуга – это тип дуги, который появляется, когда пара линий или хорд пересекает окружность и встречается в определенной точке.

Определение перехваченной дуги

В чем разница между градусами и радианами?

Градусы и радианы – разные единицы измерения угла. Первый – это более старый метод измерения угла, а второй – более сложный.

Радиан – это единица измерения плоского угла, равная центру круга, ограниченного дугой, длина которой равна радиусу.

Градус – это единица измерения, которая показывает угол между центром круга и его сторонами и равна ¹ / длины окружности.

Простая демонстрация разницы между градусами и радианами

John Cruz

Автор статьи

John Cruz

Джон – аспирант, увлеченный математикой и образованием. В свободное время Джон любит ходить в походы и кататься на велосипеде.

Калькулятор Длины Дуги Для Круга русский

Опубликовано: Mon Sep 13 2021

В категории Математические калькуляторы

Добавьте Калькулятор Длины Дуги Для Круга на свой сайт

Калькулятор Длины Дуги Для Круга на других языках

Другие математические калькуляторы

Дуга окружности – это фрагмент окружности. Если на окружности отметить две точки A И B, то она разобьётся на 2 части, называемые дугами окружности.

Для того, чтобы найти длину дуги окружности, необходимо использовать значение центрального угла, измеряемого в радианах или градусах.


Существует 2 формулы длины дуги окружности:

1) Если дан центральный угол в радианах: l = R*α, где R – радиус, α – величина угла AOB в радианах.

2) Если дан центральный угол в градусах: l = R*π*C/180, где R – радиус, C – величина угла AOB в градусах.


Пример

Дано:

1) радиус окружности R = 6 дм.

2) центральный угол AOB = 45°.

Найти:

Длину дуги AB.

Решение:

l = 6*3,14*1/4 дм. = 4,71 дм.

В той статье мы узнаем что такое дуга окружности, центральный угол, измерение дуги окружности.

Дуга – это любая связанная часть окружности круга. На рисунке ниже часть окружности от (M) до (N) образует дугу. Она называется (smile) (MN).

Дуга окружности

Дуга может быть малой дугой, полукругом или большой дугой. Полукруг – это дуга, равная половине круга. Малая дуга – это дуга, которая меньше полукруга. Большая дуга – это дуга, которая больше полукруга.

Центральный угол
Центральный угол – это угол, вершина которого находится в центре окружности. Например угол (∠NAM):

Дуга окружности

Дуга круга, угол

На приведенной выше диаграмме центральный угол для дуги (MN) равен (45°).

Сумма центральных углов в любой окружности равна (360°). Мера полуокружности равна (180°).

Мера малой дуги равна мере центрального угла, который перехватывает дугу. Можно также сказать, что мера малой дуги равна мере центрального угла, который подтягивается дугой. На диаграмме ниже мера дуги (MN) равна (45°):

Дуга окружности

Мера главной дуги равна (360°).

Больше уроков и заданий по всем школьным предметам в онлайн-школе “Альфа”. Запишитесь на пробное занятие прямо сейчас!


Запишитесь на бесплатное тестирование знаний!

Добавить комментарий