сетевые утилиты
- главная
- инструменты
- тесты
- расчеты
- информация
Калькулятор сетевых масок < Расчеты < Главная
Расчеты
- Расчет IP сетей
- Калькулятор IP
- Калькулятор сетевых масок
- Калькулятор CIDR
- Конвертер IPv4/IPv6
- Расчет углов антенны
- IDNA конвертер
- Конвертер AS/AS-Dot
- Калькулятор RAID
Информация о вас
IP: 178.205.242.113
ОС: Windows 7
Браузер: Chrome 107
Калькулятор сетевых масок
Рассчитывает сетевые маски по адресам сети с указанием первого и последнего IP адреса диапазона, из CIDR диапазона и наоборот — получает CIDR диапазон из сетевой маски.
Расчет сетевой маски по адресам сети
Первый IP-адрес диапазона: | • • • |
Последний IP-адрес диапазона: | • • • |
Результаты: |
Расчет сетевой маски из CIDR-диапазона
CIDR-диапазон: | |
Результаты: | • • • |
Расчет CIDR-диапазона из сетевой маски
Сетевая маска: | • • • |
Результаты: |
Все отправленные вами запросы и ваш IP адрес сохраняются в журнале.
© 2007—2023 Некоммерческий проект «HSDN». Все права защищены.
Связаться с нами | Соглашение об использовании сервиса
- Remove From My Forums
-
Вопрос
-
имеются входные данные – диапазон IP (включая адрес сети и бродкаст)
192.168.153.0 – 192.168.153.127
На выходе надо получить
192.168.153.0/25 или 255.255.255.128
Подскажите по какой формуле происходит вычисление? Или может у кого есть скрипт который выполняет такое преобразование?
Заранее всем спасибо за помощь.
Ответы
-
Это же математика уровня 4 класса. Прочитайте теорию по ссылкам выше и реализуйте в скрипте.
какая интересная у Вас школа – аж в 4-ом классе проходят двоичную систему счисления.
Подскажите по какой формуле происходит вычисление?
просто запомните наизусть, как таблицу умножения (в каком там классе её проходят?!):
255.255.255.0 - 254 хоста /24 255.255.255.128 - 126 хостов /25 255.255.255.192 - 62 хоста /26 255.255.255.224 - 30 хоста /27 255.255.255.240 - 14 хостов /28 255.255.255.248 - 6 хостов /29 255.255.255.252 - 2 хоста /30 255.255.255.255 - 1 хост /32
если лень по ссылкам читать то кратко так:
255 в двоичной системе счисления = 11111111 = восемь едениц
255.255.255.255 – тридцать две еденицы, по этому /32
Количество хостов (узлов) определяется правилом: количество IP адресов – два
Первый адрес сети всегда – ID сети
Последний адрес сети всегда – Broadcastпо вашему примеру:
192.168.153.0 – 192.168.153.127
общее количество IP адресов = 128
минус два адреса = 126 хостов
согласно таблице выше – маска /25-
Помечено в качестве ответа
10 августа 2016 г. 7:08
-
Помечено в качестве ответа
-
-
Предложено в качестве ответа
Alexander RusinovModerator
10 августа 2016 г. 7:08 -
Помечено в качестве ответа
Alexander RusinovModerator
30 декабря 2016 г. 16:30
-
Предложено в качестве ответа
-
-
Предложено в качестве ответа
Alexander RusinovModerator
10 августа 2016 г. 7:08 -
Помечено в качестве ответа
Alexander RusinovModerator
30 декабря 2016 г. 16:30
-
Предложено в качестве ответа
Всем привет! На связи Аксель Фоули.
Т.к. я начал публиковать у себя не блоге статьи на тему ip адресов:
- Как узнать айпи сайта?
- Динамический ip и статический ip.
- А для любителей сетевых онлайн игр Что делать если тебя забанили?
то мне кажется что раскрытие темы будет не полным, если я не расскажу как делается расчет маски подсети, для ip.
И если вы читаете данную статью, и вам за каким — то //////////// понадобилось заниматься расчетом маски для ip, тогда вы должно быть программист ну или как минимум в этом разбираетесь. А если нет — просьба людей впечатлительных и с неустойчивой психикой закрыть данный пост… т.к. сейчас я буду мучить вас пресловутыми цифрами, вычислениями и специфическими терминами. Но я знаю что вы не закроете, а будете читать дальше
Ок, тогда поехали.
Содержание
- Что такое «Маска подсети»
- Пример
- Расчет вручную
- Ip — калькуляторы
- SuipBiz
- IpcalcCo
- NetworkCenter
- Заключение
Что такое «Маска подсети»
Для простоты восприятия приведу простой житейский пример. Итак, все мы живем в домах. Все с детства знаем, что адрес дома состоит из наименования улицы и номера дома.
Например: Садовая, 15
То есть адрес логически разделяется на два блока.
- Обозначение улицы — “Садовая“;
- Точное указание номера дома — “15“;
Эти два блока связаны между собой, образуя единое идентификационное целое.
Одно без другого невозможно.
- В русском языке разделителем адреса служит запятая — “,“.
В мире интернета все аналогично.
Ip любого компьютера состоит из двух частей:
- Адрес самой сети;
- Адреса устройства в этой сети.
- Разделяющим знаком здесь как раз служит маска подсети.
Представим, что у нас пять классов маршрутизации. Обозначим их латинскими буквами A,B,C,D,E.
И вот провайдер выделяет адреса различным организациям или частному лицу из данного диапазона.
Разумеется, отдать всю сеть “B” метафорическому Васе с той же Садовой, 15 крайнее расточительство.
Все пространство 129.16.00 одному Васе! А это 65534 айпи!
Понятно, что сеть лучше разбить на большое количество малых сетей.
Маска как раз и позволяет понять, какая часть адреса имеет отношение к сети, а какая — уже к определенному компьютеру.
Пример
Представим, что у нас есть:
ip — “129.16.10.1“
С маской подсети — “255.255.255.0“
Итак, зная это попробуем рассчитать и записать айпи подсети, в привычном нам виде:
- Сейчас я переведу эти цифры в двоичную систему! Как в «Интерстелларе»:
129.16.10.1 = 10101100.00010000.00001010.00000001
255.255.255.0 = 11111111.11111111.11111111.00000000
(О том как это делать чуть ниже…);- Устройство, ответственное за переработку ip — пакета начинает сопоставлять между собой ip с маской.
То есть, как я уже упоминал выше, часть маски с единицами «11111111.11111111.11111111.00000000» — представляет собой сеть.
В то время как нули 11111111.11111111.11111111.00000000 — хост;- Итог:
Айпи подсети будет выглядеть таким образом:
10000001.00010000.00001010.00000000 = 129.16.10.0
В привычном виде — 129.16.10.0 /24
24 — количество бит, выделенных под сеть.
Расчет вручную
Вручную количество хостов можно вычислить по нехитрой формуле:
232 — N — 2
N — длина подсети, те самые биты.
Получаем:
232 — N — 2 = 206 (хостов для маски 255.255.255.0)
Почему — 2?
Просто минусуются первый последний адреса в диапазоне, потому что они не в счет.
Ip — калькуляторы
Наверное, я начал вас пугать? Что же, простым смертным совершенно необязательно проводить пугающие математические расчеты.
Достаточно воспользоваться ip-калькуляторами, которые проведут все необходимые расчеты в онлайн режиме за считанные секунды:
SuipBiz
https://suip.biz/ru/?act=ipcalculator
- Определяет значения диапазона ip для указанной подсети.
Поэкспериментируем:
- Введем айпи 185.117.152.0 для маски 24 — 255.255.255.0
- И видим данные в виде таблице.
IpcalcCo
https://ipcalc.co
- Позволяет считать количество хостов в указанной подсети.
Поиграем с айпи 185.169.101.192 и маской 25 — 255.255.255.128
Программа выводит:
То есть по количеству хостов получаем цифру 126.
NetworkCenter
https://networkcenter.info/calcs/netmaskcalc
- А вот этот калькулятор позволяет непосредственно рассчитать сетевые маски по:
- Адресу сети:
Представим, что первый айпи по диапазону — 12.34.56.1
А последний адрес в том же диапазоне — 12.34.56.10Жмем по клавише рассчитать и получаем результат в виде 255.255.255.240;
- Из CIDR — диапазона:
Представим, что он представляет собой 28 бит.
Получаем 255.255.255.240;
- CIDR — диапазон из сетевой маски
255.255.255.128 = 25
Как вы видите, великим админом для манипуляций с айпи и расчетами маски сети быть не надо. Достаточно немного теории, и практичных онлайн — калькуляторов. Дело в шляпе!
Заключение
Думаю, что сегодня с вас хватит этих бешеных цифр по ip. А то совсем замучил. Но если тема так заинтересовала, то рекомендую:
- Учебник для системных администраторов — “Компьютерные сети. Принципы, технологии, протоколы” — В. Олифер, Н. Олифер.
В нем есть все и даже больше для успешного продвижения по направлению. - Или же пройти платные курсы например эти;
https://skillfactory.ru/sistemnyj-administrator
Пока действует скидка 40%!
Надеюсь, приведенная мной информация была вам полезна. И даже если вы будете испытывать затруднения с расчетами вручную, помогут калькуляторы! Удачи в расчетах!
С уважением Аксель Фоули.
Приветствую вас на очередном выпуске. И сегодня речь пойдет о том, какие бывают IP-адреса, и как ими пользоваться. Что такое маска подсети, как она считается, и для чего она нужна. Как делить сети на подсети и суммировать их. Заинтересовавшихся приглашаю к прочтению.
Начнем, или уже продолжим, с самого популярного, заезженного и больного. Это IP-адреса. На протяжении 4-х статей это понятие встречалось по несколько раз, и скорее всего вы уже либо сами поняли для чего они, либо нагуглили и почитали о них. Но я обязан вам это рассказать, так как без ясного понимания двигаться дальше будет тяжело.
Итак IP-адрес — это адрес, используемый узлом на сетевом уровне. Он имеет иерархическую структуру. Что это значит? Это значит, что каждая цифра в его написании несет определенный смысл. Объясню на очень хорошем примере. Примером будет номер обычного телефона — +74951234567. Первой цифрой идет +7. Это говорит о том, что номер принадлежит зоне РФ. Далее следует 495. Это код Москвы. И последние 7 цифр я взял случайными. Эти цифры закреплены за районной зоной. Как видите здесь наблюдается четкая иерархия. То есть по номеру можно понять какой стране, зоне он принадлежит. IP адреса придерживаются аналогично строгой иерархии. Контролирует их организация IANA(англ. Internet Assigned Numbers Authority). Если на русском, то это «Администрация адресного пространства Интернет». Заметьте, что слово «Интернет» с большой буквы. Мало кто придает этому значение, поэтому объясню разницу. В англоязычной литературе термин «internet» используется для описания нескольких подключённых друг к другу сетей. А термин «Internet» для описания глобальной сети. Так что примите это к сведению.
Несмотря на то, что тема статьи больше теоретическая, нежели практическая, я настоятельно рекомендую отнестись к ней со всей серьезностью, так как от нее зависит понимание дальнейших тем, а особенно маршрутизации. Не для кого, я думаю, не секрет, что мы привыкли воспринимать числовую информацию в десятичном формате (в числах от 0-9). Однако все современные компьютеры воспринимают информацию в двоичном (0 и 1). Не важно при помощи тока или света передается информация. Вся она будет воспринята устройством как есть сигнал (1) или нет (0). Всего 2 значения. Поэтому был придуман алгоритм перевода из двоичной системы в десятичную, и обратно. Начну с простого и расскажу, как выглядят IP адреса в десятичном формате. Вся эта статья посвящена IP адресам версии 4. О версии 6 будет отдельная статья. В предыдущих статьях, лабах, да и вообще в жизни, вы видели что-то вроде этого «193.233.44.12». Это и есть IP адрес в десятичной записи. Состоит он из 4-х чисел, называемых октетами и разделенных между собой точками. Каждое такое число (октет) может принимать значение от 0 до 255. То есть одно из 256 значений. Длина каждого октета равна 8 битам, а суммарная длина IPv4 = 32 битам. Теперь интересный вопрос. Каким образом этот адрес воспримет компьютер, и как будет с ним работать?
Можно конечно набить это в калькулятор, коих навалом в Интернете, и он переведет его в двоичный формат, но я считаю, что переводить вручную должен уметь каждый. Особенно это касается тех, кто планирует сдавать экзамен. У вас не будет под рукой ничего, кроме бумаги и маркера, и полагаться придется только на свои навыки. Поэтому показываю, как это делать вручную. Строится таблица.
Вместо «x» записывается либо 1, либо 0. Таблица разделена на 8 колонок, каждая из которых несет в себе 1 бит (8 колонок = 8 бит = 1 октет). Расположены они по старшинству слева направо. То есть первый (левый) бит — самый старший и имеет номер 128, а последний (правый) — самый младший и имеет номер 1. Теперь объясню, откуда эти числа взялись. Так как система двоичная, и длина октета равна 8-ми битам, то каждое число получается возведением числа 2 в степень от 0 до 7. И каждая из полученных цифр записывается в таблицу от большего к меньшему. То есть слева направо. От 2 в 7-ой степени до 2 в 0-ой степени. Приведу таблицу степеней 2-ки.
Думаю теперь понятно, каким образом строится таблица. Давайте теперь разберем адрес «193.233.44.12» и посмотрим, как он выглядит в двоичном формате. Разберем каждый октет отдельно. Возьмем число 193 и посмотрим, из каких табличных комбинаций оно получается. 128 + 64 + 1 = 193.
Те числа, которые участвовали в формировании комбинации получают 1, а все остальные получают 0.
Берем первый октет 233. 128 + 64 + 32 + 8 + 1.
Для 44 — это 32 + 8 + 4.
И напоследок 12. 8 + 4.
Получается длинная битовая последовательность 11000001.11101001.00101100.00001100. Именно с данным видом работают сетевые устройства. Битовая последовательность обратима. Вы можете так же вставить каждый октет (по 8 символов) в таблицу и получить десятичную запись. Я представлю совершенно случайную последовательность и приведу ее к десятичному виду. Пусть это будет 11010101.10110100.11000001.00000011. Строю таблицу и заношу в нее первый блок.
Получаю 128 + 64 + 16 + 4 + 1 = 213.
Вычисляю второй блок.
Считаю 128 + 32 + 16 + 4 = 180.
Третий блок.
128 + 64 + 1 = 193.
И напоследок четвертый.
2 + 1 = 3
Собираем результаты вычислений и получаем адрес 213.180.193.3. Ничего тяжелого, чистая арифметика. Если тяжело и прям невыносимо трудно, то попрактикуйтесь. Сначала может показаться страшным, так как многие закончили учебу лет 10 назад и многое позабыли. Но уверяю, что как только набьете руку, считать будет гораздо легче. Ну а для закрепления дам вам несколько примеров для самостоятельного расчета (под спойлером будут ответы, но открывайте их только когда прорешаете сами).
Задача №1
1) 10.124.56.220
2) 113.72.101.11
3) 173.143.32.194
4) 200.69.139.217
5) 88.212.236.76
6) 01011101.10111011.01001000.00110000
7) 01001000.10100011.00000100.10100001
8) 00001111.11011001.11101000.11110101
9) 01000101.00010100.00111011.01010000
10) 00101011.11110011.10000010.00111101
Ответы
1) 00001010.01111100.00111000.11011100
2) 01110001.01001000.01100101.00001011
3) 10101101.10001111.00100000.11000010
4) 11001000.01000101.10001011.11011001
5) 01011000.11010100.11101100.01001100
6) 93.187.72.48
7) 72.163.4.161
8) 15.217.232.245
9) 69.20.59.80
10) 43.243.130.61
Теперь IP-адреса не должны быть чем-то страшным, и можно углубиться в их изучение.
Выше мы говорили о структуре телефонных номеров и их иерархии. И вот на заре рождения Интернета в том представлении, в каком мы его привыкли видеть, возник вопрос. Вопрос заключался в том, что IP-адреса нужно как-то сгруппировать и контролировать выдачу. Решением было разделить все пространство IP-адресов на классы. Это решение получило название классовая адресация (от англ. Classful). Она уже давно устарела, но практически в любой книге на нее отводятся целые главы и разделы. Cisco тоже не забывает про это и в своих учебных материалах рассказывает про нее. Поэтому я пробегусь по этой теме и покажу, чем она блистала с 1981 по 1995 год.
Пространство было поделено на 5 классов. Каждому классу был назначен блок адресов.
Начнем с класса A. Если внимательно посмотреть на таблицу, то можно заметить, что этому блоку дан самый большой блок адресов, а если быть точным, то половина всего адресного пространства. Предназначался данный класс для крупных сетей. Структура этого класса выглядит следующим образом.
В чем суть. Первый октет, то есть 8 бит, остаются за адресом сети, а 3 последних октета (то есть оставшиеся 24 бита) назначаются хостам. Вот для того, чтобы показать, какой кусок относится к сети, а какой к хостам, используется маска. По структуре записи она аналогична записи IP-адреса. Отличие маски от IP-адресов в том, что 0 и 1 не могут чередоваться. Сначала идут 1, а потом 0. Таким образом, там где есть единица, значит это участок сети. Чуть ниже, после разбора классов, я покажу, как с ней работать. Сейчас главное знать, что маска класса A — 255.0.0.0. В таблице еще упомянут какой-то первый бит и для класса A он равен 0. Этот бит как раз нужен для того, чтобы сетевое устройство понимало, к какому классу оно принадлежит. Он же еще задает начальный и конечный диапазон адресов. Если в двоичном виде записать на всех октетах единицы, кроме первого бита в первом октете (там всегда 0), то получится 127.255.255.255, что является границей класса A. Например, возьмем адрес 44.58.63.132. Мы знаем, что у класса A первый октет отдается под адрес сети. То есть «44» — это адрес сети, а «58.63.132» — это адрес хоста.
Поговорим про класс B
Этому классу был дан блок поменьше. И адреса из этого блока предназначались для сетей средних масштабов. 2 октета отданы под адрес сети, и 2 — под адрес хостов. Маска у B класса — 255.255.0.0. Первые биты строго 10. А остальные меняются. Перейдем к примеру: 172.16.105.32. Два первых октета под адрес сети — «172.16». А 3-ий и 4-ый под адрес хоста — «105.32».
Класс C
Этот класс обделили адресами и дали ему самый маленький блок. Он был предназначен для мелких сетей. Зато этот класс отдавал целых 3 октета под адрес сети и только 1 октет — под хосты. Маска у него — 255.255.255.0. Первые биты 110. На примере это выглядит так — 192.168.1.5. Адрес сети «192.168.1», а адрес хоста «5».
Классы D и E. Я неcпроста объединил их в один. Адреса из этих блоков зарезервированы и не могут назначаться сетям и хостам. Класс D предназначен для многоадресной рассылки. Аналогию можно привести с телевидением. Телеканал вещает группе лиц свой эфир. И те, кто подключены, могут смотреть телепередачи. То есть в распоряжение администраторов могут попасть только 3 первых класса.
Напомню, что первые биты у класса D — это 1110. Пример адреса — 224.0.0.5.
А первые биты у класса E — это 1111. Поэтому, если вдруг увидите адрес вида 240.0.0.1, смело говорите, что это адрес E класса.
Про классы обмолвились. Теперь озвучу вопрос, который мне недавно задали. Так зачем тогда маски? У нас итак хосты понимают в каком они классе. Но суть вот в чем. Например, у вас есть маленький офис, и вам нужен блок IP-адресов. Никто не будет вам выдавать все адреса класса C. А дадут только его кусок. Например 192.168.1.0 с маской 255.255.255.0. Так вот эта маска и будет определять вашу границу. Мы уже говорили, что октет варьируется в значении от 0 до 255. Вот этот 4 октет полностью в вашем распоряжении. За исключением первого адреса и последнего, то есть 0 и 255 в данном случае. Первый адрес — это адрес сети (в данном случае 192.168.1.0), а последний адрес — широковещательный адрес (192.168.1.255). Напомню, что широковещательный адрес используется в том случае, когда надо передать информацию всем узлам в сети. Поэтому есть правило. Если вам надо узнать номер сети, то все биты относящиеся к хосту обращаете в 0, а если широковещательный, то все биты — в 1. Поэтому, если из 256 адресов забирается 2 адреса, то на назначение хостам остается 254 адреса (256 — 2). На собеседованиях и экзаменах часто любят спрашивать: «Количество IP-адресов в сети?» и «Сколько доступных IP-адресов в сети для назначения хостам?». Два разных вопроса, которые могут поставить в тупик. Ответом на первый будет — все адреса, включая адрес сети и широковещательный адрес, а на второй вопрос — все адреса, кроме адреса сети и широковещательного адреса.
Теперь углубимся в изучении маски.
Я записал адрес класса C 192.168.1.1 с маской 255.255.255.0 в десятичном и двоичном формате. Обратите внимание на то, как выглядит IP-адрес и маска в двоичном формате. Если в IP-адресе 0 и 1 чередуются, то в маске сначала идут 1, а потом 0. Эти биты фиксируют адрес сети и задают размер. По таблице выше можно сделать вывод, что в двоичном виде маска представлена последовательностью 24 единиц подряд. Это говорит о том, что целых 3 октета выделено под сеть, а 4 октет свободен под адресацию для хостов. Здесь ничего необычного. Это стандартная маска класса C.
Но вот в чем загвоздка. Например, в вашем офисе 100 компьютеров, и расширяться вы не планируете. Зачем плодить сеть из 250+ адресов, которые вам не нужны?! На помощь приходит разделение на подсети. Это очень удобная вещь. Объясню принцип на примере того же класса C. Как бы вы не хотели, но трогать 3 октета нельзя. Они фиксированы. Но вот 4 октет свободен под хосты, поэтому его можно трогать. Заимствуя биты из хостового куска, вы дробите сеть на n-ое количество подсетей и, соответственно, уменьшаете в ней количество адресов для хостов.
Попробуем это воплотить в реальность. Меняю маску. Заимствую первый бит из хостовой части(то есть 1-ый бит 4-ого октета выставляю в единицу). Получается следующая маска.
Данная маска делит сеть на 2 части. Если до дробления у сети было 256 адресов(от 0 до 255), то после дробления у каждого куска будет по 128 адресов(от 0 до 127 и от 128 до 255).
Теперь посмотрю, что изменится в целом с адресами.
Красным цветом я показал те биты, которые зафиксированы и не могут изменяться. То есть маска ей задает границу. Соответственно биты помеченные черным цветом определены для адресации хостов. Теперь вычислю эту границу. Чтобы определить начало, надо все свободные биты(помеченные черным цветом) обратить в ноль, а для определения конца обратить в единицы. Приступаю.
То есть в четвертом октете меняются все биты, кроме первого. Он жестко фиксирован в рамках этой сети.
Теперь посмотрим на вторую половину сети и вычислим ее адреса. Деление у нас производилось заимствованием первого бита в 4-ом октете, значит он является делителем. Первая половина сети получалась, когда этот бит принимал значение 0, а значит вторая сеть образуется, когда этот бит примет значение 1. Обращаю этот бит в 1 и посмотрю на границы.
Приведу в десятичный вид.
Соответственно .128 и .255 назначать хостам нельзя. Значит в доступности 128-2=126 адресов.
Вот таким образом можно при помощи маски управлять размером сети. Каждый заимствованный бит делит сеть на 2 части. Если откусить 1 бит от хостовой части, то поделим на 2 части (по 128 адресов), 2 бита = 4 части (по 64 адреса), 3 бита = 8 (по 32 адреса) и так далее.
Если вы рассчитали количество бит, отдаваемые под хосты, то количество доступных IP-адресов можно вычислить по формуле
В книге У. Одома по подготовке к CCNA R&S приведена хорошая формула для расчета битов, отдаваемых на подсеть и хосты:
N + S + H = 32, где N — кол-во битов сети (класс A — 8 бит, B — 16 бит, C — 24 бита), S — кол-во заимствованных битов на подсеть (это то, что мы делали выше, когда заимствовали 1 бит из хостовой части), H — кол-во бит отводимых хостам.
Внесу ясность и объясню, как и где применять эти формулы.
Возьмем пример:
Нам выдали сеть 172.16.0.0 и попросили создать 120 подсетей со 180 хостами и записать маску. Приступим.
В качестве шпаргалки, и для быстроты вычисления, я ниже подготовил таблицу степеней двойки.
Двигаемся дальше. Первое главное условие, при использовании классовой адресации — это то, что должна использоваться одна маска для всех подсетей. То есть, если у вас для одной подсети маска 255.255.255.0, то для другой подсети она не может быть 255.255.255.128.
Теперь смотрим на выданную сеть. Путем логических размышлений понимаем, что это адрес класса B. А значит его N (кол-во битов сети) = 16. Ок. Значит на хосты выделено тоже 16 бит. Вспоминаем условия задачи. Нужно создать 120 подсетей. «Откусывать» биты от сетевой части запрещено, значит кусаем от хостовой части.
Теперь нужно взять такое кол-во бит, чтобы хватило для 120 подсетей, однако оставляло достаточное кол-во под биты для хоста. Смотрим на таблицу выше. Если взять 7 бит, то получим 128. 128>120, следовательно попадаем под условие. Если возьмем 6 бит, то получим 64. 64<128, поэтому не попадаем под условие и отбрасываем этот вариант.
Ок. Выяснили, что S надо выделить не меньше 7 бит. Теперь посмотрим, что осталось под хосты.
Если N + S + H = 32 => H = 32 — (N + S) => H = 32 — (16 + 7) = 9. Смотрим на таблицу выше (или возводим 2 в 9 степень в уме) и получаем число 512. Отнимаем 2 (адрес сети и широковещательный адрес) и получаем 510 адресов. Нам нужно 180, а значит под условие мы попадаем причем с большим запасом. В таких случаях вам предоставляется право выбора. Сделать больше подсетей или хостов на подсеть. Объясняю, что это значит. У нас есть 9 бит на хосты. Если мы возьмем 8 бит, то получим число 256. 256 — 2 = 254 адреса. Этот вариант нам тоже подходит. Возьмем 7 бит. Получаем 128. Даже не отнимая 2 адреса, становится понятно, что это меньше 180 => данный вариант отбрасывается сразу. Итого получаем, что минимальное количество для подсети — 7 бит, а для хостов — 8 бит. Поэтому свободный бит можно отдать либо на подсеть, либо на хосты. Маска получается сложением N и S. В нашем случае получаем, если под подсеть отдаем 7 бит, то получаем 23. В десятичном виде маска будет выглядеть 255.255.254.0. А если отдадим под подсеть 8 бит, то получим 24 (или в десятичном виде 255.255.255.0). Иногда бывает, что под задачу существует всего одна маска. Ну и, конечно, могут быть случаи, когда маска не попадает не под какие условия. В этих случаях нужно брать сеть другого класса или доказывать заказчику, что это невозможно.
Думаю теперь понятно, как работала классовая адресация, и как ее рассчитывали. Возможно с первого раза голова не переварит этого, поэтому перечитывайте еще раз и повнимательнее. Как только начнет что-то проясняться, потренируйтесь на задачках, которые я оставлю.
Задача №2
1) Записать маску для проекта: сеть 172.16.0.0. 250 подсетей и 220 хостов.
2) Записать маску для проекта: сеть 10.0.0.0. 2000 подсетей и 1500 хостов.
3) Записать маску для проекта: сеть 192.168.0.0. 4 подсети и 60 хостов.
Ответы на задачи
1) 24 бита или 255.255.255.0
2) 19 бит (255.255.224.0), 20 бит (255.255.240.0), 21 бит (255.255.248.0)
3) 26 бит или 255.255.255.192
На этом разговор про классовые сети начну закруглять и подведу итоги. Классовая адресация — это зарождение сегодняшнего интернета, и именно с нее все началось. Поэтому плюсов у нее много, и за это создателям спасибо. Но, как вы могли заметить, у нее было жесткая привязка к одной маске. За счет этого IP-адреса использовались не экономно и расточительно. А в связи с бурным ростом Интернета адресов стало не хватать, и срочно нужно было вносить изменения.
Поняли ведущие умы, что использовать классовые сети не удобно и нужно от них отказываться. Это привело к созданию бесклассовой адресации и маскам переменной длины, о чем мы ниже поговорим. Но перед этим пару слов о видах IP-адресов. Несмотря на то, что переход от классовой адресации к бесклассовой предполагал экономию IP-адресов, на деле эта проблема все равно решалась не полностью. Все упиралось в саму технологию IPv4. Объясню почему. Выше я говорил, что длина IP адреса равна 32 бита. Каждый бит может принимать значение 0 или 1, то есть два значения. Соответственно, чтобы вычислить все комбинации, надо возвести 2 в 32-ую степень. Получаем 4294967296 адресов. Если вычесть отсюда зарезервированные для специальных нужд и прочего, то останется примерно 4.2 млрд. адресов, когда на Земле проживает около 7.3 млрд. человек. Поэтому ведущие умы быстро просекли эту фишку и начали искать решение. Они решили выделить некое адресное пространство, которое будет использоваться только в пределах локальной сети и не будет использоваться в Интернете. Это разделило адреса на 2 лагеря: белые или публичные (англ. public) и серые или частные (англ. private).
Привожу диапазон адресов, которые выделены под локальные сети:
1) 10.0.0.0 — 10.255.255.255 с маской 255.0.0.0 (или кратко 10/8).
2) 172.16.0.0 — 172.31.255.255 с маской 255.240.0.0 (или кратко 172.16/12).
3) 192.168.0.0 — 192.168.255.255 (или кратко 192.168/16).
Если честно, я мало где видел применение адресации 172.16.X.X. Обычно в корпоративной среде всегда используется 10.X.X.X, а в домах/квартирах и мелких офисах 192.168.X.X.
Теперь прошу обратить внимание на очень важную вещь, которую многие путают. Не путайте классовую адресацию и диапазон частных адресов. Очень много людей наступают на эти грабли и свято верят, что диапазон частных адресов 10.0.0.0 — 10.255.255.255 — это диапазон A класса.
Разобрались, что такое частные адреса или private адреса. Но это еще не все. Есть еще список зарезервированных адресов, которые не могут светиться в Интернете. По ним написана целая документация на IETF. Привожу ссылку, где можете прочитать оригинал. Я кратко опишу часто встречающиеся.
1) 0.0.0.0/8 — диапазон адресов, используемый хостами для самоидентификации. Обычно это можно увидеть, когда хост пытается получить IP-адрес от DHCP сервера. Так как изначально у него нету IP-адреса, то в поле источника он вставляет адрес из данного диапазона.
2) 127.0.0.0/8 — loopback или localhost адреса. Это IP-адреса, используемые компьютером, чтобы обратиться к самому себе. Очень полезно для проверки работы TCP/IP. Дело в том, что независимо от наличия соединения с Интернетом или локальной сетью, адреса из этого пула должны всегда пинговаться. Если этого не происходит, значит система накрылась или накрывается медным тазом.
3) 169.254.0.0/16 — link-local address или локальные адреса. Автоматически используются хостами при отсутствии DHCP-сервера или его недоступности. Это позволяет быстро организовать локальную сеть и проверить работу узлов. Однако данный пул адресов не маршрутизируется. Следовательно, выйти в Интернет с них не получится.
4) 224.0.0.0/4 — блок адресов, зарезервированный под многоадресную рассылку или multicast. Для тех, кто хочет побольше узнать про multicast, оставляю ссылку.
Бесклассовая адресация (англ. Classless Inter-Domain Routing или CIDR). Описана была в стандарте RFC1519 в 1993 году. Она отказалась от классовых рамок и фиксированной маски. Адреса делятся только на публичные и зарезервированные, о которых написано выше. Если в классовой адресации маска нарезалась единой для всех подсетей, то в бесклассовой — у каждой подсети может быть своя маска. На теории все хорошо и красиво, но нет ничего лучше, чем практика. Поэтому перехожу к ней и объясню, как можно делить на подсети с разным количеством хостов.
В качестве шпаргалки приведу список всех возможных масок.
Представим ситуацию. Вам выдали сеть 192.168.1.0/24 и поставили следующие условия:
1) Подсеть на 10 адресов для гостей.
2) Подсеть на 42 адреса для сотрудников.
3) Подсеть на 2 адреса для соединения 2 маршрутизаторов.
4) Подсеть на 26 адресов для филиала.
Ок. Данная маска показывает, что в нашем распоряжении находятся 256 адресов. По условию эту сеть надо каким-то образом разделить на 4 подсети. Давайте попробуем. 256 очень хорошо делится на 4, давая в ответе 64. Значит один большой блок в 256 адресов можно поделить на 4 равных блока по 64 адреса в каждом. И все было бы прекрасно, но это порождает большое число пустых адресов. Для сотрудников, которым нужно 42 адреса, ладно, может в дальнейшем компания еще наймет. Но вот подсеть для маршрутизаторов, которая требует всего 2 адреса, оставит 60 пустых адресов. Да, вы можете сказать, что это private адреса, и кому дело до них. А теперь представьте, что это публичные адреса, которые маршрутизируются в Интернете. Их и так мало, а тут мы еще будем их отбрасывать. Это не дело, тем более, когда мы можем гибко управлять адресным пространством. Поэтому возвращаемся к примеру и нарежем подсети так, как нам нужно.
Итак, какие подсети должны быть нарезаны, чтобы вместились все адреса, заданные по условию?!
1) Для 10 хостов, наименьшей подсетью будет блок из 16 адресов.
2) Для 42 хостов, наименьшей подсетью будет блок из 64 адресов.
3) Для 2 хостов, наименьшей подсетью будет блок из 4 адресов.
4) Для 26 хостов, наименьшей подсетью будет блок из 32 адресов.
Я понимаю, что не все могут с первого раза в это вникнуть, и в этом нет ничего страшного. Все люди разные и по-разному воспринимают информацию. Для полноты эффекта покажу деление на картинке.
Вот у нас блок, состоящий из 256 адресов.
После деления на 4 части получается следующая картинка.
Выше мы выяснили, что при таком раскладе адреса используются не рационально. Теперь обратите внимание, как стало выглядеть адресное пространство после нарезки подсетей разной длины.
Как видите, в свободном доступе осталось куча адресов, которые мы в дальнейшем сможем использовать. Можно посчитать точную цифру. 256 — (64 + 32 + 16 + 4) = 140 адресов.
Вот столько адресов мы сэкономили. Двигаемся дальше и ответим на следующие вопросы:
— Какими будут сетевые и широковещательные адреса?
— Какие адреса можно будет назначить хостам?
— Как буду выглядеть маски?
Механизм деления на подсети с разной маской получил название VLSM (от англ. Variable Length Subnet Mask) или маска подсети переменной длины. Дам важный совет! Начинайте адресацию с самой большой подсети. Иначе вы можете попасть на то, что адреса начнут перекрываться. Поэтому сначала планируйте сеть на бумаге. Нарисуйте ее, изобразите в виде фигур, просчитайте вручную или на калькуляторе и только потом переходите настройке в боевых условиях.
Итак, самая большая подсеть состоит из 64 адресов. С нее и начнем. Первый пул адресов будет следующий:
Адрес подсети — 192.168.1.0.
Широковещательный адрес — 192.168.1.63.
Пул адресов для назначения хостам от 192.168.1.1 до 192.168.1.62.
Теперь выбор маски. Тут все просто. Отнимаем от целой сети нужный кусок и полученное число записываем в октет маски. То есть 256 — 64 = 192 => маска 255.255.255.192 или /26.
Дальше идет подсеть поменьше. Состоит она из 32 адресов. Если первая заканчивалась на .63, то эта будет начинаться с .64:
Адрес подсети — 192.168.1.64.
Широковещательный адрес — 192.168.1.95.
Пул адресов для назначения хостам будет от 192.168.1.65 до 192.168.1.94.
Маска: 256 — 32 = 224 => 255.255.255.224 или /27.
3-я подсеть, которая предназначена для филиала, начнет старт с .96:
Адрес подсети — 192.168.1.96.
Широковещательный адрес — 192.168.1.111.
Пул адресов для назначения хостам будет от 192.168.1.97 до 192.168.1.110.
Маска: 256 — 16 = 240 => 255.255.255.240 или /28.
Ну и для последней подсети, которая уйдет под интерфейсы, соединяющие роутеры, будет начинаться с .112:
Адрес подсети — 192.168.1.112.
Широковещательный адрес — 192.168.1.115.
Разрешенными адресами будут 192.168.1.113 и 192.168.1.114.
Маска: 256 — 4 = 252 => 255.255.255.252 или /30.
Замечу, что адрес 192.168.1.115 является последним используемым адресом. Начиная с 192.168.1.116 и до .255 свободны.
Вот таким образом, при помощи VLSM или масок переменной длины, мы экономно создали 4 подсети с нужным количеством адресов в каждой. Думаю это стоит закрепить задачкой для самостоятельного решения.
Задача №3
Разделите сеть 192.168.1.0/24 на 3 разные подсети. Найдите и запишите в каждой подсети ее адреса, широковещательный адрес, пул разрешенных к выдаче адресов и маску. Указываю требуемые размеры подсетей:
1) Подсеть на 120 адресов.
2) Подсеть на 12 адресов.
3) Подсеть на 5 адресов.
Ответ
1) Адрес подсети — 192.168.1.0.
Широковещательный адрес — 192.168.1.127.
Пул адресов для назначения хостам будет от 192.168.1.1 до 192.168.1.126.
Маска: 256 — 128 = 128 => 255.255.255.128 или /25.
2) Адрес подсети — 192.168.1.128.
Широковещательный адрес — 192.168.1.143.
Пул адресов для назначения хостам будет от 192.168.1.129 до 192.168.1.142.
Маска: 256 — 16 = 240 => 255.255.255.240 или /28.
3) Адрес подсети — 192.168.1.144.
Широковещательный адрес — 192.168.1.151.
Пул адресов для назначения хостам будет от 192.168.1.145 до 192.168.1.150.
Маска: 256 — 8 = 248 => 255.255.255.248 или /29.
Теперь, когда вы знаете, как делить сети на подсети, самое время научиться собирать подсети в одну общую подсеть. Иначе это называется суммированием или summarization. Суммирование чаще всего используется в маршрутизации. Когда у вас в таблице маршрутизатора несколько соседних подсетей, маршрутизация которых проходит через один и тот же интерфейс или адрес. Скорее всего этот процесс лучше объяснять при разборе маршрутизации, но учитывая то, что тема маршрутизации и так большая, то я объясню процесс суммирования в этой статье. Тем более, что суммирование это сплошная математика, а в этой статье мы ею и занимаемся. Ну что же, приступлю.
Представим, что у меня компания состоящая из главного здания и корпусов. Я работаю в главном здании, а в корпусах коллеги. Хоть у меня и главное здание, но в нем всего 4 подсети:
— 192.168.0.0/24
— 192.168.1.0/24
— 192.168.2.0/24
— 192.168.3.0/24
Тут коллеги с соседнего здания очухались и поняли, что у них слетела конфигурация на маршрутизаторе, а бекапов нет. Наизусть они не помнят, какие в главном здании подсети, но помнят, что они находятся рядом друг с другом, и просят прислать одну суммированную. Теперь у меня возникает задача, как их суммировать. Для начала я переведу все подсети в двоичный вид.
Посмотрите внимательно на таблицу. Как видите, у 4 подсетей первые 22 бита одинаковые. Соответственно, если я возьму 192.168.0.0 с маской /22 или 255.255.252.0, то покрою свои 4 подсети. Но обратите внимание на 5 подсеть, которую я специально ввел. Это подсеть 192.168.4.0. 22-ой бит у нее отличается от предыдущих 4-х, а значит выше выбранное не покроет эту подсеть.
Ок. Теперь я отправлю коллегам суммированную подсеть, и, если они все правильно пропишут, то маршрутизация до моих подсетей будет работать без проблем.
Возьмем тот же пример и немного изменим условия. Нас попросили прислать суммарный маршрут для подсетей 192.168.0.0 и 192.168.1.0. Я не поленюсь и создам еще одну таблицу.
Обратите внимание, что у 2 первых подсетей одинаковые не 22 бита, а 23 бита. Это значит, что их можно просуммировать еще компактнее. В принципе работать будет и так, и так. Но как говорилось в одной рекламе: «Если нет разницы — зачем платить больше?». Поэтому старайтесь суммировать, не задевая при этом соседние подсети.
Таким образом, переводя подсети в двоичный формат и находя одинаковые биты, можно их суммировать.
Вообще суммирование полезно применять, когда надо объединить несколько подсетей, расположенных вблизи друг с другом. Это позволит сэкономить ресурсы маршрутизаторов. Однако это не всегда возможно. Просуммировать, например, подсеть 192.168.1.0 и 192.168.15.0, не захватив при этом соседние подсети, невозможно. Поэтому перед суммированием стоит подумать над ее целесообразностью. Поэтому повторюсь еще раз, что начинать какую-либо революцию надо на бумажке. Ну и для закрепления материала оставлю небольшую задачу.
Задача №4
Даны 4 подсети:
1) 10.3.128.0
2) 10.3.129.0
3) 10.3.130.0
4) 10.3.131.0
Просуммируйте подсети и найдите маску, которая сможет покрыть их, не задевая при этом соседние подсети.
Ответ
Исходя из этого, ответом будет 10.3.128.0/22 (255.255.252.0)
Пришло время закругляться. Статья получилась не очень длинной. Я бы даже сказал наоборот. Но все, что требует знать Cisco про IPv4, мы рассмотрели. Самое главное, что требуется от вас — это научиться работать с адресами и масками и уметь конвертировать их из десятичной в двоичную и обратно. Ну и, конечно, правильно делить на подсети и распределять адресное пространство. Спасибо, что дочитали. А если еще и задачки все сами прорешали, то цены вам нет) А если еще не прорешали, то приятного времяпровождения.
Для работы компьютера (ноутбука, смартфона и т.п.) в сети устройству присваивается IP-адрес. Как правило, вместе с информацией об адресе узла можно узнать и маску сети (или префикс). Маска сети указывает на количество бит в IP-адресе, отведенных под номер сети. Соответственно оставшиеся биты используются под номер узла. Маска и префикс — это разные записи одного и того же значения. Записывается только одно из них. В операционных системах Windows обычно используется маска, в операционных системах на основе Linux могут применяться оба варианта записи. Приведем пример.
Запись в левом столбце идентична записи в правом. Используется один из приведенных вариантов.
По информации об IP-адресе и префиксу можно определить параметры сети, а именно, IP-адрес сети, маску сети, широковещательный адрес сети, диапазон IP-адресов, предназначенных для адресации узлов (с первого адреса до последнего и их количество). Рассчитанные параметры могут понадобиться для добавления узла в существующую локальную сеть. Другие параметры, необходимые для работы в сети, такие как адрес шлюза и DNS-сервера (серверов) можно узнать из настроек сетевого адаптера.
Рассмотрим два примера для решения подобных задач.
Ⅰ Пример. IP-адрес узла и префикс:
10.0.0.10/25
Необходимо определить номер сети, маску сети, широковещательный адрес сети, диапазон и количество адресов.
Ход решения:
1. Переведем IP-адрес и префикс сети в двоичную систему счисления. Двоичный код адреса запишем первым, ниже запишем префикс. Число, обозначающее префикс показывает количество бит, отведенных под номер сети. В данном случае это 25 единиц, остальное нули (так как IP-адрес четвертой версии протокола IP состоит из 32 бит). В данном виде записывается маска в двоичной системе счисления. Биты адреса и префикса записываем на одной вертикальной линии.
Принимаем нумерацию бит справа налево. То есть самый правый бит нумеруем как первый, а самый левый как тридцать второй. Затем определим границу сети в соответствии с маской (по правую сторону от границы должны быть только нули, по левую сторону – только единицы), в данном случае граница сети проходит между восьмым и седьмым битами (под номер сети отводится 25 бит).
2. Определяем номер сети и маску сети. Для этого все биты, принадлежащие IP-адресу узла и находящиеся справа от границы сети, заменяем нулями, а те биты, что слева, – переписываем без изменений:
Переводим номер сети в десятичную систему счисления:
10.0.0.0.
Префикс записанный в первом пункте в двоичном коде также переводим в десятичную систему счисления и вычисляем маску сети:
255.255.255.128
3. Находим широковещательный адрес данной сети. Для этого все, что в номере сети находится слева от границы, записываем без изменений, а все, что справа, – заполняем единицами:
Переводим широковещательный адрес в десятичную систему счисления:
10.0.0.127.
4. Теперь необходимо определить диапазон и количество адресов узлов в сети. Нужно понимать, что нумерация сети состоит из непрерывного диапазона адресов. При этом самый первый адрес (не обязательно заканчивающийся на ноль) – это адрес сети, а самый последний – это широковещательный адрес сети (для групповой рассылки всем узлам сети). Соответственно адресация узлов каждой сети находится между этими двумя значениями. Таким образом, для того чтобы вычислить адрес первого узла в сети, необходимо к номеру сети прибавить единицу (10.0.0.1), а для того чтобы определить адрес последнего узла, – от широковещательного адреса сети отнять единицу (10.0.0.126). Получаем следующий диапазон адресов узлов:
10.0.0.1 – 10.0.0.126.
Таким образом, максимальное количество адресов в сети 10.0.0.0/25 составляет 126 (от 10.0.0.1 до 10.0.0.126).
Пример записи решения:
(1 строка – IP-адрес узла, 2 – номер сети, 3 – маска сети, 4 – широковещательный адрес сети)
Преобразуем все записи из двоичной системы счисления в десятичную:
Номер сети: 10.0.0.0
Маска: 255.255.255.128
Широковещательный IP-адрес: 10.0.0.127
Адрес первого узла в сети: 10.0.0.1
Адрес последнего узла в сети: 10.0.0.126
Количество адресов (максимально возможное количество узлов в данной сети) составляет 126 единиц.
Ⅱ Пример. IP-адрес узла и префикс:
3.0.3.110/20
Необходимо определить номер сети, маску сети, широковещательный адрес сети, диапазон и количество адресов.
Ход решения практически такой же, как и в первом примере. Но из-за того, что префикс сети менее 24, то могут возникнуть определенные сложности при вычислении, поэтому рассмотрим пример более подробно.
1. Переведем IP-адрес и префикс сети в двоичную систему счисления, Граница сети в соответствии с маской (по правую сторону от границы должны быть только нули, по левую сторону – только единицы) проходит между тринадцатым (13) и двенадцатым (12) битами (под номер сети отводится 20 бит):
2. Определяем номер сети. Для этого все биты, что находятся справа от границы сети, заменяем нулями, а те биты, что слева, – переписываем без изменений:
Переведём номер сети в десятичную систему счисления:
3.0.0.0
Префикс записанный в первом пункте в двоичном коде также переводим в десятичную систему счисления и вычисляем маску сети:
255.255.240.0
3. Определим широковещательный адрес данной сети. Для этого все, что слева от границы, записываем без изменений, как в номере сети, а все, что справа, – заполняем единицами:
Переводим в десятичную систему:
3.0.15.255
4. Определяем диапазон адресов узлов в сети. Для того чтобы вычислить адрес первого узла в сети, необходимо к номеру сети прибавить единицу (3.0.0.1), а для того чтобы определить адрес последнего узла, – от широковещательного адреса сети отнять единицу (3.0.15.254). Получаем следующий диапазон адресов узлов: 3.0.0.1 – 3.0.15.254. Таким образом, максимальное количество адресов в сети 3.0.0.0/20 составляет 4094.
Пример записи решения:
(1 – IP-адрес узла, 2 – номер сети, 3 – маска сети, 4 – номер адреса широкого вещания)
Номер сети: 3.0.0.0
Маска: 255.255.240.0
Номер адреса широкого вещания: 3.0.15.255
1-ый узел в сети: 3.0.0.1
Последний узел в сети: 3.0.15.254
Количество адресов (максимально возможное количество узлов в данной сети) составляет 4094 единиц.
Теперь более подробно об определении количества IP-адресов. Как видим в данном случае изменяется содержимое не только четвертого, но также и третьего байта. Распишем изменения чисел, когда третий байт равен нулю
3.0.0.1 – 3.0.0.255 (то есть 255 адресов)
При дальнейшем прибавлении единицы четвертый байт станет равным нулю и изменится третий байт, то есть
3.0.1.0
При третьем байте равным единицы, четвертый байт будет изменяться следующим образом
3.0.1.0 – 3.0.1.255 (то есть 256 адресов)
далее
3.0.2.0 – 3.0.2.255 (256 адресов)
и так далее
…
3.0.14.0 – 3.0.14.255 (256 адресов)
последний байт
3.0.15.0. – 3.0.15.254 (255 адресов)
Рассчитывая подобным образом получим общее число адресов
255+256*14+255=4094
То есть два диапазона – первый и последний (3.0.0.* и 3.0.15.*) имеют по 255 адресов.
Четырнадцать диапазонов (3.0.1.*, 3.0.2.*, 3.0.3.*, 3.0.4.*, 3.0.5.*, 3.0.6.*, 3.0.7.*, 3.0.8.*, 3.0.9.*, 3.0.10.*, 3.0.11.*, 3.0.12.*, 3.0.13.* и 3.0.14.*) по 256 адресов.
Распределение IP-сети на подсети описано в статье