Как найти массовое число ядра при распаде

ΔN=N(t)-N(t+Δt)=N(t)(1-eλΔt)

Если
интервал времени распада Δt
очень мал по
сравнению с периодом полураспада T,
то число ядер, распавшихся за время Δt,
можно найти по приближенной формуле:

ΔN=λN(t)Δt

Период
полураспада T
это промежуток времени, за который число
нераспавшихся ядер уменьшается в два
раза (см. рис. 1.1).

За
время 2T
число ядер
снижается в 4 раза и т.д. Связь между
периодом полураспада и постоянной
распада

Число ядер, содержащихся в массе m радиоактивного вещества:

где
μ
– молярная масса вещества; NA
число Авогадро (NA=6,02·1023
моль-1).

Активность
радиоактивного препарата – это число
ядер, распавшихся в единицу времени:

или

,

где
a0=λN0
активность в начальный момент времени.

Единица
активности в СИ – беккерель (Бк): 1 Бк –
активность изотопа, при которой за 1 с
происходит один акт распада.

Внесистемная
единица – кюри (Ku)
: 1 Ku=3,7·1010
Бк.

Удельной
активностью называется число распадов
в 1 с на единицу массы распадающегося
вещества.

1.8 Правила смещения при радиоактивном распаде

В
процессах радиоактивного распада имеют
место так называемые правила смещения,
позволяющие определить массовое число
и заряд ядра нового элемента, возникающего
в результате α-
и β-
превращений:

при
α – распаде

при


распаде

при
γ- излучении
значения A
и Z
у ядра не изменяются.

Если
дочернее ядро Y
также оказывается
радиоактивным, то возникает цепочка
радиоактивных превращений. Из правил
смещения видно, что массовое число при
α –
распаде уменьшается на 4, а при β
распаде не
меняется. Следовательно, для всех ядер
одного и того же радиоактивного семейства
остаток от деления массового числа на
4 одинаков, т.е. существует четыре
различных семейства, для каждого из
которых массовые числа определяются
значениями

A
= 4n,
4n+1,
4n+2,
4n+3,

где
n
– целое
положительное число.

Семейства
начинаются на наиболее долгоживущем (
с наибольшим периодом полураспада )
«родоначальнике» семейства: тории ,
уране и актинии


и
заканчиваются после цепочки α-
и β-
превращений на устойчивых изотопах
свинца:



Семейство
4n+1
нептуния
состоит из цепочки искусственно-радиоактивных
ядер и заканчивается висмутом.

1.9 Ядерные реакции

Ядерные
реакции – это превращения атомных ядер,
вызванные взаимодействиями их друг с
другом или с элементарными частицами.

Как
правило, в ядерных реакциях участвуют
два ядра и две частицы. Развернутый вид
ядерной реакции выглядит, к примеру,
следующим образом:

При
ядерных реакциях выполняются законы
сохранения массового и зарядового числа

A1+A2=A3+A4
и
Z1+Z2=Z3+Z4,

где
индексы 1 и 2 относятся к исходным
реагентам, а 3 и 4 – к продуктам реакции.
В законе сохранения зарядового числа
учитывается знак заряда реагента
(алгебраическая сумма). Кроме того,
выполняются закон сохранения импульса
и релятивистской полной энергии.

Широко
распространен сокращенный способ записи
ядерных реакций согласно следующему
правилу: вначале записывается
бомбардируемое ядро (ядро- мишень), затем
в скобках указывается на первом месте
налетающая частица (частица-снаряд), а
за ней – все частицы, вылетевшие в
результате реакции; после скобок
обозначается окончательно получившееся
ядро (ядро-продукт). Сокращенная запись
реакции представима в виде:


Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

При бета-распаде излучается электрон 

e−01

 (β-частица).

При этом один из нейтронов превращается в протон, а ядро испускает электрон и антинейтрино.

бета-распад.svg

Уравнение β-распада:

XZA→YZA+1+e−01

.

Обрати внимание!

Заряд ядра и соответственно атомный номер элемента при этом увеличивается на единицу, а массовое число остаётся без изменения. Образовавшийся элемент смещается в периодической системе на одну клетку вперёд.

Массовое число ((40)) и заряд ((19)) распадающегося ядра атома калия равны, соответственно, сумме массовых чисел ((40+0=40)) и сумме зарядов ((20+(-1)=19)) ядра атома кальция и электрона.

Как изменится массовое число при распаде

Ядра атомов, состоящие из протонов и нейтронов, подвергаются различным превращениям в ядерных реакциях. В этом заключается ключевое отличие таких реакций от химических, затрагивающих только электроны. В ходе распада может меняться заряд ядра и его массовое число.

Как изменится массовое число при распаде

Согласно современным химическим представлениям, элемент – это вид атомов с одним и тем же зарядом ядра, который отражен в порядковом номере элемента в таблице Д.И. Менделеева. Изотопы могут отличаться количеством нейтронов и, соответственно, атомной массой, но поскольку число положительно заряженных частиц — протонов — одинаково, важно понимать, что речь идет об одном и том же элементе.

Протон имеет массу 1,0073 а.е.м. (атомные единицы массы) и заряд +1. За единицу электрического заряда принят заряд электрона. Масса электронейтрального нейтрона – 1,0087 а.е.м. Чтобы обозначить изотоп, необходимо указать его атомную массу, которая складывается из всех протонов и нейтронов, и заряд ядра (число протонов или, что то же самое, порядковый номер). Атомную массу, называемую также нуклонным числом или нуклоном, записывают обычно слева сверху от символа элемента, а порядковый номер – слева снизу.

Аналогичная форма записи используется и для элементарных частиц. Так, β-лучам, представляющим собой электроны и имеющим пренебрежительно малую массу, приписывают заряд -1 (снизу) и массовое число 0 (сверху). α-частицы – это положительные двухзарядные ионы гелия, поэтому их обозначают символом «He» с зарядом ядра 2 и массовым числом 4. Относительные массы протона p и нейтрона n приняты за 1, а их заряды, соответственно, равны 1 и 0.

Изотопы элементов обычно не имеют отдельных названий. Исключение составляет лишь водород: его изотоп с массовым числом 1 – это протий, 2 – дейтерий, 3 – тритий. Введение специальных наименований вызвано тем, что изотопы водорода максимально отличаются друг от друга по массе.

Изотопы бывают стабильными и радиоактивными. Первые не подвергаются распаду, поэтому сохраняются в природе в первозданном виде. Примеры стабильных изотопов – кислород с атомной массой 16, углерод с атомной массой 12, фтор с атомной массой 19. Большинство природных элементов – это смесь нескольких стабильных изотопов.

Радиоактивные изотопы, естественные и искусственные, самопроизвольно распадаются с испусканием α- или β-частиц до образования стабильного изотопа.

Говорят о трех видах самопроизвольных ядерных превращений: α-распаде, β-распаде и γ-распаде. При α-распаде ядро испускает α-частицу, состоящую из двух протонов и двух нейтронов, в результате чего массовое число изотопа уменьшается на 4, а заряд ядра – на 2. Так, например, радий распадается на радон и ион гелия:

Ra(226, 88)→Rn(222, 86)+He(4, 2).

В случае β-распада нейтрон в неустойчивом ядре превращается в протон, и ядро испускает β-частицу и антинейтрино. Массовое число изотопа при этом не изменяется, но заряд ядра возрастает на 1.

При γ-распаде возбужденное ядро испускает γ-излучение с малой длиной волны. Энергия ядра при этом уменьшается, но заряд ядра и массовое число остаются неизменными.

Ядра большинства атомов – это довольно устойчивые образования. Однако ядра атомов радиоактивных веществ в процессе радиоактивного распада самопроизвольно превращаются в ядра атомов других веществ. Так в 1903 году Резерфорд обнаружил, что помещенный в сосуд радий через некоторое время превратился в радон. А в сосуде дополнительно появился гелий: (88^{226}Rarightarrow86^{222}Rn+2^4) He. Чтобы понимать смысл написанного выражения, он изучил тему о массовом и зарядовом числе ядра атома.

Удалось установить, что основные виды радиоактивного распада – альфа и бета-распад – происходят согласно следующему правилу смещения.

Альфа-распад

При альфа-распаде излучается α-частица (ядро атома гелия). Из вещества с количеством протонов (Z) и нейтронов (N) в атомном ядре оно превращается в вещество с количеством протонов (Z-2) и количеством нейтронов (N-2) и, соответственно, атомной массой (A-4). То есть происходит смещение образовавшегося элемента на две клетки назад в периодической системе.

Пример α-распада: (92^{238}Urightarrow90^{234}Th+2^4)He.

Альфа-распад – это внутриядерный процесс. В составе тяжелого ядра за счет сложной картины сочетания ядерных и электростатических сил образуется самостоятельная α-частица, которая выталкивается кулоновскими силами гораздо активнее остальных нуклонов. При определенных условиях она может преодолеть силы ядерного взаимодействия и вылететь из ядра.

Бета-распад

При бета-распаде излучается электрон ((beta)-частица). В результате распада одного нейтрона на протон, электрон и антинейтрино состав ядра увеличивается на один протон, а электрон и антинейтрино излучаются вовне. Соответственно, образовавшийся элемент смещается в периодической системе на одну клетку вперед.

Пример (beta)-распада: (19^{40}Krightarrow20^{40}Ca+_{-1} ^0e+_0 ^0v).

Бета-распад – это внутринуклонный процесс. Превращение претерпевает нейтрон. Существует также бета-плюс-распад или позитронный бета-распад. При позитронном распаде ядро испускает позитрон и нейтрино, а элемент смещается при этом на одну клетку назад по периодической таблице. Позитронный бета-распад обычно сопровождается электронным захватом.

Гамма-распад

Кроме альфа и бета-распада существует также гамма-распад. Гамма-распад – это излучение гамма-квантов ядрами в возбужденном состоянии, при котором они обладают большой по сравнению с невозбужденным состоянием энергией. В возбужденное состояние ядра могут приходить при ядерных реакциях, либо при радиоактивных распадах других ядер. Большинство возбужденных состояний ядер имеют очень непродолжительное время жизни – менее наносекунды.

Также существуют распады с эмиссией нейтрона, протона, кластерная радиоактивность и некоторые другие, очень редкие виды распадов. Но превалирующие виды радиоактивности это альфа, бета и гамма-распад.

Можно описать и так, что альфа-распад – это вид радиоактивного распада ядра, в результате которого происходит испускание дважды магического ядра гелия (^4)He – альфа-частицы. При этом массовое число ядра уменьшается на 4, а атомный номер – на (2). Альфа-распад наблюдается только у тяжелых ядер (атомный номер должен быть больше 82, массовое число должно быть больше (200)). Альфа-частица испытывает туннельный переход через кулоновский барьер в ядре, поэтому альфа-распад является существенно квантовым процессом. Поскольку вероятность туннельного эффекта зависит от высоты барьера экспоненциально, период полураспада альфа-активных ядер экспоненциально растет с уменьшением энергии альфа-частицы (этот факт составляет содержание закона Гейгера-Нэттола). При энергии альфа-частицы меньше (2) МэВ время жизни альфа-активных ядер существенно превышает время существования Вселенной. Поэтому, хотя большинство природных изотопов тяжелее церия в принципе способны распадаться по этому каналу, лишь для немногих из них такой распад действительно зафиксирован.

Скорость вылета альфа-частицы составляет от 9400 км/с (изотоп неодима (^{144})Nd) до (23700) км/с (у изотопа полония (^{212m})Po). В общем виде формула альфа-распада выглядит следующем образом:

(_Z^AXrightarrow_{Z-2}^{A-4}Y+alpha(_2^4He)).

Пример альфа-распада для изотопа (^{238}U):

(_{92}^{238}Urightarrow_{90}^{234}Th+alpha(_2^4He)).

Альфа-распад может рассматриваться как предельный случай кластерного распада.

Впервые альфа-распад был идентифицирован британским физиком Эрнестом Резерфордом в 1899 году. Одновременно в Париже французский физик Пол Виллард проводил аналогичные эксперименты, но не успел разделить излучения раньше Резерфорда. Первую количественную теорию альфа-распада разработал советский и американский физик Георгий Гамов.

Физика атомного ядра

Содержание

  • Радиоактивность. Альфа-распад. Бета-распад. Гамма-излучение
  • Закон радиоактивного распада
  • Нуклонная модель ядра. Заряд ядра. Массовое число ядра
  • Энергия связи нуклонов в ядре. Ядерные силы
  • Ядерные реакции. Деление и синтез ядер
  • Основные формулы по теме «Физика атомного ядра»

Радиоактивность. Альфа-распад. Бета-распад. Гамма-излучение

Радиоактивность – способность некоторых атомных ядер самопроизвольно превращаться в другие ядра с испусканием различных видов радиоактивных излучений.

Виды радиоактивности:

  • естественная радиоактивность – это радиоактивность, которая наблюдается у неустойчивых изотопов, существующих в природе и имеющих в таблице Менделеева порядковый номер больше 83;
  • искусственная радиоактивность – это радиоактивность, которая наблюдается у изотопов, полученных посредством ядерных реакций в лабораторных условиях.

Явление естественной радиоактивности открыл в 1896 году французский физик А. Беккерель. Проводя опыты с солями урана, он заметил, что они самопроизвольно испускают лучи неизвестной природы, которые проходят через бумагу, дерево, металлические пластины и делают воздух проводником электричества.

Радиоактивность данного химического элемента не зависит от того, является ли химический элемент чистым или входит в состав какоголибо химического соединения. Радиоактивность не зависит от внешних условий: температуры, освещения, давления. Это означает, что радиоактивность представляет собой внутреннее свойство атомов радиоактивного элемента.

Виды радиоактивных излучений

Излучение радиоактивных веществ имеет сложный характер и состоит из трех видов излучений. Если радиоактивное излучение пропустить через электрическое и магнитное поля, то оно распадается на три части, две из них отклоняются в противоположные стороны, а третий не отклоняется.

  • ( alpha )​-излучение представляет собой ядра атомов гелия ​( {}^4_2He )​, движущиеся со скоростью 107 м/с, несет положительный заряд;
  • ( beta )​-излучение представляет собой поток быстрых электронов, движущихся со скоростями, близкими к скорости света, несет отрицательный заряд;
  • ( gamma )​-излучение представляет собой электромагнитное излучение с длиной волны 10-12 м, заряда не имеет.

При одинаковой энергии частиц разные виды излучений неодинаково взаимодействуют с веществом.

Вследствие сильного ионизирующего действия глубина проникновения ​( alpha )​-частиц в твердых телах обычно очень мала. ​( beta )​-частицы менее эффективно взаимодействуют с атомами вещества, поэтому их проникающая способность больше, чем у ( alpha )-частиц. ​( gamma )​-кванты взаимодействуют с электронными оболочками атомов и имеют самую большую проникающую способность. Для защиты от ​( gamma )​-излучения необходимы защитные стены или оболочки толщиной несколько десятков сантиметров или даже метров.

Радиоактивный распад – самопроизвольный распад атомов радиоактивного вещества, в результате которого ядра одних химических элементов превращаются в ядра других химических элементов.

Превращения атомных ядер, которые сопровождаются испусканием ​( alpha )​- и ​( beta )​-частиц, называются соответственно ( alpha )— и ​( beta )​-распадом. Термина «​( gamma )​-распад» не существует, так как ( alpha )— и ( beta )-распад сопровождаются γ-излучением.

Распадающееся ядро Х называется материнским ядром, ядро продукта распада Y – дочерним ядром.

Правила радиоактивного смещения

Это правила, позволяющие установить, какое ядро возникает в результате распада данного материнского ядра.

  • ( alpha )​-распад:

Если при радиоактивном превращении испускаются ( alpha )-частицы, то в результате такого превращения образуется ядро элемента, находящегося в таблице Менделеева на две клетки раньше исходного ядра плюс ядро атома гелия ​( {}^4_2He )​ (или ( alpha )-частица):

  • ( beta )​-распад.

Если при радиоактивном превращении испускаются ( beta )-частицы, то в результате такого превращения образуется ядро элемента, находящегося в таблице Менделеева:

– при ( beta^- )-распаде в следующей после исходного ядра клетке плюс электрон и антинейтрино (частица, не имеющая заряда и масса покоя которой равна нулю):

– при ( beta^+ )-распаде в предшествующей исходному ядру клетке плюс позитрон и нейтрино (частица, не имеющая заряда и масса покоя которой равна нулю):

( gamma )​-излучение сопровождает ​( alpha )​- и ​( beta )​-распады, а также возникает при ядерных реакциях, торможении частиц, их распаде и т. д.

( gamma )-излучение испускается дочерним ядром, которое в момент своего образования оказывается в возбужденном состоянии, а затем переходит в невозбужденное состояние.

Спектр ( gamma )-излучения является линейчатым.

Биологическое действие радиоактивных излучений

При облучении вещества ( alpha )-, ( beta )-, ( gamma )-частицами происходит возбуждение или ионизация атомов вещества. При этом сами частицы могут тормозиться, что сопровождается рентгеновским излучением. Кроме того, частицы могут упруго или неупруго соударяться с атомами вещества. Все это может привести к изменению свойств облучаемого вещества и к отрицательному воздействию на живые организмы. Вредное действие излучений на организм связано с образованием свободных химических радикалов и с мутацией в клетках, которые могут оказывать влияние на потомство, приводить к лучевой болезни и образованию злокачественных опухолей.

Методы защиты от внешнего радиоактивного облучения:

  • удаление от источника излучения на большое расстояние;
  • ограничение времени пребывания на загрязненной местности или вблизи радиоактивных источников;
  • ограждение радиоактивных источников экранами из материалов, эффективно поглощающих радиоактивные излучения (графит, свинец, кадмий, бор).

Методы защиты от внутреннего радиоактивного облучения:

  • дозиметрический контроль воздуха, осадков в близлежащей местности;
  • дозиметрический контроль продуктов питания;
  • применение веществ, ослабляющих воздействие радиоактивных излучений на организм.

В дозиметрии различают поглощенную и эквивалентную дозы.

Поглощенная доза равна энергии радиоактивного излучения, поглощенного единицей массы вещества.

Обозначение – ​( D )​, единица измерения в СИ – грей (Гр).

где ​( E )​ – энергия излучения; ​( m )​ – масса вещества.

Для характеристики биологического воздействия на организм используется коэффициент качества излучения ​( (k) )​, или коэффициент относительной биологической активности.

( k )​ = 1 для ​( gamma )​-квантов, ​( k )​ = 3 для тепловых нейтронов, ​( k )​ = 10 для нейтронов с энергией порядка 0,5 МэВ.

Эквивалентная доза равна произведению коэффициента качества излучения и поглощенной дозы.

Обозначение – ​( H )​, единица измерения в СИ – зиверт (Зв).

1 зиверт – это эквивалентная доза, при которой поглощенная доза равна 1 Гр при коэффициенте качества, равном 1.

Естественный фон составляет 2 мЗв за год.

Предельно допустимая доза – 5 мЗв за год.

При дозе 0,5 Зв наступает острое лучевое поражение организма.

При дозе 3–5 Зв – смертельный исход.

Допустимая доза облучения за среднее время жизни человека (70 лет) составляет 0,35 Зв.

Закон радиоактивного распада

Если имеется большое количество одинаковых радиоактивных ядер, то вероятность распада каждого из них в любой момент времени одинакова. Радиоактивный распад любого ядра является случайным процессом, поэтому момент его распада предсказать невозможно.

Однако для большого числа частиц, находящихся в образце вещества, выполняется статистический закон радиоактивного распада.

Закон радиоактивного распада:
число нераспавшихся атомных ядер при естественном радиоактивном распаде экспоненциально уменьшается с течением времени.

Период полураспада – это время, в течение которого распадается половина способных к распаду ядер.

В начальный момент времени ​( t )​ = 0, число атомных ядер ​( N_0 )​.

Через промежуток времени, равный периоду полураспада ​( t=T_{1/2} )​, число атомных ядер ​( N=frac{N_0}{2} )​.

Через промежуток времени, равный двум периодам полураспада ( t=2T_{1/2} ), число атомных ядер ( N=frac{N_0}{4}=frac{N_0}{2^2} ).

Через промежуток времени, равный ​( n )​ периодам полураспада ​( t=nT_{1/2} )​, число атомных ядер ( N=frac{N_0}{2^n} ).

где ​( N )​ – число нераспавшихся атомных ядер к моменту времени ​( t )​; ​( N_0 )​ – начальное число атомных ядер; ​( T_{1/2} )​ – период полураспада.

На рисунке период полураспада соответствует времени, в течение которого число радиоактивных ядер (активность) уменьшается вдвое.

Нуклонная модель ядра. Заряд ядра. Массовое число ядра

Элементарные частицы:

  • протон
    Обозначение – ​( p )​, заряд ​( q_p )​ = 1,6·10-19 Кл, масса ​( m_p )​ = 1,67·10-27 кг.
  • нейтрон
    Обозначение – ​( n )​, заряд отсутствует, масса ( m_n ) = 1,66·10-27 кг.
  • электрон
    Обозначение – ​( e )​, заряд ​( q_e )​ = –1,6·10-19 Кл, масса ​( m_e )​ = 9,1·10-31 кг.

Нуклон – это частица, входящая в состав атомного ядра.

Атомное ядро любого химического элемента состоит из протонов и нейтронов.

Массовое число – это число, которое определяет количество протонов и нейтронов в ядре и равно округленному до целого значению массы атомного ядра в а.е.м.

Обозначение – ​( A )​, единица измерения – 1 атомная единица массы (а.е.м.).

Массовое число равно сумме количества протонов и нейтронов в ядре:

где ​( A )​ – массовое число; ​( Z )​ – количество протонов в ядре; ​( N )​ – количество нейтронов в ядре.

Зарядовое число – это число, которое показывает количество протонов в ядре.

Зарядовое число равно сумме зарядов протонов, входящих в состав ядра, выраженной в элементарных электрических зарядах.

Элементарный электрический заряд равен заряду электрона:

( Z )​ – порядковый номер химического элемента в периодической таблице Менделеева.

Если некоторый химический элемент обозначить ​( {}^A_ZX )​, это означает, что в его ядре ​( Z )​ – протонов и ​( N=A-Z )​ – нейтронов.

Измерения массы атомов показали, что практически все химические элементы имеют изотопы.

Изотопы – это атомы одного и того же химического элемента, имеющие одинаковое количество протонов, но отличающиеся количеством нейтронов в ядре.

Изотопы имеют:

  • одинаковый атомный номер ​( Z )​ (одинаковое число протонов);
  • различные массовые числа ​( A )​ (различное число нуклонов);
  • одинаковое строение электронных оболочек;
  • близкие химические свойства.

Изотопы бывают:

  • стабильные – это изотопы, которые сохраняются сколь угодно долго;
  • радиоактивные – это изотопы, которые превращаются в ядра других элементов с течением времени.

Изотопы водорода: водород имеет два стабильных изотопа – водород ​( {}^1_1H )​, дейтерий ​( {}^2_1H )​ и один радиоактивный изотоп тритий ​( {}^3_1H )​.

Энергия связи нуклонов в ядре. Ядерные силы

Между нуклонами ядра действуют самые мощные силы природы – ядерные силы.

Ядерные силы – это силы притяжения, связывающие протоны и нейтроны в атомном ядре и обеспечивающие существование устойчивых ядер.

Свойства ядерных сил:

  • являются силами притяжения;
  • являются короткодействующими силами (действуют на малых расстояниях, не превышающих 2·10-15 м; на таком расстоянии ядерные силы больше кулоновских приблизительно в 100 раз);
  • обладают свойством зарядовой независимости (ядерные силы, действующие между двумя протонами, двумя нейтронами и между протоном и нейтроном, одинаковы);
  • имеют свойство насыщения (каждый нуклон взаимодействует только с ограниченным числом ближайших к нему нуклонов, а не со всеми нуклонами ядра);
  • не являются центральными (не действуют по линии, соединяющей центры взаимодействующих нуклонов).

Массу ядра можно точно определить с помощью масс-спектрографов, которые разделяют заряженные частицы с разными удельными зарядами с помощью электрических и магнитных полей.

Опытным путем было установлено, что благодаря действию сил притяжения масса ядра всегда меньше суммы масс протонов и масс нейтронов, входящих в состав этого ядра:

где ​( M )​ – масса ядра.

Дефект масс – это величина, равная разности суммы масс входящих в ядро нуклонов и массы ядра:

где ​( Delta m )​ – дефект масс.

Благодаря ядерным силам ядра атомов обладают огромной энергией связи.

Энергия связи – это энергия, которую необходимо затратить, чтобы разделить ядро на составляющие его нуклоны, или энергия, которая выделяется при образовании ядра из отдельных нуклонов:

где ​( Delta E_{св} )​ – энергия связи, ​( c )​ – скорость света.

Если в формуле энергии связи массы протона и нейтрона выражены в килограммах, а скорость света – в метрах в секунду, то энергия связи будет измерена в джоулях. Однако в физике атома и атомного ядра энергию ядер и элементарных частиц чаще выражают в мегаэлектронвольтах (МэВ).

Энергетический эквивалент 1 а.е.м.

Поэтому энергию связи можно рассчитать следующим образом:

В этом случае энергия связи измеряется в мегаэлектронвольтах (МэВ).

Для характеристики прочности ядра используется величина, которая называется удельной энергией связи.

Удельная энергия связи – это энергия связи ядра, приходящаяся на один нуклон ядра:

где ​( A )​ – массовое число.

Удельная энергия связи неодинакова для разных химических элементов и даже для изотопов одного и того же химического элемента. Удельная энергия связи нуклона в ядре меняется в среднем в пределах от 1 МэВ у легких ядер до 8,6 МэВ у ядер средней массы (с массовым числом ​( A )​ ≈ 100). У тяжелых ядер (​( A )​ ≈ 200) удельная энергия связи нуклона меньше, чем у ядер средней массы, приблизительно на 1 МэВ, так что их превращение в ядра среднего веса (деление на 2 части) сопровождается выделением энергии в количестве около 1 МэВ на нуклон, или около 200 МэВ на ядро. Превращение легких ядер в более тяжелые ядра дает еще больший энергетический выигрыш в расчете на нуклон.

Зависимость удельной энергии связи от массового числа установили экспериментально. Из рисунка хорошо видно, что, не считая самых легких ядер, удельная энергия связи примерно постоянна и равна 8 МэВ/нуклон. Отметим, что энергия связи электрона и ядра в атоме водорода, равная энергии ионизации, почти в миллион раз меньше этого значения. Кривая на рисунке имеет слабо выраженный максимум. Максимальную удельную энергию связи (8,6 МэВ/нуклон) имеют элементы с массовыми числами от 50 до 60, т. е. железо и близкие к нему по порядковому номеру элементы. Ядра этих элементов наиболее устойчивы.

У тяжелых ядер удельная энергия связи уменьшается за счет возрастающей с увеличением ​( Z )​ кулоновской энергии отталкивания протонов. Кулоновские силы стремятся разорвать ядро.

Ядерные реакции. Деление и синтез ядер

Атомные ядра при взаимодействиях испытывают превращения. Эти превращения сопровождаются увеличением или уменьшением кинетической энергии участвующих в них частиц.

Ядерные реакции – это изменения атомных ядер при взаимодействии их с элементарными частицами или друг с другом.

Ядерные реакции происходят, когда частицы вплотную приближаются к ядру и попадают в сферу действия ядерных сил. Одноименно заряженные частицы отталкиваются друг от друга, поэтому сближение положительно заряженных частиц с ядрами (или ядер друг с другом) возможно, если этим частицам (или ядрам) сообщена достаточно большая кинетическая энергия. Эта энергия сообщается протонам, ядрам дейтерия, α-частицам и другим более тяжелым ядрам с помощью ускорителей.

Для осуществления ядерных реакций такой метод гораздо эффективнее, чем использование ядер гелия, испускаемых радиоактивными элементами. Во-первых, с помощью ускорителей частицам может быть сообщена энергия порядка 105 МэВ, т. е. гораздо большая той, которую имеют ​( alpha )​-частицы (максимально 9 МэВ). Во-вторых, можно использовать протоны, которые в процессе радиоактивного распада не появляются (это целесообразно потому, что заряд протонов вдвое меньше заряда α-частиц, и поэтому действующая на них сила отталкивания со стороны ядер тоже в 2 раза меньше). В-третьих, можно ускорить ядра более тяжелые, чем ядра гелия.

Наиболее распространенный вид ядерной реакции:

где ​( X )​ и ​( Y )​ – исходное и конечное ядра; ​( a )​ и ​( b )​ – бомбардирующая и испускающая частицы.

Эндотермическая реакция – это реакция с поглощением энергии:

Экзотермическая реакция – это реакция с выделением энергии:

При ядерных реакциях выполняются следующие законы.

  • Закон сохранения электрического заряда:
    сумма электрических зарядов атомных ядер и частиц до реакции равна сумме электрических зарядов атомных ядер и частиц после реакции:

  • Закон сохранения массового числа:
    сумма нуклонов атомных ядер и частиц до реакции равна сумме нуклонов атомных ядер и частиц после реакции:

  • Закон сохранения энергии.

Примеры ядерных реакций

  • Первое наблюдавшееся превращение ядра (Ю. Резерфорд, 1919):

  • Первая ядерная реакция на быстрых протонах (1932):

  • Открытие нейтрона (Дж. Чедвик, 1932):

  • Первое искусственное получение радиоактивного распада и открытие позитрона. Радиоактивный распад под действием ​( alpha )​-частиц наблюдал Ф. Жолио-Кюри:

Изотоп фосфора оказался радиоактивным: его ядро распадается с испусканием позитрона и нейтрино:

Классификация ядерных реакций

Ядерные реакции классифицируются:

  • по роду участвующих в них частиц – реакции под действием нейтронов, заряженных частиц, ​( gamma )​-квантов;
  • по энергии вызывающих их частиц – реакции при малых, средних, высоких энергиях;
  • по роду участвующих в них ядер – реакции на легких ядрах (А < 50), средних ядрах (50 < А < 100) и тяжелых ядрах (А > 100);
  • по характеру происходящих ядерных превращений – реакции с испусканием нейтронов, заряженных частиц, реакции захвата.

Деление ядер – это деление атомного ядра урана на несколько более легких ядер (осколков), чаще всего на два ядра, близких по массе.

  • Делиться могут только ядра некоторых тяжелых элементов.
  • При делении ядер испускаются нейтроны и ​( gamma )​-лучи.
  • При делении ядер выделяется большая энергия.

Механизм деления ядер (капельная модель)

В тяжелых ядрах действуют значительные ядерные силы, которые удерживают ядро от распада. Под влиянием поглощенного нейтрона ядро возбуждается и начинает деформироваться, приобретая вытянутую форму. Оно растягивается до тех пор, пока силы отталкивания половинок ядра не начинают преобладать над силами притяжения, действующими в перешейке. В результате ядро разрывается на два осколка X и Y.

Под действием сил кулоновского отталкивания осколки разлетаются со скоростью, равной приблизительно 1/30 скорости света. Одновременно испускается излучение высокой частоты.

Цепная ядерная реакция – ядерная реакция деления тяжелых ядер нейтронами, в результате которой число нейтронов возрастает и поэтому может возникнуть самоподдерживающийся процесс деления.

В 1939 году было обнаружено, что при попадании нейтрона в ядро изотопа урана-235 происходит деление ядра на два или три осколка с испусканием 2–3 нейтронов:

Эти нейтроны способны вызвать деление 2–3 новых ядер урана с испусканием 4–9 новых нейтронов и т. д., процесс может продолжаться самостоятельно, вовлекая все большее число новых ядер.

Условия протекания цепной ядерной реакции:

  • должны отсутствовать примеси, поглощающие нейтроны;
  • количество вещества, способного делиться, должно быть достаточным для того, чтобы образующиеся нейтроны могли соударяться с другими ядрами, не покидая объем, не испытывая взаимодействия;
  • скорость нейтронов должна быть достаточной, чтобы вызвать деление ядер.

Минимальное количество вещества, необходимое для осуществления цепной ядерной реакции, называется критической массой.

Устройства, в которых осуществляются управляемые цепные ядерные реакции, называются ядерными реакторами.

Основные элементы ядерного реактора:

  • Ядерное горючее (сырьевые и делящиеся вещества в реакторах – изотопы урана, плутоний, торий).
  • Замедлитель и отражатель нейтронов, которые способствуют увеличению числа медленных нейтронов, наиболее эффективных для развития цепной реакции деления (графит, тяжелая или обычная вода).
  • Регулирующие стержни, которые вводят в активную зону реактора для поддержания стационарного режима реактора, так как быстрое развитие реакции сопровождается выделением большого количества тепла и перегревом реактора; стержни выполнены из материалов, сильно поглощающих тепловые нейтроны (из бора, кадмия).
  • Теплоноситель, который необходим для отвода тепла, образующегося в реакторе (вода, жидкий натрий и др.).
  • Защитные устройства, которые применяют для защиты персонала, обслуживающего реактор, от действия на организм нейтронных потоков и ​( gamma )​-лучей.

Термоядерный синтез

График зависимости удельной энергии связи нуклонов в ядре от массового числа показывает, что кроме реакции деления тяжелых ядер с выделением энергии идут реакции синтеза легких ядер.

Синтез ядер – это слияние ядер в одно ядро, сопровождающееся выделением энергии.

Для осуществления реакции синтеза легких ядер требуются высокие энергии сливающихся частиц, так как необходимо преодолеть кулоновское отталкивание. Этого можно достичь за счет высокой температуры вещества.

Термоядерная реакция – это реакция синтеза легких атомных ядер в более тяжелые, происходящая при сверхвысоких температурах (порядка 107 К и выше).

В природе термоядерные реакции происходят в недрах звезд.

При термоядерном синтезе энергетический выход на единицу массы топлива оказывается выше, чем при реакции деления тяжелых ядер урана.

Пример реакции синтеза:

Синтез гелия из тяжелых изотопов водорода – дейтерия и трития – происходит при температуре около 5·107 К.

При синтезе 1 г гелия из дейтерия и трития выделяется 4,2·1011 Дж – такая же энергия выделяется при сгорании 10 т дизельного топлива.

Термоядерный синтез может стать одним из возможных альтернативных источников энергии. Поиск таких источников энергии важен, так как запасы нефти и газа на Земле ограничены.

В настоящее время ведется испытание установок для осуществления управляемых термоядерных реакций синтеза гелия из водорода. Запасы водорода на Земле практически неисчерпаемы. Количество дейтерия в океанической воде составляет примерно 4·1011 т, чему соответствует энергетический запас 1017 МВт·год. Наиболее заманчивой является возможность извлечения энергии дейтерия, содержащегося в обычной воде.

Основные формулы по теме «Физика атомного ядра»

Физика атомного ядра

3.1 (62.12%) 132 votes

Добавить комментарий