Как найти массовую концентрацию вещества в растворе

Растворы - такие таинственные и загадочные
Растворы – такие таинственные и загадочные

В реальности, химики редко работают с чистыми веществами. В большинстве своем для работы, при проведении химических реакций, расчетов по ним используются различные растворы.

Раство́р — гомогенная (однородная) смесь, состоящая из частиц растворенного вещества, растворителя и продуктов их взаимодействия

Подробнее о процессе растворения мы поговорим в следующих статьях.

При решении расчетных задач нам нудно уметь находить количество чистого вещества, находящегося в растворе. Это необходимо затем, что, как правило, в химическое взаимодействие вступает вещество, а не дополнительные продукты, которое оно содержит: примеси, если это не чистое вещество, компоненты растворителя, или инертные для данного химического процесса компоненты смеси (если это смесь веществ).

Если мы работаем с 500 граммами раствора, в котором всего 10 грамм чистого вещества, то в расчеты мы берем 10 грамм, а не 500! – пример, почему необходимо уметь вычислять количественные характеристики чистого вещества.

Способы выражения концентрации растворов

Существуют различные способы выражения концентраций растворов. В задачах могут встретиться любые из них. Рассмотрим основные из них более подробно.

I. Массовая доля вещества

Массовая доля – отношение массы чистого вещества к массе всего раствора. Данная величина безразмерная (говорят доля от единицы, всегда меньше 1, или равна единице для чистого вещества), или выражается в %.

Очень часто можно встретить запись запись, например NaOH, 15% – это значит, что из всей массы раствора на долю гидроксида натрия (NaOH) приходится только 15 %.

Формула расчета массовой доли вещества
Формула расчета массовой доли вещества

Следует не забывать, что масса раствора = масса растворителя + масса чистого вещества.

Зная массовую долю вещества, нетрудно выразить формулу для расчета массы чистого вещества:

Формулы для расчета массы вещества по известной массовой доле
Формулы для расчета массы вещества по известной массовой доле

В некоторых задачах масса раствора может быть не дана в условии. В этом случае мы сами можем её задать. Как правило в таких случаях, мы задаём массу раствора как 100 г. Дальнейший расчет ведется уже исходя из заданной массы (если требуется перевести одну концентрацию в другую).

Приведем примеры задач:

Решение задачи
Решение задачи

Мы специально делаем подробное решение, чтобы отследить ход мыслей.

Решим аналогичную задачу:

Способы представления концентраций раствора

Более часто встречаются задачи, в которых требуется приготовить раствор из другого раствора путем добавления чистого вещества (в этом случае концентрация увеличится), растворителя (концентрация уменьшится) или другого раствора (концентрация займёт промежуточное значение).

Рассчитайте массу соли, которую необходимо добавить к 150 г 10% -го раствора, чтобы концентрация полученного раствора стала 15%?

Данную задачу можно решать различными способами. В настоящий момент приведем только один (более длинный, но более понятный). Для решения таких задач другим способом мы подготовим видео.

Способы представления концентраций раствора

Задачи, в которых добавляется растворитель – решаются проще.

Какое количество воды необходимо добавить к 200 г 15%-го раствора, чтобы его концентрация стала 10%?

Способы представления концентраций раствора

Для решения задач, в которых смешиваются два раствора, имеющих различные концентрации, можно использовать следующий алгоритм:

1. Рассчитать количество чистого вещества в обоих растворах и сложить их.

2. Поделить полученное число на сумму масс растворов. Домножить на 100 %.

Решим для примера следующую задачу

Смешали 200 г 10%-го раствора серной кислоты и 100 г 20-% го. Какая массовая доля стала у получившегося раствора?

Способы представления концентраций раствора

II. Молярная концентрация вещества

Молярная концентрация вещества – отношение количества вещества к объему раствора. Данная величина показывает нам, сколько (моль) вещества растворено в 1 литре раствора. Единица измерения – моль/л.

Обозначается молярная концентрация заглавной буквой C

Способы представления концентраций раствора

В химической лаборатории очень часто для обозначения концентрации используется именно данная величина.

Очень часто, на химических склянках можно увидеть следующие обозначения:

Молярная концентрация растворов
Молярная концентрация растворов

Таким способом также обозначается молярная концентрация. Число перед буквой М обозначает концентрацию: 1 моль/л; 0,1 моль/л; 0,02 моль/л; 3 моль/л; 0,5 моль/л.

Можно также встретить в задачах такое обозначение, связанное с данной формой записи: молярный раствор (1 М) – раствор, концентрация которого составляет 1 моль/л. Децимолярный раствор (0,1 М) – 0,1 моль/л; сантимолярный раствор (0,01 М) – 0,01 моль/л.

Решим некоторые задачи, в которых используется молярная концентрация:

Для приготовления раствора сульфата натрия навеску, содержащую 14,2 г соли растворили в 500 мл воды и довели до метки.

Доведение до метки обозначает, что объем приготовленного раствора составляет (в данном случае) 500 мл.

Способы представления концентраций раствора

Часто требуется рассчитать количество вещества:

Способы представления концентраций раствора

Прежде чем проводить расчет по уравнению химических реакций, необходимо найти количество вещества.

III. Моляльная концентрация

Моляльная концентрация – отношение количества (моль) растворенного вещества к массе растворителя. Данная концентрация показывает нам, сколько моль вещества необходимо добавить к 1 кг растворителя (воды, например), чтобы получить нужную концентрации. Обозначается данная концентрация См, а измеряется в моль/кг(растворителя).

Способы представления концентраций раствора

IV. Мольная доля

Мольная доля – отношение количества вещества к сумме количеств всех компонентов раствора. Данная физическая величина не имеет размерности.

Способы представления концентраций раствора

Сумма всех мольных долей раствора равна “1”.

Данная физическая величина нашла широкое применение в химической химии для описания равновесных термодинамических процессов.

V. Титр

Титр – отношение массы вещества к единице объема (выраженного в миллилитрах). Титр показывает, сколько грамм вещества находится в каждом миллилитре раствора. обозначается как “Т” и измеряется в г/мл.

Способы представления концентраций раствора

Титр – очень маленькая величина, так как в в 1 миллилитре раствора может находиться незначительное количество вещества.

Титр нашел широкое применение в аналитической химии.

В заключении

По данной теме существует огромное количество расчетных задач. Многие из них мы рассмотрим в следующих статьях. О пока…

Проверьте, как Вы усвоили материал.

Задание №1. Перейдите к гугл-форме и ответьте на вопросы (базовый уровень):

https://forms.gle/7u32uLfxRk1Yug7a8

Задание №2. Решите расчетные задачи: https://vk.com/page-205267346_56951920 (повышенный уровень)

Задание №3. Решите следующую задачу:

Какова молярная концентрация 12%-ного раствора серной кислоты (H2S04) с плотностью р = 1,08 г/см3. Рассчитайте титр данного вещества, моляльную концентрацию, мольную долю.

Отчет о решении задач пришли в беседу “Учебный класс”:

https://vk.me/join/DKsyQe2p0hJ2Wdoch1XOTwi_qZEJow1udOM=

Материалы из методички: Сборник задач по теоретическим основам химии для студентов заочно-дистанционного отделения / Барботина Н.Н., К.К. Власенко, Щербаков В.В. – М.: РХТУ им. Д.И. Менделеева, 2007. -155 с.

Растворы. Способы выражения концентрации растворов

Способы выражения концентрации растворов

Существуют различные способы выражения концентрации растворов.

Массовая доля ω компонента раствора определяется как отношение массы данного компонента Х, содержащегося в данной массе раствора к массе всего раствора m. Массовая доля – безразмерная величина, её выражают в долях от единицы:

ωр.в. = mр.в./mр-ра (0 < ωр.в. < 1)                (1)

Массовый процент представляет собой массовую долю, умноженную на 100:

ω(Х) = m(Х)/m · 100% (0% < ω(Х) < 100%)                (2)

где ω(X) – массовая доля компонента раствора X; m(X) – масса компонента раствора X; m – общая масса раствора.

Мольная доля χ компонента раствора равна отношению количества вещества данного компонента X к суммарному количеству вещества всех компонентов в растворе.

Для бинарного раствора, состоящего из растворённого вещества Х и растворителя (например, Н2О), мольная доля растворённого вещества равна:

χ(X) = n(X)/(n(X) + n(H2O))                (3)

Мольный процент представляет мольную долю, умноженную на 100:

χ(X), % = (χ(X)·100)%                (4)

Объёмная доля φ компонента раствора определяется как отношение объёма данного компонента Х к общему объёму раствора V. Объёмная доля – безразмерная величина, её выражают в долях от единицы:

φ(Х) = V(Х)/V  (0 < φ(Х) < 1)             (5)

Объёмный процент представляет собой объёмную долю, умноженную на 100.

φ(X), % = (φ(X)·100)%                

Молярность (молярная концентрация) C или Cм определяется как отношение количества растворённого вещества X, моль к объёму раствора V, л:

Cм(Х) = n(Х)/V                   (6)

Основной единицей молярности является моль/л или М. Пример записи молярной концентрации: Cм(H2SO4) = 0,8 моль/л или 0,8М.

Нормальность Сн определяется как отношение количества эквивалентов растворённого вещества X к объёму раствора V:

Cн(Х) = nэкв.(Х)/V                   (7)

Основной единицей нормальности является моль-экв/л. Пример записи нормальной концентрации: Сн(H2SO4) = 0,8 моль-экв/л или 0,8н.

Титр Т показывает, сколько граммов растворённого вещества X содержится в 1 мл или в 1 см3 раствора:

T(Х) = m(Х)/V                   (8)

где m(X) – масса растворённого вещества X, V – объём раствора в мл.

Моляльность раствора μ показывает количество растворённого вещества X в 1 кг растворителя:

μ(Х) = n(Х)/mр-ля                   (9)

где n(X) – число моль растворённого вещества X, mр-ля – масса растворителя в кг.

Мольное (массовое и объёмное) отношение – это отношение количеств (масс и объёмов соответственно) компонентов в растворе.

Необходимо иметь ввиду, что нормальность Сн всегда больше или равна молярности См. Связь между ними описывается выражением:

См = Сн · f(Х)               (10)

Для получения навыков пересчёта молярности в нормальность и наоборот рассмотрим табл. 1. В этой таблице приведены значения молярности См, которые необходимо пересчитать в нормальность Сн и величины нормальности Сн, которые следует пересчитать в молярность См.

Пересчёт осуществляем по уравнению (10). При этом нормальность раствора находим по уравнению:

Сн = См/f(Х)                   (11)

Результаты расчётов приведены в табл. 2.

Таблица 1. К определению молярности и нормальности растворов

Тип химического превращения См Сн Сн См
Реакции обмена 0,2 M Na2SO4 ? 6 н FeCl3 ?
1,5 M Fe2(SO4)3 ? 0,1 н Ва(ОН)2 ?
Реакции окисления-восстановления 0,05 М KMnO4

в кислой среде

? 0,03 М KMnO4

в нейтральной среде

?

Таблица 2

Значения молярности и нормальности растворов

Тип химического превращения См Сн Сн См
Реакции обмена 0,2M Ma2SO4 0,4н 6н FeCl3
1,5M Fe2(SO4)3 0,1н Ва(ОН)2 0,05М
Реакции окисления-восстановления 0,05М KMnOв кислой среде 0,25н 0,03М KMnO4

в нейтральной среде

0,01М

Между объёмами V и нормальностями Сн реагирующих веществ существует соотношение:

V1 Сн,1 =VСн,2                    (12)

Примеры решения задач

Задача 1. Рассчитайте молярность, нормальность, моляльность, титр, мольную долю и мольное отношение для 40 мас.% раствора серной кислоты, если плотность этого раствора равна 1,303 г/см3.

Решение.

Масса 1 литра раствора равна М = 1000·1,303 = 1303,0 г.

Масса серной кислоты в этом растворе: m = 1303·0,4 = 521,2 г.

Молярность раствора См = 521,2/98 = 5,32 М.

Нормальность раствора Сн = 5,32/(1/2) = 10,64 н.

Титр раствора Т = 521,2/1000 = 0,5212 г/см3.

Моляльность μ = 5,32/(1,303 – 0,5212) = 6,8 моль/кг воды.

Обратите внимание на то, что в концентрированных растворах моляльность (μ) всегда больше молярности (См). В разбавленных растворах наоборот.

Масса воды в растворе: m = 1303,0 – 521,2 = 781,8 г.

Количество вещества воды: n = 781,8/18 = 43,43 моль.

Мольная доля серной кислоты: χ = 5,32/(5,32+43,43) = 0,109. Мольная доля воды равна 1– 0,109 = 0,891.

Мольное отношение равно 5,32/43,43 = 0,1225.

Задача 2. Определите объём 70 мас.% раствора серной кислоты (r = 1,611 г/см3), который потребуется для приготовления 2 л 0,1 н раствора этой кислоты.

Решение.

2 л 0,1н раствора серной кислоты содержат 0,2 моль-экв, т.е. 0,1 моль или 9,8 г.

Масса 70%-го раствора кислоты m = 9,8/0,7 = 14 г.

Объём раствора кислоты V = 14/1,611 = 8,69 мл.

Задача 3. В 5 л воды растворили 100 л аммиака (н.у.). Рассчитать массовую долю и молярную концентрацию NH3 в полученном растворе, если его плотность равна 0,992 г/см3.

Решение.

Масса 100 л аммиака (н.у.) m = 17·100/22,4 = 75,9 г.

Масса раствора m = 5000 + 75,9 = 5075,9 г.

Массовая доля NH3 равна 75,9/5075,9 = 0,0149 или 1,49 %.

Количество вещества NH3 равно 100/22,4 = 4,46 моль.

Объём раствора V = 5,0759/0,992 = 5,12 л.

Молярность раствора См = 4,46/5,1168 = 0,872 моль/л.

Задача 4. Сколько мл 0,1М раствора ортофосфорной кислоты потребуется для нейтрализации 10 мл 0,3М раствора гидроксида бария?

Решение.

Переводим молярность в нормальность:

0,1 М Н3РО4  0,3 н; 0,3 М Ва(ОН)2  0,6 н.

Используя выражение (12), получаем: V(H3P04)=10·0,6/0,3 = 20 мл.

Задача 5. Какой объем, мл  2 и 14 мас.% растворов NaCl потребуется для приготовления 150 мл 6,2 мас.% раствора хлорида натрия?

Плотности растворов NaCl:

С, мас.% 2 6 7 14
ρ, г/см3 2,012 1,041 1,049 1,101

Решение.

Методом интерполяции рассчитываем плотность 6,2 мас.% раствора NaCl:

6,2% =6% + 0,2(7% —6% )/(7 – 6) = 1,0410 + 0,0016 = 1,0426 г/см3.

Определяем массу раствора: m = 150·1,0426 = 156,39 г.

Находим массу NaCl в этом растворе: m = 156,39·0,062 = 9,70 г.

Для расчёта объёмов 2 мас.% раствора (V1) и 14 мас.% раствора (V2) составляем два уравнения с двумя неизвестными (баланс по массе раствора и по массе хлорида натрия):

156,39 = V1 1,012 + V2 1,101 ,

9,70 = V1·1,012·0,02 + V2·1,101·0,14 .

Решение системы этих двух уравнений дает V1 =100,45 мл и V2 = 49,71 мл.

Задачи для самостоятельного решения

3.1. Рассчитайте нормальность 2 М раствора сульфата железа (III), взаимодействующего со щёлочью в водном растворе.

12 н.

3.2. Определите молярность 0,2 н раствора сульфата магния, взаимодействующего с ортофосфатом натрия в водном растворе.

0,1 M.

3.3. Рассчитайте нормальность 0,02 М раствора KMnO4, взаимодействующего с восстановителем в нейтральной среде.

0,06 н.

3.4. Определите молярность 0,1 н раствора KMnO4, взаимодействующего с восстановителем в кислой среде.

0,02 M.

3.5. Рассчитать нормальность 0,2 М раствора K2Cr2O7, взаимодействующего с восстановителем в кислой среде.

1,2 M.

3.6. 15 г CuSO4·5H2O растворили в 200 г 6 мас.% раствора CuSO4. Чему равна массовая доля сульфата меди, а также молярность, моляльность и титр полученного раствора, если его плотность составляет 1,107 г/мл?

0,1; 0,695М; 0,698 моль/кг; 0,111 г/мл.

3.7. При выпаривании 400 мл 12 мас.% раствора KNO3 (плотность раствора 1,076 г/мл) получили 2М раствор нитрата калия. Определить объём полученного раствора, его нормальную концентрацию и титр.

255 мл; 2 н; 0,203 г/мл.

3.8. В 3 л воды растворили 67,2 л хлороводорода, измеренного при нормальных условиях. Плотность полученного раствора равна 1,016 г/мл. Вычислить массовую, мольную долю растворённого вещества и мольное отношение растворённого вещества и воды в приготовленном растворе.

0,035; 0,0177; 1:55,6.

3.9. Сколько граммов NaCl надо добавить к 250 г 6 мас.% раствору NaCl, чтобы приготовить 500 мл раствора хлорида натрия, содержащего 16 мас.% NaCl? Плотность полученного раствора составляет 1,116 г/мл. Определить молярную концентрацию и титр полученного раствора.

74,28 г; 3,05 М; 0,179 г/мл.

3.10. Определить массу воды, в которой следует растворить 26 г ВaCl2·2H2O для получения 0,55М раствора ВaCl2 (плотность раствора 1,092 г/мл). Вычислить титр и моляльность полученного раствора.

192,4 г; 0,111 г/мл; 0,56 моль/кг.

Количество и концентрация вещества. Выражение и пересчеты из одних единиц в другие. Концентрации растворов. Массовая и молярная концентрация, Титр, Моляльность, Мольная, массовая, объемная доли. Нормальная (эквивалентная) концентрация, Фактор эквивалентности, Молярная масса эквивалента вещества.

Масса и количество вещества. Массу вещества (m) измеряют в граммах, а количество вещества (n) в молях. Если обозначить вещество буквой Х, то тогда его масса может быть обозначена как m (X), а количество – n (X).

  • Мольколичество вещества, которое содержит столько определенных структурных единиц (молекул, атомов, ионов и т.д.), сколько атомов содержится в 0,012 кг изотопа углерода-12.
  • При использовании термина моль следует указывать частицы, к которым относится этот термин. Соответственно, можно говорить «моль молекул», «моль атомов», «моль ионов» и т.д. (например, моль молекул водорода, моль атомов водорода, моль ионов водорода). Так как 0,012 кг углерода-12 содержит ~ 6,022х1023атомов углерода (постоянная Авогадро = число Авогадро), то моль– такое количество вещества, которое содержит 6,022х1023структурных элементов (молекул, атомов, ионов и др.).
    • Отношение массы вещества к количеству вещества называют молярной массой.
    • M (X) = m (X) / n(X)
    • То есть, молярная масса (М)это масса одного моля вещества. Основной системной (в международной системе единиц СИ) единицей молярной массы является кг/моль, а на практике – г/моль. Например, молярная масса самого легкого металла лития М (Li) = 6,939 г/моль, молярная масса газа метана М (СН4) = 16,043 г/моль. Молярная масса серной кислоты рассчитывается следующим образом M (Н24) = 196 г / 2 моль = 96 г/моль.
    • Молярная масса М (Х) — масса одного моля молекул вещества (г/моль). M(X)=mx/n (X), где mx – масса вещества, г; n (X) – количество вещества, моль. Молярная масса вещества Х численно равна относительной молекулярной массе Mr (в случае молекул) или относительной атомной массе (в случае атомов).
  • Любое соединение (вещество), кроме молярной массы, характеризуется относительной молекулярной или атомной массой. Существует и эквивалентная масса Е, равная молекулярной, умноженной на фактор эквивалентности (см. далее).
    • Относительная молекулярная масса (Mr) –это молярная масса соединения, отнесенная к 1/12 молярной массы атома углерода-12.
      • Например,Мr(СН4) = 16,043. Относительная молекулярная масса – величина безразмерная.
    • Относительная атомная масса (Ar) –это молярная масса атома вещества, отнесенная к 1/12 молярной массы атома углерода-12.
      • Например, Ar(Li) = 6,039.

Концентрация. Отношение количества или массы вещества, содержащегося в системе, к объему или массе этой системы называют концентрацией. Известно несколько способов выражения концентрации. В России чаще всего концентрацию обозначают заглавной буквой С, имея в виду прежде всего массовую концентрацию, которая по праву считается наиболее часто применяемой в экологическом мониторинге форма выражения концентрации (именно в ней измеряют величины ПДК).

  • Массовая концентрацияили β) –отношение массы компонента, содержащегося в системе (растворе), к объему этой системы (V). Это самая распространенная у российских аналитиков форма выражения концентрации.
    • β(Х) =m (X) / V(смеси)
  • Единица измерения массовой концентрации – кг/м3 или г/м3, кг/дм3или г/дм3(г/л), кг/см3, или г/см3 (г/мл), мкг/л или мкг/мл и т.д. Арифметические пересчеты из одних размерностей в другие не представляет большой сложности, но требуют внимательности. Например, массовая концентрация хлористоводородной (соляной) кислотыС(HCl) = 40 г / 1 л = 40 г/л = 0,04 г/мл = 4·105мкг/л и т.д. Обозначение массовой концентрации С нельзя путать с обозначением мольной концентрации (с), которая рассматривается далее.
  • Типичными являются соотношения β(Х): 1000 мкг/л = 1 мкг/мл = 0,001 мг/мл.
  • Массовая концентрация – это отношение массы к объему системы !!!! а отношение массы к массе это – массовая доля 🙂

Титр (Т) В объемном анализе (титриметрии) употребляется одна из форм массовой концентрации – титр. Титр раствора (Т) –это масса вещества, содержащегося в одном кубическом сантиметре = в одном миллилитре раствора.

  • Единицы измерения титра — кг/см3, г/см3, г/мл и др.

Моляльность (b) –отношение количества растворенного вещества (в молях) к массе растворителя (в кг).

  • b(Х) = n(X) / m (растворителя) = n(X) / m (R)
  • Единица измерения моляльности моль/кг. Например,b (HCl/H2O) = 2 моль/кг. Моляльная концентрация применяется в основном для концентрированных растворов.

Мольная (! )доля (х) –отношение количества вещества данного компонента (в молях), содержащегося в системе, к общему количеству вещества (в молях).

  • х(Х) =n(X) / n(X) + n(Y)
  • Мольнаядоля может быть выражена в долях единицы, процентах (%), промилле (тысячная часть %) и в миллионных (млн–1,ppm), миллиардных (млрд–1,ppb), триллионных (трлн–1,ppt) и др. долях, но единицей измерения все равно является отношение –моль/моль. Например,х(С2Н6) = 2 моль / 2 моль + 3 моль = 0,4 (40 %).

Массовая доля (ω) отношение массы данного компонента, содержащегося в системе, к общей массе этой системы.

  • ω (Х) = m(X) / m(смеси)
  • Массовая доля измеряется в отношениях кг/кг (г/г). При этом она может быть выражена в долях единицы, процентах (%), промилле, миллионных, миллиардных и т.д. долях. Массовая доля данного компонента, выраженная в процентах, показывает, сколько граммов данного компонента содержится в 100 г раствора.
    • Например, условно ω (KCl) = 12 г / 12 г + 28 г = 0,3 (30%).

Объемная доля (φ) –отношение объема компонента, содержащегося в системе, к общему объему системы.

  • φ (Х)=v(X) /v(X)+v(Y)
  • Объемная доля измеряется в отношениях л/л или мл/мл и тоже может быть выражена в долях единицы, процентах, промилле, миллионных и т.д. долях. Например, объемная доля кислорода газовой смеси составляет φ (О2)=0,15 л / 0,15 л + 0,56 л.

Молярная (мольная) концентрация (с) –отношение количества вещества (в молях), содержащегося в системе (например, в растворе), к объему V этой системы.

  • с(Х) = n(X)/ V(смеси)
  • Единица измерения молярной концентрации моль/м3(дольная производная, СИ – моль/л).
    • Например,c (H2S04) = 1 моль/л,с(КОН) = 0,5 моль/л.
  • Раствор, имеющий концентрацию 1 моль/л, называют молярным раствором и обозначают как 1 М раствор (не надо путать эту букву М, стоящую после цифры, с ранее указанным обозначением молярной массы, т.е. количества вещества М). Соответственно раствор, имеющий концентрацию 0,5 моль/л, обозначают 0,5 М (полумолярный р-р); 0,1 моль/л – 0,1 М (децимолярный р.р); 0,01 моль/л – 0,01 М (сантимолярный р-р) и т.д.
  • Эта форма выражения концентрации также очень часто применяется в аналитике.

Нормальная (эквивалентная) концентрация (N), молярная концентрация эквивалента(Сэкв.)– это отношение количества вещества эквивалента в растворе (моль) к объему этого раствора (л).

  • N = Сэкв (Х) = n (1/Z X) / V (смеси)
  • Количество вещества (в молях), в котором реагирующими частицами являются эквиваленты, называется количеством вещества эквивалента nэ (1/Z X) = nэ (Х).
  • Единица измерения нормальной концентрации («нормальности») тоже моль/л (дольная производная, СИ).
    • Например, Сэкв.(1/3 АlCl3) = 1 моль/л.
  • Раствор, в одном литре которого содержится 1 моль вещества эквивалентов, называют нормальным и обозначают 1 н. Соответственно могут быть 0,5 н («пятидецинормальный»); 0,01 н (сантинормальный») и т.п. растворы.
  • Следует отметить, что понятие эквивалентностиреагирующих веществ в химических реакциях является одним из базовых для аналитической химии. Именно на эквивалентности как правило основаны вычисления результатов химического анализа (особенно в титриметрии). Рассмотрим несколько связанных с этим базовых с т.з. теории аналитики понятий.

Фактор эквивалентности (fэкв )– число, обозначающее, какая доля реальной частицы веществ Х (например, молекулы вещества X) эквивалентна одному иону водорода (в данной кислотно-основной реакции) или одному электрону (в данной окислительно-восстановнтельной реакции) Фактор эквивалентности fэкв (Х) рассчитывают на основании стехиометрии (соотношении участвующих частиц) в конкретном химическом процессе:

  • fэкв (Х) = 1/Zx
  • где Zx.— число замещенных или присоединенных ионов водорода (для кислотно-основных реакций) или число отданных или принятых электронов (для окислительно-восстановительных реакций);
  • Х — химическая формула вещества.
  • Фактор эквивалентности всегда равен или меньше единицы. Будучи умноженным на относительную молекулярную массу, он дает значение эквивалентной массы (Е).
    • Для реакции:
      • H24 + 2 NaOH = Na24 + 2 H2
        • fэкв (H24) = 1/2,fэкв (NaOH) = 1
        • fэкв (H24) = 1/2, т.е. это означает, что ½ молекулы серной кислоты дает для данной реакции 1 ион водорода (Н+), а соответственноfэкв (NaOH) = 1 означает, что одна молекулаNaOHсоединяется в данной реакции с одним ионом водорода.
    • Для реакции:
      • 10 FeSО4 + 2 KMnО4 + 8 H24 = 5 Fe2(SО4)3 + 2 MnSО4 + K24 + 8 H2О
      • 2МпО4+ 8Н++5е→ Мп2+– 2e+ 4 Н2О
      • 5 Fe2+ – 2e → Fe3+
        • fэкв (KMnО4) = 1/5 (кислая среда), т.е. 1/5 молекулы KMnО4 в данной реакции эквивалентна 1 электрону. При этом fэкв (Fe2+) = 1, т.е. один ион железа (II) также эквивалентен 1 электрону.

Эквивалент вещества Х –реальная или условная частица, которая в данной кислотно-основной реакции эквивалентна одному нону водорода или в данной окислительно-восстановительной реакции – одному электрону.

  • Форма записи эквивалента: fэкв(Х) Х (см. табл.), или упрощенно Эх, где Х –химическая формула вещества, т.е. [Эх =fэкв(Х) Х]. Эквивалент безразмерен.
  • Эквивалент кислоты(или основания) – такая условная частица данного вещества, которая в данной реакции титрования высвобождает один ион водорода или соединяется с ним, или каким-либо другим образом эквивалентна ему.
  • Например, для первой из вышеуказанных реакций эквивалент серной кислоты — это условная частица вида ½ H24 т.е. fэкв (H24) = 1/Z= ½; ЭH24 = ½ H24.
  • Эквивалент окисляющегося(или восстанавливающегося)вещества— это такая условная частица данного вещества, которая в данной химической реакции может присоединять один электрон или высвобождать его, или быть каким-либо другим образом эквивалентна этому одному электрону.
  • Например, при окислении перманганатом в кислой среде эквивалент марганцевокислого калия – это условная частица вида 1/5 КМпО4, т.е. ЭКМпО4 =1/5КМпО4.
  • Так как эквивалент вещества может меняться в зависимости от реакции, в которой это вещество участвует, необходимо указывать соответствующую реакцию.
    • Например, для реакции Н3РО4+NaOH=NaH24+H2O
      • эквивалент фосфорной кислоты Э Н3РО4 == 1 Н3РО4.
    • Для реакции Н3РО4+ 2NaOH=Na2HPО4+ 2H2O
      • ее эквивалент Э Н3РО4 == ½ Н3РО4,.
  • Принимая во внимание, что понятие моля позволяет пользоваться любыми видами условных частиц, можно дать понятиемолярной массы эквивалента вещества X. Напомним, что моль– это количество вещества, содержащее столько реальных или условных частиц, сколько атомов содержится в 12 г изотопа углерода12 С (6,02 1023). Под реальными частицами следует понимать атомы, ионы, молекулы, электроны и т.п., а под условными – такие как, например, 1/5 молекулы КМпО4в случае О/В реакции в кислой среде или ½ молекулы H24 в реакции с гидроксидом натрия.

Молярная масса эквивалента веществамасса одного моля эквивалентов этого вещества, равная произведению фактора эквивалентности fэкв (Х) на молярную массу вещества М (Х)1.

  • Молярную массу эквивалента обозначают как М [fэкв (Х) Х] или с учетом равенства Эх = fэкв (Х) Х ее обозначают М [Эх]:
  • М (Эх)= fэкв (Х) М (Х); М [Эх] = М (Х) /Z
  • Например, молярная масса эквивалента КМпО4
  • М (ЭКМпО4) =1/5КМпО4 = М 1/5 КМпО4 = 31,6 г/моль.
  • Это означает, что масса одного моля условных частиц вида 1/5КМпО4 составляет 31,6 г/моль. По аналогии молярная масса эквивалента серной кислоты М ½ H24 = 49 г/моль; фосфорной кислоты М ½ H3 РО4 = 49 г/моль и т.д.
  • В соответствии с требованиями Международной системы (СИ) именно молярная концентрацияя вляется основным способом выражения концентрации растворов, но как уже отмечалось, на практике чаще применяетсямассовая концентрация.
  • Рассмотрим основные формулы и соотношения между способами выражения концентрации растворов (см. табл. 1 и 2).

Таблица 1 Основные способы выражения концентрации растворов

Термин концентрации (см. выше) Единица измерения концентрации Тип единицы концентрации Формула, виды записи, примеры
1. Массовая концентрация (С или β) кг/м3 Производная (СИ)
  • С (Х)* = β(Х/V)
  • С (Х) = β(Х/V) =mx/V(Х+Y)
  • С Н2SO4 = 0,2 кг/л или 200 г/л Н2SO4
кг/дм3 Дольная производная (СИ)
кг/л Производная (внесистемная)
2. Титр раствора (Т) г/см3 Дольная, производная (СИ)
  • Т(Х)
  • Т(Х) = mx/V= C (Эх)·M(Эх)/1000
  • Т (НCl) = 0,2012 г/мл
г/мл Дольная, производная (внесистемная)
3. Титр раствора А по определяемому компоненту Х г/см3 Дольная, производная (СИ)
  • Т (А/Х)
  • Т (А/Х) = с(ЭА ) ·M(Эх)/1000
г/мл Дольная, производная (внесистемная)
4. Молярная концентрация, молярность(с) моль/м3 Производная (СИ)
  • с (Х)*
  • с (Х) = (n) Х/V=mx/M(X)V.
  • с Н2SO4 = 0,2 моль/л или 0,2 М Н2SO4
моль/дм3 Дольная производная (СИ)
моль/л Производная (внесистемная)
5. Молярная концентрация эквивалента (N), нормальность моль/дм3 Производная (СИ)
  • С [fэкв (Х)Х] или с (Эх) илиN
  • C (Эх) = n(Эх)/V=mx/M(Эх)V=N
  • или C (Эх) = с (Х)/ fэкв (Х) = с (Х) ·Zx=N
  • N= С (1/5 КМпО4) = 0,02 моль/л (кислая среда) или 0,02 н. КМп04
моль/л Производная (внесистемная)
6. Моляльная концентрация, моляльность (b) моль/кг Производная (СИ)
  • b(Х/R) = n (X) / m (растворителя)
Термин концентрации (см. выше) Единица измерения концентрации Тип единицы концентрации Формула, виды записи, примеры
7. Мольная доля(х) Относительная = моль/моль. (или в %, или в млн–1,ppm, в млрд–1 ,ppb, трлн–1,pptили в др. ед. Безразмерная = 1 моль/моль = 1 = 100% = 106млн-1 = 109млрд-1 = 1012трлн-1
  • х % (Х) = х (Х/Х+ Y)
  • х % (Х) = n (X) / n (X) + n (Y)
  • Если в 1 моле раствора содержится 0,20 моля NaOH, то: мольная доля NaOH в этом растворе х % (NaOH):
    • =0,2/1 = 0,2 или 20%, или 2·105млн-1 , или 2·108млрд-1, или др.
8. Массовая доля (ω) Относительная = кг / кг. (или в %, или в млн–1,ppm, в млрд–1 ,ppb, трлн–1,ppt
или в др. ед.
Безразмерная = 1 кг/кг =1 г/г= 1 = 100% = 106млн-1 = 109млрд-1 = 1012трлн-1
  • ω % (Х) = mx/mр-ра 100 =mx/mр-рит.+mx
  • Если в 100 г раствора содержится 20 г NaOH,то: массовая доля NaOH в этом растворе
    • ω%(NaOH) =20 г/(80 г+0 г)=
    • = 0,2 или 20% (масс.) или 2 ·10-1=
    • = 2 ·108млрд-1или 2 ·1011трлн-1 , или др. ед.
9. Объемная доля (φ) Относительная = м3/м3(илил/л, илимл/мл, или в %, или в млн–1,ppm, в млрд–1 ,ppb, или в др. ед. Безразмерная = 1 кг/кг =1 г/г= 1 = 100% = 106млн-1 = 109млрд-1 = 1012трлн-1
  • φ (Х), %=v(X) /v(X)+v(Y)
  • Если в 100 мл раствора содержится 20 мл спирта, объемная доля в этом в этом растворе:
    • φ % (спирта) =20/100 = 0,2 или 20% (об..) = 2·102 промилле, или
    • 2 ·108млрд-1, или 2·1011трлн-1 или др. ед.

* В расчетных уравнениях химическую формулу обычно ставят в индексе.

Пересчеты из одной формы выражения концентрации в другую являются достаточно простыми арифметическими задачами, с решениями которых аналитику приходится сталкиваться очень часто – при приготовлении аналитических растворов, при пробоотборе и пробоподготовке, при смешении пробы с аналитическими растворами, а также при статистической обработке и представлении получившихся результатов в цифровой и графической форме. Рассмотрим формулы для пересчета шести наиболее часто применяемых форм выражения концентраций (см. табл. 2).

Таблица 2 Формулы перехода от одних выражений концентраций растворов к другим (процентная, в граммах на грамм растворителя, в граммах на грамм раствора, нормальная, молярная, моляльная) 6

  • Обозначения:
    • d-плотность раствора,
    • W- молекулярный вес (масса) растворенного вещества,
    • E- грамм-эквивалентный вес растворенного вещества

Таблица 2 Формулы перехода от одних выражений концентраций растворов к другим (процентная, в граммах на грамм растворителя, в граммах на грамм раствора, нормальная, молярная, моляльная) 6      Обозначения:         d-плотность раствора,         W- молекулярный вес (масса) растворенного вещества,         E- грамм-эквивалентный вес растворенного вещества

  1. Коровин Н.В., Мингулина Э.И., Рыжова Н.Г.Лабораторные работы по химии.Учеб. пособие для техн. направ. и спец. вузов. /Под ред. Н.В. Коровина. – 2-е изд., перераб. и доп. – М.: Высш. шк., 1998. – с. 21–39.
  2. Жарский И.М., Кузьменко А.Л., Орехова С.Е.Лабораторный практикум по общей и неорганической химии./Под ред. Г.И. Новикова. – Мн.: Дизайн ПРО, 1998. – с. 3-27 и 46-56.
  3. Попадич И.А., Траубенберг С.Е, Осташенкова Н.В. и др.. Аналитическая химия.Учебное пособие для техникумов. М.: Химия, 1989. – с. 91-98.
  4. Зайцев О.С.Исследовательский практикум по общей химии.Учебное пособие. М.: Изд-во МГУ, 1994. – с. 91-98.
  5. Лурье Ю.Ю.Справочник по аналитической химии.Справ. Изд. – 6-е изд., перераб. и доп. – М.: Химия, 1989. – с. 172-173.

Концентра́ция или до́ля компонента смеси — величина, количественно характеризующая содержание компонента относительно всей смеси. Терминология ИЮПАК под концентрацией компонента понимает четыре величины: соотношение молярного, или численного количества компонента, его массы, или объёма исключительно к объёму раствора[1] (типичные единицы измерения — соответственно моль/л, л−1, г/л, и безразмерная величина). Долей компонента ИЮПАК называют безразмерное соотношение одной из трёх однотипных величин — массы, объёма или количества вещества.[2] Однако в обиходе термин «концентрация» могут применять и для долей, не являющихся объёмными долями, а также к соотношениям, не описанным ИЮПАК. Оба термина могут применяться к любым смесям, включая механические смеси, но наиболее часто применяются к растворам.

Можно выделить несколько типов математического описания: массовая концентрация, молярная концентрация, концентрация частиц и объемная концентрация[3].

Эти стаканы, содержащие красный краситель, демонстрируют качественные изменения концентрации. Растворы слева более разбавлены, по сравнению с более концентрированными растворами справа.

Массовая доля[править | править код]

Массовая доля

определение Массовая доля компонента — отношение массы данного компонента к сумме масс всех компонентов.
обозначение w — по рекомендациям ИЮПАК[4].

omega — чаще в русскоязычной литературе.

В технической литературе:

{displaystyle {bar {x}}} — для массовой доли жидкой смеси

{displaystyle {bar {y}}} — для массовой доли газовой смеси

единицы измерения доли,

%масс (для выражения в %масс следует умножить указанное выражение на 100 %)

формула {displaystyle omega _{mathrm {B} }={frac {m_{mathrm {B} }}{m}}}где:

  • ωB — массовая доля компонента B
  • mB — масса компонента B;
  • m — общая масса всех компонентов смеси.

В бинарных растворах часто существует однозначная (функциональная) зависимость между плотностью раствора и его концентрацией (при данной температуре). Это даёт возможность определять на практике концентрации важных растворов с помощью денсиметра (спиртометра, сахариметра, лактометра). Некоторые ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора (спирта, жира в молоке, сахара). Следует учитывать, что для некоторых веществ кривая плотности раствора имеет максимум, в этом случае проводят два измерения: непосредственное, и при небольшом разбавлении раствора.

Часто для выражения концентрации (например, серной кислоты в электролите аккумуляторных батарей) пользуются просто их плотностью. Распространены ареометры (денсиметры, плотномеры), предназначенные для определения концентрации растворов веществ.

Объёмная доля[править | править код]

Объёмная доля

определение Объёмная доля — отношение объёма компонента к сумме объёмов компонентов до смешивания.
обозначение {displaystyle phi _{mathrm {B} }}
единицы измерения доли единицы,

%об (ИЮПАК не рекомендует добавлять дополнительные метки после знака %)

формула
{displaystyle phi _{mathrm {B} }={frac {V_{mathrm {B} }}{sum V_{i}}}},

где:

  • {displaystyle phi _{mathrm {B} }} — объёмная доля компонента B,
  • VB — объём компонента B;
  • {displaystyle sum V_{i}} — сумма объёмов всех компонентов до смешивания.

При смешивании жидкостей их суммарный объём может уменьшаться, поэтому не следует заменять сумму объёмов компонентов на объём смеси.

Как было указано выше, существуют ареометры, предназначенные для определения концентрации растворов определённых веществ. Такие ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора. Для распространённых растворов этилового спирта, концентрация которых обычно выражается в объёмных процентах, такие ареометры получили название спиртомеров или андрометров.

Молярность (молярная объёмная концентрация)[править | править код]

Молярная концентрация (молярность, мольность[5])

определение Молярность — количество вещества (число молей) компонента в единице объёма смеси.
обозначение По рекомендации ИЮПАК, обозначается буквой c или {displaystyle [B]}, где B — вещество, концентрация которого указывается.[6]
единицы измерения В системе СИ — моль/м³

На практике чаще — моль/л или ммоль/л.
Также используют выражение «в молярности». Возможно другое обозначение молярной концентрации, которое принято обозначать М. Так, раствор с концентрацией 0,5 моль/л называют 0,5-молярным, записывают «0,5 M».

Примечание: После числа пишут «моль», подобно тому, как после числа пишут «см», «кг» и т. п., не склоняя по падежам.

формула
{displaystyle {c_{mathrm {B} }}={frac {n_{mathrm {B} }}{V}}},

где:

  • {displaystyle n_{mathrm {B} }} — количество вещества компонента, моль;
  • V — общий объём смеси, л

Нормальная концентрация (молярная концентрация эквивалента, «нормальность»)[править | править код]

Нормальная концентрация (молярная концентрация эквивалента, «нормальность»)

определение Нормальная концентрация — количество эквивалентов данного вещества в 1 литре смеси.
обозначение {displaystyle C_{N}(B)}, {displaystyle C_{H}(B)}, {displaystyle c(f_{eq}~mathrm {B} )}
единицы измерения Нормальную концентрацию выражают в моль-экв/л или г-экв/л (имеется в виду моль эквивалентов). Для записи концентрации таких растворов используют сокращения «н» или «N». Например, раствор, содержащий 0,1 моль-экв/л, называют децинормальным и записывают как 0,1 н.
формула
{displaystyle c(f_{eq}~mathrm {B} )=c{big (}(1/z)~mathrm {B} {big )}=zcdot c_{mathrm {B} }=zcdot {frac {n_{mathrm {B} }}{V}}={frac {1}{f_{eq}}}cdot {frac {n_{mathrm {B} }}{V}}},

где:

  • {displaystyle n_{mathrm {B} }} — количество вещества компонента, моль;
  • V — общий объём смеси, литров;
  • z — число эквивалентности (фактор эквивалентности f_{{eq}}=1/z).

Нормальная концентрация может отличаться в зависимости от реакции, в которой участвует вещество. Например, одномолярный раствор H2SO4 будет однонормальным, если он предназначается для реакции со щёлочью с образованием гидросульфата калия KHSO4, и двухнормальным в реакции с образованием K2SO4.

Мольная (молярная) доля[править | править код]

Мольная (молярная) доля

определение Мольная доля — отношение количества молей данного компонента к общему количеству молей всех компонентов.
обозначение ИЮПАК рекомендует обозначать мольную долю буквой x (а для газов — y)[7], также в литературе встречаются обозначения chi , X.
единицы измерения Доли единицы или %мольн (ИЮПАК не рекомендует добавлять дополнительные метки после знака %)
формула
{displaystyle x_{mathrm {B} }={frac {n_{mathrm {B} }}{sum n_{i}}}}, где:
  • {displaystyle x_{mathrm {B} }} — мольная доля компонента B;
  • {displaystyle n_{mathrm {B} }} — количество компонента B, моль;
  • sum n_{i} — сумма количеств всех компонентов.

Мольная доля может использоваться, например, для количественного описания уровня загрязнений в воздухе, при этом её часто выражают в частях на миллион (ppm — от англ. parts per million). Однако, как и в случае с другими безразмерными величинами, во избежание путаницы, следует указывать величину, к которой относится указанное значение.

Моляльность (молярная весовая концентрация, моляльная концентрация)[править | править код]

Моляльная концентрация (моляльность,[5] молярная весовая концентрация) 

определение Моляльная концентрация (моляльность,[5] молярная весовая концентрация) — количество растворённого вещества (число моль) в 1000 г растворителя.
обозначение mПримечание: чтобы не путать с массой, в тех формулах где применяется моляльность, массу обозначают как g
единицы измерения моль/кг.

Также распространено выражение в «моляльности». Так, раствор с концентрацией 0,5 моль/кг называют 0,5-мольным.

формула
{displaystyle {m_{mathrm {B} }}={frac {n_{mathrm {B} }}{m_{mathrm {A} }}}},

где:

  • {displaystyle n_{mathrm {B} }} — количество растворённого вещества, моль;
  • {displaystyle m_{mathrm {A} }} — масса растворителя, кг.

Следует обратить особое внимание, что, несмотря на сходство названий, молярная концентрация и моляльность — величины различные. Прежде всего, в отличие от молярной концентрации, при выражении концентрации в моляльности расчёт ведут на массу растворителя, а не на объём раствора. Моляльность, в отличие от молярной концентрации, не зависит от температуры.

Массовая концентрация (Титр)[править | править код]

Массовая концентрация (Титр)

определение Массовая концентрация — отношение массы растворённого вещества к объёму раствора.
обозначение gamma или rho — по рекомендации ИЮПАК[8].

T — в аналитической химии

единицы измерения доли,

%масс (для выражения в %масс следует умножить указанное выражение на 100 %)

формула
{displaystyle rho _{mathrm {B} }={frac {m_{mathrm {B} }}{V}}}.

где:

  • {displaystyle m_{mathrm {B} }} — масса растворённого вещества;
  • V — общий объём раствора;

В аналитической химии используется понятие титр по растворённому или по определяемому веществу (обозначается буквой T).

Концентрация частиц[править | править код]

определение Концентрация частиц — отношение числа частиц N к объёму V, в котором они находятся
обозначение C — по рекомендации ИЮПАК[9].

однако также часто встречается обозначение n (не путать с количеством вещества).

единицы измерения м−3 — в системе СИ,

1/л

формула
{displaystyle C_{mathrm {B} }={frac {N_{mathrm {B} }}{V}}={frac {n_{mathrm {B} }cdot N_{mathrm {A} }}{V}}=c_{mathrm {B} }cdot N_{mathrm {A} }},

где:

  • {displaystyle N_{mathrm {B} }} — количество частиц,
  • V — объём,
  • {displaystyle {ce {n_{mathrm {B} }}}} — количество вещества B,
  • {displaystyle N_{mathrm {A} }} — постоянная Авогадро,
  • {displaystyle c_{mathrm {B} }} — молярная концентрация B.

Весообъёмные (массо-объёмные) проценты[править | править код]

Иногда встречается использование так называемых «весообъёмных процентов»[10], которые соответствуют массовой концентрации вещества, где единица измерения г/(100 мл) заменена на процент. Этот способ выражения используют, например, в спектрофотометрии, если неизвестна молярная масса вещества или если неизвестен состав смеси, а также по традиции в фармакопейном анализе.[11] Стоит отметить, что поскольку масса и объём имеют разные размерности, использование процентов для их соотношения формально некорректно. Также международное бюро мер и весов[12] и ИЮПАК[13] не рекомендуют добавлять дополнительные метки (например «% (m/m)» для обозначения массовой доли) к единицам измерения.

Другие способы выражения концентрации[править | править код]

Существуют и другие, распространённые в определённых областях знаний или технологиях, методы выражения концентрации. Например, при приготовлении растворов кислот в лабораторной практике часто указывают, сколько объёмных частей воды приходится на одну объёмную часть концентрированной кислоты (например, 1:3). Иногда используют также отношение масс (отношение массы растворённого вещества к массе растворителя) и отношение объёмов (аналогично, отношение объёма растворяемого вещества к объёму растворителя).

Применимость способов выражения концентрации растворов, их свойства[править | править код]

В связи с тем, что моляльность, массовая доля, мольная доля не включают в себя значения объёмов, концентрация таких растворов остаётся неизменной при изменении температуры. Молярность, объёмная доля, титр, нормальность изменяются при изменении температуры, так как при этом изменяется плотность растворов. Именно моляльность используется в формулах повышения температуры кипения и понижения температуры замерзания растворов.

Разные виды выражения концентрации растворов применяются в разных сферах деятельности, в соответствии с удобством применения и приготовления растворов заданных концентраций. Так, титр раствора удобен в аналитической химии для волюмометрии (титриметрического анализа) и т. п.

Формулы перехода от одних выражений концентраций к другим[править | править код]

В зависимости от выбранной формулы погрешность конвертации колеблется от нуля до некоторого знака после запятой.

От молярности к нормальности[править | править код]

{displaystyle {c((1/z)~mathrm {B} )}={c_{mathrm {B} }}cdot {z}},

где:

От молярности к титру[править | править код]

{displaystyle {T}={c_{mathrm {B} }}cdot {M}},

где:

  • {displaystyle {c_{mathrm {B} }}} — молярная концентрация;
  • M — молярная масса растворённого вещества.

Если молярная концентрация выражена в моль/л, а молярная масса — в г/моль, то для выражения ответа в г/мл его следует разделить на 1000 мл/л.

От массовой доли к молярности[править | править код]

{displaystyle c_{mathrm {B} }={frac {rho cdot omega _{mathrm {B} }}{M(mathrm {B} )}}},

где:

Если плотность раствора выражена в г/мл, а молярная масса в г/моль, то для выражения ответа в моль/л выражение следует домножить на 1000 мл/л. Если массовая доля выражена в процентах, то выражение следует также разделить на 100 %.

От массовой доли к титру[править | править код]

{displaystyle {T}={rho }cdot {omega }},

где:

От моляльности к молярности[править | править код]

{displaystyle {c_{mathrm {B} }}=m_{mathrm {B} }{frac {mathrm {m} (A)}{V}}}

где:

  • {displaystyle m_{mathrm {B} }} — моляльность,
  • {displaystyle mathrm {m} (A)} — масса растворителя,
  • V — суммарный объём раствора,

От моляльности к мольной доле[править | править код]

{displaystyle x_{mathrm {B} }={frac {m_{mathrm {B} }}{m_{mathrm {B} }+{frac {1}{M(mathrm {A} )}}}}},

где:

  • {displaystyle m_{mathrm {B} }} — моляльность,
  • {displaystyle M(mathrm {A} )} — молярная масса растворителя.

Если моляльность выражена в моль/кг, а молярная масса растворителя в г/моль, то единицу в формуле следует представить как 1000 г/кг, чтобы слагаемые в знаменателе имели одинаковые единицы измерения.

Сводная таблица[править | править код]

Формулы перехода от одних выражений концентраций к другим

ωB φB xB cB CB mB TB
массовая доля г/г ωB {displaystyle omega _{mathrm {B} }={frac {mathrm {m} (B)}{mathrm {m} }}} {displaystyle omega _{mathrm {B} }=phi _{mathrm {B} }{frac {rho (B)}{rho }}} {displaystyle omega _{B}={frac {1}{{frac {M_{mathrm {A} }}{M_{mathrm {B} }}}({frac {1}{x_{mathrm {B} }}}-1)+1}}} {displaystyle omega _{B}={frac {M_{B}cdot c_{mathrm {B} }}{rho }}} {displaystyle omega _{B}={frac {M_{B}cdot c_{mathrm {B} }}{rho cdot N_{A}}}} {displaystyle omega _{mathrm {B} }={frac {m_{mathrm {B} }}{m_{mathrm {B} }+{frac {1}{M_{B}}}}}} {displaystyle omega _{B}={frac {T_{B}}{rho }}}
объёмная доля л/л φB {displaystyle phi _{mathrm {B} }={frac {omega _{B}}{rho (B)/rho }}} {displaystyle phi _{mathrm {B} }={frac {V_{mathrm {B} }}{V}}}
мольная доля моль/моль xB {displaystyle x_{mathrm {B} }={frac {1}{{frac {M_{mathrm {B} }}{M_{mathrm {A} }}}({frac {1}{omega _{B}}}-1)+1}}} {displaystyle x_{mathrm {B} }={frac {n_{mathrm {B} }}{n}}} {displaystyle x_{mathrm {B} }={frac {c_{mathrm {B} }cdot V}{n}}} {displaystyle x_{mathrm {B} }={frac {m_{mathrm {B} }}{m_{mathrm {B} }+{frac {1}{M_{A}}}}}}
молярность моль/л cB {displaystyle c_{mathrm {B} }={frac {rho cdot omega _{B}}{M_{B}}}} {displaystyle c_{mathrm {B} }={frac {x_{mathrm {B} }cdot n}{V}}} {displaystyle {c_{mathrm {B} }}={frac {n_{mathrm {B} }}{V}}} {displaystyle {c_{mathrm {B} }}=m_{mathrm {B} }{frac {mathrm {m} (A)}{V}}}
нормальность моль-экв/л c((1/z) B) {displaystyle c((1/z)~mathrm {B} )={frac {rho cdot omega _{B}}{M_{B}}}cdot z} {displaystyle {c((1/z)~mathrm {B} )}={c_{mathrm {B} }}cdot {z}}
концентрация частиц 1/л CB {displaystyle C_{mathrm {B} }={frac {rho cdot omega _{B}}{M_{B}}}cdot N_{A}} {displaystyle C_{mathrm {B} }=c_{mathrm {B} }cdot N_{mathrm {A} }} {displaystyle C_{mathrm {B} }={frac {N_{mathrm {B} }}{V}}}
моляльность моль/кгр-ля mB {displaystyle m_{mathrm {B} }={frac {omega _{B}}{M_{B}(1-omega _{B})}}} {displaystyle {m_{mathrm {B} }}={frac {n_{mathrm {B} }}{mathrm {m} (A)}}}
титр г/мл TB {displaystyle {T_{B}}={rho }cdot {omega _{B}}} {displaystyle {T_{B}}={c_{mathrm {B} }}cdot {M}} {displaystyle T_{mathrm {B} }={frac {mathrm {m} (B)}{V}}}
  • {displaystyle m_{mathrm {B} }} — моляльность вещества B,
  • {displaystyle mathrm {m} (B)} — масса вещества B,
  • {displaystyle mathrm {m} (A)} — масса растворителя,
  • {displaystyle mathrm {m} } — масса раствора,
  • T_{B} — титр (массовая концентрация) B,
  • {displaystyle rho (B)} — плотность вещества B,
  • rho — плотность раствора,
  • V — суммарный объём раствора,
  • {displaystyle N_{mathrm {A} }} — постоянная Авогадро,
  • {displaystyle N_{mathrm {B} }} — количество частиц вещества В,
  • {displaystyle n_{mathrm {B} }} — количество вещества В,
  • n — количество раствора,
  • M — молярная масса,

Примечания[править | править код]

  1. International Union of Pure and Applied Chemistry. concentration (англ.) // IUPAC Compendium of Chemical Terminology. — Research Triagle Park, NC: IUPAC. — ISBN 0967855098. — doi:10.1351/goldbook.C01222. Архивировано 20 июля 2018 года.
  2. International Union of Pure and Applied Chemistry. fraction (англ.) // IUPAC Compendium of Chemical Terminology. — Research Triagle Park, NC: IUPAC. — ISBN 0967855098. — doi:10.1351/goldbook.F02494. Архивировано 20 августа 2018 года.
  3. IUPAC Gold Book internet edition: «concentration».
  4. International Union of Pure and Applied Chemistry. IUPAC Gold Book – mass fraction, w (англ.). goldbook.iupac.org. Дата обращения: 11 декабря 2018. Архивировано 13 декабря 2018 года.
  5. 1 2 3 Z. Sobecka, W. Choiński, P. Majorek. Dictionary of Chemistry and Chemical Technology: In Six Languages: English / German / Spanish / French / Polish / Russian. — Elsevier, 2013-09-24. — С. 641. — 1334 с. — ISBN 9781483284439.
  6. International Union of Pure and Applied Chemistry. IUPAC Gold Book – amount concentration, c (англ.). goldbook.iupac.org. Дата обращения: 11 декабря 2018. Архивировано 21 декабря 2018 года.
  7. International Union of Pure and Applied Chemistry. IUPAC Gold Book – amount fraction, x ( y for gaseous mixtures) (англ.). goldbook.iupac.org. Дата обращения: 11 декабря 2018. Архивировано 22 декабря 2018 года.
  8. International Union of Pure and Applied Chemistry. IUPAC Gold Book – mass concentration, γ, ρ (англ.). goldbook.iupac.org. Дата обращения: 16 декабря 2018. Архивировано 7 декабря 2018 года.
  9. International Union of Pure and Applied Chemistry. IUPAC Gold Book – number concentration, C,n (англ.). goldbook.iupac.org. Дата обращения: 11 декабря 2018. Архивировано 22 декабря 2018 года.
  10. Способы приготовления растворов на МедКурс. Ru. Дата обращения: 24 апреля 2012. Архивировано 29 октября 2012 года.
  11. Бернштейн И. Я., Каминский Ю. Л. Спектрофотометрический анализ в органической химии. — 2-е изд. — Ленинград: Химия, 1986. — с. 5
  12. The International System of Units (SI). www.bipm.org. Дата обращения: 23 декабря 2018. Архивировано из оригинала 14 августа 2017 года.
  13. Quantities, Units and Symbols in Physical Chemistry. www.iupac.org. Дата обращения: 23 декабря 2018. Архивировано из оригинала 20 декабря 2016 года.

Формула концентрации раствора. Их множество. И каждая соответствует тому или иному способу выражения концентрации. А в химии их применяются достаточно: массовая доля растворенного вещества, молярная, нормальная, моляльная, титр и др.

Зачем так много? Ответ на этот вопрос очень прост. Каждый вид концентрации удобен в том или ином  случае, когда применение другого вида концентрации неуместно.

Например, при исследовании содержания массы вещества в очень небольшом объеме раствора удобно пользоваться титром. А в каких-то технологиях вообще концентрация заменяется другими количественными характеристиками раствора. Так, в технологии посола рыбы для расчета необходимой концентрации тузлука (раствора поваренной соли) используют не его процентную концентрацию, а плотность.

Содержание:

1. Концентрация – что это такое

2. Формула концентрации раствора: основные виды

3. Массовая доля растворенного вещества и примеры ее вычисления

  • разбавление раствора водой
  • концентрирование раствора путем упаривания
  • концентрирование раствора путем добавления растворенного вещества
  • смешивание двух растворов
  • применение кристаллогидратов для приготовления раствора (задачи на кристаллогидраты)

4. Правило «креста» в химии растворов как метод решения задач на процентную концентрацию растворов

Концентрация – что это такое

Любой раствор имеет различные характеристики: качественные и количественные. Одной из важнейших количественных характеристик является концентрация раствора.

Концентрация раствора – это количество растворенного вещества, содержащееся в определенном количестве раствора.

Как видно из приведенного определения, основными компонентами раствора являются:

— растворитель;

— растворенное вещество.

Растворенного вещества в растворе всегда меньше, а растворителя больше.

sposoby-vyrazheniya-koncentracii

И вот именно с вычислением количественного содержания растворенного вещества чаще всего и связаны все расчеты, основанные на применении формулы концентрации раствора.

Существует несколько видов концентрации раствора:

— массовая доля растворенного вещества;

— объемная доля растворенного вещества;

— молярная доля растворенного вещества;

— молярная (или молярность);

— моляльная (или моляльность);

— нормальная (или эквивалентная);

— титр.

 Формула концентрации раствора: основные виды

Применение того или иного вида концентрации уместно в каждом конкретном случае. Не существует какой-то универсальной концентрации или универсальной формулы концентрации раствора.

Кстати, с помощью математических преобразований можно перейти от одной концентрации к другой или найти взаимосвязь между разными их видами.

Основные расчетные формулы концентрации раствора приведены в таблице:

formula-koncentracii-rastvora

Массовая доля растворенного вещества и примеры ее вычисления

Массовая доля растворенного вещества – это отношение массы растворенного вещества к массе раствора.

Ее расчетная формула выглядит так:

sposoby-vyrazheniya-koncentracii

где ωр.в-ва – массовая доля растворенного вещества, mр.в-ва – масса растворенного вещества, mр-ра – масса раствора.

ωр.в-ва  представляет собой долю или от единицы или от 100%.  Так, например, имеется двухпроцентный раствор NaCl. Его концентрация будет записана в первом случае ω(NaCl) = 0,02, а во втором – ω(NaCl) = 2%. Форма записи основной сути не меняет. Можно записывать и так, и так.

Что же означает выражение ω(NaCl) = 0,02 или ω(NaCl) = 2%? Буквально следующее: в 100 г водного раствора поваренной соли содержится 2 г этой соли и 98 г воды.

Необходимо помнить, что раствор состоит из растворителя и растворенного вещества. Поэтому масса раствора будет состоять из массы растворителя и массы растворенного вещества:

sposoby-vyrazheniya-koncentracii

Тогда основную расчетную формулу для массовой доли растворенного вещества можно преобразовать:

sposoby-vyrazheniya-koncentracii

Очень часто в расчетах с процентной концентрацией используются плотность и объем раствора:

sposoby-vyrazheniya-koncentraciiВ таком случае основную расчетную формулу концентрации раствора можно преобразовать и так:

sposoby-vyrazheniya-koncentracii

В других ситуациях могут использоваться объем и плотность не раствора, а растворителя. Тогда основная формула для расчета концентрации будет выглядеть так:

sposoby-vyrazheniya-koncentracii

На практике бывает необходимо не только приготовить раствор с какой-либо определенной концентрацией, но и увеличить, либо уменьшить ее значение. Это достигается различными приемами:

— упариванием раствора;

— добавлением растворенного вещества;

— добавлением к раствору растворителя (например, воды).

Кроме того, приходится часто смешивать друг с другом растворы разных концентраций.

Разберем все возможные случаи.

Мы рекомендуем задачи, в которых речь идет о растворах, решать с использованием схематических рисунков. Это очень наглядно, особенно, когда речь идет о смешивании растворов.

Начнем с самого простого: вычислим концентрацию раствора.

Пример 1. В 200 г воды растворили 40 г глюкозы. Вычислите массовую долю глюкозы в полученном растворе.

Обратите внимание, что речи о каком-либо химическом взаимодействии не идет! Поэтому записывать уравнения реакций не требуется!sposoby-vyrazheniya-koncentracii

Запишем общую формулу для расчета массовой доли растворенного вещества:sposoby-vyrazheniya-koncentracii

В данной задаче глюкоза (C6H12O6) – растворенное вещество, а вода (H2O) – растворитель. Масса раствора будет складываться из массы глюкозы и массы воды:sposoby-vyrazheniya-koncentracii

Пример 2. Рассчитайте, сколько потребуется хлорида калия, чтобы приготовить 300 г раствора с массовой долей соли 6%.

Обратите внимание, для того, чтобы расчеты были менее громоздкими, будем использовать выражение концентрации не в %, а в долях от единицы.

Пример 3.  Необходимо приготовить 250 г раствора с массовой долей хлорида магния 24%. Рассчитайте массу требуемых воды и соли.sposoby-vyrazheniya-koncentracii

Так как раствор готовится из хлорида магния и воды, то и масса раствора равна сумме масс хлорида магния и воды:sposoby-vyrazheniya-koncentracii

Рассмотрим задачу, в которой в качестве растворителя выступает не вода, а другое вещество.

Пример 4.   В органическом растворителе бензоле объемом 140 мл растворили серу массой 0,6 г. Вычислите массовую долю серы в полученном растворе, если плотность бензола составляет 0,88 г/мл.

Обратите внимание, что здесь:

— масса раствора не известна;

— масса растворителя (бензола) не известна;

— известны объем и плотность растворителя (бензола), что позволяет нам найти его массу;

— масса раствора состоит из массы растворителя (бензол) и массы растворенного вещества (сера).sposoby-vyrazheniya-koncentracii

Объединим все расчетные формулы в одну и подставим в нее имеющиеся численные значения:sposoby-vyrazheniya-koncentracii

 Вычисление массовой доли растворенного вещества при разбавлении раствора водой

Разбавление раствора водой приводит к уменьшению его концентрации.

sposoby-vyrazheniya-koncentracii

Запомним, что в таких случаях:

— увеличивается масса раствора;

— увеличивается масса растворителя;

— масса растворенного вещества остается постоянной.

Пример 5.   К 80 г раствора с массовой долей NH4Cl 12% добавили 40 г воды. Вычислите массовую долю хлорида аммония в полученном растворе.sposoby-vyrazheniya-koncentracii

Объединим все полученные формулы в одну и подставим имеющиеся данные:sposoby-vyrazheniya-koncentracii

Пример 6.   Рассчитайте объем раствора фосфорной кислоты (массовая доля кислоты 12%, плотность 1,065 г/мл), который потребуется для приготовления раствора с массовой долей H3РO4 4% объемом 250 мл (плотность 1,02 г/мл).

В данной задаче речь напрямую о разбавлении раствора не идет. Но судя по тому, что исходный раствор имел концентрацию 12%, а конечный – 4%, становится ясно: последний раствор можно получить путем разбавления первого водой.sposoby-vyrazheniya-koncentracii

Вычисление массовой доли растворенного вещества при концентрировании раствора путем упаривания

Упаривание раствора, т.е. его нагревание, при котором происходит испарение воды, приводит к увеличению концентрации.

sposoby-vyrazheniya-koncentracii

Учтите, что при этом:

— уменьшается масса раствора;

— уменьшается масса растворителя;

— масса растворенного вещества остается постоянной (при условии, что растворенное вещество не разлагается при данной температуре).

Пример 7.    Из 200 г 27%-ного раствора глюкозы выпарили 20 г воды. Определите массовую долю глюкозы в полученном растворе.sposoby-vyrazheniya-koncentracii

Вычисление массовой доли растворенного вещества при концентрировании раствора путем добавления растворенного вещества

Добавление к уже существующему раствору новой порции растворенного вещества приводит к увеличению концентрации раствора.

sposoby-vyrazheniya-koncentracii

Помните, что в таких случаях:

— увеличивается масса раствора;

— увеличивается масса растворенного вещества.

Пример 8.    Определите массу хлорида калия, который надо добавить к 180 г 15%-ного раствора этой соли, чтобы получить 20%-ный раствор.sposoby-vyrazheniya-koncentracii

Вычисление массовой доли растворенного вещества при смешивании двух растворов

При смешивании двух растворов (речь о растворах одного и того же вещества конечно же) изменяются все количественные характеристики:

— увеличивается масса раствора;

— увеличивается масса растворенного вещества;

— изменяется массовая доля растворенного вещества.

sposoby-vyrazheniya-koncentracii

Пример 9.    Смешали 80 г 32%-ного раствора и 30 г 10%-ного раствора нитрата меди (II). Какова концентрация соли в полученном растворе?sposoby-vyrazheniya-koncentracii

  Вычисление массовой доли растворенного вещества с применением кристаллогидратов для приготовления раствора

Кристаллогидраты используются для приготовления растворов довольно часто. Кристаллогидраты представляют собой вещества, в состав которых помимо основного вещества входят молекулы воды. Например:

CuSO4·5H2O – кристаллогидрат сульфата меди (II) (или медный купорос);

Na2SO4·10H2O – кристаллогидрат сульфата натрия (или глауберова соль).

Больше примеров здесь.

Вода, входящая в состав кристаллогидрата, называется кристаллизационной.

Кристаллогидраты различаются прочностью связи между основным веществом и кристаллизационной водой. Одни из них теряют воду при комнатной температуре с течением времени и перестают быть кристаллогидратами (например, Na2СO3·10H2O). Другие – обезвоживаются только при сильном нагревании (например, CuSO4·5H2O).

При расчете концентрации с использованием кристаллогидратов для получения растворов часто приходится учитывать и кристаллизационную воду.

Но сначала поясним некоторые нюансы на конкретном примере:

1) Формула CuSO4·5H2O означает, что 1 моль CuSO4·5H2O содержит 1 моль CuSO4 и 5 моль H2O. Это можно было бы записать так:

n(CuSO4) = n(CuSO4·5H2O); n(H2O) = 5n(CuSO4·5H2O)

2) Относительная молекулярная (и численно молярная) масса будет складываться из относительной молекулярной массы вещества и относительной молекулярной массы воды. Например:

Mr(CuSO4·5H2O) = Mr(CuSO4) + 5·Mr(H2O) = 160 + 5·18 = 250 и, соответственно,

M(CuSO4·5H2O) = M(CuSO4) + 5·M(H2O) = 160 + 5·18 = 250 г/моль.

3) Еще одну особенность поясним с помощью рисунка:

sposoby-vyrazheniya-koncentracii

Итак, разберем несколько типичных задач.

Пример 10.     В 60 г воды растворили глауберову соль Na2SO4·10H2O массой 5,6 г. Какова массовая доля сульфата натрия в полученном растворе?

Пример 11.  Какая масса железного купороса FeSO4·7H2O и воды потребуется для приготовления 18 кг раствора сульфата железа (II) с массовой долей FeSO4 3%?


sposoby-vyrazheniya-koncentracii

Обратите внимание, что масса раствора дана не в граммах (г), а в килограммах (кг). Для того, чтобы привести в ходе расчетов все единицы измерения к единой системе, можно перевести килограммы в граммы и вычислять как обычно.

Но есть более простой способ. Можно считать количество вещества не в моль, а в киломоль (кмоль). Молярную массу вычислять не в г/моль, а в кг/кмоль. В этом случае ответ в задаче мы сразу получим в килограммах.

sposoby-vyrazheniya-koncentracii

sposoby-vyrazheniya-koncentracii

Пример 12. Вычислите массу кристаллогидрата сульфата никеля NiSO4·7H2O, который надо добавить к 180 г раствора с массовой долей сульфата никеля 1,5%, чтобы получить раствор с массовой долей соли 6%?

sposoby-vyrazheniya-koncentracii

sposoby-vyrazheniya-koncentracii

Правило «креста» в химии растворов как метод решения задач на процентную концентрацию растворов

Правилом «креста» (или «квадратом Пирсона») очень удобно пользоваться в расчетах, связанных с разбавлением или смешиванием растворов.

Общая схема вычислений выглядит так:

Пример 13. Какую массу 5%-ного раствора глюкозы надо добавить к 70 г 21%-ного раствора этого же вещества, чтобы получить 12%-ный раствор?

sposoby-vyrazheniya-koncentraciiПример 14. Сколько грамм раствора с массовой долей нитрата цинка 26% надо прилить к воде массой 300 г, чтобы получить раствор Zn(NO3)2 12%?

sposoby-vyrazheniya-koncentracii

Еще примеры с применением правила «креста» можно посмотреть здесь. 

Мы рассмотрели достаточно примеров расчетов, где используется формула такой концентрации раствора как массовая доля растворенного вещества. Как видим, ситуаций, в которых требуется ее применение, множество. Однако, есть достаточно случаев, когда более приемлемыми являются формулы других концентраций (молярной, нормальной, титра и т.д.). Об этом читайте в других статьях.

Чтобы самыми первыми узнавать о новых публикациях на сайте, присоединяйтесь к нашей группе ВКонтакте.

himzadacha.ru

или на Одноклассниках

Пожалуйста, оцените публикацию. Большая просьба, если вы оцениваете публикацию от 1 до 3 звезд, обязательно оставьте свой комментарий с указанием того, что не так с этой публикацией. Мы постараемся устранить недостатки.

Ваше мнение для нас важно!

Добавить комментарий