Как найти массу через силу лоренца

Содержание:

  • Определение и формула силы Лоренца
  • Направление силы Лоренца
  • Следствия свойств силы Лоренца
  • Формула силы Лоренца при наличии магнитного и электрического полей
  • Единицы измерения силы Лоренца
  • Примеры решения задач

Определение и формула силы Лоренца

Определение

Сила $bar{F}$ , действующая на движущуюся заряженную частицу в магнитном поле, равная:

$$bar{F}=q[bar{v} times bar{B}](1)$$

называется силой Лоренца (магнитной силой).

Исходя из определения (1) модуль рассматриваемой силы:

$$F=q v B sin alpha(2)$$

где $bar{v}$ – вектор скорости частицы, q – заряд частицы,
$bar{B}$ – вектор магнитной индукции поля в точке нахождения заряда,
$alpha$ – угол между векторами
$bar{v}$ и
$bar{B}$. Из выражения (2) следует, что если заряд движется параллельно
силовым линиям магнитного поля,то сила Лоренца равна нулю. Иногда силу Лоренца стараясь выделить, обозначают, используя индекс:
$bar{F}_L$

Направление силы Лоренца

Сила Лоренца (как и всякая сила) – это вектор. Ее направление перпендикулярно вектору скорости
$bar{v}$ и вектору
$bar{B}$ (то есть перпендикулярно плоскости, в которой находятся векторы скорости и магнитной
индукции) и определяется правилом правого буравчика (правого винта) рис.1 (a). Если мы имеем дело с отрицательным зарядом,
тонаправление силы Лоренца противоположно результату векторного произведения
(рис.1(b)).

вектор $bar{B}$ направлен перпендикулярно плоскости рисунков на нас.

Следствия свойств силы Лоренца

Так как сила Лоренца направлена всегда перпендикулярно направлению скорости заряда, то ее работа над частицей равна нулю. Получается,
что воздействуя на заряженную частицу при помощи постоянного магнитного поля нельзя изменить ее энергию.

Если магнитное поле однородно и направлено перпендикулярно скорости движения заряженной частицы, то заряд под воздействием
силы Лоренца будет перемещаться по окружности радиуса R=const в плоскости, которая перпендикулярна вектору магнитной индукции.
При этом радиус окружности равен:

$$R=frac{m gamma v}{|q| B}(3)$$

где m – масса частицы,|q|- модуль заряда частицы,
$gamma=frac{1}{sqrt{1-frac{v^{2}}{c^{2}}}}$ – релятивистский множитель Лоренца, c – скорость света в вакууме.

Сила Лоренца – это центростремительная сила. По направлению отклонения элементарной заряженной частицы в магнитном поле делают вывод о ее знаке (рис.2).

Формула силы Лоренца при наличии магнитного и электрического полей

Если заряженная частица перемещается в пространстве, в котором находятся одновременно два поля (магнитное и
электрическое), то сила, которая действует на нее, равна:

$$bar{F}=q bar{E}+q[bar{v} times bar{B}](4)$$

где $bar{E}$ – вектор напряженности электрического поля в точке, в которой находится заряд.
Выражение (4) было эмпирически получено Лоренцем. Сила
$bar{F}$, которая входит в формулу (4) так же называется силой Лоренца
(лоренцевой силой). Деление лоренцевой силы на составляющие: электрическую
$(bar{F} = q bar{E})$ и магнитную
$(bar{F}=q[bar{v} times bar{B}])$ относительно, так как связано с выбором инерциальной системы отсчета.
Так, если система отсчета будет двигаться с такой же скоростью
$bar{v}$, как и заряд, то в такой системе сила Лоренца, действующая на частицу, будет равна нулю.

Единицы измерения силы Лоренца

Основной единицей измерения силы Лоренца (как и любой другой силы) в системе СИ является: [F]=H

В СГС: [F]=дин

Примеры решения задач

Пример

Задание. Какова угловая скорость электрона, который движется по окружности в магнитном поле с индукцией B?

Решение. Так как электрон (частица имеющая заряд) совершает перемещение в магнитном поле, то на
него действует сила Лоренца вида:

$$bar{F}=q[bar{v} times bar{B}](1.1)$$

где q=qe – заряд электрона. Так как в условии сказано, что электрон движется по окружности, то это означает, что
$bar{v} perp bar{B}$, следовательно, выражение для модуля силы Лоренца примет вид:

$$F=q v B(1.2)$$

Сила Лоренцаявляется центростремительной и кроме того, по второму закону Ньютона будет в нашем случае равна:

$$F=m a_{n}=m frac{v^{2}}{R}(1.3)$$

Приравняем правые части выражений (1.2) и (1.3), имеем:

$$q v B=m frac{v^{2}}{R}(1.4)$$

Из выражения (1.3) получим скорость:

$$v=frac{q B R}{m}(1.5)$$

Период обращения электрона по окружности можно найти как:

$$T=frac{2 pi R}{v}=frac{2 pi m}{q B}(1.6)$$

Зная период, можно найти угловую скорость как:

$$omega=frac{2 pi}{T}=frac{q_{e} B}{m}$$

Ответ. $omega=frac{q_{e} B}{m}$

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Заряженная частица (заряд q, масса m) со скоростью vвлетает в область, где имеется электрическое поле
напряженностью E и магнитное поле с индукцией B. Векторы $bar{E}$ и
$bar{B}$ совпадают по направлению. Каково ускорение частицы в моментначалаперемещения в полях, если
$bar{v} uparrow bar{B} uparrow bar{E}$?

Решение. Сделаем рисунок.

На заряженную частицу действует сила Лоренца:

$$bar{F}=q bar{E}+q[bar{v} times bar{B}](2.1)$$

Магнитная составляющая имеет направление перпендикулярное вектору скорости ($bar{v}$) и вектору
магнитной индукции ($bar{B}$).
Электрическая составляющая сонаправлена с вектором напряжённости ($bar{E}$) электрического поля.
В соответствии со вторым законом Ньютона имеем:

$$bar{F}=q bar{E}+q[bar{v} times bar{B}]=m bar{a}(2.2)$$

Получаем, что ускорение равно:

$$frac{q bar{E}+q[bar{v} times bar{B}]}{m}=bar{a}(2.3)$$

Если скорость заряда параллельна векторам $bar{E}$ и
$bar{B}$, тогда $[bar{v} times bar{B}]=0$, получим:

$$bar{a}=frac{q bar{E}}{m}$$

Ответ. $bar{a}=frac{q bar{E}}{m}$

Читать дальше: Формула силы натяжения нити.

Сила Лоренца, действующая на быстро движущиеся заряженные частицы в пузырьковой камере, приводит к появлению траекторий положительного и отрицательного заряда, которые изгибаются в противоположных направлениях.

Си́ла Ло́ренца — сила, с которой электромагнитное поле, согласно классической (неквантовой) электродинамике[1], действует на точечную заряженную частицу[2][3]. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью mathbf{v} заряд q лишь со стороны магнитного поля, нередко же полную силу — со стороны электромагнитного поля вообще[4], иначе говоря, со стороны электрического mathbf {E} и магнитного mathbf {B} полей. В Международной системе единиц (СИ) выражается как[5][2]:

{displaystyle {vec {mathbf {F} }}=qleft({vec {mathbf {E} }}+[{vec {mathbf {v} }},{vec {mathbf {B} }}]right).}

Электромагнитная сила, действующая на заряд q, представляет собой комбинацию силы, действующей в направлении электрического поля mathbf {E} , пропорциональной величине поля и количеству заряда, и силы, действующей под прямым углом к магнитному полю mathbf {B} и скорости mathbf{v}, пропорциональной величине магнитного поля, заряду и скорости. Вариации этой базовой формулы описывают магнитную силу, действующую на проводник с током (иногда называемую силой Лапласа), электродвижущую силу в проволочной петле, движущейся через область с магнитным полем (закон индукции Фарадея), и силу, действующую на движущиеся заряженные частицы.

Историки науки предполагают, что этот закон подразумевался в статье Джеймса Клерка Максвелла, опубликованной в 1865 году[6]. Хендрик Лоренц привёл полный вывод этой формулы в 1895 г.[7], определив вклад электрической силы через несколько лет после того, как Оливер Хевисайд правильно определил вклад магнитной силы[8][9].

Для силы Лоренца, так же как и для сил инерции, третий закон Ньютона не выполняется (это верно лишь при условии, что создающий поле магнит не рассматривается как часть системы). Лишь переформулировав этот закон Ньютона как закон сохранения импульса в замкнутой системе из частиц и электромагнитного поля, можно восстановить его справедливость для сил Лоренца[10].

Полный вывод такого утверждения требует определения понятия “импульс поля”, а едва ли не единственный способ сделать это – это теорема Эммы Нетер (и тесно связанное с ней понятие тензора энергии-импульса) в классической (не-квантовой) теории поля в лагранжевом формализме. Однако же характерный импульс поля/волны (“давление света”) в c раз меньше, чем его характерная энергия, где c – скорость света, и во многих реальных, технических применениях представляет собой исчезающе малую величину. Что означает справедливость ЗСИ для одного лишь заряженного вещества, и, в свою очередь, если вещество состоит из всего 2 материальных точек – справедливость третьего закона Ньютона (он равносилен ЗСИ для замкнутой системы, которая есть пара материальных точек/тел).

Сила Лоренца как определение E и B[править | править код]

Классическая электродинамика
VFPt Solenoid correct2.svg
Электричество · Магнетизм

Электростатика

Закон Кулона
Теорема Гаусса
Электрический дипольный момент
Электрический заряд
Электрическая индукция
Электрическое поле
Электростатический потенциал

Магнитостатика

Закон Био — Савара — Лапласа
Закон Ампера
Магнитный момент
Магнитное поле
Магнитный поток
Магнитная индукция

Электродинамика

Векторный потенциал
Диполь
Потенциалы Лиенара — Вихерта
Сила Лоренца
Ток смещения
Униполярная индукция
Уравнения Максвелла
Электрический ток
Электродвижущая сила
Электромагнитная индукция
Электромагнитное излучение
Электромагнитное поле

Электрическая цепь

Закон Ома
Законы Кирхгофа
Индуктивность
Радиоволновод
Резонатор
Электрическая ёмкость
Электрическая проводимость
Электрическое сопротивление
Электрический импеданс

Ковариантная формулировка

Тензор электромагнитного поля
Тензор энергии-импульса
4-потенциал
4-ток

См. также: Портал:Физика

Во многих учебниках по электромагнетизму силу Лоренца используют в качестве определения электрического и магнитного полей E и B[11][12][13]. В частности, сила Лоренца понимается как следующее эмпирическое утверждение:

Электромагнитная сила F, действующая на пробный заряд в данной точке и момент времени, является определённой функцией его заряда q и скорости v, которая может быть параметризована ровно двумя векторами E и B в функциональной форме :
{displaystyle mathbf {F} =q(mathbf {E} +mathbf {v} times mathbf {B} )}.

Это выражение верно в том числе для случая движения частицы со скоростью близкой по величине к скорости света (v = | v | ≈ c).[14] Таким образом, два векторных поля E и B определяются во всём пространстве и времени, и они называются «электрическим полем» и «магнитным полем». Поля определены повсюду в пространстве и времени относительно силы, которую испытывает пробный заряд, помещённый в электромагнитное поле.

Как определение E и B, сила Лоренца является только определением в принципе, потому что реальная частица (в отличие от гипотетического пробного тела бесконечно малой массы и заряда) будет создавать свои собственные конечные поля E и B, изменяющие электромагнитную силу, которую он испытывает. Вдобавок, заряд в магнитном поле обычно движется по криволинейной траектории, то есть с ускорением — а значит, он испускает излучение и теряет кинетическую энергию (см., например, статьи тормозное излучение или синхротронное излучение). Эти эффекты возникают за счёт как прямого воздействия (так называемой силы реакции излучения), так и косвенного (путём воздействия на движение близлежащих зарядов и токов).

Уравнение[править | править код]

Заряженная частица[править | править код]

Сила F, действующая на частицу с электрическим зарядом q и мгновенной скоростью v из-за внешнего электрического поля E и магнитного поля B, определяется выражением (в единицах СИ):[15]

{displaystyle {vec {mathbf {F} }}=q({vec {mathbf {E} }}+[{vec {mathbf {v} }},{vec {mathbf {B} }}])}

где знак × обозначает векторное произведение (все величины, выделенные жирным шрифтом, являются векторами). В декартовых компонентах

{displaystyle F_{x}=q(E_{x}+v_{y}B_{z}-v_{z}B_{y}),}
{displaystyle F_{y}=q(E_{y}+v_{z}B_{x}-v_{x}B_{z}),}
{displaystyle F_{z}=q(E_{z}+v_{x}B_{y}-v_{y}B_{x}).}

В общем случае, электрическое и магнитное поля зависят от координат и времени. Следовательно, в явном виде силу Лоренца можно записать как

{displaystyle mathbf {F} left(mathbf {r} ,mathbf {dot {r}} ,t,qright)=qleft[mathbf {E} (mathbf {r} ,t)+mathbf {dot {r}} times mathbf {B} (mathbf {r} ,t)right]},

где r — вектор положения заряженной частицы, t — время, а точка обозначает производную по времени.

Положительно заряженная частица будет ускоряться в том же направлении, что и поле E, но её траектория будет изгибаться перпендикулярно как вектору мгновенной скорости v, так и полю B в соответствии с правилом буравчика (если пальцы правой руки вытянуты так, чтобы указывать в направлении v, а затем изгибаются так, чтобы указывать в направлении B, тогда вытянутый большой палец будет указывать в направлении F).

Член q E называется электрической силой, а член q (v × B) — магнитной силой[16]. Согласно некоторым определениям, термин «сила Лоренца» относится конкретно к формуле для магнитной силы[17] а формуле с общей электромагнитной силой (включая электрическую силу), дано другое название. В дальнейшем термин «сила Лоренца» будет относиться к выражению для полной силы.

Магнитная составляющая силы Лоренца проявляется как сила, действующая на помещённый в магнитное поле проводник с током. В этом контексте эта сила также называется силой Лапласа.

Сила Лоренца — это сила воздействия электромагнитного поля на заряженную частицу, или. другими словами, скорость, с которой передаётся линейный импульс от электромагнитного поля частице. С ним связана мощность, которая представляет собой скорость, с которой энергия передаётся от электромагнитного поля частице:

{displaystyle mathbf {v} cdot mathbf {F} =q,mathbf {v} cdot mathbf {E} }.

Магнитное поле не совершает работы, потому что магнитная сила всегда перпендикулярна скорости частицы.

Непрерывное распределение заряда[править | править код]

Сила Лоренца (на единицу 3-х мерного объёма) f действующая на непрерывное распределение заряда (плотность заряда ρ) в движении. 3-хмерного плотность тока J соответствует движению элемента заряда dq в элементе объёма dV и изменяется по всему пространству.

Для непрерывного распределения заряда, находящегося в движении, уравнение для силы Лоренца принимает дифференциальный вид

{displaystyle mathrm {d} mathbf {F} =mathrm {d} qleft(mathbf {E} +mathbf {v} times mathbf {B} right),!},

где {displaystyle mathrm {d} mathbf {F} } — сила, действующая на небольшой элемент объёма с зарядом {displaystyle mathrm {d} q}. Если обе части данного уравнения разделить на объём этого небольшого фрагмента распределения заряда {mathrm  {d}}V, то получится выражение

{displaystyle mathbf {f} =rho left(mathbf {E} +mathbf {v} times mathbf {B} right),!},

где {mathbf  {f}} — плотность силы (сила на единицу объёма) и rho  — плотность заряда (заряд на единицу объёма). Далее, плотность тока, соответствующая движению заряда, равна

{displaystyle mathbf {J} =rho mathbf {v} ,!},

так что непрерывным аналогом уравнения для силы Лоренца является выражение[18]

{displaystyle mathbf {f} =rho mathbf {E} +mathbf {J} times mathbf {B} ,!}

К полной силе можно прийти вычислив объемный интеграл по распределению заряда:

{displaystyle mathbf {F} =iiint !(rho mathbf {E} +mathbf {J} times mathbf {B} ),mathrm {d} V,!}.

Устраняя rho и {mathbf  {J}}, используя уравнения Максвелла с помощью теорем векторного исчисления, эту форму уравнения можно использовать для вывода тензора напряжений Максвелла {displaystyle {boldsymbol {sigma }}}, и комбинируя с вектором Пойнтинга mathbf {S}  — получить тензор T энергии-импульса электромагнитного поля, используемого в общей теории относительности[18].

В терминах {displaystyle {boldsymbol {sigma }}} и mathbf {S} , можно записать силу Лоренца (на единицу объёма) в виде[18]

{displaystyle mathbf {f} =nabla cdot {boldsymbol {sigma }}-{dfrac {1}{c^{2}}}{dfrac {partial mathbf {S} }{partial t}},!},

где c — скорость света, ∇ · обозначает дивергенцию тензорного поля. Это уравнение связывает не количество заряда и его скорость в электрическом и магнитном полях, а поток энергии (поток энергии в единицу времени на единицу расстояния) в полях с силой, действующей на распределение заряда.

Плотность мощности, связанная с силой Лоренца в материальной среде, равна

{displaystyle mathbf {J} cdot mathbf {E} }.

Если разделить полный заряд и полный ток на их свободную и связанную части, получится, что плотность силы Лоренца равна

{displaystyle mathbf {f} =(rho _{f}-nabla cdot mathbf {P} )mathbf {E} +(mathbf {J} _{f}+nabla times mathbf {M} +{frac {partial mathbf {P} }{partial t}})times mathbf {B} },

где {displaystyle rho _{f}} — плотность свободного заряда; {mathbf  {P}} — поляризация ; {displaystyle mathbf {J} _{f}} — плотность тока свободных зарядов; и mathbf {M}  — намагниченность. Таким образом, сила Лоренца может объяснить крутящий момент, приложенный к постоянному магниту из-за внешнего магнитного поля.

Уравнение в единицах СГС[править | править код]

В приведённых выше формулах используются единицы СИ, которые являются наиболее распространёнными среди экспериментаторов, техников и инженеров. В системе СГС, которая более распространена среди физиков-теоретиков, сила Лоренца примет вид

{displaystyle mathbf {F} =q_{mathrm {cgs} }left(mathbf {E} _{mathrm {cgs} }+{frac {mathbf {v} }{c}}times mathbf {B} _{mathrm {cgs} }right)},

где c — скорость света. Хотя это уравнение выглядит несколько иначе, оно полностью эквивалентно, поскольку новые величины связаны в двух системах единиц соотношениями

{displaystyle q_{mathrm {cgs} }={frac {q_{mathrm {SI} }}{sqrt {4pi epsilon _{0}}}},quad mathbf {E} _{mathrm {cgs} }={sqrt {4pi epsilon _{0}}},mathbf {E} _{mathrm {SI} },quad mathbf {B} _{mathrm {cgs} }={sqrt {4pi /mu _{0}}},{mathbf {B} _{mathrm {SI} }},quad c={frac {1}{sqrt {varepsilon _{0}mu _{0}}}}.}

где ε 0 — диэлектрическая проницаемость вакуума, а μ 0 — магнитная проницаемость вакуума. На практике индексы «cgs» и «SI» всегда опускаются, и система единиц измерения должна быть понятна из контекста.

Частные случаи[править | править код]

Направление движения частицы в зависимости от её заряда при векторе магнитной индукции, перпендикулярном вектору скорости (к нам из плоскости рисунка, перпендикулярно ей)

В однородном магнитном поле, направленном перпендикулярно вектору скорости, под действием силы Лоренца заряженная частица будет равномерно двигаться по окружности постоянного радиуса r (называемого также гирорадиусом). Сила Лоренца в этом случае является центростремительной силой:

СГС СИ
{displaystyle {mv^{2} over r}={|q| over c}vBRightarrow r={cm over |q|}cdot {v over B}}
{displaystyle {mv^{2} over r}=|q|vBRightarrow r={m over |q|}cdot {v over B}}

Работа силы Лоренца будет равна нулю, поскольку векторы силы и скорости всегда ортогональны. При скорости v , намного меньшей скорости света, круговая частота omega  не зависит от v :

СГС СИ
{displaystyle omega ={|q|B over mc}}
{displaystyle omega ={|q|B over m}}

Если заряженная частица движется в магнитном поле так, что вектор скорости v составляет с вектором магнитной индукции mathbf {B} угол alpha  , то траекторией движения частицы является винтовая линия с радиусом {displaystyle r } и шагом винта {displaystyle h }:

СГС СИ
{displaystyle r={mc over |q|}cdot {vsin alpha  over B}},
{displaystyle h={2pi  over B}cdot {mc over |q|}cdot vcos alpha }
{displaystyle r={m over |q|}cdot {vsin alpha  over B}},
{displaystyle h={2pi  over B}cdot {m over |q|}cdot vcos alpha }

История[править | править код]

Первые попытки количественного описания электромагнитной силы были предприняты в середине 18 века. Предполагалось Иоганн Тобиас Майер и другие в 1760 году[19] предполагали, что сила на магнитных полюсах как и электрически заряженные объекты, что установил Генри Кавендиш в 1762 году[20], подчиняются закону обратных квадратов. Однако в обоих случаях экспериментальное доказательство не было ни полным, ни окончательным. Только в 1784 году Шарль-Огюстен де Кулон, используя торсионные весы, смог окончательно экспериментально показать, что это правда.[21] Вскоре после открытия в 1820 году Хансом Кристианом Эрстедом того факта, что на магнитную стрелку действует электрический ток, Андре-Мари Ампер в том же году смог экспериментально получить формулу угловой зависимости силы между двумя элементами тока.[22][23] Во всех этих описаниях сила всегда описывалась в терминах свойств вещества и расстояний между двумя массами или зарядами, а не в терминах электрических и магнитных полей.[24]

Современная концепция электрических и магнитных полей впервые возникла в теориях Майкла Фарадея, особенно удачной оказалась его идея силовых линий, которая позже получила полное математическое описание лордом Кельвином и Джеймсом Клерком Максвеллом.[25] С современной точки зрения, в формулировке Максвелла 1865 г. его уравнений для электромагнитного поля можно получить уравнение для силы Лоренца по отношению к электрическим токам[6], хотя во времена Максвелла не было очевидно, как его уравнения связаны с силами при перемещении заряженных предметов. Дж. Дж. Томсон был первым, кто попытался вывести из уравнений Максвелла поля электромагнитные силы, действующие на движущийся заряженный объект, в терминах свойств объекта и внешних полей. Заинтересовавшийся поведением заряженных частиц в катодных лучах, Томсон опубликовал статью в 1881 году, в которой он дал определение силы, действующей на частицы, обусловленную внешним магнитным полем, в виде[8]

{displaystyle mathbf {F} ={frac {q}{2}}mathbf {v} times mathbf {B} .}

Томсон вывел правильную основную форму формулы, но из-за некоторых ошибок и неполного описания тока смещения перед формулой включил неверный масштабный коэффициент, равный половине. Оливер Хевисайд изобрёл современные векторные обозначения и переписал в их терминах полевые уравнения Максвелла; он также (в 1885 и 1889 годах) исправил ошибки вывода Томсона и пришел к правильному виду для магнитной силы действующей на движущуюся заряженную частицу.[8][25][26] Наконец, в 1895 году[7][27] Хендрик Лоренц пришёл к современному виду формулы для электромагнитной силы, которая включает вклады как электрического, так и магнитного полей. Лоренц вначале отказался от максвелловского описания эфира и проводимости. Вместо этого Лоренц указал на различия между материей и светоносным эфиром и записал уравнения Максвелла в микроскопическом масштабе. Используя версию уравнений Максвелла Хевисайда для неподвижного эфира и, применяя лагранжевую механику (см. Ниже), Лоренц пришёл к правильной и полной форме закона для электромагнитной силы, который теперь носит его имя.[25][28]

Траектории частиц под действием силы Лоренца[править | править код]

Заряженная частица дрейфует в однородном магнитном поле. (A) Нет возмущающей силы (B) В электрическом поле, E (C) С независимой силой, F (например, гравитация) (D) В неоднородном магнитном поле, grad H

Во многих случаях, представляющих практический интерес, движение в магнитном поле электрически заряженной частицы (например, электрона или иона в плазме) можно рассматривать как суперпозицию относительно быстрого кругового движения вокруг точки, которая дрейфует в направлении перпендикулярном электрическому и магнитным полям. Скорости дрейфа могут различаться в зависимости от их зарядового состояния, массы или температуры, что может привести к электрическим токам или химическому разделению.

Значение силы Лоренца[править | править код]

В то время как современные уравнения Максвелла описывают то, как электрически заряженные частицы и токи или движущиеся заряженные частицы вызывают электрические и магнитные поля, сила Лоренца дополняет эту картину, описывая силу, действующую на движущийся точечный заряд q в присутствии электромагнитных полей.[15][29] Хотя сила Лоренца описывает действие E и B на точечный заряд, но такие электромагнитные силы не являются всей картиной. Заряженные частицы, возможно, связаны с другими силами, особенно с гравитацией и ядерными силами. Таким образом, уравнения Максвелла не отделены от других физических законов, а связаны с ними через плотности заряда и тока. Реакция точечного заряда на закон Лоренца — это один из аспектов; генерация E и B токами и зарядами — другое.

В реальных материалах сила Лоренца неадекватно описывает коллективное поведение заряженных частиц как в принципе, так и с точки зрения вычислений. Заряженные частицы в материальной среде не только реагируют на поля E и B, но и создают эти поля сами. Для определения временной и пространственной реакции зарядов необходимо решать сложные уравнения переноса, например, уравнение Больцмана, уравнение Фоккера — Планка или уравнения Навье — Стокса . Например, см. Магнитогидродинамику, гидродинамику, электрогидродинамику, сверхпроводимость, звёздную эволюцию . Разработан целый физический аппарат для решения этих вопросов. См., Например, формулы Грина — Кубо и функцию Грина (теория многих тел) .

Сила на токоведущем проводе[править | править код]

Правило правой руки для токоведущего провода в магнитном поле B

Когда провод, по которому течёт электрический ток, помещается в магнитное поле, каждый из движущихся зарядов, составляющих ток, испытывает силу Лоренца, и вместе они могут создавать макроскопическую силу действующую на проводе (иногда называемую силой Лапласа). Комбинируя приведённый выше закон Лоренца с определением электрического тока, в случае прямого неподвижного провода получается следующее уравнение:[30]

{displaystyle mathbf {F} =I{boldsymbol {ell }}times mathbf {B} }

где  — вектор, величина которого равна длине провода, а направление — вдоль провода, совмещённое с направлением обычного тока I.

Если провод не прямой, а изогнутый, то силу, действующую на него, вычисляют, применив данную формулу к каждому бесконечно малому отрезку провода d, а затем сложив все эти силы путём интегрирования . Формально результирующая сила, действующая на неподвижный жёсткий провод, по которому течёт постоянный ток I равна

{displaystyle mathbf {F} =Iint mathrm {d} {boldsymbol {ell }}times mathbf {B} }

Это полная сила. Кроме того, обычно возникает крутящий момент и другие эффекты, если проволока не совсем жёсткая.

Одним из применений этого является закон силы Ампера, который описывает, как два токоведущих провода притягиваться или отталкиваться друг от друга, в зависимости от направления тока, поскольку каждый из них испытывает силу Лоренца от магнитного поля создаваемого другим током.

ЭДС[править | править код]

Магнитная сила (qv × B) в выражении силы Лоренца отвечает за двигательную электродвижущую силу (или двигательную ЭДС), явление, лежащее в основе действия многих электрических генераторов. Когда проводник перемещается через область магнитного поля, магнитное поле оказывает противоположно направленные силы на электроны и ядра в проводе, и это создаёт ЭДС. Термин «двигательная ЭДС» применяется к этому явлению, поскольку ЭДС возникает из-за движения провода.

В других электрических генераторах магниты движутся, а проводники — нет. В этом случае ЭДС возникает из-за электрической силы (q E) в уравнении для силы Лоренца. Рассматриваемое электрическое поле создается изменяющимся магнитным полем, приводящим к возникновению индуцированной ЭДС, как описано уравнением Максвелла — Фарадея.[31]

Обе эти ЭДС, несмотря на их явно различное происхождение, описываются одним и тем же уравнением, а именно ЭДС — это скорость изменения магнитного потока через провод. Это закон электромагнитной индукции Фарадея, см. Ниже . Специальная теория относительности Эйнштейна была частично мотивирована желанием лучше понять эту связь между двумя эффектами.[31] Фактически, электрическое и магнитное поля представляют собой разные грани единого электромагнитного поля (разные элементы единой матрицы тензора силы поля Fij), и при переходе от одной инерциальной системы отсчета к другой (то есть применении операции замены базиса к матрице Fij) часть электромагнитного векторного поля E можно полностью или частично заменить на B или наоборот .[32]

Сила Лоренца и закон индукции Фарадея[править | править код]

Сила Лоренца — изображение на стене в Лейдене

Для петли из провода находящуюся в магнитном поле, закон индукции Фарадея утверждает, что наведённая электродвижущая сила (ЭДС) в проводе равна:

{displaystyle {mathcal {E}}=-{frac {mathrm {d} Phi _{B}}{mathrm {d} t}}}

где

{displaystyle Phi _{B}=iint _{Sigma (t)}mathrm {d} mathbf {A} cdot mathbf {B} (mathbf {r} ,t)}

— магнитный поток через петлю, B — магнитное поле, Σ (t) — поверхность, ограниченная замкнутым контуром ∂Σ (t), в момент времени t, dA — бесконечно малый элемент вектора площади Σ (t) (величина — это площадь бесконечно малого участка поверхности, направление вектора ортогонально этому участку поверхности).

Знак ЭДС определяется законом Ленца. Это справедливо не только для стационарного провода, но и для движущейся проволоки.

Из закона электромагнитной индукции Фарадея и уравнений Максвелла можно получить силу Лоренца. Верно и обратное: силу Лоренца и уравнения Максвелла можно использовать для вывода закона Фарадея.

Пусть Σ (t) — движущийся поступательно провод с постоянной скоростью v, а Σ (t) — внутренняя поверхность провода. ЭДС вокруг замкнутого пути ∂Σ (t) определяется выражением[33]

{displaystyle {mathcal {E}}=oint _{partial Sigma (t)}mathrm {d} {boldsymbol {ell }}cdot mathbf {F} /q}

где

{displaystyle mathbf {E} =mathbf {F} /q}

— электрическое поле, а d  — бесконечно малый векторный элемент контура ∂Σ (t).

Направление dℓ, и dA неоднозначно. Чтобы получить правильный знак, используется правило правой руки, как описано в статье Теорема Кельвина — Стокса .

Приведённый выше результат можно сравнить с законом электромагнитной индукции Фарадея, который появляется в современных уравнениях Максвелла, называемый здесь уравнением Максвелла — Фарадея :

{displaystyle nabla times mathbf {E} =-{frac {partial mathbf {B} }{partial t}} .}

Уравнение Максвелла — Фарадея можно записать в интегральной форме с помощью теоремы Кельвина — Стокса .[34]

Уравнение Максвелла — Фарадея принимает вид

{displaystyle oint _{partial Sigma (t)}mathrm {d} {boldsymbol {ell }}cdot mathbf {E} (mathbf {r} , t)=- iint _{Sigma (t)}mathrm {d} mathbf {A} cdot {{mathrm {d} ,mathbf {B} (mathbf {r} , t)} over mathrm {d} t}}

и закон Фарадея,

{displaystyle oint _{partial Sigma (t)}mathrm {d} {boldsymbol {ell }}cdot mathbf {F} /q(mathbf {r} , t)=-{frac {mathrm {d} }{mathrm {d} t}}iint _{Sigma (t)}mathrm {d} mathbf {A} cdot mathbf {B} (mathbf {r} , t).}

Эти два выражения эквивалентны, если провод не движется. Используя интегральное правило Лейбница и div B = 0, можно получить,

{displaystyle oint _{partial Sigma (t)}mathrm {d} {boldsymbol {ell }}cdot mathbf {F} /q(mathbf {r} ,t)=-iint _{Sigma (t)}mathrm {d} mathbf {A} cdot {frac {partial }{partial t}}mathbf {B} (mathbf {r} ,t)+oint _{partial Sigma (t)}!!!!mathbf {v} times mathbf {B} ,mathrm {d} {boldsymbol {ell }}}

и, используя уравнение Максвелла Фарадея,

{displaystyle oint _{partial Sigma (t)}mathrm {d} {boldsymbol {ell }}cdot mathbf {F} /q(mathbf {r} , t)=oint _{partial Sigma (t)}mathrm {d} {boldsymbol {ell }}cdot mathbf {E} (mathbf {r} , t)+oint _{partial Sigma (t)}!!!!mathbf {v} times mathbf {B} (mathbf {r} , t),mathrm {d} {boldsymbol {ell }}}

поскольку это справедливо для любого положения провода, то

{displaystyle mathbf {F} =q,mathbf {E} (mathbf {r} , t)+q,mathbf {v} times mathbf {B} (mathbf {r} , t).}

Закон индукции Фарадея справедлив независимо от того, является ли проволочная петля жёсткой и неподвижной, либо она находится в движении, либо в процессе деформации, а также независимо от того, является ли магнитное поле постоянным во времени или изменяющимся. Однако бывают случаи, когда закон Фарадея либо неадекватен, либо его трудно использовать, и необходимо применять закон Лоренца.

Если магнитное поле не зависит от времени и проводящая петля движется через поле, магнитный поток Φ B, проникающий в петлю, может изменяться несколькими способами. Например, если магнитное поле меняется в зависимости от положения, и петля перемещается в другое положение с другим значением B, — ΦB изменится. В качестве альтернативы, если петля изменяет ориентацию по отношению к B, то дифференциальный элемент B ⋅ dA будет меняться из-за различного угла между B и dA, также изменится Ф B. В качестве третьего примера, если часть электрической схемы проходит через однородное, не зависящее от времени магнитное поле, а другая часть схемы остаётся неподвижной, то магнитный поток, связывающий всю замкнутую цепь, может измениться из-за относительного смещения положения составных частей схемы с течением времени (поверхность ∂Σ (t), зависящая от времени). Во всех трёх случаях закон индукции Фарадея предсказывает появление ЭДС, порождённую изменением ΦB.

Из уравнения Максвелла — Фарадея следует, что если магнитное поле B изменяется во времени, то электрическое поле E неконсервативно, и не может быть выражено как градиент скалярного поля, поскольку его ротор не равен нулю.[35][36]

Сила Лоренца в терминах потенциалов[править | править код]

Поля E и B можно заменить векторным магнитным потенциалом A и (скалярным) электростатическим потенциалом ϕ посредством

{displaystyle mathbf {E} =-nabla phi -{frac {partial mathbf {A} }{partial t}}}
{displaystyle mathbf {B} =nabla times mathbf {A} }

где ∇ — градиент, ∇⋅ — дивергенция, ∇ × — ротор .

Сила запишется в виде

{displaystyle mathbf {F} =qleft[-nabla phi -{frac {partial mathbf {A} }{partial t}}+mathbf {v} times (nabla times mathbf {A} )right].}

Используя тождество для тройного произведения, это выражение можно переписать как,

{displaystyle mathbf {F} =qleft[-nabla phi -{frac {partial mathbf {A} }{partial t}}+nabla left(mathbf {v} cdot mathbf {A} right)-left(mathbf {v} cdot nabla right)mathbf {A} right],}

Здесь координаты и компоненты скорости следует рассматривать как независимые переменные, поэтому оператор набла действует только на mathbf {A} , а не на mathbf{v} ; таким образом, нет необходимости использовать обозначение индексов Фейнмана в приведённом уравнении. Используя цепное правило, полная производная от mathbf {A} является:

{displaystyle {frac {mathrm {d} mathbf {A} }{mathrm {d} t}}={frac {partial mathbf {A} }{partial t}}+(mathbf {v} cdot nabla )mathbf {A} }

так что приведенное выше выражение принимает вид

{displaystyle mathbf {F} =qleft[-nabla (phi -mathbf {v} cdot mathbf {A} )-{frac {mathrm {d} mathbf {A} }{mathrm {d} t}}right]} .

При v = уравнение можно переписать в удобной форме Эйлера — Лагранжа

{displaystyle mathbf {F} =qleft[-nabla _{mathbf {x} }(phi -{dot {mathbf {x} }}cdot mathbf {A} )+{frac {mathrm {d} }{mathrm {d} t}}nabla _{dot {mathbf {x} }}(phi -{dot {mathbf {x} }}cdot mathbf {A} )right]}

где введены обозначения

{displaystyle nabla _{mathbf {x} }={hat {x}}{dfrac {partial }{partial x}}+{hat {y}}{dfrac {partial }{partial y}}+{hat {z}}{dfrac {partial }{partial z}}}

и

{displaystyle nabla _{dot {mathbf {x} }}={hat {x}}{dfrac {partial }{partial {dot {x}}}}+{hat {y}}{dfrac {partial }{partial {dot {y}}}}+{hat {z}}{dfrac {partial }{partial {dot {z}}}}} .

Сила Лоренца и аналитическая механика[править | править код]

Лагранжиан для заряженной частицы с массой m и зарядом q в электромагнитном поле описывает динамику частицы с точки зрения её энергии, а не силы, действующей на неё. Классическое выражение задается следующим образом:[37]

{displaystyle L={frac {m}{2}}mathbf {dot {r}} cdot mathbf {dot {r}} +qmathbf {A} cdot mathbf {dot {r}} -qphi }

где A и ϕ — потенциальные поля, как указано выше. Величину{displaystyle V=q(phi -mathbf {A} cdot mathbf {dot {r}} )} можно рассматривать как потенциальную функцию, зависящую от скорости.[38] Используя уравнения Лагранжа, можно снова получить уравнение для силы Лоренца, приведённое выше.

Вывод силы Лоренца из классического Лангранжана (единицы СИ)
В поле A, частица двигающаяся со скоростью v = обладает импульсом {displaystyle qmathbf {A} (mathbf {r} ,t)}, тогда её потенциальная энергия равна {displaystyle qmathbf {A} (mathbf {r} ,t)cdot mathbf {dot {r}} }. В поле ϕ, потенциальная энергия частицы равна {displaystyle qphi (mathbf {r} ,t)}.

Полная потенциальная энергия записывается в виде

{displaystyle V=qphi -qmathbf {A} cdot mathbf {dot {r}} }

и кинетическая энергия:

{displaystyle T={frac {m}{2}}mathbf {dot {r}} cdot mathbf {dot {r}} }

Отсюда Лагранжан:

{displaystyle L=T-V={frac {m}{2}}mathbf {dot {r}} cdot mathbf {dot {r}} +qmathbf {A} cdot mathbf {dot {r}} -qphi }
{displaystyle L={frac {m}{2}}({dot {x}}^{2}+{dot {y}}^{2}+{dot {z}}^{2})+q({dot {x}}A_{x}+{dot {y}}A_{y}+{dot {z}}A_{z})-qphi }

Уравнения Лагранжа

{displaystyle {frac {mathrm {d} }{mathrm {d} t}}{frac {partial L}{partial {dot {x}}}}={frac {partial L}{partial x}}}

(аналогично для y и z компонент). Вычисление частных производных приводит к

{displaystyle {begin{aligned}{frac {mathrm {d} }{mathrm {d} t}}{frac {partial L}{partial {dot {x}}}}&=m{ddot {x}}+q{frac {mathrm {d} A_{x}}{mathrm {d} t}}\&=m{ddot {x}}+{frac {q}{mathrm {d} t}}left({frac {partial A_{x}}{partial t}}dt+{frac {partial A_{x}}{partial x}}dx+{frac {partial A_{x}}{partial y}}dy+{frac {partial A_{x}}{partial z}}dzright)\&=m{ddot {x}}+qleft({frac {partial A_{x}}{partial t}}+{frac {partial A_{x}}{partial x}}{dot {x}}+{frac {partial A_{x}}{partial y}}{dot {y}}+{frac {partial A_{x}}{partial z}}{dot {z}}right)\end{aligned}}}
{displaystyle {frac {partial L}{partial x}}=-q{frac {partial phi }{partial x}}+qleft({frac {partial A_{x}}{partial x}}{dot {x}}+{frac {partial A_{y}}{partial x}}{dot {y}}+{frac {partial A_{z}}{partial x}}{dot {z}}right)}

уравнивая и упрощая выражение

{displaystyle m{ddot {x}}+qleft({frac {partial A_{x}}{partial t}}+{frac {partial A_{x}}{partial x}}{dot {x}}+{frac {partial A_{x}}{partial y}}{dot {y}}+{frac {partial A_{x}}{partial z}}{dot {z}}right)=-q{frac {partial phi }{partial x}}+qleft({frac {partial A_{x}}{partial x}}{dot {x}}+{frac {partial A_{y}}{partial x}}{dot {y}}+{frac {partial A_{z}}{partial x}}{dot {z}}right)}
{displaystyle {begin{aligned}F_{x}&=-qleft({frac {partial phi }{partial x}}+{frac {partial A_{x}}{partial t}}right)+qleft[{dot {y}}left({frac {partial A_{y}}{partial x}}-{frac {partial A_{x}}{partial y}}right)+{dot {z}}left({frac {partial A_{z}}{partial x}}-{frac {partial A_{x}}{partial z}}right)right]\&=qE_{x}+q[{dot {y}}(nabla times mathbf {A} )_{z}-{dot {z}}(nabla times mathbf {A} )_{y}]\&=qE_{x}+q[mathbf {dot {r}} times (nabla times mathbf {A} )]_{x}\&=qE_{x}+q(mathbf {dot {r}} times mathbf {B} )_{x}end{aligned}}}

и аналогично для y и z компонент. Уравнение для силы

{displaystyle mathbf {F} =q(mathbf {E} +mathbf {dot {r}} times mathbf {B} )}

Потенциальная энергия зависит от скорости частицы, поэтому сила зависит от скорости, и соответственно она не является консервативной.

Релятивистский лагранжиан

{displaystyle L=-mc^{2}{sqrt {1-left({frac {dot {mathbf {r} }}{c}}right)^{2}}}+qmathbf {A} (mathbf {r} )cdot {dot {mathbf {r} }}-qphi (mathbf {r} ),!}

Действие — это релятивистская длина пути частицы в пространстве-времени, за вычетом вклада потенциальной энергии, плюс дополнительный вклад, который квантово-механически является дополнительной фазой, которую получает заряженная частица, когда она движется вдоль векторного потенциала.

Вывод силы Лоренца для релятивистского Лагранжиана (единицы СИ)

Уравнения движения получающиеся из вариационного принципа для действия

{displaystyle {frac {mathrm {d} mathbf {P} }{mathrm {d} t}}={frac {partial L}{partial mathbf {r} }}=q{partial mathbf {A}  over partial mathbf {r} }cdot {dot {mathbf {r} }}-q{partial phi  over partial mathbf {r} },!}
{displaystyle mathbf {P} -qmathbf {A} ={frac {m{dot {mathbf {r} }}}{sqrt {1-left({frac {dot {mathbf {r} }}{c}}right)^{2}}}},}

соответствуют уравнениям движения Гамильтона:

{displaystyle {frac {mathrm {d} mathbf {r} }{mathrm {d} t}}={frac {partial }{partial mathbf {p} }}left({sqrt {(mathbf {P} -qmathbf {A} )^{2}+(mc^{2})^{2}}}+qphi right),!}
{displaystyle {frac {mathrm {d} mathbf {p} }{mathrm {d} t}}=-{partial  over partial mathbf {r} }left({sqrt {(mathbf {P} -qmathbf {A} )^{2}+(mc^{2})^{2}}}+qphi right),!}

которые эквиваленты следующему выражению в неканонической форме

{displaystyle {frac {mathrm {d} }{mathrm {d} t}}left({m{dot {mathbf {r} }} over {sqrt {1-left({frac {dot {mathbf {r} }}{c}}right)^{2}}}}right)=qleft(mathbf {E} +{dot {mathbf {r} }}times mathbf {B} right).,!}

Это выражение описывает силу Лоренца, — скорость с которой электромагнитное поле передаёт релятивистский импульс частице.

Релятивистская форма силы Лоренца[править | править код]

Ковариантная форма силы Лоренца.[править | править код]

Тензор поля[править | править код]

Используя сигнатуру метрики (1, −1, −1, −1), сила Лоренца для заряда q может быть записана в[39] ковариантной форме :

{displaystyle {frac {mathrm {d} p^{alpha }}{mathrm {d} tau }}=qF^{alpha beta }U_{beta }}

где p α — четырехмерный импульс, определяемый как

{displaystyle p^{alpha }=left(p_{0},p_{1},p_{2},p_{3}right)=left(gamma mc,p_{x},p_{y},p_{z}right),,}

τ собственное время частицы, F αβ — контравариантный тензор электромагнитного поля

{displaystyle F^{alpha beta }={begin{pmatrix}0&-E_{x}/c&-E_{y}/c&-E_{z}/c\E_{x}/c&0&-B_{z}&B_{y}\E_{y}/c&B_{z}&0&-B_{x}\E_{z}/c&-B_{y}&B_{x}&0end{pmatrix}}}

и U — ковариантная 4-скорость частицы, определяемая как:

{displaystyle U_{beta }=left(U_{0},U_{1},U_{2},U_{3}right)=gamma left(c,-v_{x},-v_{y},-v_{z}right),,}

где Лоренц-фактор

{displaystyle gamma (v)={frac {1}{sqrt {1-{frac {v^{2}}{c^{2}}}}}}={frac {1}{sqrt {1-{frac {v_{x}^{2}+v_{y}^{2}+v_{z}^{2}}{c^{2}}}}}}}

Поля преобразуются в систему, движущуюся относительно неподвижной системы с постоянной скоростью, с помощью:

{displaystyle F'^{mu nu }={Lambda ^{mu }}_{alpha }{Lambda ^{nu }}_{beta }F^{alpha beta },,}

где Λ μ α — тензор преобразования Лоренца.

Перевод в векторные обозначения[править | править код]

Компонента α = 1 (x -компонента) силы равна

{displaystyle {frac {mathrm {d} p^{1}}{mathrm {d} tau }}=qU_{beta }F^{1beta }=qleft(U_{0}F^{10}+U_{1}F^{11}+U_{2}F^{12}+U_{3}F^{13}right).}

Подставляя компоненты ковариантного тензора электромагнитного поля F, получаем

{displaystyle {frac {mathrm {d} p^{1}}{mathrm {d} tau }}=qleft[U_{0}left({frac {E_{x}}{c}}right)+U_{2}(-B_{z})+U_{3}(B_{y})right].}

Используя компоненты ковариантных четырёхскоростей

{displaystyle {begin{aligned}{frac {mathrm {d} p^{1}}{mathrm {d} tau }}&=qgamma left[cleft({frac {E_{x}}{c}}right)+(-v_{y})(-B_{z})+(-v_{z})(B_{y})right]\&=qgamma left(E_{x}+v_{y}B_{z}-v_{z}B_{y}right)\&=qgamma left[E_{x}+left(mathbf {v} times mathbf {B} right)_{x}right],.end{aligned}}}

Расчет для α = 2, 3 (компоненты силы в направлениях y и z) приводит к аналогичным результатам, поэтому объединение 3 уравнений в одно:

{displaystyle {frac {mathrm {d} mathbf {p} }{mathrm {d} tau }}=qgamma left(mathbf {E} +mathbf {v} times mathbf {B} right),,}

и поскольку дифференциалы по координатному времени dt и собственному времени связаны между собой Лоренц-фактором,

{displaystyle dt=gamma (v)dtau ,,}

в итоге можно записать

{displaystyle {frac {mathrm {d} mathbf {p} }{mathrm {d} t}}=qleft(mathbf {E} +mathbf {v} times mathbf {B} right),.}

Это в точности закон Лоренца, однако p — это релятивистское выражение,

{displaystyle mathbf {p} =gamma (v)m_{0}mathbf {v} ,.}

Сила Лоренца в алгебре пространства-времени (STA)[править | править код]

[проверить перевод] Электрическое и магнитное поля зависят от скорости наблюдателя, поэтому релятивистскую форму закона Лоренца лучше всего можно продемонстрировать, исходя из не зависящего от координат выражения для электромагнитного и магнитного полей. {mathcal {F}}, и произвольное направление времени, gamma _{0} . С помощью алгебры пространства-времени (или геометрической алгебры пространства-времени), типа алгебры Клиффорда, определённой в псевдоевклидовом пространстве[40] запишутся

{displaystyle mathbf {E} =({mathcal {F}}cdot gamma _{0})gamma _{0}}

и

{displaystyle imathbf {B} =({mathcal {F}}wedge gamma _{0})gamma _{0}}

{mathcal {F}} представляет собой бивектор пространства-времени (ориентированный плоский сегмент, по аналогии с вектором, который является ориентированным линейным сегментом), который имеет шесть степеней свободы, соответствующих бустам (вращения в плоскостях пространства-времени) и вращениям (вращениям в плоскостях пространства-пространства). Скалярное произведение с вектором gamma _{0} вытягивает вектор (в пространственной алгебре) из трансляционной части, в то время как внешнее произведение создаёт тривектор (в пространственной алгебре), который двойственен вектору, который является обычным вектором магнитного поля. Релятивистская скорость задаётся (времениподобными) изменениями вектора времени-координаты {displaystyle v={dot {x}}}, где

{displaystyle v^{2}=1,}

(что показывает наш выбор метрики), а скорость равна

{displaystyle mathbf {v} =cvwedge gamma _{0}/(vcdot gamma _{0}).}

Правильная (инвариант — неадекватный термин, потому что никакое преобразование не было определено) форма закона Лоренца

{displaystyle F=q{mathcal {F}}cdot v}

Здесь порядок важен, потому что между бивектором и вектором скалярное произведение антисимметрично. При таком расщеплении пространства-времени можно получить скорость и поля, как указано выше, что дает обычное выражение.

Сила Лоренца в общей теории относительности[править | править код]

В общей теории относительности уравнение движения частицы с массой m и зарядом e, двигающейся в пространстве с метрическим тензором g_{{ab}} и электромагнитном поле {displaystyle F_{ab}}, задаётся как

{displaystyle m{frac {du_{c}}{ds}}-m{frac {1}{2}}g_{ab,c}u^{a}u^{b}=eF_{cb}u^{b};,}

где {displaystyle u^{a}=dx^{a}/ds} ({displaystyle dx^{a}} берется вдоль траектории), {displaystyle g_{ab,c}=partial g_{ab}/partial x^{c}}, и {displaystyle ds^{2}=g_{ab}dx^{a}dx^{b}} .

Уравнение также можно записать как

{displaystyle m{frac {du_{c}}{ds}}-mGamma _{abc}u^{a}u^{b}=eF_{cb}u^{b};,}

куда {displaystyle Gamma _{abc}} — символы Кристоффеля (метрическая связность без кручения в общей теории относительности), или как

{displaystyle m{frac {Du_{c}}{ds}}=eF_{cb}u^{b};,}

куда D — ковариантный дифференциал в общей теории относительности (метрический, без кручения).

Приложения[править | править код]

Сила Лоренца присутствует во многих устройствах, в том числе:

Эксперимент, показывающий воздействие силы Лоренца на заряженные частицы

Пучок электронов, движущихся по круговой траектории под воздействием магнитного поля. Свечение вызвано возбуждением атомов остаточного газа в баллоне

  • Основным применением силы Лоренца (точнее, её частного случая — силы Ампера) являются электрические машины (электродвигатели и генераторы). Сила Лоренца широко используется в электронных приборах для воздействия на заряженные частицы (электроны и иногда ионы), например в телевизионных электронно-лучевых трубках, а также в масс-спектрометрии и МГД-генераторах.
  • Сила Лоренца также используется в ускорителях заряженных частиц: она задаёт орбиту, по которой движутся эти частицы.
  • Сила Лоренца используется в рельсотроне.
  • Велосиметрия силой Лоренца заключается в бесконтактном измерении скорости движения проводящей жидкости.
  • Циклотроны и другие ускорители частиц с круговым движением
  • Масс-спектрометры
  • Фильтры скорости
  • Магнетроны

См. также[править | править код]

  • Радиационное трение

Примечания[править | править код]

  1. Афанасьев, Г. Н. Старые и новые проблемы в теории эффекта Ааронова — Бома // Физика элементарных частиц и атомного ядра. — 1990. — Т. 21. — С. 172—250. Архивировано 12 февраля 2022 года.
  2. 1 2 Сила Лоренца / В. С. Булыгин // Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов. — М. : Большая российская энциклопедия, 2004—2017.
  3. М. А. Миллер, Е. В. Суворов. Лоренца сила // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия (т. 1—2); Большая Российская энциклопедия (т. 3—5), 1988—1999. — ISBN 5-85270-034-7.
  4. Такая двойственность применения термина «сила Лоренца», очевидно, объясняется историческими причинами: дело в том, что сила, действующая на точечный заряд со стороны только электрического поля была известна задолго до Лоренца — Закон Кулона был открыт в 1785 году. Лоренц же получил общую формулу для действия и электрического, и магнитного полей, отличающуюся от прежней как раз выражением для магнитного поля. Поэтому то и другое, вполне логично, называют его именем.
  5. H-поле измеряетс в амперах на метр (А/м) в ещиницах SI, и в эрстедах (Эр) в единицах СГС. International system of units (SI). NIST reference on constants, units, and uncertainty. National Institute of Standards and Technology. Дата обращения: 9 мая 2012. Архивировано 31 декабря 2016 года.
  6. 1 2 Huray, Paul G. Maxwell’s Equations. — Wiley-IEEE, 2010. — P. 22. — ISBN 978-0-470-54276-7. Архивная копия от 21 ноября 2021 на Wayback Machine
  7. 1 2 Per F. Dahl, Flash of the Cathode Rays: A History of J J Thomson’s Electron, CRC Press, 1997, p. 10.
  8. 1 2 3 Paul J. Nahin, Oliver Heaviside Архивная копия от 3 апреля 2021 на Wayback Machine, JHU Press, 2002.
  9. Болотовский Б. М. Оливер Хевисайд. — Москва: Наука, 1985. — С. 43—44. — 260 с. Архивная копия от 14 марта 2022 на Wayback Machine
  10. Матвеев А. Н. Механика и теория относительности. — 3-е изд. — М. Высшая школа 1976. — С. 132.
  11. See, for example, Jackson, pp. 777-8.
  12. J.A. Wheeler. Gravitation. — W.H. Freeman & Co, 1973. — ISBN 0-7167-0344-0.. These authors use the Lorentz force in tensor form as definer of the electromagnetic tensor F, in turn the fields E and B.
  13. I.S. Grant. Electromagnetism. — John Wiley & Sons, 1990. — P. 122. — ISBN 978-0-471-92712-9.
  14. I.S. Grant. Electromagnetism. — John Wiley & Sons, 1990. — P. 123. — ISBN 978-0-471-92712-9.
  15. 1 2 See Jackson, page 2. The book lists the four modern Maxwell’s equations, and then states, «Also essential for consideration of charged particle motion is the Lorentz force equation, F = q (E+ v × B), which gives the force acting on a point charge q in the presence of electromagnetic fields.»
  16. See Griffiths, page 204.
  17. For example, see the website of the Lorentz Institute Архивная копия от 17 декабря 2021 на Wayback Machine or Griffiths.
  18. 1 2 3 Griffiths, David J. Introduction to electrodynamics. — 3rd. — Upper Saddle River, New Jersey [u.a.] : Prentice Hall, 1999. — ISBN 978-0-13-805326-0.

  19. Delon, Michel. Encyclopedia of the Enlightenment. — Fitzroy Dearborn Publishers, 2001. — P. 538. — ISBN 157958246X.

  20. Goodwin, Elliot H. The New Cambridge Modern History Volume 8: The American and French Revolutions, 1763–93. — Cambridge University Press, 1965. — P. 130. — ISBN 9780521045469.

  21. Meyer, Herbert W. A History of Electricity and Magnetism. — Burndy Library, 1972. — P. 30–31. — ISBN 0-262-13070-X.

  22. Verschuur, Gerrit L. Hidden Attraction : The History And Mystery Of Magnetism. — Oxford University Press, 1993. — P. 78–79. — ISBN 0-19-506488-7.

  23. Darrigol Olivier. Electrodynamics from Ampère to Einstein. — Oxford University Press, 2000. — P. 9, 25. — ISBN 0-19-850593-0.

  24. Verschuur, Gerrit L. Hidden Attraction : The History And Mystery Of Magnetism. — Oxford University Press, 1993. — ISBN 0-19-506488-7.
  25. 1 2 3 Darrigol, 2000, p. 126–131, 139–144.
  26. Heaviside, Oliver (April 1889). “On the Electromagnetic Effects due to the Motion of Electrification through a Dielectric”. Philosophical Magazine. Архивировано из оригинала 2021-02-21. Дата обращения 2021-03-15.
  27. Lorentz, Hendrik Antoon, Versuch einer Theorie der electrischen und optischen Erscheinungen in bewegten Körpern, 1895.

  28. Whittaker E. T. A History of the Theories of Aether and Electricity: From the Age of Descartes to the Close of the Nineteenth Century. — Longmans, Green and Co., 1910. — P. 420–423. — ISBN 1-143-01208-9.
  29. See Griffiths, page 326, which states that Maxwell’s equations, «together with the [Lorentz] force law…summarize the entire theoretical content of classical electrodynamics».
  30. Physics Experiments (англ.). www.physicsexperiment.co.uk. Дата обращения: 14 августа 2018. Архивировано 8 июля 2018 года.
  31. 1 2 See Griffiths, pages 301-3.
  32. Tai L. Chow. Electromagnetic theory. — Sudbury MA : Jones and Bartlett, 2006. — P. 395. — ISBN 0-7637-3827-1. Архивная копия от 3 апреля 2021 на Wayback Machine
  33. Landau, L. D., Lifshitz, E. M., & Pitaevskiĭ, L. P. Electrodynamics of continuous media; Volume 8 Course of Theoretical Physics. — Second. — Oxford : Butterworth-Heinemann, 1984. — P. §63 (§49 pp. 205–207 in 1960 edition). — ISBN 0-7506-2634-8.
  34. Roger F. Harrington. Introduction to electromagnetic engineering. — Mineola, New York : Dover Publications, 2003. — P. 56. — ISBN 0-486-43241-6. Архивная копия от 3 апреля 2021 на Wayback Machine
  35. M N O Sadiku. Elements of electromagnetics. — Fourth. — NY/Oxford : Oxford University Press, 2007. — P. 391. — ISBN 978-0-19-530048-2. Архивная копия от 3 апреля 2021 на Wayback Machine
  36. Landau, 1984, p. §63.
  37. Classical Mechanics (2nd Edition), T.W.B. Kibble, European Physics Series, McGraw Hill (UK), 1973, ISBN 0-07-084018-0.
  38. Lanczos, Cornelius, 1893-1974. The variational principles of mechanics. — Fourth. — New York, January 1986. — ISBN 0-486-65067-7.
  39. Jackson, J.D. Chapter 11
  40. Hestenes. SpaceTime Calculus. Дата обращения: 15 марта 2021. Архивировано 9 мая 2021 года.

Литература[править | править код]

  • Feynman, Richard Phillips. The Feynman lectures on physics (3 vol.) / Richard Phillips Feynman, Robert B. Leighton, Matthew L. Sands. — Pearson / Addison-Wesley, 2006. — ISBN 0-8053-9047-2.: volume 2.
  • Griffiths, David J. Introduction to electrodynamics. — Prentice-Hall, 1999. — ISBN 0-13-805326-X.
  • Jackson, John David. Classical electrodynamics. — Wiley, 1999. — ISBN 0-471-30932-X.
  • Serway, Raymond A. Physics for scientists and engineers, with modern physics / Raymond A. Serway, John W., Jr. Jewett. — Thomson Brooks/Cole, 2004. — ISBN 0-534-40846-X.
  • Srednicki, Mark A. Quantum field theory. — Cambridge University Press, 2007. — ISBN 978-0-521-86449-7.

Ссылки[править | править код]

  • Определение направления силы Лоренца. Правило правого винта на YouTube

Решение задач – обязательная практика в жизни всех студентов-технарей. В сегодняшней статье разберемся, как решать задачи на силу Лоренца. 

Если вам скучно читать про решение задач, переходите в наш телеграм-канал. Там найдется интересная информация и новости для всех специальностей. А еще, у нас есть второй канал, где мы рассказываем об акциях нашего сервиса и дарим приятные скидки. Проверьте — и не упустите выгоду!

Задачи по теме «сила Лоренца»

Даже если вы не новичок, прежде чем решать задачи, прочтите общую памятку и на всякий случай держите под рукой полезные формулы. 

Задача на силу Лоренца №1

Условие 

Электрон с энергией 300 эВ движется перпендикулярно линиям индукции однородного магнитного поля напряженностью 465 А/м. Определить силу Лоренца, скорость и радиус траектории электрона.

Решение

Скорость электрона можно найти из формулы кинетической энергии:

Eк=m·v22v=2Eкm

Сила Лоренца является центростремительной силой, значит, по второму закону Ньютона, можно записать:

Задача на силу Лоренца №1

Магнитная индукция равна напряженности, умноженной на магнитную постоянную. Подставив ранее найденное выражение для скорости в формулу для радиуса и силы Лоренца, запишем:

R=m2Eктqμ0H=2Eктqμ0HFл=q2Eктμ0H

Теперь осталось только подставить значения и вычислить:

v=2·4,8·10-169,1·10-31=3,25·107 мсFл=4·3,14·10-7·465·1,6·10-19·3,25·107=3·10-15НR=2·4,8·10-16·9,1·10-314·3,14·10-7·465·1,6·10-19=0,32 м

Ответ: v=3,25·107 мс; Fл=3·10-15Н; R=0,32 м.

Задача на силу Лоренца №2

Условие

Альфа-частица влетает в магнитное поле с индукцией 1 Тл перпендинулярно силовым линиям. Найти момент импульса частицы относительно центра окружности, по которой она будет двигаться.

Решение

Когда частица влетает в поле перпендикулярно силовым линиям, на нее начинает действовать сила Лоренца, которая выполняет роль центростремительной силы. Радиус окружности, по которой будет двигаться частица:

R=mvQBm=6,65·10-27 кг – масса альфа частицыQ=2e=3,2·10-19Кл – заряд альфа частицы

Момент импульса частицы относительно центра окружности найдем по формуле:

L=mvR=m2v2QB=6,65·10-272·0,35·10723,2·10-19·1=5,42·10-21кг·м2с

Ответ: 5,42·10-21 кг·м2с.

Задача на силу Лоренца №3

Условие

В однородном магнитном поле с индукцией  В = 0,5 Тл вращается с частотой n = 10 с-1 стержень длиной l = 20 см. Ось вращения параллельна линиям индукции и проходит через один из концов стержня перпендикулярно его оси. Определите разность потенциалов U на концах стержня.

Решение

Задача на силу Лоренца №3

Рассмотрим физическую суть процессов, проходящих в стержне. Когда стержень движется в магнитном поле, в нем возникает ЭДС индукции, которая обусловлена действием силы Лоренца на заряды стержня.

Под действием этой силы в стержне происходит разделение зарядов: свободные электроны перемещаются вверх и между концами стержня возникает разность потенциалов.

Заряды на концах стержня создают поле E, препятствующее дальнейшему разделению зарядов. В какой-то момент сила Лоренца уравновесится с силой возникающего поля:

Fл=e·ЕЕ=Fле=evBe=vB

Скорость нижнего конца стержня, а значит, и скорость электронов в нем, можно найти, зная частоту вращения и длину стержня:

v=2π·n·l

C учетом этого, перепишется выражения для напряженности электрического поля:

 Е=2πnlB

Индуцируемая разность потенциалов, по определению, равна:

U=Е·lU=2πnl2B=2·3,14·10-1·0,22·0,5=1,3В

Ответ: 1,3 В.

Задача на силу Лоренца №4

Условие

Какая сила действует на заряд 0,005 Кл, движущийся в магнитном поле с индукцие 0,5 Тл со скоростью 150 м/с под углом 45 градусов к вектору магнитной индукции?

Решение

Это простейшая задача на определение силы Лоренца. Вспомним формулу и запишем, что на заряд действует сила Лоренца, равная:

F=q·v·B·sinα

Подставим значения и вычислим:

F=0,005·150·0,5·22=0,26 Н

Ответ: 0,26 Н.

Задача на силу Лоренца №5

Условие

На тело с зарядом 0,8 мКл, движущееся в магнитном поле, со стороны поля действует сила, равная 32Н. Какова скорость тела, если вектор магнитного поля перпендикулярен ей?

Решение

Это классическая задача на применение формулы силы Лоренца. Так как векторы скорости и магнитной индукции перпендикулярны, можно записать:

F=qvBsinα=qvBv=FqB=320,8·10-3·2=20·103 мс

Ответ: 20000 м/с.

Проходите магнитостатику? Вам также может быть интересно:

  1. Задачи на закон Био-Савара-Лапласа.
  2. Задачи на теорему о циркуляции магнитного поля.

Вопросы на тему «Сила Лоренца»

Вопрос 1. Что такое сила Лоренца?

Ответ. Сила Лоренца — это сила, с которой магнитное поле действует на заряженную частицу, движущуюся в нем.

Сила Лоренца действует только на движущиеся заряды.

Вопрос 2. Как определить направление силы Лоренца?

Ответ. Направление силы Лоренца определяется по правилу левой руки:

Если левую руку расположить так, чтобы составляющая вектора В, перпендикулярная скорости заряда, входила в ладонь, а четыре вытянутых пальца были направлены по движении положительного заряда (= против движения отрицательного заряда), то отогнутый на 90 градусов большой палец покажет направление действующей на заряд силы Лоренца.

Вопросы на тему «Сила Лоренца»

Вопрос 3. Зависит ли сила Лоренца от знака заряда?

Ответ. Да, зависит. Для противоположных зарядов сила Лоренца будет направлена в противоположные стороны.

Вопрос 4. Совершает ли сила Лоренца работу?

Ответ. Нет. Сила Лоренца не совершает работу, т.к., являясь перпендикулярной вектору скорости частицей, может изменить лишь направление скорости, но не ее значение. Работа силы Лоренца всегда равна нулю!

Вопрос 5. По какой траектории движется частица, попадающая в магнитное поле, перпендикулярное вектору скорости?

Ответ. Частица, влетающая в магнитное поле перпендикулярно линиям магнитной индукции, будет двигаться в этом поле по окружности определенного радиуса под действием силы Лоренца.

Нужна помощь в решении задач и других заданий по учебе? Профессиональный сервис для студентов посодействует, обращайтесь в любое время!

Мари Ампер доказал, что при наличии электрического тока в проводнике, оказавшемся в магнитном поле, он взаимодействует с силами этого поля. Учитывая то, что электрический ток – это не что иное, как упорядоченное движение электронов, можно предположить, что электромагнитные поля подобным образом действуют также на отдельно взятую заряженную частицу. Это действительно так. На точечный заряд действует сила Лоренца, модуль которой можно вычислить по формуле.

Определение и формула

Хендрик Лоренц доказал, что электромагнитная индукция взаимодействует с заряженными частицами. Эти взаимодействия приводят к возникновению силы Лоренца. Рассматриваемая сила возникает под действием магнитной индукции. Она перпендикулярна вектору скорости движущейся частицы (см. рис. 1). Необходимым условием возникновения этой силы является движение электрического заряда.

Выводы Лоренца

Рис. 1. Выводы Лоренца

Обратите внимание на расположение векторов (рисунок слева, вверху). Векторы, указывающие направления скорости и силы Лоренца, лежат в одной плоскости XOY, причём они расположены под углом 90º. Вектор магнитной индукции сориентирован вдоль оси Z, перпендикулярной плоскости XOY, а значит, в выбранной системе координат он перпендикулярен к векторам силы и скорости.

По закону Ампера:

По закону Ампера

Учитывая, что

Формулы для расчета

(здесь j – плотность тока, q – единичный заряд, n – количество зарядов на бесконечно малую единицу длины проводника, S – сечение проводника, символом v обозначен модуль скорости движущейся частицы), запишем формулу Ампера в виде:

Вариант записи формулы Ампера

Так, как nSdl общее число зарядов в объёме проводника, то для нахождения силы, действующей на точечный заряд, разделим выражение на количество частиц:

Сила действующая на точечный заряд формула

Модуль F вычисляется по формуле:

модуль силы F

Из формулы следует:

  1. Сила Лоренца приобретает максимальное значение, если угол α прямой.
  2. Если точечный заряд, например, электрон, попадает в среду однородного магнитного поля, обладая некой начальной скоростью, перпендикулярной к линиям электромагнитной индукции, тогда вектор F будет перпендикулярен к вектору скорости. На точечный заряд будет действовать центробежная сила, которая заставит его вращаться по кругу. При этом работа равняется нулю (см. рис.2).
  3. Если угол между вектором индукции и скоростью частицы не равняется 90º, тогда заряд будет двигаться по спирали. Направление вращения зависит от полярности заряда (рис. 3).

Заряженная частица между полюсами магнитов

Рис. 2. Заряженная частица между полюсами магнитов
Ориентация вектора в зависимости от полярности заряда
Рис. 3. Ориентация вектора в зависимости от полярности заряда

Из рисунка 3 видно, что вектор F направлен в противоположную сторону, если знак заряда меняется на противоположный (при условии, что направления остальных векторов остаются неизменными).

Траекторию движения частицы правильно называть винтовой линией. Радиус этой винтовой линии (циклотронный радиус) определяется перпендикулярной к полю составной начальной скорости частицы. Шаг винтовой линии, вдоль которой перемещается частица, определяется составной начальной скорости заряда, вошедшего в однородное магнитное поле. Эта составная направлена параллельно к электромагнитным линиям.

В чём измеряется?

Размерность силы Лоренца в международной системе СИ – ньютон (Н). Разумеется, модуль силы Лоренца настолько крохотная величина, по сравнению с ньютоном, что её записывают в виде К×10-n Н, где 0<К<1, а n – порядок числа 10.

Когда возникает?

Магнитные поля не реагируют на неподвижный электрический заряд, так же как не действует сила Ампера на обесточенный проводник.

Для возникновения силы Лоренца необходимо выполнить три условия:

  1. У частицы должен быть отрицательный или положительный заряд.
  2. Заряженная частица должна находиться в магнитном поле.
  3. Частица должна быть в движении, то есть вектор v ≠ 0.

Если хотя бы одно из условий не выполняется, сила Лоренца не возникает.

Формула силы Лоренца при наличии магнитного и электрического полей

Рассмотрим случай, когда заряженная частица находится в движении в двух полях одновременно (в электрическом и магнитном), тогда на заряд подействуют две составляющие:

2 составляющие действующие на заряд

Тогда:

Формула силы Лоренца

Поскольку эту формулу вывел Лоренц, то её также называют именем учёного-физика.

Направление силы Лоренца

Мы уже упоминали, что направление возникшей силы Лоренца, кроме магнитных параметров, определяется (в том числе) полярностью заряда. Если бы мы имели возможность наблюдать заряженную элементарную частицу, пребывающую в магнитном поле, то по вектору её перемещения можно было бы определить направление вектора силы F.

Но на практике наблюдать элементарные заряды очень сложно из-за крохотных размеров. Поэтому для определения этого направления применяют способ, известен, как правило левой руки (рис. 4).

Нахождение вектора силы Лоренца

Рис. 4. Нахождение вектора силы Лоренца

Ладонь необходимо развернуть так, чтобы вектор индукции входил в неё. В случае с положительным зарядом, вытянутые пальцы располагают по движению частицы. (для отрицательного заряда пальцы направляют в противоположную сторону). Большой палец под прямым углом указывает искомое направление.

Если известна ориентация вектора скорости частицы, то определить направления остальных векторов можно, применяя правило правой руки, которое понятно из рисунка 5.

Пример применения правила правой руки

Рис. 5. Пример применения правила правой руки

Применение на практике

Практическое значение работ Лоренца мы можем наблюдать в электронно-лучевых трубках. Там поток электронов движется в магнитном поле, изменением которого задаётся траектория электронного пучка.

Данный принцип управления траекторией электронного пучка использовался в старых моделях телевизоров Рис. 6). Электроны под воздействием магнитных полей очерчивали линии на люминофоре кинескопа, рисуя изображения на экране.

Применение учения Лоренца

Рис. 6. Применение учения Лоренца

На рисунке справа изображена схема масспектрографа – прибора для разделения заряженных частиц по величине их зарядов.

Ещё один пример – бесконтактный электромагнитный метод определения скорости течения (вязкости) электропроводных жидкостей. Методика может быть применима к расплавленным металлам, например к алюминию. Бесконтактный способ определения вязкости очень полезен при работе с агрессивными жидкими электропроводными веществами (рис. 7).

Измерение текучести жидких веществ

Рис. 7. Измерение текучести жидких веществ

Работа ускорителей была бы невозможной без участия силы Лоренца. В этих устройствах заряженные частицы удерживаются и разгоняются до околосветовых скоростей благодаря электромагнитам, расположенным вдоль кольцевой трассы.

Мощная электронная лампа – Магнетрон также работает на принципе взаимодействия электронов с магнитными полями, которые направляют высокочастотное излучение в нужном направлении. Магнетрон является основной рабочей деталью микроволновых печей.

На основании действия силы Лоренца создано много других устройств, используемых на практике.

А в завершение этой статьи следует отметить еще одну существенную причину, по которой традиционное выражение силы Лоренца оказалось неполным. Все дело в том, что потерянное слагаемое Fc полностью разрушает традиционные представления о полях, согласно которым поля создаются «источниками» и должны зависеть только от свойств этих «источников».

Так, к примеру, магнитную силу

Полевая физика: формула B75

(B75)

еще удалось представить в виде свойств исследуемого тела (заряд q и скорость u), умноженных на напряженность магнитного поля B(Q,v), которое определяется исключительно свойствами «источника» — его зарядом Q и скоростью v. И несмотря на необходимость введения для этой процедуры еще и магнитного поля в дополнение к электрическому полю, в целом данная ситуация укладывается в логику полей, создаваемых «источниками», которая была упомянута в начале этой статьи:

Полевая физика: формула B76

(B76)

Впрочем, как стало понятно только благодаря полевой физике, магнитное поле является во многом излишним и искусственным элементом. Это поле несамостоятельное, не существуют создающие его магнитные заряды, а связано появление магнитного поля исключительно с динамическими поправками к электрическому полю в результате движения заряженных частиц.

Что же касается потерянного слагаемого из силы Лоренца – центробежной силы Fc:

Полевая физика: формула B77

(B77)

то оказывается довольно проблематичным вписать его в традиционную логику теории поля даже путем введения еще одного дополнительного поля B, которое зависело бы только от «источников» B = B′(Q,v). Если мы попробуем записать выражение для Fc в виде, аналогичном выражению для магнитной силы, то обнаружим существенные сложности:

Полевая физика: формула B78

(B78)

С одной стороны, направление силы Fc совпадает с направлением кулоновского слагаемого F0 = –qφ и никак не связано с направлением скорости исследуемого тела u. Но с другой стороны, величина силы Fc зависит не просто от модуля скорости u, но и от ее направления, то есть фактически от проекции скорости «источника» v (или величины векторного потенциала A = φv/c) на направление движения исследуемого тела u. Проще говоря, благодаря перекрестному произведению uv (или uA) мы не можем «вытащить» скорость исследуемого тела u из выражения для нового поля B и это поле оказывается зависящим от характера движения исследуемого тела.

Вот и получается очень интересный результат! В отличие от других слагаемых силы Лоренца потерянное слагаемое Fc не удается простым способом представить в виде свойств исследуемого тела, умноженных на некую величину поля B, созданного только «источниками» и определяемого только их свойствами. А потому и неудивительно, что данное слагаемое напрочь выпало из классической электродинамики, ведь его структура полностью противоречит самым фундаментальным представлениям о полях в традиционной физике. В итоге вместо слагаемого Fc в силе Лоренца возникло крайне искусственное решение в виде специальной теории относительности, математический формализм которой как раз и воссоздает это потерянное слагаемое, причем довольно нелепыми способами — заменой преобразований Галилея преобразованиями Лоренца, введением «сокращения длин» и «замедления времени», о чем уже было упомянуто выше.

Но куда важнее все эти выводы для основополагающего вопроса теории поля. Глубочайшей ошибкой современной физики оказываются представления, согласно которым «источники» создают поля, а потом эти поля действуют на исследуемое тело. Не менее ошибочно также считать, что величина поля определяется исключительно свойствами тел-«источников» и никак не зависит от свойств исследуемого тела и даже от факта его наличия или отсутствия в рассматриваемой точке.

Как показывает полевая физика, поле в равной степени должно определяться как внешними телами, лишь условно называемыми «источниками», так и самим исследуемым телом. Природа не знает о том, что мы решили выбрать одно из тел в качестве исследуемого и попробовать понять, как все другие тела своими полями действуют на него. В этом подходе к изучению полей отражается крайне субъективное человеческое мировоззрение, в рамках которого исследуемое тело становится своеобразным «центром вселенной», подобно тому, как в эпоху Птолемея человечество считало центром Вселенной Землю.

Для природы же все тела логически равноправны! Она не знает, что мы решили считать одно из них исследуемым телом, а другие – «источниками» полей и этим перекосили всю логику Мироздания. При объективном подходе исследуемое тело ничем не отличается от всех прочих тел («источников»), а потому оно в равной мере должно определять общее поле системы. Но данная логика разрушает привычный математический формализм разделения переменных, согласно которому поля – это всего лишь заданные в пространстве математические функции, которые должны иметь в каждой точке то или иное числовое значение независимо от наличия или отсутствия в этой точке исследуемого тела и происходящих с ним процессов. Поэтому полевая физика и заменяет такие поля новым понятиемполевая среда. И в отличие от формальных математических полей полевая среда рассматривается как реальная физическая сущность, которая в равной мере испытывает на себе влияние всех тел, не важно, идет ли речь об исследуемом теле или о внешних «источниках», а также сама влияет на все без исключения объекты нашего Мира.

Ошибочный подход к физическим полям в духе математического формализма стал главной причиной большинства проблем современной физики. Одна из них – нестыковка электродинамики и механики, возникшая на рубеже XIX – XX веков и потребовавшая создания теории относительности как искусственного и формального решения. Другая – неспособность естественным образом получить квантовые эффекты в рамках классической теории поля и необходимость создания отдельной квантовой физики со множеством очень спорных и неочевидных постулатов. Примечательно, что концепция полевой среды приводит к крайне простому и наглядному описанию всех квантовых эффектов, но и это далеко не все.

Концепция полевой среды в противоположность формальному математическому подходу к полям позволяет естественным образом построить единую теорию поля без парадоксов и дополнительных постулатов. Причем единые корни обнаруживаются не только между электромагнетизмом, слабым и сильным взаимодействиями, но прежде всего между электричеством и гравитацией, причем полевая физика позволяет открыть неизвестные в современной физике эффекты гравитационного отталкивания тел (антигравитации). В полевой физике становится на совершенно новом уровне понятна вся система элементарных частиц, а также их взаимопревращений. Что же касается Вселенной в целом, то более глубокое понимание природы гравитации и антигравитации позволяет простым и естественным образом объяснить большинство современных парадоксов наблюдательной астрономии и по-новому посмотреть на вопросы Космологии.

А подробному освещению всех этих вопросов как раз и посвящена монография автора полевой физики Олега Репченко «Полевая физика или как устроен Мир?»:

  • Книга «Полевая физика или как устроен Мир?»
  • Содержание I тома «Полевой физики»
    • Сущность полевой физики
    • Пролог или виртуальная реальность физического Мира
    • Глава I. Природа массы и инерция
    • Глава II. Полевая среда и природа зарядов
    • Глава III. Полевая механика – классическое движение
    • Глава IV. Полевая механика – релятивистское движение
  • Содержание II тома «Полевой физики»
    • Глава V. Полевая механика – фундаментальное движение
    • Глава VI. Полевая механика – смешанное движение
    • Глава VII. Полевая механика – квантовое движение
    • Глава VIII. Новая космология или как устроен Мир
    • Эпилог или начало пути

Добавить комментарий