Как найти массу если известен период

Опубликовано 09.06.2017 по предмету Физика от Гость
>> <<

Как вычислить массу груза из формулы для периода колебаний пружинного маятника?

Ответ оставил Гость

По формуле колебаний пружинного маятника T=2pisqrt{frac{m}{k}}, где m – масса груза (кг), k – жёсткость пружины (Н/м). Отсюда выражаем искомую массу (чисто математические действия):

T=2pisqrt{frac{m}{k}} (T)^2=(2pisqrt{frac{m}{k}})^2  T^2=2^2pi^2*frac{m}{k} T^2=frac{4*pi^2*m}{k} T^2*k=4*pi^2*m m=frac{T^2*k}{4*pi^2}

Оцени ответ

Подпишись на наш канал в телеграм. Там мы даём ещё больше полезной информации для школьников!

Найти другие ответы

Загрузить картинку

Пружинный маятник .

Пружинный маятник представляет из себя груз на пружине.

(T=2 pi sqrt{dfrac{m}{k}} )


(k) – жесткость пружины маятника

(m) – масса груза


Задача 1.

Вычислить период (T) пружинного маятника, если жесткость его пружины (k=8 Н/м ), а масса его груза
(m=0,5 кг ) ,
(pi=3,14 )


Показать ответ
Показать решение
Видеорешение


Задача 2.

Вычислить период (T) пружинного маятника, если жесткость его пружины (k=81 Н/м ), а масса его груза
(m=1 кг ) ,
(pi=3,14 )
Ответ округлить до десятых


Показать ответ
Показать решение
Видеорешение


Задача 3.

Вычислить период (T) пружинного маятника, если жесткость его пружины (k=400 Н/м ), а масса его груза
(m=0,25 кг ) ,
(pi=3,14 )
Ответ округлить до сотых


Показать ответ
Показать решение
Видеорешение


Задача 4.

Найти массу груза пружинного маятника, если его период ( T=1 с )
, а коэффициент жесткости пружины ( k=400 Н/м ; )
(pi=3,14 ).
Ответ округлить до целых.

Показать ответ
Показать решение
Видеорешение


Задача 5.

Найти массу груза пружинного маятника, если его период ( T=0,3 с )
, а коэффициент жесткости пружины ( k=350 Н/м ; )
(pi=3,14 ).
Ответ округлить до десятых.

Показать ответ
Показать решение
Видеорешение


Задача 6.

Найти массу груза пружинного маятника, если его период ( T=0,07 с )
, а коэффициент жесткости пружины ( k=150 Н/м ; )
(pi=3,14 ).
Ответ округлить до сотых.

Показать ответ
Показать решение
Видеорешение


Задача 7.

Найти коэффициент жесткости пружины пружинного маятника, если его период ( T=0,07 с )
, а масса груза ( m=0,0186 кг )
(pi=3,14 ).
Ответ округлить до целых.

Показать ответ
Показать решение
Видеорешение


Задача 8.

Найти коэффициент жесткости пружины пружинного маятника, если его период ( T=0,32 с )
, а масса груза ( m=0,8 кг )
(pi=3,14 ).
Ответ округлить до целых.

Показать ответ
Показать решение
Видеорешение


Задача 9.

Найти коэффициент жесткости пружины пружинного маятника, если его период ( T=0,6 с )
, а масса груза ( m=4 кг )
(pi=3,14 ).
Ответ округлить до целых.

Показать ответ
Показать решение
Видеорешение


Задача 10.

Найти частоту колебаний ( nu ) пружинного маятника, если жесткость его пружины (k=400 Н/м ), а масса его груза
(m=0,25 кг ) ,
(pi=3,14 )
Ответ округлить до сотых


Показать ответ
Показать решение
Видеорешение


Задача 15.

Массу груза пружинного маятника увеличили в 4 раза. Во сколько раз увеличился период колебаний этого
пружинного маятника?


Показать ответ
Показать решение
Видеорешение


Задача 16.

Массу груза пружинного маятника увеличили в 25 раза. Во сколько раз увеличился период колебаний этого
пружинного маятника?


Показать ответ
Показать решение
Видеорешение


Задача 25.

Пружинный маятник совершает гармонические колебания с периодом (T_1=0,4 с. ;; )
Масса его груза (m_1=1 кг ).
В какой-то момент
к грузу пружинного маятника жестко прикрепили дополнительный груз массой (m_2=3 кг. ; )

Вычислить период колебаний пружинного маятника после присоединения дополнительного груза.


Показать ответ
Показать решение
Видеорешение


Задача 30.

Пружинный маятник совершает гармонические колебания с периодом (T_1=0,15 с. ;; )
Масса его груза (m_1= 0,6 кг ).
В какой-то момент
к грузу пружинного маятника жестко прикрепили дополнительный груз , после чего
его период стал равен (T_2=0,45 с )

Найти массу (m_2 ) дополнительного груза.


Показать ответ
Показать решение
Видеорешение


Помогите из публицистического текста переписать в научный

Роман  Тургенева  «Накануне»: идейно-художественное своеобразие

Из каких слоев общества появятся «новые люди»? Что будет отличать их от поколения Рудиных и Лаврецких? Какую про­грамму обновления России они примут и как приступят к осво­бождению народа от крепостного права? Эти вопросы волновали Тургенева давно. Еще в 1855 году, в момент работы над «Руди­ным», задача, которую он поставил в «Накануне», уже начинала возникать перед ним: «Фигура главной героини, Елены, тогда еще нового типа в русской жизни, довольно ясно обрисовывалась в моем воображении,— вспоминал Тургенев,— но недоставало ге­роя, такого лица, которому Елена, при ее еще смутном, хотя сильном стремлении к свободе, могла предаться» (XII, 306), Тогда же сосед Тургенева, отправляясь в Крым в качестве офи­цера дворянского ополчения, оставил писателю рукопись автобио­графической повести, одним из главных героев которой был моло­дой болгарский революционер, студент Московского университе­та. Теперь мы знаем, что прототипом тургеневского Инсарова явился Николай Димитров Катранов, родившийся в 1829 году в болгарском городе Свиштов в небогатой купеческой семье. В 1848 году в составе большой группы болгарских юношей он приехал в Россию и поступил на историко-филологический фа­культет Московского университета.

Начавшаяся в 1853 году русско-турецкая война всколыхнула революционные настроения балканских славян, боровшихся за избавление от многовекового турецкого ига. В начале 1853 года Николай Катранов с русской женой Ларисой уехал на родину. Но внезапная вспышка туберкулеза спутала все планы. При­шлось вернуться в Россию, а затем ехать на лечение в Венецию, где Катранов простудился и скоропостижно скончался 5 мая 1853 года. Это был талантливый человек: он писал стихи, зани­мался переводами, горячо пропагандировал среди русских друзей идею освобождения родины.  

Вплоть до 1859 года тетрадь с рукописью Каратеева — так звали тургеневского соседа — лежала без движения, хотя, позна­комившись с ней, писатель воскликнул: «Вот герой, которого я искал! Между тогдашними русскими такого еще не было». Поче­му же Тургенев обратился к этой тетради в 1859 году, когда и в России подобного типа герои уже появились? Почему в качестве образца для русских «сознательно-героических натур» Тургенев предлагает болгарина Дмитрия Инсарова? Что не устроило, на­конец, Тургенева в добролюбовской интерпретации романа «На­кануне», опубликованного в январском номере журнала «Русский вестник» в 1860 году?

Н. А. Добролюбов, посвятивший разбору этого романа специ­альную статью «Когда же придет настоящий день?», дал класси­ческое определение художественному дарованию Тургенева, уви­дев в нем писателя, чуткого к общественным проблемам. Очередной его роман «Накануне» еще раз блестяще оправдал эту репу­тацию. Добролюбов отметил четкую расстановку в нем главных действующих лиц. Центральная героиня Елена Стахова стоит перед выбором, на место ее избранника претендуют молодой уче­ный, историк Берсенев, будущий художник, человек искусства Шубин, успешно начинающий служебную деятельность чиновник Курнатовский и, наконец, человек гражданского подвига, болгар­ский революционер Инсаров. Социально-бытовой сюжет романа имеет символический подтекст: Елена Стахова олицетворяет мо­лодую Россию «накануне» предстоящих перемен, Кто всего нуж­нее ей сейчас: люди науки или искусства, государственные чинов­ники или героические натуры, люди гражданского подвига? Выбор Еленой Инсарова дает недвусмысленный ответ на этот вопрос.

Добролюбов заметил, что в Елене Стаховой «сказалась та смутная тоска по чем-то, та почти бессознательная, но неотрази­мая потребность новой жизни, новых людей, которая охватывает теперь все русское общество, и даже не одно только так называе­мое образованное» (VI, 120).

В описании детских лет Елены Тургенев обращает внимание на глубокую близость ее к народу. С тайным уважением и стра­хом слушает она рассказы нищей девочки Кати о жизни «на всей божьей воле» и воображает себя странницей, покинувшей отчий дом и скитающейся по дорогам. Из народного источника пришла к Елене русская мечта о правде, которую надо искать далеко-далеко, со странническим посохом в руках. Из того же источни­ка— готовность пожертвовать собой ради других, ради высокой цели спасения людей, попавших в беду, страдающих и несчаст­ных. Не случайно в разговорах с Инсаровым Елена вспоминает буфетчика Василия, «который вытащил из горевшей избы безно­гого старика и сам чуть не погиб».

Даже внешний облик Елены напоминает птицу, готовую взле­теть, и ходит героиня «быстро, почти стремительно, немного на­клонясь вперед». Смутная тоска и неудовлетворенность Елены тоже связаны с темой полета: «Отчего я с завистью гляжу на пролетающих птиц? Кажется, полетела бы с ними, полетела — куда, не знаю, только далеко, далеко отсюда» (VIII, 79). Устрем­ленность к полету проявляется и в безотчетных поступках герои­ни: «Долго глядела она на темное, низко нависшее небо; потом она встала, движением головы откинула от лица волосы и, сама не зная зачем, протянула к нему, к этому небу, свои обнаженные, похолодевшие руки…» (VIII, 35—36). Проходит тревога — «опу­скаются невзлетевшие крылья». И в роковую минуту, у постели больного Инсарова, Елена видит высоко над водой белую чайку: «Вот если она полетит сюда,— подумала Елена,— это будет хоро­ший знак…» Чайка закружилась на месте, сложила крылья — и, как подстреленная, с жалобным криком пала куда-то далеко за темный корабль» (VIII, 157).

Таким же окрыленным героем, достойным Елены, оказывается Дмитрий Инсаров. Что отличает   его   от русских   Берсеневых   и  Шубиных? Прежде всего — цельность характера, полное отсутст­вие противоречий между словом и делом. Он занят не собой, все помыслы его сосредоточены на одной цели — освобождении роди­ны, Болгарии. Тургенев верно уловил в характере Инсарова типи­ческие черты лучших людей эпохи болгарского Возрождения: широту и разносторонность умственных интересов, сфокусирован­ных в одну точку, подчиненных одному делу — освобождению на­рода от векового рабства. Силы Инсарова питает и укрепляет живая связь с родной землей, чего так не хватает русским геро­ям романа — Берсеневу, который пишет труд «О некоторых осо­бенностях древнегерманского права в деле судебных наказаний», талантливому Шубину, который лепит вакханок и мечтает об Италии. И Берсенев, и Шубин — тоже деятельные люди, но их деятельность слишком далека от насущных потребностей народ­ной жизни. Это люди без крепкого корня, отсутствие которого придает их характерам или внутреннюю вялость, как у Берсене­ва, или мотыльковое непостоянство, как у Шубина.

В то же время в характере Инсарова сказывается родовая ограниченность, типичная для Дон-Кихота. В поведении героя подчеркиваются упрямство и прямолинейность, некоторый педан­тизм. Художественную завершенность эта двойственная характе­ристика получает в ключевом эпизоде с двумя статуэтками ге­роя, которые вылепил Шубин. В первой Инсаров представлен героем, а во второй — бараном, поднявшимся на задние ноги и склоняющим рога для удара. Не обходит Тургенев в своем ро­мане и размышлений о трагичности судьбы людей донкихотского склада.

Рядом с сюжетом социальным, отчасти вырастая из него, от­части возвышаясь над ним, развертывается в романе сюжет фи­лософский. «Накануне» открывается спором между Шубиным и Берсеневым о счастье и долге. «…Каждый из нас желает для се­бя счастья… Но такое ли это слово «счастье», которое соединило, воспламенило бы нас обоих, заставило бы нас подать друг другу руки? Не эгоистическое ли, я хочу сказать, не разъединяющее ли это слово?» (VIII, 14). Соединяют людей слова: «родина», «нау­ка», «справедливость». И «любовь», но только если она — не «лю­бовь-наслаждение», а «любовь-жертва».

Инсарову и Елене кажется, что их любовь соединяет личное с общественным, что она одухотворяется высшей целью. Но вот оказывается, что жизнь вступает в некоторое противоречие с же­ланиями и надеждами героев. На протяжении всего романа Ин­саров и Елена не могут избавиться от ощущения непростительно­сти своего счастья, от чувства виновности перед кем-то, от страха расплаты за свою любовь. Почему?

Жизнь ставит перед влюбленной Еленой роковой вопрос: со­вместимо ли великое дело, которому она отдалась, с горем бед­ной, одинокой матери, которое попутно этим делом вызывается? Елена смущается и не находит на этот вопрос возражения. Ведь любовь Елены к Инсарову приносит страдание не только матери: она оборачивается невольной нетерпимостью и по отношению к отцу, к русским друзьям — Берсеневу и Шубину, она ведет Елену к разрыву с Россией. «Ведь все-таки это мой дом,—думала она,— моя семья, моя родина…»

Елена безотчетно ощущает, что и в ее чувствах к Инсарову счастье близости с любимым человеком временами преобладает над любовью к тому делу, которому весь, без остатка, хочет от­даться герой. Отсюда — чувство вины перед Инсаровым: «Кто знает, может быть, я его убила».

В свою очередь, Инсаров задает Елене аналогичный вопрос: «Скажи мне, не приходило ли тебе в голову, что эта болезнь по­слана нам в наказание?» (VIII, 128). Любовь и общее дело ока­зываются не вполне совместимыми. В бреду, в период первой болезни, а потом в предсмертные мгновения коснеющим языком Инсаров произносит два роковых для него слова: «резеда» и «Рендич». Резеда — это тонкий запах духов, оставленный Еленой в комнате больного Инсарова; Рендич — соотечественник героя, один из организаторов готовящегося восстания балканских сла­вян против турецких поработителей. Бред выдает глубокое внут­реннее раздвоение цельного Инсарова, источником этого раздво­ения является любовь.

В отличие от Чернышевского и Добролюбова с их оптимисти­ческой теорией «разумного эгоизма», утверждавшей единство личного и общего, счастья и долга, любви и революции в приро­де человека, Тургенев обращает внимание на скрытый драматизм человеческих чувств, на вечную борьбу центростремительных (эгоистических) и центробежных (альтруистических) начал в ду­ше каждого человека. Человек, по Тургеневу, драматичен не толь­ко в своем внутреннем существе, но и в отношениях с окружаю­щей его природой. Природа не считается с неповторимой цен­ностью человеческой личности: с равнодушным спокойствием она поглощает и простого смертного, и героя; все равны перед ее не­различающим взором. Этот мотив универсального трагизма жиз­ни вторгается в роман неожиданной смертью Инсарова, исчезно­вением Елены на этой земле —«навсегда, безвозвратно». «Смерть, как рыбак,—с горечью говорит Тургенев,—который поймал ры­бу в свою сеть и оставляет ее на время в воде: рыба еще плава­ет, но сеть на ней, и рыбак выхватит ее —когда захочет» (VIII, 166). С точки зрения «равнодушной природы» каждый из нас «виноват уже тем, что живет».

Однако мысль о трагизме человеческого существования не умаляет, а, напротив, укрупняет в романе Тургенева красоту и величие дерзновенных, освободительных порывов человеческого духа, оттеняет поэзию любви Елены к Инсарову, придает широ­кий общечеловеческий смысл социальному содержанию романа. Неудовлетворенность Елены современным состоянием жизни в России, ее тоска по иному, более совершенному социальному по­рядку в философском плане романа приобретает «продолжаю­щийся» смысл, актуальный во все эпохи и все времена. «Накануне» — это роман о порыве России к новым общественным отно­шениям, пронизанный нетерпеливым ожиданием «сознательно-героических натур», которые двинут вперед дело освобождения крестьян.

И в то же время это роман о бесконечных исканиях чело­вечества, о постоянном стремлении его к социальному совер­шенству, о вечном вызове, который бросает человеческая лич­ность «равнодушной природе»:

«О, как тиха и ласкова была ночь, какою голубиною кротостию дышал лазурный воздух, как всякое страдание, всякое горе должно было замолкнуть и заснуть под этим ясным небом, под этими святыми, невинными лучами! «О боже! — думала Елена,— зачем смерть, зачем разлука, болезнь и слезы? или зачем эта красота, это сладостное чувство надежды, зачем успокоительное сознание прочного убежища, неизменной защиты, бессмертного покровительства? Что же значит это улыбающееся, благословля­ющее небо, эта счастливая, отдыхающая земля? Ужели это все только в нас, а вне нас вечный холод и безмолвие? Ужели мы одни… одни… а там, повсюду, во всех этих недосягаемых безднах и глубинах, — все, все нам чуждо? К чему же тогда эта жажда и радость молитвы?.. Неужели же нельзя умолить, отвратить, спасти… О боже! неужели нельзя верить чуду?»  (VIII,  156).

Современников Тургенева из лагеря революционной демокра­тии, для которых главнее был социальный смысл романа, не мог не смущать его финал: неопределенный ответ Увара Ивановича на вопрос Шубина, будут ли у нас,. в России, люди, подобные Инсарову. Какие могли быть загадки на этот счет в конце 1859 года, когда дело реформы стремительно подвигалось вперед, когда «новые люди» заняли ключевые посты в журнале «Совре­менник»? Чтобы правильно ответить на этот вопрос, нужно выяс­нить, какую программу действий предлагал Тургенев «русским Инсаровым».

Автор «Записок охотника» вынашивал мысль о братском сою­зе всех антикрепостнических сил и надеялся на гармонический исход социальных конфликтов. Инсаров говорит: «Заметьте: по­следний мужик, последний нищий в Болгарии и я — мы желаем одного и того же. У всех у нас одна цель. Поймите, какую это дает уверенность и крепость!» (VIII, 68). Тургеневу хотелось, чтобы все прогрессивно настроенные люди России, без различия социальных положений и оттенков в политических убеждениях, протянули друг другу руки.

В жизни случилось другое. Добролюбов в статье «Когда же придет настоящий день?» решительно противопоставил задачи «русских Инсаровых» той программе общенационального едине­ния, которую провозгласил в романе Тургенева болгарский рево­люционер. «Русским Инсаровым» предстояла борьба с «внутрен­ними турками», в число которых у Добролюбова попадали не только консерваторы, противники реформ, но и либеральные пар­тии русского общества. Статья била в святая святых убеждений и верований Тургенева. Поэтому он буквально умолял Некрасова не печатать ее, а когда она была опубликована – покинул журнал «Современник» навсегда.

В романе «Накануне» (1860) смутные светлые предчувствия и надежды, которые пронизывали меланхоличное повествование «Дворянского гнезда», превращаются в определенные решения. Основной для Тургенева вопрос о соотношении мысли и деятельности, человека дела и теоретика в этом романе решается в пользу практически осуществляющего идею героя.

Само название романа «Накануне» — название «временное», в отличие от «локального» названия «Дворянское гнездо», — отра­жает то обстоятельство, что замкнутости, неподвижности пат­риархальной русской жизни приходит конец. Русский дворянский дом с вековым укладом его быта, с приживалками, соседями, кар­точными проигрышами оказывается на распутье мировых дорог. Русская девушка находит применение своим силам и самоотвер­женным стремлениям, участвуя в борьбе за независимость бол­гарского народа. Сразу после выхода в свет романа читатели и критики обратили внимание на то, что личностью, которую рус­ское молодое поколение готово признать за образец, здесь пред­ставлен болгарин.

Название романа «Накануне» не только отражает прямое, сюжетное его содержание (Инсаров гибнет накануне войны за независимость его родины, в которой он страстно хочет принять участие), но и содержит оценку состояния русского общества накануне реформы и мысль о значении народно-освободительной борьбы в одной стране (Болгарии) как кануна общеевропейских политических перемен (в романе косвенно затрагивается и во­прос о значении сопротивления итальянского народа австрийскому владычеству).

Добролюбов считал образ Елены средоточием романа — вопло­щением молодой России. В этой героине, по мнению критика, воплощена «неотразимая потребность новой жизни, новых людей, которая охватывает теперь все русское общество, и даже не одно только так называемое «образованное» <.. .> «Желание деятель­ного добра» есть в нас, и силы есть; но боязнь, неуверенность в своих силах и, наконец, незнание: что делать? — постоянно нас останавливают <…и мы всё ищем, жаждем, ждем… ждем, чтобы нам хоть кто-нибудь объяснил, что делать».

Таким образом, Елена, представлявшая, по его мнению, моло­дое поколение страны, ее свежие силы, характеризуется стихий­ностью протеста, она ищет «учителя» — черта, присущая деятель­ным героиням Тургенева.

Идея романа и структурное ее выражение, столь сложные и многозначные в «Дворянском гнезде», в «Накануне» предельно ясны, однозначны. Героиня, ищущая учителя-наставника, до­стойного любви, в «Накануне» выбирает из четырех претендентов на ее руку, из четырех идеальных вариантов, ибо каждый из героев — высшее выражение своего этико-идейного типа. Шубин и Берсенев представляют художественно-мыслительный тип (тип людей отвлеченно-теоретического или образно-художественного творчества), Инсаров и Курнатовский относятся к «деятельному» типу, т. е. к людям, призвание которых состоит в  практическом «жизнетворчестве».                                                  

Говоря о значении в романе выбора своего пути и своего «героя», который делает Елена, Добролюбов рассматривает этот поиск-выбор как некий процесс, эволюцию, аналогичную разви­тию русского общества за последнее десятилетие. Шубин, а затем и Берсенев соответствуют по своим принципам и характерам бо­лее архаичным, отдаленным стадиям этого процесса. Вместе с тем оба они не настолько архаичны, чтобы быть «несовместимыми» с Курнатовским (деятелем эпохи реформ) и Инсаровым (особое значение которому придает складывающаяся революционная си­туация), Берсенев и Шубин — люди 50-х гг. Ни один из них не является чистым представителем гамлетовского типа. Таким образом, Тургенев в «Накануне» как бы распростился со своим излюбленным типом. И Берсенев, и Шубин генетически связаны с «лишними людьми», но в них нет многих главных черт героев этого рода. Оба они прежде всего не погружены в чистую мысль, анализ действительности не является их основным занятием. От рефлексии, самоанализа и бесконечного ухода в теорию их «спасает» профессионализация, призвание, живой интерес к опре­деленной сфере деятельности и постоянный труд.

«Одарив» своего героя-художника Шубина фамилией вели­кого русского скульптора, Тургенев придал его портрету привле­кательные черты, напоминающие внешность Карла Брюллова, — он сильный, ловкий блондин.

Из первого же разговора героев — друзей и антиподов (наруж­ность Берсенева рисуется как прямая противоположность внеш­ности Шубина: он худой, черный, неловкий), разговора, который является как бы прологом романа, выясняется, что один из них «умница, философ, третий кандидат московского университета», начинающий ученый, другой — художник, «артист», скульптор. Но характерные черты «артиста» — черты человека 50-х гг. и идеала людей 50-х гг. — сильно рознятся от романтического пред­ставления о художнике. Тургенев нарочито дает это понять: в самом начале романа Берсенев указывает Шубину, каковы должны быть его — «артиста» — вкусы и склонности, и Шубин, шутливо «отбиваясь» от этой обязательной и неприемлемой для него позиции художника-романтика, защищает свою любовь к чувственной жизни и ее реальной красоте.

В самом подходе Шубина к своей профессии проявляется его связь с эпохой. Сознавая ограниченность возможностей скульп­туры как художественного рода, он стремится передать в скульп­турном портрете не только и не столько внешние формы, сколько духовную суть, психологию оригинала, не «линии лица», а взгляд глаз. Вместе с тем ему присуща особенная, заостренная способ­ность оценивать людей и умение возводить их в типы. Меткость характеристик, которые он дает другим героям романа, превра­щает его выражения в крылатые слова; Эти характеристики в большинстве случаев и являются ключом к типам, изображен­ным в романе.

Если в уста Шубина автор романа вложил все социально-исторические приговоры, вплоть до приговора о правомерности «выбора Елены», Берсеневу он передал ряд этических деклара­ций. Берсенев — носитель высокого этического принципа самоот­вержения и служения идее («идее науки»), как Шубин — вопло­щение идеального «высокого» эгоизма, эгоизма здоровой и цель­ной натуры.

Берсеневу придана нравственная черта, которой Тургенев отводил особенно высокое место на шкале душевных достоинств: доброта. Приписывая эту черту Дон-Кихоту, Тургенев на ней основывался в своем утверждении исключительного этического значения образа Дон-Кихота для человечества. «Все пройдет, все исчезнет, высочайший сан, власть, всеобъемлющий гений, всё рас­сыплется прахом <…> Но добрые дела не разлетятся дымом: они долговечнее самой сияющей красоты» (VIII, 191). У Берсенева эта доброта происходит от глубоко, органически усвоенной им гуманистической культуры и присущей ему «справедливости», объективности историка, способного встать выше личных, эгои­стических интересов и пристрастий и оценить значение явлений действительности безотносительно к своей личности.

Отсюда и проистекает истолкованная Добролюбовым как при­знак нравственной слабости «скромность», понимание им второ­степенного значения своих интересов в духовной жизни совре­менного общества и своего «второго номера» в строго определен­ной иерархии типов современных деятелей.

Тип ученого как идеал оказывается исторически дезавуиро­ванным. Это «низведение» закреплено и сюжетной ситуацией (отношение Елены к Берсеневу), и прямыми оценками, данными герою в тексте романа, и самооценкой, вложенной в его уста. Такое отношение к профессиональной деятельности ученого могло родиться лишь в момент, когда жажда непосредственного жизне­строительства, исторического общественного творчества охватила лучших людей молодого поколения. Этот практицизм, это деятель­ное отношение к жизни не у всех молодых людей 60-х гг. носили характер революционного или даже просто бескорыстного служе­ния. В «Накануне» Берсенев выступает как антипод не столько Инсарова (мы уже отмечали, что он более чем кто-либо другой способен оценить значение личности Инсарова), сколько обер-­секретаря Сената — карьериста Курнатовского.

В характеристике Курнатовского, «приписанной» автором Елене,   раскрывается  мысль  о  принадлежности  Курнатовского,  как и Инсарова, к «действенному типу» и о взаимовраждебных позициях, занимаемых ими внутри этого — очень широкого — психологического типа. Вместе с тем в этой характеристике ска­зывается и то, как исторические задачи, необходимость решения которых ясна всему обществу (по словам Ленина, во время рево­люционной ситуации обнаруживается невозможность «для гос­подствующих классов сохранить в неизменном виде свое гос­подство» и вместе с тем наблюдается «значительное повышение <…> активности масс», не желающих жить по-старому), застав­ляют людей самой разной политической ориентации надевать маску прогрессивного человека и культивировать в себе черты, которые приписываются обществом таким людям.

«Вера» Курнатовского — это вера в государство в приложении к реальной русской жизни эпохи, вера в сословно-бюрократиче­ское, монархическое государство. Понимая, что реформы неиз­бежны, деятели типа Курнатовского связывали все возможные в жизни страны изменения с функционированием сильного госу­дарства, а себя считали носителями идеи государства и исполни­телями его исторической миссии, отсюда — самоуверенность, вера в себя, по словам Елены.

В центре романа — болгарский патриот-демократ и револю­ционер по духу — Инсаров. Он стремится опрокинуть деспотиче­ское правление в родной стране, рабство, утвержденное веками, и систему попрания национального чувства, охраняемую крова­вым, террористическим режимом. Душевный подъем, который он испытывает и сообщает Елене, связан с верой в дело, которому он служит, с чувством своего единства со всем страдающим наро­дом Болгарии. Любовь в романе «Накануне» именно такова, ка­кой ее рисует Тургенев в выше цитированных словах о любви как революции («Вешние воды»). Воодушевленные герои ра­достно летят на свет борьбы, готовые к жертве, гибели и победе.

В «Накануне» впервые любовь предстала как единство в убе­ждениях и участие в общем деле. Здесь была опоэтизирована ситуация, характерная для большого периода последующей жизни русского общества и имевшая огромное значение как выражение нового этического идеала. Прежде чем соединить свою жизнь с ее жизнью, Инсаров подвергает Елену своеобраз­ному «экзамену», предвосхищающему символический «допрос», которому подвергает таинственный голос судьбы смелую де­вушку-революционерку в стихотворении в прозе Тургенева «По­рог». При этом герой «Накануне» вводит любимую девушку в свои планы, свои интересы и заключает с ней своеобразный договор, предполагающий с ее стороны сознательную оценку их возможной будущности, — черта отношений, характерная для демократов-шестидесятников.

 Любовь Елены и ее благородная решимость разрушают аске­тическую замкнутость Инсарова, делают его счастливым. Добро­любов особенно ценил страницы романа, где изображалась светлая и счастливая любовь молодых людей. В уста Шубина Тур­генев вложил лирическую апологию идеала героической моло­дости: «Да, молодое, славное, смелое дело. Смерть, жизнь, борьба, падение, торжество, любовь, свобода, родина… Хорошо, хорошо. Дай бог всякому! Это не то, что сидеть по горло в болоте да стараться показывать вид, что тебе всё равно, когда тебе действи­тельно в сущности всё равно. А там — натянуты струны, звени на весь мир или порвись!» (VIII, 141).

Содержание:

Пружинные и математические маятники:

Тело или система тел, совершающие периодические колебательные движения, называются маятниками. Большинство колебательных движений, встречающихся в природе, напоминают движение пружинных и математических маятников.

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Система, состоящая из груза массой Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Если немножко растянуть пружину и отпустить, то груз придет в колебательное движение в вертикальном направлении.
С помощью опытов мы определили, что смещение груза в зависимости от времени изменяется следующbм образом:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Если учесть, что ускорение тела, совершающего гармонические колебания  Пружинные и математические маятники в физике - виды, формулы и определения с примерами, то уравнение (5.10) примет вид:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Из этого уравнения мы имеем:

 Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Значит, частота циклического колебания тела, совершающего гармоническое колебание, зависит от параметров тел, входящих в систему колебания. Формула (5.12) называется формулой для
определения циклической (периодической) частоты пружинного маятникаПружинные и математические маятники в физике - виды, формулы и определения с примерами.

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Период колебания пружинного маятника прямо пропорционален выведенному из-под квадратного корня значению массы груза и обратно пропорционален выведенному из-под квадратного корня значению упругости пружины.
Рассмотрим обмен энергиями в пружинном маятнике. Кинетическая энергия маятника, если не учитывать массу пружины, равна кинетической энергии груза, Пружинные и математические маятники в физике - виды, формулы и определения с примерами. В предыдущих темах было показано, что скорость можно выразить формулой Пружинные и математические маятники в физике - виды, формулы и определения с примерами. В таком случае кинетическая энергия маятника равна

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Потенциальная энергия пружинного маятника равна энергии деформации пружины, т.е.:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

В большинстве случаев важно знать полную энергию системы:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Если учесть, что Пружинные и математические маятники в физике - виды, формулы и определения с примерами,

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Обратите внимание, что полная энергия пружинного маятника является постоянной величиной, не зависящей от времени, т.е. соблюдается выполнение закона сохранения механической энергии. 
Материальная точка, подвешенная на нерастяжимой и невесомой нити и совершающая периодическое колебательное движение вокруг равновесного состояния, называется математическим маятником. 

Когда маятник находится в устойчивом равновесном состоянии, вес материальной точки Пружинные и математические маятники в физике - виды, формулы и определения с примерами уравновешивает силу натяжения Пружинные и математические маятники в физике - виды, формулы и определения с примерами (рис. 5.4), так как их модули равны и направлены по одной линии в противоположные стороны. Если наклонить маятник на угол Пружинные и математические маятники в физике - виды, формулы и определения с примерами, силы Пружинные и математические маятники в физике - виды, формулы и определения с примерами и Пружинные и математические маятники в физике - виды, формулы и определения с примерами не смогут уравновесить друг друга из-за взаимного расположения под углом. В результате сложения таких сил появится возвращающая сила, которая вернет маятник в равновесное состояние. Если отпустить маятник, то под воздействием возвращающей силы он начинает двигаться в сторону равновесного состояния.

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Из рис. 5.4. видим, что:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Согласно второму закону Ньютона, сила Пружинные и математические маятники в физике - виды, формулы и определения с примерамипридает материальной точке ускорение Пружинные и математические маятники в физике - виды, формулы и определения с примерами, поэтому

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Из-за того, что угол наклона очень маленький Пружинные и математические маятники в физике - виды, формулы и определения с примерами, а сила Пружинные и математические маятники в физике - виды, формулы и определения с примерами направлена противоположно смещению, формулу (5.19) можно записать в виде

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Если смещение материальной точки (шарика) во время колебательного процесса отметить буквой Пружинные и математические маятники в физике - виды, формулы и определения с примерами и учитывать соотношение Пружинные и математические маятники в физике - виды, формулы и определения с примерами, получим Пружинные и математические маятники в физике - виды, формулы и определения с примерами
Следовательно Пружинные и математические маятники в физике - виды, формулы и определения с примерами
Исходя из смысла периода колебания и учитывая, что Пружинные и математические маятники в физике - виды, формулы и определения с примерами получаем

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Эта формула, определяющая период колебания математического маятника, называется формулой Гюйгенса. Отсюда вытекают следующие законы математического маятника:

  1. при маленьких углах наклона (а) математического маятника, его период колебания не зависит от амплитуды колебания. 
  2. период колебания математического маятника также не зависит от массы подвешенного на него груза;
  3. период колебания математического маятника прямо пропорционален выведенному из-под квадратного корня значению длины маятника и обратно пропорционален выведенному из-под квадратного корня значению ускорения свободного падения.

Отсюда колебание математического маятника записывается следующим выражением:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Следует отметить, что когда амплитуда колебания или угол наклона велики, колебания математического маятника не являются гармоническим. В этом случае нельзя считать Пружинные и математические маятники в физике - виды, формулы и определения с примерами и для решения уравнения движения не применяется закон синусов или косинусов.
 

Пример:

Период колебания первого маятника равен 3 сек, второго – 4 сек. Найдите период колебания маятника с длиной, равной сумме длин этих маятников.

Дано:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Найти:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Формула:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Решение:
Пружинные и математические маятники в физике - виды, формулы и определения с примерами
Ответ: 5 cек.

Пружинный и математический маятники

Второй закон Ньютона (основной закон динамики): ускорение, приобретаемое материальной точкой, прямо пропорционально равнодействующей всех сил, действующих на нее, и обратно пропорционально массе материальной точки:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Закон Гука: модуль силы упругости Пружинные и математические маятники в физике - виды, формулы и определения с примерами, возникающей в теле при упругих деформациях, прямо пропорционален его абсолютному удлинению (сжатию) Пружинные и математические маятники в физике - виды, формулы и определения с примерами:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

где k — жесткость тела, Пружинные и математические маятники в физике - виды, формулы и определения с примерами — длина недеформированного тела, l — длина деформированного тела.

Рассмотрим пружинный маятник, представляющий собой колебательную систему, образованную грузом на пружине.

Пусть груз массой т, лежащий на гладкой горизонтальной поверхности, прикреплен к свободному концу невесомой пружины жесткостью k (рис. 3). Второй конец пружины закреплен относительно данной инерциальной системы отсчета (ИСО).

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Выведем груз из положения равновесия, сместив его на расстояние х вправо. В пружине возникнет сила упругости Пружинные и математические маятники в физике - виды, формулы и определения с примерами направленная влево.

Запишем второй закон Ньютона для движения груза:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

В проекции на ось Ох действующих на груз сил с учетом закона Гука получаем

Пружинные и математические маятники в физике - виды, формулы и определения с примерамиили   Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Следовательно,

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Это уравнение аналогично уравнению гармонических колебаний

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Сравнивая эти два уравнения, находим циклическую частоту колебаний пружинного маятника:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Тогда период колебаний пружинного маятника можно найти по формуле

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Как следует из полученной формулы, период колебаний пружинного маятника не зависит от амплитуды его колебаний (в пределах выполнимости закона Гука).

Свойство независимости периода колебаний маятника от амплитуды называется изохронностью (от греческих слов Пружинные и математические маятники в физике - виды, формулы и определения с примерами, — равный и Пружинные и математические маятники в физике - виды, формулы и определения с примерами — время). Таким образом, колебания пружинного маятника обладают свойством изохронности.

Изохронность колебаний маятника была открыта Галилео Галилеем в 1583 г. при изучении движения грузика, подвешенного на нити. Моделью данной колебательной системы является математический маятник.

Математическим маятником называется материальная точка массой т, подвешенная на невесомой нерастяжимой нити длиной l в поле каких-либо сил, например силы тяжести Земли (рис. 4).

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Математический маятник — это идеализированная модель реального маятника при условии, что длина нити намного больше размеров подвешенного на ней тела и масса нити намного меньше массы тела. Кроме того, деформацией нити можно пренебречь.

Галилео Галилей экспериментально определил, что период малых колебаний (9 < 10°) математического маятника в поле силы тяжести не зависит от его массы и амплитуды колебаний (угла начального отклонения Пружинные и математические маятники в физике - виды, формулы и определения с примерами). Он установил также, что период этих колебаний прямо пропорционален Пружинные и математические маятники в физике - виды, формулы и определения с примерами.

Период малых колебаний математического маятника в поле силы тяжести Земли определяется по формуле Гюйгенса:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

При углах отклонения математического маятника Пружинные и математические маятники в физике - виды, формулы и определения с примерами 20° погрешность расчета периода колебаний математического маятника по формуле Гюйгенса не превышает 1 %.

Отклонение маятника от положения равновесия будем характеризовать углом Пружинные и математические маятники в физике - виды, формулы и определения с примерами (см. рис. 4), который нить образует с вертикалью.

Согласно второму закону Ньютона для движения шарика можем записать:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Смещение маятника вдоль дуги х = lПружинные и математические маятники в физике - виды, формулы и определения с примерами, где угол Пружинные и математические маятники в физике - виды, формулы и определения с примерами выражен в радианах. Возвращающей силой в данном случае является проекция Пружинные и математические маятники в физике - виды, формулы и определения с примерами силы тяжести на касательную к дуге (см. рис. 4), которая определяется по формуле:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Заметим, что при малых углахПружинные и математические маятники в физике - виды, формулы и определения с примерами и длина дуги

Пружинные и математические маятники в физике - виды, формулы и определения с примерами очень мало отличается от длины хорды Пружинные и математические маятники в физике - виды, формулы и определения с примерами Для небольших углов (до 10°) значения Пружинные и математические маятники в физике - виды, формулы и определения с примерами и sinПружинные и математические маятники в физике - виды, формулы и определения с примерами различаются меньше чем на I %. Поэтому для таких углов равенство

Пружинные и математические маятники в физике - виды, формулы и определения с примерами    (1)

является очень хорошим приближением.

Подставляя в выражение (1) значениеПружинные и математические маятники в физике - виды, формулы и определения с примерами, получим

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Таким образом, уравнение движения маятника запишется в виде

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Поскольку полученное уравнение совпадает с уравнением гармонических колебаний Пружинные и математические маятники в физике - виды, формулы и определения с примерами, то можно сделать вывод, что при малых отклонениях маятник совершает гармонические колебания с циклической частотой

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Как видно из этой формулы, циклическая частота не зависит от массы маятника и амплитуды его колебаний, а определяется только его длиной и ускорением свободного падения.

В общем случае, когда маятник находится в однородных полях нескольких сил, для определения периода колебаний следует ввести «эффективное ускорение» Пружинные и математические маятники в физике - виды, формулы и определения с примерами, характеризующее результирующее действие этих полей, и период колебаний маятника будет определяться по формуле

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Пример:

Определите амплитуду А, циклическую частоту Пружинные и математические маятники в физике - виды, формулы и определения с примерами, период Т и начальную фазу Пружинные и математические маятники в физике - виды, формулы и определения с примерами колебаний тела массой m = 0,50 кг, подвешенного к вертикальной пружине (рис. 5). Известно, что в состоянии покоя тело растягивает пружину на Пружинные и математические маятники в физике - виды, формулы и определения с примерами = 10 мм и для возбуждения колебаний его смещают вниз на x = 30 мм и отпускают.

Пружинные и математические маятники в физике - виды, формулы и определения с примерамиПружинные и математические маятники в физике - виды, формулы и определения с примерами

Решение

Циклическая частота колебаний «вертикального» пружинного маятника также определяется по формуле

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Найдем жесткость k пружины. Из условия равновесия тела следует

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

По закону Гука

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

В проекции на ось Ох условие равновесия запишется в виде:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Отсюда для циклической частоты Пружинные и математические маятники в физике - виды, формулы и определения с примерами получаем

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Так как по условию задачи тело сместили на расстояние х = 30 мм от положения равновесия, то амплитуда его колебаний

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Период колебаний находим из соотношения

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Поскольку в начальный момент времени тело было смещено на максимальную величину, то начальная фаза колебаний Пружинные и математические маятники в физике - виды, формулы и определения с примерами
Ответ: Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Пример:

Металлический шарик, подвешенный на длинной легкой нерастяжимой нити, поднимают по вертикали до точки подвеса и отпускают. Затем нить маятника отклоняют на небольшой угол от вертикали и также отпускают. В каком из этих случаев шарик быстрее возвратится в начальное положение?

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Решение

В первом случае шарик свободно падает без начальной скорости с высоты h = l, следовательно,

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Отсюда находим промежуток времени Пружинные и математические маятники в физике - виды, формулы и определения с примерами, необходимый для возвращения шарика в начальное положение:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Во втором случае промежуток времени Пружинные и математические маятники в физике - виды, формулы и определения с примерами, необходимый шарику для возвращения из отклоненного положения в положение равновесия, найдем из уравнения гармонических колебаний

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Поскольку в начальный момент времени t = 0 маятник имеет максимальное

отклонение от положения равновесия, то начальная фаза колебаний Пружинные и математические маятники в физике - виды, формулы и определения с примерами Так как в положении равновесия x = 0, то

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Используя формулу для периода колебаний математического маятника

Пружинные и математические маятники в физике - виды, формулы и определения с примераминаходим  Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Разделив почленно уравнения для промежутков времени Пружинные и математические маятники в физике - виды, формулы и определения с примерами получим

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Ответ: шарик быстрее возвратится в начальное положение в случае, когда он движется вертикально вниз.

Пример:

Найдите периоды колебаний математического маятника длиной l= 1,0 м при перемещении его точки подвеса с ускорением, модуль которого а = Пружинные и математические маятники в физике - виды, формулы и определения с примерами, направленным: а) вертикально вверх; б) вертикально вниз.

Пружинные и математические маятники в физике - виды, формулы и определения с примерамиПружинные и математические маятники в физике - виды, формулы и определения с примерами

Решение

Период колебаний математического маятника в поле силы тяжести Земли

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

а) При движении маятника с ускорением Пружинные и математические маятники в физике - виды, формулы и определения с примерами, направленным вверх (рис. 6, а), уравнение движения вдоль оси Оу

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

где Fy — проекция силы упругости нити.
Откуда находим

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

где g* = g + а — «эффективное ускорение».
Период колебаний определяется по формуле

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

б) При движении точки подвеса маятника с ускорением Пружинные и математические маятники в физике - виды, формулы и определения с примерами, направленным вниз (рис. 6, б), уравнение движения вдоль оси Оу

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

где Fy — проекция силы упругости нити. Откуда находим

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

где g*=g-a — «эффективное ускорение». Период колебаний  

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Ответ: Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Что такое пружинный и математический маятники

Второй закон Ньютона (основной закон динамики): ускорение тела прямо пропорционально результирующей силе и обратно пропорционально массе тела:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Закон Гука: при упругих деформациях сжатия и растяжения модуль силы упругости прямо пропорционален модулю изменения длины тела:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

где Пружинные и математические маятники в физике - виды, формулы и определения с примерами — жесткость тела,  Пружинные и математические маятники в физике - виды, формулы и определения с примерами — длина недеформированного тела, Пружинные и математические маятники в физике - виды, формулы и определения с примерами -длина деформированного тела.

Колебательная система, состоящая из тела с прикрепленной к нему пружиной, называется пружинным маятником. Пружина может располагаться как вертикально (вертикальный пружинный маятник), так и горизонтально (горизонтальный пружинный маятник).

Рассмотрим колебания горизонтального пружинного маятника. Пусть груз массой Пружинные и математические маятники в физике - виды, формулы и определения с примерами лежащий на гладкой горизонтальной поверхности, прикреплен к свободному концу легкой (невесомой) пружины жесткостью Пружинные и математические маятники в физике - виды, формулы и определения с примерами (рис. 6). Второй конец пружины неподвижен относительно данной инерциальной системы отсчета (ИСО).

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Выведем груз из положения равновесия, сместив его на расстояние Пружинные и математические маятники в физике - виды, формулы и определения с примерами вправо (см. рис. 6). Тогда в пружине возникнет сила упругости Пружинные и математические маятники в физике - виды, формулы и определения с примерами действующая на груз и направленная влево.

Согласно второму закону Ньютона для движения груза

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

В проекции на ось Пружинные и математические маятники в физике - виды, формулы и определения с примерами действующих на груз сил (см. рис. 6) с учетом закона Гука получаем:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

или

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

 Перепишем полученное соотношение в виде:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

которое является уравнением гармонических колебаний пружинного маятника.

Сравнивая (1) с уравнением гармонических колебаний Пружинные и математические маятники в физике - виды, формулы и определения с примерами находим циклическую частоту колебаний горизонтального пружинного маятника

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

которая определяется массой Пружинные и математические маятники в физике - виды, формулы и определения с примерами груза и жесткостью Пружинные и математические маятники в физике - виды, формулы и определения с примерами пружины.

Для нахождения периода колебаний пружинного маятника воспользуемся формулой Пружинные и математические маятники в физике - виды, формулы и определения с примерами подставив в нее выражение (2):
Пружинные и математические маятники в физике - виды, формулы и определения с примерами
Как следует из формул (2) и (3), период и частота колебаний пружинного маятника не зависят от амплитуды его колебаний (в пределах выполнимости закона Гука).

Свойство независимости периода колебаний маятника от амплитуды называется изохронностью (от греч. Пружинные и математические маятники в физике - виды, формулы и определения с примерами (изос) — равный и Пружинные и математические маятники в физике - виды, формулы и определения с примерами (хронос) — время). Следовательно, колебания пружинного маятника обладают свойством изохронности.

Изохронность колебаний маятника была открыта Гали-лео Галилеем в 1583 г. при изучении движения груза, подвешенного на нити. Моделью данной колебательной системы является математический маятник.

Колебательная система, состоящая из находящегося в поле силы тяжести тела, подвешенного на легкой нерастяжимой нити, размеры которого малы по сравнению с длиной нити, а его масса значительно больше массы нити, называется математическим маятником. При таких условиях тело можно считать материальной точкой, а нить — легкой нерастяжимой (рис. 7).

Рассмотрим колебания математического маятника.

Отклонение маятника от положения равновесия будем характеризовать углом Пружинные и математические маятники в физике - виды, формулы и определения с примерами (см. рис. 7), который нить образует с вертикалью.

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

После отклонения маятника на него действуют две силы: направленная вертикально вниз сила тяжести Пружинные и математические маятники в физике - виды, формулы и определения с примерами и направленная вдоль нити сила упругости Пружинные и математические маятники в физике - виды, формулы и определения с примерами Под действием этих сил тело движется по дуге окружности к устойчивому положению равновесия.

Согласно второму закону Ньютона для движения маятника можем записать:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

В проекциях на выбранные оси координат Пружинные и математические маятники в физике - виды, формулы и определения с примерами (см. рис. 7) получаем:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Для углов отклонения Пружинные и математические маятники в физике - виды, формулы и определения с примерами значения Пружинные и математические маятники в физике - виды, формулы и определения с примерами различаются меньше чем на 1 %. Поэтому при малых углах отклонения Пружинные и математические маятники в физике - виды, формулы и определения с примерами и длина дуги Пружинные и математические маятники в физике - виды, формулы и определения с примерами очень мало отличается от длины хорды Пружинные и математические маятники в физике - виды, формулы и определения с примерами где угол Пружинные и математические маятники в физике - виды, формулы и определения с примерами выражен в радианах. Тогда смещение маятника вдоль дуги Пружинные и математические маятники в физике - виды, формулы и определения с примерами Но практически маятник движется вдоль оси Пружинные и математические маятники в физике - виды, формулы и определения с примерами Из Пружинные и математические маятники в физике - виды, формулы и определения с примерами находим Пружинные и математические маятники в физике - виды, формулы и определения с примерами и, подставив это выражение в (5), получим:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Таким образом, силой, возвращающей маятник к устойчивому положению равновесия, является сила упругости его нити.

При малых углах отклонения маятника проекция вектора ускорения Пружинные и математические маятники в физике - виды, формулы и определения с примерами и ею можно пренебречь, а Пружинные и математические маятники в физике - виды, формулы и определения с примерами тогда из уравнения (6) следует, что Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Следовательно, уравнение движения маятника вдоль оси Пружинные и математические маятники в физике - виды, формулы и определения с примерами запишется в виде:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

где Пружинные и математические маятники в физике - виды, формулы и определения с примерами — ускорение, сообщаемое грузу маятника силой упругости нити.

Отсюда получаем уравнение гармонических колебаний математического маятника:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

При сравнении уравнения (8) с уравнением гармонических колебаний Пружинные и математические маятники в физике - виды, формулы и определения с примерами можно сделать вывод, что при малых отклонениях математический маятник совершает гармонические колебания с циклической частотой

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Тогда период малых колебаний математического маятника в поле тяжести Земли определяется по формуле Гюйгенса:
Пружинные и математические маятники в физике - виды, формулы и определения с примерами

которую впервые получил ученик И. Ньютона Христиан Гюйгенс.

При углах отклонения математического маятника Пружинные и математические маятники в физике - виды, формулы и определения с примерами погрешность рас-чета периода колебаний математического маятника по формуле Гюйгенса не превышает 1 %.

Как видно из формул (9) и (10), циклическая частота и период математического маятника не зависят от массы маятника и амплитуды его колебаний, а определяются только его длиной Пружинные и математические маятники в физике - виды, формулы и определения с примерами и модулем ускорения свободного падения Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Галилео Галилей первый экспериментально определил, что период малых колебаний Пружинные и математические маятники в физике - виды, формулы и определения с примерами математического маятника длиной Пружинные и математические маятники в физике - виды, формулы и определения с примерами в поле силы тяжести не зависит от его массы Пружинные и математические маятники в физике - виды, формулы и определения с примерами и амплитуды колебаний (угла начального отклонения Пружинные и математические маятники в физике - виды, формулы и определения с примерами Он установил также, что период этих колебаний прямо пропорционален Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Если маятник приобретает дополнительное ускорение Пружинные и математические маятники в физике - виды, формулы и определения с примерами обусловленное, например, ускоренным движением точки подвеса, то при этом будет изменяться сила упругости нити. В таком случае период колебаний маятника будет определяться по формуле:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

где Пружинные и математические маятники в физике - виды, формулы и определения с примерами — «эффективное ускорение», равное векторной разности Пружинные и математические маятники в физике - виды, формулы и определения с примерами

  • Заказать решение задач по физике

Пример:

Выведите формулу для периода колебаний вертикального пружинного маятника, если масса груза Пружинные и математические маятники в физике - виды, формулы и определения с примерами и жесткость пружины Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Решение

Рассмотрим вертикальное движение груза, происходящее под действием силы упругости пружины и силы тяжести груза после толчка. Начало координат поместим в точку, соответствующую равновесному положению тела (рис. 8). В этом положении пружина растянута на величину Пружинные и математические маятники в физике - виды, формулы и определения с примерами определяемую соотношением:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

При смещении груза на величину Пружинные и математические маятники в физике - виды, формулы и определения с примерами из положения равновесия сила, действующая со стороны пружины на груз, равна Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Тогда по второму закону Ньютона

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

С учетом соотношения (1) это уравнение перепишем в виде:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Если ввести обозначение Пружинные и математические маятники в физике - виды, формулы и определения с примерами то уравнение движения груза запишется в виде:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Оно описывает гармонические колебания вертикального пружинного маятника с частотой такой же, как у горизонтального пружинного маятника. Следовательно, период колебаний вертикального пружинного маятника такой же, как и горизонтального:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Ответ: Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Таким образом, действующая в колебательной системе постоянная сила только смещает положения равновесия, но не изменяет частоту колебаний.

Пример:

Определите амплитуду Пружинные и математические маятники в физике - виды, формулы и определения с примерами циклическую частоту Пружинные и математические маятники в физике - виды, формулы и определения с примерами период Пружинные и математические маятники в физике - виды, формулы и определения с примерами и начальную фазу Пружинные и математические маятники в физике - виды, формулы и определения с примерами колебаний тела массой Пружинные и математические маятники в физике - виды, формулы и определения с примерамиг подвешенного к вертикальной пружине (рис. 9). Известно, что в состоянии покоя тело растягивает пружину на расстояние Пружинные и математические маятники в физике - виды, формулы и определения с примерами мм и для возбуждения колебаний его смещают вниз на расстояние Пружинные и математические маятники в физике - виды, формулы и определения с примерами мм от положения равновесия и отпускают.

Дано:    
Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Решение

Циклическая частота колебаний вертикального пружинного маятника так же, как и горизонтального, определяется по формуле (см. пример 1):

Пружинные и математические маятники в физике - виды, формулы и определения с примерами
Для нахождения жесткости к пружины запишем условие равновесия тела:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

По закону Гука

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

В проекции на ось Пружинные и математические маятники в физике - виды, формулы и определения с примерами условие равновесия запишется:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Отсюда для циклической частоты Пружинные и математические маятники в физике - виды, формулы и определения с примерами получаем:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Амплитуда колебаний маятника определяется начальным смешением:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

 Период колебаний находим из соотношения:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами
Поскольку в начальный момент времени тело было смещено на максимальную величину, то начальная фаза колебаний Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Ответ: Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Подробное объяснение пружинного и математического маятника

Второй закон Ньютона (основной закон динамики): ускорение, приобретаемое материальной точкой, прямо пропорционально равнодействующей всех сил, действующих на нее, и обратно пропорционально массе материальной точки:
Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Закон Гука: модуль силы упругости Пружинные и математические маятники в физике - виды, формулы и определения с примерами возникающей в теле при упругих деформациях, прямо пропорционален его абсолютному удлинению (сжатию) Пружинные и математические маятники в физике - виды, формулы и определения с примерами
Пружинные и математические маятники в физике - виды, формулы и определения с примерами
где k — жесткость тела, Пружинные и математические маятники в физике - виды, формулы и определения с примерами — длина недеформированного тела, l — длина деформированного тела.

Простейшая колебательная система может быть получена с использованием груза и пружины.

Прикрепим груз массой m, лежащий на гладкой горизонтальной поверхности, к невесомой упругой пружине жесткостью k, второй конец которой зафиксирован (рис. 181). Такая система называется пружинным маятником.
Запишем второй закон Ньютона для этой системы
Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

В проекции на ось Ох с учетом закона Гука получаем
Пружинные и математические маятники в физике - виды, формулы и определения с примерами или
Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Запишем это уравнение в форме, аналогичной уравнению движения гармонического осциллятора:
Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Сравнивая полученное выражение с уравнением гармонических колебаний
Пружинные и математические маятники в физике - виды, формулы и определения с примерами
находим циклическую частоту колебаний пружинного маятника

Пружинные и математические маятники в физике - виды, формулы и определения с примерами
Тогда период колебаний пружинного маятника можно найти по формуле

Пружинные и математические маятники в физике - виды, формулы и определения с примерами
Свойство независимости периода колебаний маятника от амплитуды, открытое Галилеем, называется изохронностью (от греческих слов Пружинные и математические маятники в физике - виды, формулы и определения с примерамиравный и Пружинные и математические маятники в физике - виды, формулы и определения с примерамивремя).

Как видим, пружинный маятник обладает свойством изохронности, поскольку период его колебаний не зависит от амплитуды.

Одной из наиболее распространенных колебательных систем является математический маятник.

Математическим маятником называется материальная точка массой m, подвешенная на невесомой нерастяжимой нити длиной l в поле каких-либо сил, например силы тяжести Земли (рис. 182).

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Галилео Галилей экспериментально установил, что период колебаний математического маятника в поле силы тяжести не зависит от его массы и амплитуды колебаний (угла начального отклонения). Он установил также, что период колебаний прямо пропорционален Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Период малых колебаний математического маятника в поле силы тяжести Земли определяется по формуле Гюйгенса:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

При углах отклонения математического маятника Пружинные и математические маятники в физике - виды, формулы и определения с примерами погрешность формулы Гюйгенса не превышает 1 %.

Отклонение маятника от положения равновесия будем характеризовать углом Пружинные и математические маятники в физике - виды, формулы и определения с примерамикоторый нить образует с вертикалью.
Из второго закона Ньютона следует (см. рис. 182):
Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Смещение маятника вдоль дуги Пружинные и математические маятники в физике - виды, формулы и определения с примерами где угол Пружинные и математические маятники в физике - виды, формулы и определения с примерами выражен в радианах.

Возвращающей силой в данном случае является проекция на касательную к дуге силы тяжести Пружинные и математические маятники в физике - виды, формулы и определения с примерами (см. рис. 182), которая определяется по формуле
Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Заметим, что при малых углах Пружинные и математические маятники в физике - виды, формулы и определения с примерами длина дуги АВ = х = Пружинные и математические маятники в физике - виды, формулы и определения с примерами очень мало отличается от длины хорды Пружинные и математические маятники в физике - виды, формулы и определения с примерами так как при малых Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Для небольших углов (до 10°) значения Пружинные и математические маятники в физике - виды, формулы и определения с примерами различаются меньше чем на 1 %. Поэтому для таких углов равенство
Пружинные и математические маятники в физике - виды, формулы и определения с примерами является очень хорошим приближением.

Используя полученное соотношение между координатой х и углом Пружинные и математические маятники в физике - виды, формулы и определения с примерами находим Пружинные и математические маятники в физике - виды, формулы и определения с примерами Подставляем его в выражение для проекции силы:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Таким образом, уравнение движения маятника запишется в виде Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Поскольку полученное уравнение совпадает с уравнением гармонических колебаний Пружинные и математические маятники в физике - виды, формулы и определения с примерами то можно сделать вывод, что при малых отклонениях маятник совершает гармонические колебания с циклической частотой
Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Как видно из этой формулы, циклическая частота не зависит от массы маятника и амплитуды его колебаний, а определяется только его длиной и ускорением свободного падения.

В общем случае, когда маятник находится в однородных полях нескольких сил, для определения периода колебаний следует ввести «эффективное ускорение» Пружинные и математические маятники в физике - виды, формулы и определения с примерами характеризующее результирующее действие этих полей, и период колебаний маятника будет определяться по формуле
Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Математический и пружинный маятники и энергия колебаний

Колебательные движения очень разнообразны. При этом существует «классика» колебательных движений — они описаны сотни лет назад, их изучением занимались Галилео Галилей (1564– 1642) и Христиан Гюйгенс (1629–1695). Это колебания пружинного и математического маятников.

Колебания пружинного маятника

Пружинный маятник — это колебательная система, представляющая собой закрепленное на пружине тело.

Рассмотрим колебания горизонтального пружинного маятника — тележки массой m, закрепленной на пружине жесткостью k. Будем считать, что силы трения, действующие в системе, пренебрежимо малы, а значит, колебания маятника незатухающие (их амплитуда с течением времени не изменяется, а полная механическая энергия системы сохраняется). При этом потенциальная энергия деформированной пружины будет превращаться в кинетическую энергию движения тележки, и наоборот.

Колебания пружинного маятника:

Пружинные и математические маятники в физике - виды, формулы и определения с примерамиПружинные и математические маятники в физике - виды, формулы и определения с примерами

Обратите внимание! В течение всего времени колебания сила упругости направлена в сторону, противоположную смещению тележки, — сила упругости все время «толкает» тележку к положению равновесия.

Итак, причины свободных колебаний пружинного маятника: 1) действующая на тело сила всегда направлена к положению равновесия; 2) колеблющееся тело инертно, поэтому оно не останавливается в положении равновесия (когда равнодействующая сил становится равной нулю), а продолжает движение в том же направлении.

Как вычислить период колебаний пружинного маятника

Рассмотрим колебания тележки, закрепленной на горизонтальной пружине, с точки зрения второго закона Ньютона (рис. 20.1). Запишем уравнение второго закона Ньютона в векторном виде: Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Сила тяжести и сила нормальной реакции опоры уравновешивают друг друга, поэтому Пружинные и математические маятники в физике - виды, формулы и определения с примерами. Спроецировав это уравнение на ось ОХ Пружинные и математические маятники в физике - виды, формулы и определения с примерами и воспользовавшись законом Гука Пружинные и математические маятники в физике - виды, формулы и определения с примерами получим: Пружинные и математические маятники в физике - виды, формулы и определения с примерами .

Последнее уравнение можно записать в виде Пружинные и математические маятники в физике - виды, формулы и определения с примерами Таким образом, колебания тележки на пружине являются гармоническими колебаниями, а циклическая частота этих колебаний равна: Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Приняв во внимание, что Пружинные и математические маятники в физике - виды, формулы и определения с примерами, получим формулу для вычисления периода колебаний пружинного маятника:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Обратите внимание! Период колебаний пружинного маятника не зависит ни от амплитуды колебаний, ни от места расположения маятника (на поверхности Земли или Луны, в космическом корабле и т. д.), — он определяется только характеристиками самой колебательной системы «тело — пружина». Если период Т колебаний тела и жесткость k пружины известны, можно найти массу m тела. Такой способ определения массы используют в состоянии невесомости, когда обычные весы не работают.

Что называют математическим маятником

Любое твердое тело, которое совершает или может совершать колебания относительно оси, проходящей через точку подвеса, называют физическим маятником. Примером может быть игрушка, подвешенная на нити в салоне автомобиля. Если игрушку вывести из положения равновесия, она начнет колебаться. Однако изучать такие колебания сложно: их характер определяется размерами и формой игрушки, свойствами нити и другими факторами.

Чтобы размеры тела не влияли на характер его колебаний, следует взять нить, длина которой намного больше размеров тела, а масса незначительна по сравнению с его массой. В таком случае тело можно считать материальной точкой. А чтобы во время колебаний тело все время находилось на одинаковом расстоянии от точки подвеса, нить должна быть нерастяжимой. Таким образом будет получена физическая модель — математический маятник.

Математический маятник — это физическая модель колебательной системы, состоящая из материальной точки, подвешенной на невесомой и нерастяжимой нити, и гравитационного поля.

Колебания математического маятника

Возьмем небольшой, но достаточно тяжелый шарик и подвесим его на длинной нерастяжимой нити — такой маятник можно считать математическим. Если отклонить шарик от положения равновесия и отпустить, то в результате действия гравитационного поля Земли (силы тяжести) и силы натяжения нити шарик начнет колебаться около положения равновесия. Поскольку сопротивление воздуха пренебрежимо мало, а силы, действующие в системе, являются консервативными, полная механическая энергия шарика будет сохраняться: потенциальная энергия шарика будет превращаться в его кинетическую энергию, и наоборот.

Рассмотрите колебательное движение шарика (рис. 20.2). Объясните причины его движения. Какие происходят превращения энергии?

Пружинные и математические маятники в физике - виды, формулы и определения с примерамиПружинные и математические маятники в физике - виды, формулы и определения с примерами

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Как вычислить период колебаний математического маятника

Математический маятник, отклоненный от положения равновесия на небольшой угол (3–5°), будет совершать гармонические колебания, то есть ускорение его движения все время будет прямо пропорционально смещению и направлено в сторону, противоположную смещению: Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Для математического маятника: Пружинные и математические маятники в физике - виды, формулы и определения с примерами. Поскольку Пружинные и математические маятники в физике - виды, формулы и определения с примерами, имеем формулу для периода колебаний математического маятника:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

где l — длина маятника; g — ускорение свободного падения.

Данную формулу впервые получил в XVII в. голландский ученый Христиан Гюйгенс, поэтому ее называют формулой Гюйгенса.

Период колебаний математического маятника не зависит от массы маятника, а определяется только длиной нити и ускорением свободного падения в том месте, где расположен маятник. Поэтому, измерив длину нити и период колебаний маятника, можно определить ускорение свободного падения в данной местности.

Пример:

Уравнение колебаний груза массой 1 кг на пружине имеет вид:Пружинные и математические маятники в физике - виды, формулы и определения с примерами (cм). Найдите полную механическую энергию колебаний; наибольшую скорость груза; кинетическую и потенциальную энергии системы через Пружинные и математические маятники в физике - виды, формулы и определения с примерами с после начала отсчета времени. Трением пренебречь.

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Решение:

Трение отсутствует, поэтому полная механическая энергия сохраняется:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Сравним уравнение колебаний в общем виде с уравнением, приведенным в задаче:

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Поскольку

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Определив удлинение пружины черезПружинные и математические маятники в физике - виды, формулы и определения с примерами, вычислим потенциальную и кинетическую энергии пружины: Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Пружинные и математические маятники в физике - виды, формулы и определения с примерами

Выводы:

  • Скалярные и векторные величины и действия над ними
  • Проекция вектора на ось
  • Путь и перемещение
  • Равномерное прямолинейное движение
  • Вращательное движение тела
  • Равномерное движение материальной точки по окружности
  • Колебательное движение
  • Физический и математический маятники

vectra major



Ученик

(125),
на голосовании



14 лет назад

Голосование за лучший ответ

Снежный_барс

Мастер

(1987)


14 лет назад

m=k*T(квадрат) 4П (квадрат)

Похожие вопросы

Добавить комментарий