Приложения криволинейных интегралов
Краткая теория
Длина дуги
Длину дуги
плоской или пространственной линии
определяют по формуле:
Масса дуги
Если
– линейная плотность вещества в точках дуги,
то массу
дуги
определяют по формуле:
Статистические моменты
Статистические
моменты
и
плоской дуги
относительно координатных осей
и
определяют по формулам:
Моменты инерции
Моменты
инерции
,
плоской дуги
относительно координатных осей
и
определяют по формулам:
Полярный момент инерции
Полярный
момент инерции
плоской дуги
относительно начала координат определяют по
формуле:
Площадь фигуры
Площадь
фигуры, расположенной в плоскости
и ограниченной замкнутой линией
, вычисляют по формуле:
Работа, приложенная к точке, при перемещении по дуге
Работу, совершаемую силой
приложенной в точке
при перемещении ее по дуге
, вычисляют по формуле:
Примеры решения задач
Задача 1
Найти
момент инерции относительно оси
четверти однородной окружности
, расположенной в первом
квадранте.
Решение
Окружность
однородна, следовательно
, следовательно искомый
момент инерции:
Для
удобства вычислений перейдем к параметрическим уравнениям окружности
Тогда:
Ответ:
Задача 2
Найти
массу дуги кривой
от точки
до
, если плотность в каждой точке
ее равна абсциссе точки;
Решение
На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:
ВКонтакте
WhatsApp
Telegram
Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.
Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.
Плотность
дуги:
Искомая масса будет выражаться
криволинейным интегралом 1-го рода:
Производная:
Искомая масса:
Ответ:
.
Задача 3
Найти
массу дуги окружности
, лежащей в первой
четверти, если плотность в каждой ее точке равна абсциссе точки.
Решение
Плотность:
Искомая масса будет
выражаться криволинейным интегралом 1-го рода:
Параметрическое
уравнение окружности:
Окружность лежит в
первой четверти, поэтому
Ответ:
.
Задача 4
Вычислить
работу силы
при обходе точки ее приложения по границе
области
в положительном направлении, начиная от точки
.
Решение
Искомая
работа будет равна криволинейному интегралу 2-го рода:
Для
вычисления интеграла воспользуемся формулой Грина:
Ответ:
.
Задача 5
Вычислить
работу силового поля
при перемещении материальной точки вдоль пути
.
Решение
Искомая работа будет
выражаться криволинейным интегралом 2-го рода:
Параметр
:
Перейдем к
определенному интегралу:
Искомая работа:
Ответ:
Задача 6
Вычислить
работу силы
при перемещении материальной точки вдоль линии
от точки
до точки
.
Решение
Искомая работа будет
выражаться криволинейным интегралом 2-го рода:
Криволинейный
интеграл 2-го рода можно свести к определенному интегралу по следующей формуле:
Получаем:
Ответ:
Криволинейный
интеграл первого рода
Пусть
на дуге
гладкой кривой L
определена непрерывная функция
.
Разобьем дугу
произвольным образом точками
на п частей. Длину частичной дуги
обозначим
,
а
.
На каждой дуге
возьмем
произвольную точку Pi(i,
i)
и вычислим значения
.
Составим интегральную сумму
.
Определение
Если
существует конечный предел при n0
последовательности {n}
интегральных сумм, не зависящий ни от
способа разбиения дуги
,
ни от выбора точек Pi(i,
i),
то этот предел называется криволинейным
интегралом первого рода от функции
f(х, у) по дуге
и обозначается
.
Таким
образом, по определению
,
Криволинейный
интеграл I
рода называют еще криволинейным
интегралом по длине
дуги (т.к.
есть дифференциальный элемент длины
дуги кривой
).
Свойства
криволинейного интеграла первого рода:
1.
,
где
–
длина дуги
(геометрическая интерпретация
криволинейного интеграла I
рода).
2.
Криволинейный интеграл I
рода не зависит от направления пути
интегрирования, т.е.
.
3.
– свойство линейности
4.
Если
,
то
=+(свойство
аддитивности)
5.
Если f(P)
g(P),
то
6.
Если m
f(P)
M, PL,
то mL
ML
7.
Существует точка Q
L:
=
f(Q)L
(Теорема о среднем.)
С
физической точки
зрения
определяет массу материальной
кривой (массу тонкого
неоднородного криволинейного стержня)
с плотностью
:
.
Статические
моменты относительно осей координат
материальной кривой l
с плотностью
определяются
по формулам
,
,
а
координаты центра масс
такой кривой равны
,
.
Кроме
того, для материальной кривой l
моменты инерции
относительно
осей Ох, Оу и начала координат
равны соответственно
,
,
.
Вычисление
криволинейного интеграла первого рода
Вычисление
криволинейного интеграла I
рода, также как и двойного интеграла,
сводится к вычислению определенного
интеграла.
-
Если
кривая L задана
уравнением y
= (x),
а дуга
соответствует изменению x
на отрезке [a, b],
то
-
Если
определена уравнением x
= (y),
y
[c, d],
то
.
-
Если
дугу
определяют параметрические уравнения
t[,],
то
.
Рассмотрим
примеры вычисления криволинейных
интегралов I рода.
Пример
1.
Вычислить
,
если L:
а) отрезок прямой
3x–2y+6=0
между точками A(-2,0)
и B(2,6);
б) верхняя половина
окружности
,
.
Решение.
а)
Чтобы
преобразовать заданный криволинейный
интеграл к определенному интегралу,
нужно линию L,
по которой идет интегрирование, описать
условиями одного из трех видов:
,
где
;
,
где
;
где
.
В нашей задаче
линия L
задана уравнением 3x–2y+6=0.
Выразим из этого уравнения переменную
у:
.
Поскольку рассматривается отрезок АВ
этой прямой, где A(-2,0)
и B(2,6),
то на этом отрезке переменная х
принимает значения из промежутка
.
Следовательно, линия L
определена условиями вида
,
.
Поэтому преобразование криволинейного
интеграла к определенному интегралу
производим по формуле
.
Тогда имеем
В этой задаче
переменной интегрирования можно было
выбрать также y,
выразив из уравнения прямой переменную
х
через у:
.
При этом на отрезке АВ переменная у
принимает значения из промежутка
.
Тогда линия интегрирования L
будет определена условиями вида
,
и переход к определенному интегралу
осуществляется по формуле:
.
Используя
эту формула, получим
Получили тот же
результат.
б)
Параметрические
уравнения
,
определяют на координатной плоскости
окружность с центром в начале координат
и радиусом a
(рис.1), причём верхняя половина этой
окружности соответствует изменению
параметра t
от 0 до π.
Рисунок 1
Поскольку линия
интегрирования L
задана условиями вида
,
то преобразование криволинейного
интеграла к определенному производим
по формуле:
.
Тогда получим
Пример
2.
Найти
массу дуги параболы y2
= 2x + 4 между
точками пересечения её с осями координат,
если плотность масс в любой точке дуги
пропорциональна ординате этой точки.
Решение.
Парабола
,
или
симметрична относительно оси Ох,
вершина её находится в точке
.
Ось Ох
эта
парабола пересекает в точке
,
а в точках
и
она пересекает ось Оу (рис. 2). Найдем
массу дуги l параболы,
заключенной между точками
и
.
В
каждой точке этой дуги, по условию,
плотность масс пропорциональна ординате
этой точки, и значит, равна
,
где
,
а
– коэффициент пропорциональности.
Как
отмечалось выше (стр.2), масса материальной
дуги кривой может быть найдена по формуле
.
Значит,
масса рассматриваемой дуги l
параболы равна
.
Чтобы
преобразовать этот криволинейный
интеграл к определенному, запишем
уравнение параболы в виде
.
На рассматриваемой дуге параболы y
[0, 2]. Тогда
(ед.
массы).
Аналогично
понятию криволинейного интеграла по
кривой на плоскости (в
)
может быть дано понятие криволинейного
интеграла по пространственной кривой.
Пусть
– дуга гладкой пространственной кривой,
на которой определена и непрерывна
функция
.
Тогда
,
где
–
длины отрезков разбиения дуги,
,
()
–произвольная точка, взятая на k-той
частичной дуге разбиения.
Если
дуга
задана условиями:
,
то
и
.
Пример
3.
Вычислить
,
если L
– отрезок прямой от точки A(1,0,1)
до точки B(0,3,4).
Решение.
Чтобы вычислить
данный интеграл, нужно сначала описать
уравнениями линию, по которой идет
интегрирование. Поскольку это – прямая,
проходящая через заданные точки, то
чтобы найти её уравнения, используем
соответствующую формулу:
.
Получим:
Из этих уравнений
координаты точки
получаются при
,
а координаты точки
получаются
при
.
Таким образом, линия интегрирования L
определяется условиями
.
Тогда
.
Пример
4.
Найти центр масс
контура треугольника с вершинами
,
,
,
если плотность в каждой точке этого
контура равна сумме квадратов координат
этой точки.
Решение.
Чтобы найти
координаты центра масс данной кривой,
используем формулы, приведенные на
странице 2:
,
.
Найдем сначала
массу линии – контура треугольника
АВС.
По условию, плотность масс в каждой
точке кривой равна сумме квадратов
координат этой точки, значит,
.
Контур рассмотренного треугольника
состоит из трех участков (рис.3): АВ,
ВС,
АС.
Найдем массу каждого участка отдельно:
-
Участок АВ
задается уравнением
*),
.
Тогда
.
-
Участок ВC
задается
уравнением
*),
.
Тогда
.
-
Участок АC
задается
уравнением
.
Тогда
.
Следовательно,
масса всего контура треугольника равна
.
Найдем статические
моменты контура относительно осей
координат. Учитывая предыдущие вычисления,
получим
.
Аналогично
.
Тогда
,
.
Таким образом,
центр масс контура заданного треугольника
АВС
находится в точке
.
*)*)
Уравнение этого участка можно найти
как уравнение прямой, проходящей через
точки (1,0) и (0, 1):
*)*)
Это отрезок прямой, проходящей через
точки (–1,0) и (0, 1), поэтому.
11
Соберем в одном месте все формулы.
Масса [math]m[/math] гладкой кривой[math]L[/math], линейная плотность которой вдоль кривой [math]L[/math] равна [math]gamma(x,y,z)[/math], выражается криволинейным интегралом первого рода:
[math]m=int_{L}gamma(x,y,z);dl[/math]
Криволинейный интеграл равен обычному и совсем не опасному интегралу функции одной переменной :
* Если кривая задана параметрическими уравнениями [math]x=x(t), y=y(t), z=z(t),hspace{2mm}tin[alpha,beta][/math], то
[math]m=int_{alpha}^{beta}gamma(x(t),y(t),z(t))sqrt{x'(t)^2+y'(t)^2+z'(t)^2)};dthspace{10mm}(1)[/math]
* Если кривая лежит в плоскости [math]Oxy[/math], то [math]z(t)=0[/math] и получаем
[math]m=int_{alpha}^{beta}gamma(x(t),y(t))sqrt{x'(t)^2+y'(t)^2};dthspace{37mm}(2)[/math]
В частности, для плоской кривой, заданной уравнением [math]y=f(x), xin[a,b][/math] имеем
[math]m=int_{a}^{b}gamma(x,f(x))sqrt{1+f'(x)^2};dxhspace{47mm}(3)[/math]
* Если плоская кривая задана уравнением [math]rho=rho(phi}), hspace{3mm}phiin[alpha,beta][/math] в полярных координатах, то
[math]m=int_{alpha}^{beta}gamma(rhocosphi,rhosinphi)sqrt{rho^2+rho ‘^2};dphihspace{45mm}(4)[/math]
———————————————————————–
В данной задаче надо применить формулу (3):
[math]gamma(x,y)=frac{2sqrt x-y}{sqrt{1+frac{1}{x}}},hspace{3mm}y=f(x)=2sqrt x-1, hspace{3mm}xin [0,4][/math]
[math]gamma(x,f(x))=frac{2sqrt x -(2sqrt x-1)}{sqrt{1+frac{1}{x}}}=frac{1}{{sqrt{1+frac{1}{x}}}[/math]
Так как
[math]f'(x)=frac{1}{sqrt x}[/math]
то
[math]sqrt{1+f'(x)^2}=sqrt{1+frac{1}{x}}[/math]
И получаем миленький интегральчик.
Рабчук Александр Викторович1, Самигуллина Ракия Гареевна2
1Уфимский государственный авиационный технический университет, к.т.н.. доцент кафедры математики
2Уфимский государственный авиационный технический университет, старший преподаватель каф. математики
Аннотация
Традиционно, такие разделы высшей математики как криволинейные и поверхностные интегралы, особенно их применение, вызывают затруднения у студентов при изучении. Поэтому в данной статье кратко дана теория и приведено много разобранных примеров взятых из различных источников, в частности из [1,2,3].
Rabchuk Aleksandr Viktorovich1, Samigullina Rakiya Gareevna2
1Ufa State Aviation Technical University, PhD in Technical Science, Assistant Professor of the Mathematic Department
2Ufa State Aviation Technical University, Senior teacher of the Mathematic Department
Abstract
By tradition, devides higher mathematics by contour and surface integrals ,particularly application, is difficult by students.Therefor in this article give theori and many look into examples from [1,2,3].
Библиографическая ссылка на статью:
Рабчук А.В., Самигуллина Р.Г. Приложения криволинейных интегралов. Часть 1 // Современная педагогика. 2014. № 10 [Электронный ресурс]. URL: https://pedagogika.snauka.ru/2014/10/2675 (дата обращения: 24.02.2023).
Приложения криволинейного интеграла первого рода
1. Если подынтегральная функция равна единиц, то криволинейный интеграл
равен длине S кривой L, т.е.
2. Пусть в плоскости Оху задана гладкая кривая L, на которой определена и непрерывна функция двух переменных z=f(x,y)≥0. Тогда можно построить цилиндрическую поверхность с направляющей L и образующей, параллельной оси Оz и заключенной между L и поверхностью z=f(x,y). Площадь этой цилиндрической поверхности можно вычислить по формуле
3. Если L=AB – материальная кривая с плотностью, равной ρ=ρ(х,у), то масса этой кривой вычисляется по формуле
(физический смысл криволинейного интеграла первого рода).
4. Статистические моменты материальной кривой L относительно координатных осей Ох и Оу соответственно равны
где ρ(х,у) – плотность распределения кривой L а – координаты центра тяжести (центра масс) кривой L.
5. Интегралы
выражают моменты инерции кривой L с линейной плотностью ρ(х,у) относительно осей Ох, Оу и начала координат соответственно.
ПРИМЕРЫ:1. Вычислить криволинейный интеграл
где L – дуга параболы у2 = 2х, заключенная между точками (2, 2) и (8, 4).
Найдем дифференциал дуги dl для кривой . Имеем
Следовательно, данный интеграл равен
Ответ:
2. Вычислить криволинейный интеграл
где L – контур треугольника АВО с вершинами А(1,0), В(0,1), О(0,0)
Поскольку
то остается вычислить криволинейный интеграл по каждому из отрезков АВ, ВО и ОА :
1) (АВ): так как уравнение прямой АВ имеет вид у=1 – х, то . Отсюда, учитывая, что х меняется от 0 до 1, получим
2) (ВО): рассуждая аналогично, находим х=0, 0 ≤ у ≤ 1, откуда
3) (ОА): .
4) Окончательно
Ответ:
3. Вычислить криволинейный интеграл
где L – окружность
Введем полярные координаты Тогда, поскольку уравнение окружности примет вид т.е. а дифференциал дуги
При этом Следовательно,
Ответ:
4. Вычислить криволинейный интеграл первого рода от функции с тремя переменными
где L – дуга кривой, заданной параметрически
Перейдем в подынтегральном выражении к переменной t. Имеем для подынтегральной функции:
Теперь выразим через t дифференциал dl:
Таким образом,
Ответ:
5. Вычислить площадь части боковой поверхности кругового цилиндра , ограниченной снизу плоскостью Оху, а сверху поверхностью
Искомая площадь вычисляется по формуле
где L – окружность x2+y2=R2. Поверхность цилиндра и поверхность симметричны относительно координатных плоскостей Оxz и Oyz, поэтому можно ограничиться вычислением интеграла при условиях у≥0, х≥0, т.е. вычислить четверть искомой площади и результат умножить на 4. Имеем
Следовательно,
Получили определенный интеграл, который берем подстановкой откуда
Ответ:
6. Найти массу четверти эллипса
расположенной в первой четверти, если линейная плотность в каждой точке пропорциональна ординате этой точки с коэффициентом k.
Поскольку р(х, у)=ky, имеем
L – четверть эллипса
х≥0, у≥0.
Переходим к параметрическим координатам эллипса Напомним, что – фокусное расстояние эллипса, а – эксцентриситет эллипса. Находим
Переходим к вычислению массы
Воспользуемся формулой
где Получаем
Учитывая, что получим окончательно
Ответ:
7. Найти координаты центра тяжести дуги окружности x2+y2=R2(0≤ x ≤R, 0≤ y ≤R).
Так как по условию задана четверть дуги окружности, то ее длина В силу того, что биссектриса I координатного угла является осью симметрии, имеем . Теперь находим
Ответ:
Приложения криволинейного интеграла второго рода
Интеграл
можно представить в виде скалярного произведения векторов F=Pi+Qi и ds=idx+jdy:
В таком случае
Выражает работу переменной силы F=Pi+Qj при перемещении материальной точки М=М(х,у) вдоль кривой L=AB от точки А до точки В.
При А=В кривая L замкнута, а соответствующий криволинейный интеграл по замкнутой кривой обозначается так:
В этом случае направление обхода контура иногда поясняется стрелкой на кружке, расположенном на знаке интеграла.
Предположим, что в плоскости Оху имеется односвязная область D (это значит, что в ней нет «дыр»), ограниченная кривой , ( – обозначение границы области D), а в области D и на ее границе функции Р(х,у) и Q(х,у) непрерывны вместе со своими частными производными.
Теорема: Пусть А и В – произвольные точки области D, AmB и AnB – два произвольных пути (гладкие кривые), соединяющие эти точки (рис. 2).
Тогда следующие условия равносильны:
1. (условие Грина).
2. (криволинейный интеграл не зависит от пути интегрирования).
3. (интеграл по любому замкнутому пути равен нулю).
4. (выражение представляет собой полный дифференциал некоторой функции ).
В случае выполнения любого из равносильных условий предыдущей теоремы криволинейный интеграл по любой кривой, соединяющей точки (хо, уо) и (х1, у1) из области D, можно вычислить при помощи формулы Ньютона-Лейбница
где U(x, y) – некоторая первообразная для P dx + Q dy.
С другой стороны, первообразная U(x, y) выражения P dx + Q dy может быть найдена при помощи криволинейного интеграла
В этих же условиях на функции Р(х,у) и Q(х,у), а также на область D, имеет место формула Грина, позволяющая свести криволинейный интеграл по замкнутому контуру к двойному интегралу
Здесь предполагается, что обход границы области D в криволинейном интеграле
совершается в положительном направлении, т.е. при таком обходе границы область D остается слева; для односвязной области это направление совпадает с направлением против часовой стрелки.
Заметим, что площадь S=S(D) области D может быть вычислена при помощи криволинейного интеграла второговрода:
(эта формула получается из формулы Грина с ).
ПРИМЕРЫ:1. Даны функции Р(х ,у) = 8х+4у+2, Q(х ,у) = 8у+2 и точки А(3, 6), В(3,0), С(0,6). Вычислить криволинейный интеграл
где:
1) L – отрезок ОА;
2) L – ломаная ОВА;
3) L – ломаная ОСА;
4) L – парабола, симметричная относительно оси Оу и проходящая через точки О и А;
5) проверить выполнимость условия Грина.
1) Отрезок ОА может быть записан в виде: у=2х, . Тогда dy=2dx и
2) Используем свойство аддитивности, вычисляя отдельно интеграл по отрезкам ОВ и ВА. Тогда:
а) ОВ: здесь у=0, 0≤х≤3, т.е. dy=0, откуда
б) ВА: х=3, 0≤у≤6, т.е. dx=0, и
Таким образом,
3) Этот интеграл вычислим аналогично предыдущему.
а) ОС: х=0, (т.е. dx=0), 0≤y≤6, откуда
б) СА: 0≤х≤3 , у=6, dy=0, следовательно,
Окончательно
4) Подставив координаты точки А(3;6) в равенство у=ах2 найдем уравнение данной параболы . При этом 0≤х≤3 и откуда (путь ОА по параболе обозначим )
5) Имеем
т.е. условие Грина не выполняется. Этот факт, а также вычисления в пунктах 1) – 4) этой задачи показывают, что данный криволинейный интеграл второго рода зависит от пути интегрирования.
2. Вычислить интеграл
где L – верхняя половина эллипса пробегаемая по ходу часовой стрелки.
Воспользуемся параметрическими уравнениями эллипса: х=a cost, y=b sin t, т.е. dx = – a sin t dt, dy = b cos t dt. Подставляя в интеграл и учитывая направление обхода (откуда следует, что t меняется от π до 0), получаем
Ответ:
3. Вычислить криволинейный интеграл
где L – отрезок, соединяющий точку С(2, 3, -1) с точкой D(3, -2, 0).
Составим параметрические уравнения отрезка СD, используя уравнения прямой, проходящей через две точки:
Отсюда . Далее, находим подставляем все нужные выражения в данный интеграл, обозначенный через J, и вычисляем определенный интеграл:
Ответ:
4. Вычислить где К – отрезок прямой от А(0 ;0) до В (4; 3).
Уравнение прямой АВ имеет вид у=(3; 4)х. Находим у/= ¾ и, следовательно,
Ответ:
5. Вычислить если
Найдем Тогда
Ответ:
6. Найти массу М дуги кривой x=t, y=t2/2, z=t3/3 (0≤ t ≤1), линейная плотность которой меняется по закону
Ответ:
7. Вычислить криволинейный интеграл от точки А(1, 0) до точки В(0, 2) (рис. 3):
1) по прямой 2х+у=2;
2) по дуге параболы 4х+у2=4;
3) по дуге эллипса x=cost, y=2sint.
1) Пользуясь данным уравнением линии интегрирования, преобразуем криволинейный интеграл в обыкновенный определенный интеграл с переменной х, затем вычисляем его:
у=2-2х, dy=-2dx,
2) Здесь удобно преобразовать криволинейный интеграл в обыкновенный интеграл с переменной у:
3) Преобразуем данный интеграл в обыкновенный с переменной t, затем вычисляем его: x=cost, dx=-sintdt; y=2sint; dy=2costdt:
Ответ: I1=1, I2=-1/5, I3=4/3.
8. Вычислить криволинейный интеграл между точками Е
(-1, 0) и Н (0, 1):
1) по прямой ЕН;
2) по дуге астроиды х=cos3t, y=sin3t.
1) Вначале составляем уравнение линии интегрирования – прямой ЕН, как уравнение прямой, проходящей через две известные точки: у-х=1.
Пользуясь этим уравнением и известной формулой для дифференциала дуги плоской кривой преобразуем данный криволинейный интеграл в обыкновенный интеграл с переменной х и вычисляем его:
2) Преобразуем данный интеграл в обыкновенный с переменной t, затем вычисляем:
ибо π/2≤ t ≤π;
Ответ:
9. Даны точки А(3, -6, 0) и В(-2, 4, 5). Вычислить криволинейный интеграл
1) по прямолинейному отрезку ОВ;
2) по дуге АВ окружности, заданной уравнениями x2+y2+z2=45, 2x+y=0.
1) Вначале составляем уравнения линии интегрирования – прямой ОВ.
Пользуясь общими уравнениями прямой, проходящей через две точки получим Приравнивая эти равные отношения параметру t, преобразуем полученные канонические уравнения прямой ОВ к параметрическому виду: x=-2t, y=4t, z=5t.
Далее, пользуясь этими уравнениями, преобразуем данный криволинейный интеграл в обыкновенный интеграл с переменной t, затем вычисляем его
2) Преобразуем данные уравнения окружности к параметрическому виду. Полагая х=t, получим у=-2t (из второго данного уравнения), (из первого уравнения). Отсюда и
Ответ:
10. Вычислить криволинейные интегралы:
1)
2) вдоль периметра треугольника с
вершинами А(-1,0), В (0,2) и С (2,0)
Составив уравнение прямой АВ, у-2х=2, и исходя из этого уравнения, преобразуем криволинейный интеграл на отрезке АВ в обыкновенный интеграл с переменной х:
у=2х+2, dy=2dx,
Аналогичным путем вычисляя криволинейный интеграл на отрезках ВС и СА, получим
х=2-у, dx=-dy,
Следовательно,
2) Здесь подынтегральное выражение есть полный дифференциал функции двух переменных, ибо (уcosx)’y =(sinx)’x =cosx. Вследствии этого данный криволинейный интеграл, взятый по периметру данного треугольника равен нулю. Он будет равен нулю и по любому другому замкнутому контуру.
Ответ:
11. Найти длину кардиоиды x=2acost-acos2t, y=2asint-asin2t.
Применяем формулу , исходя из данных параметрических уравнений кардиоиды и формулы для дифференциала дуги плоской кривой, преобразуем криволинейный интеграл формулы в обыкновенный интеграл с переменной t.
Ответ: L=16a.
12. Найти площадь, ограниченную замкнутой кривой:
1) эллипсом x=a cost, y=b sint;
2) петлей декартова листа х3+у3-3аху=0.
1) Применяем формулу , исходя из данных параметрических уравнений эллипса, преобразуем криволинейный интеграл в обыкновенный интеграл с переменной t и вычисляем его:
2) Вначале преобразуем данное уравнение к параметрическому виду. Полагая у=хt, получим
Геометрический параметр t=y/x есть угловой коэффициент полярного радиуса ОМ (рис. 6), точка М(х, у) опишет всю петлю кривой при изменении t от 0 до +∞.
Преобразуя криволинейный интеграл формулы в обыкновенный интеграл с переменной t , получим
Ответ: S=3a2/2.
13. Найти массу дуги АВ кривой у=lnx, если в каждой ее точке линейная плотность пропорциональна квадрату абсциссы точки: хА=1, хВ=3.
Применяем формулу , исходя из данного уравнения кривой, преобразуем криволинейный интеграл в обыкновенный с переменной х
Ответ:
14. Найти координаты центра тяжести дуги АВ винтовой линии х=аcost, y=asint, z=bt, если в каждой ее точке линейная плотность пропорциональна аппликате этой точки: tA=0, tB=π.
Применяя формулы вычислим криволинейные интегралы, преобразуя их в обыкновенные интегралы с переменной t:
Следовательно,
Ответ:
15. Вычислить работу, совершаемую силой тяжести при перемещении точки массы m по дуге АВ некоторой кривой.
Если выбрать прямоугольную систему координат так, чтобы направление оси Оz совпало с направлением силы тяжести, то действующая на точку сила а ее проекции на оси координат Fx=P=O, Fy=Q=0, Fz=R=mg.
Искомая работа согласно формуле
Она зависит только от разности аппликат начала и конца пути, но не зависит от формы пути.
16. Найти работу силового поля, в каждой точке (х,у) которого напряжение (сила, действующая на единицу массы) , когда точка массы m описывает окружность x=accost, y=asint, двигаясь по ходу часовой стрелки.
Подставляя в формулу проекции силы действующей на точку: Fx=m(x+y), Fy= – mx, и преобразуя криволинейный интеграл в обыкновенный с переменной t, получим
Ответ: Е=2πma2.
Библиографический список
- Лунгу К.Н. Сборник задач по высшей математике. 1 курс – 7-е изд., – М.: Айрис-пресс, 2008.
- Лунгу К.Н. Сборник задач по высшей математике. 2 курс – 5-е изд., – М.: Айрис-пресс, 2007.
- Письменный Д.Т. Конспект лекций по высшей математике: полный курс – 7-е изд. – М.: Айрис-пресс, 2008.
Все статьи автора «Рабчук Александр Викторович»
Как найти массу дуги окружности
Центр масс и моменты инерции кривой;
Работа при перемещении тела в силовом поле;
Магнитное поле вокруг проводника с током (Закон Ампера);
Электромагнитная индукция в замкнутом контуре при изменении магнитного потока (Закон Фарадея).
Рассмотрим эти приложения более подробно с примерами.
Пусть снова кусок проволоки описывается некоторой кривой (C,) а распределение массы вдоль кривой задано непрерывной функцией плотности (rho left( right).) Тогда координаты центра масс кривой определяются формулами [bar x = frac<<>>>,;;bar y = frac<<>>>,;;bar z = frac<<>>>,] где [ <> = intlimits_C right)ds> ,>;; <> = intlimits_C right)ds> ,>;; <> = intlimits_C right)ds> > ] − так называемые моменты первого порядка .
Моменты инерции относительно осей (Ox, Oy) и (Oz) определяются формулами [ <= intlimits_C <left( <+ > right)rho left( right)ds> ,>;; <= intlimits_C <left( <+ > right)rho left( right)ds> ,>;; <= intlimits_C <left( <+ > right)rho left( right)ds> .> ]
Работа при перемещении тела в силовом поле (mathbf) вдоль кривой (C) выражается через криволинейный интеграл второго рода [W = intlimits_C <mathbfcdot dmathbf> ,] где (mathbf) − сила, действующая на тело, (dmathbf) − единичный касательный вектор (рисунок (1)). Обозначение ( <mathbfcdot dmathbf>) означает скалярное произведение векторов (mathbf) и (dmathbf.)
Заметим, что силовое поле (mathbf) не обязательно является причиной движения тела. Тело может двигаться под действием другой силы. В таком случае работа силы (mathbf) иногда может оказаться отрицательной.
Если векторное поле задано в координатной форме в виде [mathbf = left( right),Qleft( right),Rleft( right)> right),] то работа поля вычисляется по формуле [W = intlimits_C <mathbfcdot dmathbf> = intlimits_C .] В частном случае, когда тело двигается вдоль плоской кривой (C) в плоскости (Oxy,) справедлива формула [W = intlimits_C <mathbfcdot dmathbf> = intlimits_C ,] где (mathbf = left( right),Qleft( right)> right).)
Если векторное поле (mathbf) потенциально , то работа по перемещению тела из точки (A) в точку (B) выражается формулой [W = uleft( B right) – uleft( A right),] где (uleft( right)) − потенциал поля.
Криволинейный интеграл от магнитного поля с индукцией (mathbf) вдоль замкнутого контура (C) пропорционален полному току, протекающему через область, ограниченную контуром (C) (рисунок (2)). Это выражается формулой [intlimits_C <mathbfcdot dmathbf> = <mu _0>I,] где (<mu _0>) − магнитная проницаемость ваккуума , равная (1,26 times <10^< – 6>>,text<Н/м>.)
Очевидно, в силу симметрии, (bar y = 0.) Чтобы найти координату центра масс (bar x,) достаточно рассмотреть верхнюю половину кардиоиды.
(C) − отрезок прямой (y = x;)
(C) − кривая (y = sqrt x.)
Согласно закону Фарадея [varepsilon = ointlimits_C = – frac<><
Предположим, что магнитное поле (mathbf) перпендикулярно плоскости кольца. Тогда за время (Delta t) изменение потока равно [Delta psi = 2rBx = 2rBvDelta t,] где (x = vDelta t,) (v) − скорость самолета, (B) − индукция магнитного поля Земли. Из последнего выражения получаем [varepsilon = – frac<><
Напряженность возникающего электрического поля найдем по формуле (varepsilon = intlimits_C <mathbfcdot dmathbf> .) В силу симметрии, наведенное электрическое поле будет иметь постоянную амплитуду в любой точке кольца. Оно будет направлено по касательной к кольцу в любой его точке. Это позволяет легко вычислить криволинейный интеграл. [varepsilon = ointlimits_C <mathbfcdot dmathbf> = ointlimits_C = Eointlimits_C = 2pi rE.] Следовательно, напряженность электрического поля равна [E = frac<varepsilon ><<2pi r>> = frac<<0,00025>><<2pi cdot 0,01>> = 0,004,text<В/м>.]
Электронная библиотека
Вычисление интеграла (1.4) и (1.5) сводится к определенному. Пусть, например, кривая К задана уравнениями: x = x(t), y = y(t), z = z(t), , тогда длина элементарной дуги , интеграл (1.4) выражается определенным интегралом:
Если, в частности, кривая К имеет явное задание y = y(x) , то
Из соотношения (1.7) и (1.8) следует, что криволинейный интеграл первого рода существует, если f – непрерывная функция на К.
Вычислить по длине плоской кривой y = ln x при .
Решение. Используем формулу (1.8), найдем, что и
Найти массу полуокружности x 2 + y 2 = 1, , если линейная плотность её в текущей точке M(x,y) пропорциональна ординате y.
Решение. За параметр возьмем величину угла t, тогда параметрическое уравнение линии К: x=cos t, y=sin t .
Элементарная масса dm = ky dl, т.е. тогда по формуле (1.7):
Решение. По формуле (1.7) имеем:
Задачи для упражнений
1) Найти , если К – дуга параболы , лежащая между и . Ответ: .
4) Определить массу окружности x 2 + y 2 = R 2 , если плотность её в точке М(х, у) равна: . Ответ: .
5) Определить координаты центра тяжести С(х0, у0) однородной полуокружности К: .
Указание. В механике доказано, что координаты центра тяжести однородной кривой К задаются формулами:
где L – длина дуги кривой К. Ответ: .
Срочно?
Закажи у профессионала, через форму заявки
8 (800) 100-77-13 с 7.00 до 22.00
Приложения определенного интеграла к решению некоторых задач механики и физики
1. Моменты и центры масс плоских кривых. Если дуга кривой задана уравнением y=f(x), a≤x≤b, и имеет плотность 1) 002.gif” />=(x), то статические моменты этой дуги Mx и My относительно координатных осей Ox и Oy равны
а координаты центра масс 009.gif” /> и — по формулам
1) Всюду в задачах, где плотность не указана, предполагается, что кривая однородна и ◄ Имеем: ◄ Имеем: Пример 3. Найти координаты центра масс полуокружности ◄Вследствие симметрии 026.gif” />. При вращении полуокружности вокруг оси Ох получается сфера, площадь поверхности которой равна 028.gif” />, а длина полуокружности равна па. По теореме Гульдена имеем Отсюда 032.gif” />, т.е. центр масс C имеет координаты CПример 4. Скорость прямолинейного движения тела выражается формулой (м/с). Найти путь, пройденный телом за 5 секунд от начала движения.
◄ Так как путь, пройденный телом со скоростью (t) за отрезок времени [t1,t2], выражается интегралом
http://libraryno.ru/1-1-2-vychislenie-krivolineynogo-integrala-pervogo-roda-spec_gl_vm/
http://www.km.ru/referats/B03D2170DEDE4D5EA26BC6C770E4CD27
[/spoiler]