Как найти массу на ось

Содержание:

Геометрия масс:

Центр масс

При рассмотрении движения твердых тел и других механических систем важное значение имеет точка, называемая центром масс. Если механическая система состоит из конечного числа материальных точек Геометрия масс в теоретической механике

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике — масса системы. Обозначая декартовы координаты материальных точек Геометрия масс в теоретической механике, из (1) проецированием на декартовы оси координат получим следующие формулы для координат центра масс:

Геометрия масс в теоретической механике

Геометрия масс в теоретической механике

Рис. 21

Центр масс является не материальной точкой, а геометрической. Он может не совпадать ни с одной материальной точкой системы, как, например, в случае кольца. Центр масс системы характеризует распределение масс в системе.

Векторная величина Геометрия масс в теоретической механике называется статическим моментом массы относительно точки Геометрия масс в теоретической механике. Скалярная величина Геометрия масс в теоретической механике называется статическим моментом

массы относительно координатной плоскости Геометрия масс в теоретической механике. Величины Геометрия масс в теоретической механике и Геометрия масс в теоретической механике являются соответственно статическими моментами массы относительно координатных плоскостей Геометрия масс в теоретической механике и Геометрия масс в теоретической механике.

Радиус-вектор и координаты центра масс через статические моменты массы выражаются формулами

Геометрия масс в теоретической механике

Если механическая система представляет собой сплошное тело, то его разбивают на элементарные частицы с бесконечно малыми массами Геометрия масс в теоретической механике и с изменяющимися от частицы к частице радиусом-вектором Геометрия масс в теоретической механике.

Суммы в пределе переходят в интегралы. Формулы (1) и (Г) принимают форму

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике — масса тела.

Для однородных сплошных тел Геометрия масс в теоретической механике, где Геометрия масс в теоретической механике — плотность тела, общая для всех элементарных частиц; Геометрия масс в теоретической механике—объем элементарной частицы; Геометрия масс в теоретической механике—объем тела.

Для тел типа тонкого листа, которые можно принять за однородные материальные поверхности, Геометрия масс в теоретической механике, где Геометрия масс в теоретической механике — поверхностная плотность; Геометрия масс в теоретической механике—площадь поверхности элементарной частицы; Геометрия масс в теоретической механике—площадь поверхности.

Для тонкой проволоки, которую можно принять за отрезок линии, Геометрия масс в теоретической механике, где Геометрия масс в теоретической механике — линейная плотность; Геометрия масс в теоретической механике—длина элемента линии; Геометрия масс в теоретической механике—длина отрезка линии.

В этих случаях определение центра масс тел сводится к вычислению центра масс объемов, площадей и длин линий соответственно.

Моменты инерции

Для характеристики распределения масс в телах при рассмотрении вращательных движений требуется ввести понятия моментов инерции.

Моменты инерции относительно точки и оси

Моментом инерции механической системы, состоящей из Геометрия масс в теоретической механике материальных точек, относительно точки Геометрия масс в теоретической механике называется сумма произведений масс этих точек на квадраты их расстояний до точки Геометрия масс в теоретической механике (рис. 22), т. е.

Геометрия масс в теоретической механике

Момент инерции относительно точки часто называют полярным моментом инерции. В случае сплошного тела сумма переходит в интеграл и для полярного момента инерции имеем

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике — масса элементарной частицы тела, принимаемой в пределе за точку; Геометрия масс в теоретической механике—ее расстояние до точки Геометрия масс в теоретической механике.

Моментом инерции  Геометрия масс в теоретической механике системы материальных точек относительно оси Геометрия масс в теоретической механике называется сумма произведений масс этих точек на квадраты их расстояний Геометрия масс в теоретической механике до оси Геометрия масс в теоретической механике (рис. 22), т. е.

Геометрия масс в теоретической механике

Геометрия масс в теоретической механике

Рис. 22

В частном случае сплошного тела сумму следует заменить интегралом:

Геометрия масс в теоретической механике

Моменты инерции одинаковых по форме однородных тел, изготовленных из разных материалов, отличаются друг от друга. Характеристикой, не зависящей от массы материала, является радиус инерции. Радиус инерции Геометрия масс в теоретической механике относительно оси Геометрия масс в теоретической механике определяется по формуле

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике—масса тела.

Момент инерции относительно оси через радиус инерции относительно этой оси определяется выражением

Геометрия масс в теоретической механике

В справочниках по моментам инерции приводят таблицы значений радиусов инерции различных тел.

Формула (5′) позволяет считать радиус  инерции тела относительно оси расстоянием от этой оси до такой точки, в которой следует поместить массу тела, чтобы ее момент инерции оказался равным моменту инерции тела относительно рассматриваемой оси.

Моменты инерции относительно оси и точки имеют одинаковую размерность — произведение массы на квадрат длины Геометрия масс в теоретической механике.

Кроме моментов инерции относительно точки и оси используются также моменты инерции относительно плоскостей и центробежные моменты инерции. Эти моменты инерции удобно рассмотреть относительно координатных плоскостей и осей декартовой системы координат.

Моменты инерции относительно осей координат

Моменты инерции относительно декартовых осей координат Геометрия масс в теоретической механике, Геометрия масс в теоретической механике и Геометрия масс в теоретической механике и их начала — точки Геометрия масс в теоретической механике (рис. 23) — определяются выражениями

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике — координаты материальных точек системы. Для сплошных тел эти формулы примут вид

Геометрия масс в теоретической механике

Из приведенных формул следует зависимость

Геометрия масс в теоретической механике

Если через точку Геометрия масс в теоретической механике провести другую систему декартовых осей координат Геометрия масс в теоретической механике, то для них по формуле (8) получим

Геометрия масс в теоретической механике

Из сравнения (8) и (8′) следует, что

Геометрия масс в теоретической механике

Геометрия масс в теоретической механике

Рис. 23

Сумма моментов инерции относительно декартовых осей координат не зависит от ориентации этих осей в рассматриваемой точке, т. е. является величиной, инвариантной по отношению к направлению осей координат.

Для осей координат Геометрия масс в теоретической механике можно определить следующие три центробежных момента инерции:

Геометрия масс в теоретической механике

Центробежные моменты инерции часто называют произведениями инерции.

Моменты инерции относительно осей и точек — величины положительные, так как в них входят квадраты координат. Центробежные моменты инерции содержат произведения координат и могут быть как положительными, так и отрицательными.

Центробежные моменты инерции имеют важное значение при рассмотрении давлений на подшипники при вращении твердого тела вокруг неподвижной оси и в других случаях.

Кроме рассмотренных моментов инерции иногда используются моменты инерции относительно координатных плоскостей Геометрия масс в теоретической механике, которые определяются выражениями

Геометрия масс в теоретической механике

Теорема о моментах инерции относительно параллельных осей (теорема Штейнера)

Установим зависимость между моментами инерции системы относительно параллельных осей, одна из которых проходит через центр масс. Пусть имеем две системы прямоугольных, взаимно параллельных осей координат Геометрия масс в теоретической механике и Геометрия масс в теоретической механике. Начало системы координат Геометрия масс в теоретической механике находится в” центре масс системы (рис. 24).

Геометрия масс в теоретической механике

Рис. 24

По определению момента инерции относительно оси имеем

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике — масса точки Геометрия масс в теоретической механике, а Геометрия масс в теоретической механике и Геометрия масс в теоретической механике — координаты этой точки относительно систем координат Геометрия масс в теоретической механике и Геометрия масс в теоретической механике соответственно. Если обозначить Геометрия масс в теоретической механике координаты центра масс относительно системы координат Геометрия масс в теоретической механике, то для взаимно параллельных осей координаты одной и той же точки Геометрия масс в теоретической механике связаны соотношениями параллельного переноса

Геометрия масс в теоретической механике

Подставим эти значения координат в выражение момента инерции Геометрия масс в теоретической механике. После преобразований получим

Геометрия масс в теоретической механике

В этом соотношении Геометрия масс в теоретической механике—масса системы, Геометрия масс в теоретической механике, так как Геометрия масс в теоретической механике и Геометрия масс в теоретической механике вследствие k = 1

того, что по условию центр масс находится в начале координат этой системы координат.

Величина Геометрия масс в теоретической механике, где Геометрия масс в теоретической механике—расстояние между осями Геометрия масс в теоретической механике и Геометрия масс в теоретической механике. Окончательно

Геометрия масс в теоретической механике

Связь моментов инерции относительно двух параллельных осей, одна из которых проходит через центр масс, составляет содержание так называемой теоремы Штейнера или Гюйгенса— Штейнера: момент инерции системы относительно какой-либо оси равен моменту инерции относительно параллельной оси, проходящей через центр масс, плюс произведение массы системы на квадрат расстояния между этими осями.

Из теоремы Штейнера следует, что для совокупности параллельных осей момент инерции является наименьшим относительно оси, проходящей через центр масс.

Если взять ось Геометрия масс в теоретической механике параллельной Геометрия масс в теоретической механике, то для нее получим

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике — расстояние между параллельными осями Геометрия масс в теоретической механике и Геометрия масс в теоретической механике.

Исключая момент инерции Геометрия масс в теоретической механике из двух последних формул, получим зависимость моментов инерции относительно двух параллельных осей, не проходящих через центр масс:

Геометрия масс в теоретической механике

Установим изменение центробежных моментов инерции при параллельном переносе осей координат. Имеем

Геометрия масс в теоретической механике

Учитывая, что Геометрия масс в теоретической механике получаем

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике — координаты центра масс относительно системы координат Геометрия масс в теоретической механике. Аналогичные формулы получаются для двух других центробежных моментов инерции:

Геометрия масс в теоретической механике

Так как начало системы координат Геометрия масс в теоретической механике находится в центре масс, то Геометрия масс в теоретической механике, Геометрия масс в теоретической механике, Геометрия масс в теоретической механике и тогда

Геометрия масс в теоретической механике

т. е. центробежные моменты инерции при параллельном переносе осей координат из любой точки в центре масс изменяются в соответствии с (10).

Если производится параллельный перенос осей Геометрия масс в теоретической механике из точки Геометрия масс в теоретической механике в центр масс, то, согласно (10), имеем:

Геометрия масс в теоретической механике

Исключая из (10) и (10′) центробежные моменты инерции Л’з” Лу, получим формулы для изменения центробежных моментов инерции при параллельном переносе осей координат из точки Геометрия масс в теоретической механике в точку Геометрия масс в теоретической механике:

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике и Геометрия масс в теоретической механике — координаты центра масс в двух системах взаимно параллельных осей координат.

Моменты инерции простейших однородных тел

Моменты инерции тел сложной формы часто удается вычислить, если их предварительно разбить на тела простой формы. Моменты инерции сложных тел получают суммируя моменты инерции частей этих тел. Получим формулы для вычисления моментов инерции некоторых однородных простейших тел.

Однородный стержень

Имеем однородный стержень длиной Геометрия масс в теоретической механике и массой Геометрия масс в теоретической механике (рис. 25). Направим по стержню ось Геометрия масс в теоретической механике. Вычислим момент инерции стержня относительно оси Геометрия масс в теоретической механике, проходящей перпендикулярно стержню через его конец. Согласно определению момента инерции сплошного тела относительно оси, имеем

Геометрия масс в теоретической механике

так как Геометрия масс в теоретической механике, где Геометрия масс в теоретической механике—плотность стержня.

Вычисляя интеграл, получаем

Геометрия масс в теоретической механике

Геометрия масс в теоретической механике

Рис. 25

Таким образом,

Геометрия масс в теоретической механике

Момент инерции стержня относительно оси Геометрия масс в теоретической механике, проходящей через центр масс и параллельной оси Геометрия масс в теоретической механике, определяется по теореме Штейнера:

Геометрия масс в теоретической механике

Следовательно,

Геометрия масс в теоретической механике

т. е.

Геометрия масс в теоретической механике

Прямоугольная пластина

Прямоугольная тонкая пластина имеет размеры Геометрия масс в теоретической механике и Геометрия масс в теоретической механике и массу Геометрия масс в теоретической механике (рис. 26). Оси Геометрия масс в теоретической механике и Геометрия масс в теоретической механике расположим в плоскости пластины, а ось Геометрия масс в теоретической механике—перпендикулярно ей. Для определения момента инерции пластины относительно оси Геометрия масс в теоретической механике разобьем пластину на элементарные полоски шириной Геометрия масс в теоретической механике и массой Геометрия масс в теоретической механике и проинтегрируем по Геометрия масс в теоретической механике от 0 до Геометрия масс в теоретической механике. Получим

Геометрия масс в теоретической механике

так как Геометрия масс в теоретической механике.

Аналогичные вычисления для оси Геометрия масс в теоретической механике дадут

Геометрия масс в теоретической механике

так как эта ось Геометрия масс в теоретической механике проходит через середину пластины. Для определения момента инерции пластины относительно оси Геометрия масс в теоретической механике следует предварительно вычислить момент инерции отдельной заштрихованной полоски относительно параллельной оси Геометрия масс в теоретической механике по формуле (12) для стержня и применить затем теорему Штейнера. Для элементарной полоски имеем

Геометрия масс в теоретической механике

Геометрия масс в теоретической механике

Рис. 26

Интегрируя это выражение в пределах от 0 до Геометрия масс в теоретической механике, получим

Геометрия масс в теоретической механике

Итак, для моментов инерции пластины относительно осей координат получены следующие формулы:

Геометрия масс в теоретической механике

Круглый диск

Имеем тонкий однородный диск радиусом Геометрия масс в теоретической механике и массой Геометрия масс в теоретической механике (пис. 27). Вычислим момент его инерции Геометрия масс в теоретической механике относительно точки Геометрия масс в теоретической механике. Этот момент инерции для тонкого диска совпадает с моментом инерции Геометрия масс в теоретической механике относительно координатной оси Геометрия масс в теоретической механике, перпендикулярной плоскости диска. Разобьем диск на концентрические полоски шириной Геометрия масс в теоретической механике, принимаемые в пределе за материальные окружности. Масса полоски равна ее площади Геометрия масс в теоретической механике, умноженной на плотность Геометрия масс в теоретической механике, т.е. Геометрия масс в теоретической механике. Момент одной полоски относительно точки Геометрия масс в теоретической механике равен Геометрия масс в теоретической механике. Для всего диска

Геометрия масс в теоретической механике

Таким образом, 

Геометрия масс в теоретической механике

Геометрия масс в теоретической механике

Рис. 27

Для осей координат Геометрия масс в теоретической механике и Геометрия масс в теоретической механике, расположенных в плоскости диска, в силу симметрии Геометрия масс в теоретической механике. Используя (8), имеем Геометрия масс в теоретической механике, но Геометрия масс в теоретической механике, поэтому

Геометрия масс в теоретической механике

В случае тонкого проволочного кольца или круглого колеса, у которых масса распределена не по площади, а по его ободу, имеем

Геометрия масс в теоретической механике

Круглый цилиндр

Геометрия масс в теоретической механике

Рис. 28

Для круглого однородного цилиндра, масса которого Геометрия масс в теоретической механике, радиус Геометрия масс в теоретической механике и длина Геометрия масс в теоретической механике(рис. 28), вычислим прежде всего его момент инерции относительно продольной оси симметрии Геометрия масс в теоретической механике. Для этого разобьем цилиндр плоскостями, перпендикулярными оси Геометрия масс в теоретической механике, на тонкие диски массой Геометрия масс в теоретической механике и толщиной Геометрия масс в теоретической механике. Для такого диска момент инерции относительного оси Геометрия масс в теоретической механике равен Геометрия масс в теоретической механике. Для всего цилиндра

Геометрия масс в теоретической механике

т.е.

Геометрия масс в теоретической механике

Вычислим момент инерции цилиндра относительно его поперечной оси симметрии Геометрия масс в теоретической механике. Для этого разобьем цилиндр поперечными сечениями, перпендикулярными его продольной оси, на элементарные диски толщиной Геометрия масс в теоретической механике. Момент инерции элементарного диска массой Геометрия масс в теоретической механике относительно оси Геометрия масс в теоретической механике, по теореме Штейнера, Геометрия масс в теоретической механике.

Чтобы получить момент инерции всего цилиндра относительно оси Геометрия масс в теоретической механике, следует проинтегрировать полученное выражение по Геометрия масс в теоретической механике в пределах от 0 до Геометрия масс в теоретической механике и результат удвоить. Получим

Геометрия масс в теоретической механике

Но Геометрия масс в теоретической механике — масса цилиндра. Следовательно,

Геометрия масс в теоретической механике

Таким образом, момент инерции цилиндра относительно его поперечной оси симметрии получается как сумма моментов инерции относительно этой оси диска и стержня, массы которых равны по отдельности массе цилиндра. Диск получается из цилиндра симметричным сжатием его с торцов до срединной плоскости при сохранении радиуса, а стержень — сжатием цилиндра в однородный стержень, расположенный по оси цилиндра, при сохранении длины.

Шар

Пусть масса шара Геометрия масс в теоретической механике, радиус Геометрия масс в теоретической механике (рис. 29). Разобьем шар на концентрические сферические слои радиусом Геометрия масс в теоретической механике и толщиной Геометрия масс в теоретической механике. Масса такого слоя Геометрия масс в теоретической механике, где Геометрия масс в теоретической механике; Геометрия масс в теоретической механике—объем слоя, равный произведению площади поверхности сферы радиусом Геометрия масс в теоретической механике на толщину слоя Геометрия масс в теоретической механике, т.е. Геометрия масс в теоретической механике. Таким образом, масса элементарного слоя Геометрия масс в теоретической механике.  Для момента инерции шара относительно его центра Геометрия масс в теоретической механике имеем

Геометрия масс в теоретической механике

т.е.

Геометрия масс в теоретической механике

Геометрия масс в теоретической механике

Рис. 29

Для осей координат, проходящих через центр шара, в силу симметрии Геометрия масс в теоретической механике. Но Геометрия масс в теоретической механике. Следовательно,

Геометрия масс в теоретической механике

Моменты инерции относительно осей, проходящих через заданную точку

В заданной точке Геометрия масс в теоретической механике выберем декартову систему осей координат Геометрия масс в теоретической механике. Ось Геометрия масс в теоретической механике образует с осями координат углы  Геометрия масс в теоретической механике (рис. 30). По определению момента инерции относительно оси Геометрия масс в теоретической механике имеем

Геометрия масс в теоретической механике

или для сплошных тел

Геометрия масс в теоретической механике

В дальнейшем используется определение (20). Сплошные тела считаются разбитыми на Геометрия масс в теоретической механике малых частей, принимаемых за точки.

Из прямоугольного треугольника Геометрия масс в теоретической механике получаем

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике — координаты точки Геометрия масс в теоретической механике. Отрезок Геометрия масс в теоретической механике является проекцией радиуса-вектора Геометрия масс в теоретической механике на ось Геометрия масс в теоретической механике. Для получения проекции вектора Геометрия масс в теоретической механике на ось Геометрия масс в теоретической механике его следует умножить скалярно на единичный вектор этой оси Геометрия масс в теоретической механике. Имеем

Геометрия масс в теоретической механике

Умножая в (21) Геометрия масс в теоретической механике, выраженный через координаты точки Геометрия масс в теоретической механике, на единицу в виде Геометрия масс в теоретической механике и используя значение (22) для Геометрия масс в теоретической механике, получим

Геометрия масс в теоретической механике

Подставляя (23) в (20) и вынося косинусы углов за знаки сумм, имеем

Геометрия масс в теоретической механике

Учитывая, что

Геометрия масс в теоретической механике

—    моменты инерции относительно осей координат, а

Геометрия масс в теоретической механике

—    центробежные моменты инерции относительно тех же осей, получим

Геометрия масс в теоретической механике

Для определения момента инерции Геометрия масс в теоретической механике, кроме углов Геометрия масс в теоретической механике, определяющих направление оси, необходимо знать в точке Геометрия масс в теоретической механике шесть моментов инерции: Геометрия масс в теоретической механике. Их удобно расположить как элементы единой таблицы или матрицы:

Геометрия масс в теоретической механике

Матрица, или таблица (25), составленная из осевых и центробежных моментов инерции относительно декартовых осей координат, называется тензором инерции в точке Геометрия масс в теоретической механике. В тензоре инерции условились центробежные моменты инерции брать со знаком минус. Компоненты тензора инерции (отдельные осевые или центробежные моменты инерции) зависят не только от выбора точки, но и от ориентации осей координат в этой точке.

Для определения момента инерции относительно какой-либо оси, проходящей через заданную точку, для рассматриваемого тела необходимо иметь тензор инерции в этой точке и углы, определяющие направление оси с осями координат.

Геометрия масс в теоретической механике

Рис. 30

Эллипсоид инерции

Для характеристики распределения моментов инерции тела относительно различных осей, проходящих через заданную точку, используется поверхность второго порядка — эллипсоид инерции. Для построения этой поверхности на каждой оси Геометрия масс в теоретической механике (см. рис. 31), проходящей через точку Геометрия масс в теоретической механике, откладывают от этой точки отрезок

Геометрия масс в теоретической механике

Геометрическое место концов отрезков Геометрия масс в теоретической механике расположится на поверхности, которая называется эллипсоидом инерции. Получим уравнение эллипсоида инерции. Для этого выразим косинусы углов Геометрия масс в теоретической механике через координаты Геометрия масс в теоретической механике точки Геометрия масс в теоретической механике. Имеем:

Геометрия масс в теоретической механике

Подставляя эти значения косинусов углов в (24) и сокращая на Геометрия масс в теоретической механике, получим уравнение поверхности второго порядка:

Геометрия масс в теоретической механике

Это действительно уравнение эллипсоида, так как отрезок Геометрия масс в теоретической механике имеет конечную длину для всех осей, для которых моменты инерции не обращаются в нуль. Другие поверхности второго порядка, например гиперболоиды и параболоиды, имеют бесконечно удаленные точки. Эллипсоид инерции вырождается в цилиндр для тела в виде прямолинейного отрезка, если точка Геометрия масс в теоретической механике расположена на самом отрезке. Для оси, направленной по этой прямой линии, момент инерции обращается в нуль и соответственно отрезок Геометрия масс в теоретической механике равен бесконечности.

Для каждой точки Геометрия масс в теоретической механике имеется свой эллипсоид инерции. Эллипсоид инерции для центра масс тела называют центральным эллипсоидом инерции. Оси эллипсоида инерции (его сопряженные диаметры) называются главными осями инерции. В общем случае эллипсоид инерции имеет три взаимно перпендикулярные главные оси инерции. Они являются его осями симметрии.

В случае эллипсоида вращения все прямые, расположенные в экваториальной плоскости эллипсоида, перпендикулярной оси вращения, будут главными осями инерции. Для шара любая прямая, проходящая через его центр, есть главная ось инерции.

Моменты инерции относительно главных осей инерции называются главными моментами инерции, а относительно главных центральных осей инерции — главными центральными моментами инерции.

Если уравнение эллипсоида инерции отнести к его главным осям Геометрия масс в теоретической механике, то оно примет вид

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике —текущие координаты точки, расположенной на эллипсоиде инерции, относительно главных осей инерции; Геометрия масс в теоретической механикеГеометрия масс в теоретической механике— главные моменты инерции. Уравнение эллипсоида инерции (27′) не содержит слагаемых с произведениями координат точек. Поэтому центробежные моменты инерции относительно главных осей инерции равны нулю, т. е.

Геометрия масс в теоретической механике

Справедливо и обратное утверждение: если центробежные моменты инерции относительно трех взаимно перпендикулярных осей равны нулю, то эти оси являются главными осями инерции. Обращение в нуль трех центробежных моментов инерции является необходимым и достаточным условием того, что соответствующие прямоугольные оси координат есть главные оси инерции.

Главные моменты инерции часто обозначают Геометрия масс в теоретической механике, вместо Геометрия масс в теоретической механикеГеометрия масс в теоретической механике. Для главных осей инерции формула (24) принимает форму

Геометрия масс в теоретической механике

  • Заказать решение задач по теоретической механике

Свойства главных осей инерции

Теорема 1. Если одна из декартовых осей координат, например Геометрия масс в теоретической механике (рис. 31), является главной осью инерции для точки Геометрия масс в теоретической механике, а две другие оси Геометрия масс в теоретической механике и Геометрия масс в теоретической механике— любые, то два центробежных момента инерции, содержащих индекс главной оси инерции Геометрия масс в теоретической механике, обращаются в нуль, т.е. Геометрия масс в теоретической механике и Геометрия масс в теоретической механике.

Главная ось инерции Геометрия масс в теоретической механике является осью симметрии эллипсоида инерции. Поэтому каждой точке эллипсоида, например Геометрия масс в теоретической механике, соответствует симметричная относительно этой оси точка Геометрия масс в теоретической механике. Подставляя в уравнение эллипсоида инерции (27) последовательно координаты этих точек, получим

Геометрия масс в теоретической механике

Вычитая из первого уравнения второе, имеем

Геометрия масс в теоретической механике

Так как всегда можно выбрать точки, для которых Геометрия масс в теоретической механике и Геометрия масс в теоретической механике отличны от нуля, то Геометрия масс в теоретической механике.

Геометрия масс в теоретической механике

Рис. 31

Аналогичные рассуждения для двух симметричных относительно оси Геометрия масс в теоретической механике точек Геометрия масс в теоретической механике и Геометрия масс в теоретической механике приводят к заключению, что Геометрия масс в теоретической механике. В аналитической геометрии при исследовании уравнений поверхностей второго порядка доказывается обратное утверждение, что если Геометрия масс в теоретической механике и Геометрия масс в теоретической механике, то ось Геометрия масс в теоретической механике есть главная ось. Таким образом, обращение в нуль центробежных моментов инерции Геометрия масс в теоретической механике и Геометрия масс в теоретической механике является необходимым и достаточным условием, чтобы ось Геометрия масс в теоретической механике была главной осью инерции для точки Геометрия масс в теоретической механике.

Теорема 2. Если однородное тело имеет плоскость симметрии, то для любой точки, лежащей в этой плоскости, одна из главных осей инерции перпендикулярна плоскости симметрии, а две другие главные оси инерции расположены в этой плоскости.

Геометрия масс в теоретической механике

Рис. 32

Для доказательства теоремы выберем в плоскости симметрии Геометрия масс в теоретической механике точку Геометрия масс в теоретической механике и в ней оси прямоугольной системы координат Геометрия масс в теоретической механике, причем ось Геометрия масс в теоретической механике направим перпендикулярно плоскости симметрии (рис. 32). Тогда каждой точке тела Геометрия масс в теоретической механике массой Геометрия масс в теоретической механике соответствует симметричная относительно плоскости Геометрия масс в теоретической механике точка Геометрия масс в теоретической механике с такой же массой. Координаты точек Геометрия масс в теоретической механике и Геометрия масс в теоретической механике отличаются только знаком у координат Геометрия масс в теоретической механике.

Для центробежного момента инерции Геометрия масс в теоретической механике имеем

Геометрия масс в теоретической механике

так как часть тела (I), соответствующая точкам с положительными координатами Геометрия масс в теоретической механике, одинакова с частью тела (II), у которой точки имеют такие же координаты Геометрия масс в теоретической механике, но со знаком минус. Аналогично доказывается, что

Геометрия масс в теоретической механике

Так как центробежные моменты инерции Геометрия масс в теоретической механике и Геометрия масс в теоретической механике обращаются в нуль, то ось Геометрия масс в теоретической механике есть главная ось инерции для точки Геометрия масс в теоретической механике. Другие две главные оси инерции перпендикулярны оси Геометрия масс в теоретической механике и, следовательно, расположены в плоскости симметрии.

Центр масс однородного симметричного тела находится в плоскости симметрии. Поэтому одна из главных центральных осей инерции перпендикулярна плоскости симметрии, а две другие расположены в этой плоскости.

Доказанная теорема справедлива и для неоднородного тела, имеющего плоскость материальной симметрии.

Теорема 3. Если однородное тело имеет ось симметрии или неоднородное тело имеет ось материальной симметрии, то эта ось является главной центральной осью инерции.

Теорема доказывается аналогично предыдущей. Для каждой точки тела Геометрия масс в теоретической механике с положительными координатами Геометрия масс в теоретической механике и массой Геометрия масс в теоретической механике существует симметричная относительно оси точка с такой же массой и такими же по величине, но отрицательными координатами Геометрия масс в теоретической механике, если осью симметрии является ось Геометрия масс в теоретической механике. Тогда

Геометрия масс в теоретической механике

так как суммы по симметричным относительно оси частям тела (I) и (II) отличаются друг от друга только знаком у координаты Геометрия масс в теоретической механике.

Аналогично доказывается, что Геометрия масс в теоретической механике.

Таким образом, ось Геометрия масс в теоретической механике является главной осью инерции для любой точки, расположенной на оси симметрии тела. Она есть главная центральная ось инерции, так как центр масс находится на оси симметрии.

Теорема 4. Главные оси инерции для точки Геометрия масс в теоретической механике, расположенной на главной центральной оси инерции, параллельны главным центральным осям инерции (рис. 33).

Выберем в точке Геометрия масс в теоретической механике главной центральной оси инерции Геометрия масс в теоретической механике систему декартовых осей координат Геометрия масс в теоретической механике, взаимно параллельных главным центральным осям инерции Геометрия масс в теоретической механике. Тогда координаты точки тела Геометрия масс в теоретической механике в двух системах осей координат будут связаны между собой формулами параллельного переноса осей

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике. Используя эти формулы, вычисляем центробежные моменты инерции Геометрия масс в теоретической механике и Геометрия масс в теоретической механике. Имеем

Геометрия масс в теоретической механике

так как

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике—масса тела; Геометрия масс в теоретической механике — координата центра масс относительно системы координат Геометрия масс в теоретической механике. Аналогично получаем

Геометрия масс в теоретической механике

Если Геометрия масс в теоретической механике— центр масс системы, то Геометрия масс в теоретической механике и Геометрия масс в теоретической механике. Для главных центральных осей инерции центробежные моменты инерции равны нулю, т. е.

Геометрия масс в теоретической механике

Используя полученные формулы при этих условиях, имеем:    

Геометрия масс в теоретической механике

Геометрия масс в теоретической механике

Рис. 33

Следовательно, оси Геометрия масс в теоретической механике есть главные оси инерции для произвольной точки Геометрия масс в теоретической механике, расположенной на главной центральной оси инерции Геометрия масс в теоретической механике. Теорема доказана.

Из доказанной теоремы в качестве следствия получаем: главная центральная ось инерции является главной осью инерции для всех своих точек. Действительно, главная ось инерции Геометрия масс в теоретической механике для точки Геометрия масс в теоретической механике, лежащей на главной центральной оси инерции Геометрия масс в теоретической механике, совпадает с этой осью. Главная ось инерции таким свойством не обладает. Главные оси инерции для точки Геометрия масс в теоретической механике, расположенной на главной оси инерции точки Геометрия масс в теоретической механике, не параллельны главным осям инерции для этой точки. Они в общем случае повернуты относительно этих осей.

Определение главных моментов инерции и направления главных осей

Пусть известны компоненты тензора инерции в точке Геометрия масс в теоретической механике относительно осей координат Геометрия масс в теоретической механике. Для определения направления главных осей инерции в точке Геометрия масс в теоретической механике используем уравнение эллипсоида инерции относительно этих осей

Геометрия масс в теоретической механике

Если оси координат Геометрия масс в теоретической механике являются главными осями инерции, то радиус-вектор Геометрия масс в теоретической механике точки Геометрия масс в теоретической механике эллипсоида инерции, расположенной на главной оси инерции, например оси Геометрия масс в теоретической механике (рис. 34), направлен по нормали к эллипсоиду, т. е. параллельно вектору Геометрия масс в теоретической механике, который, согласно его определению, вычисляется по формуле

Геометрия масс в теоретической механике

Параллельные векторы отличаются друг от друга скалярным множителем, который обозначим Геометрия масс в теоретической механике. Тогда для параллельных векторов Геометрия масс в теоретической механике и Геометрия масс в теоретической механике и их проекций на оси координат имеем:

Геометрия масс в теоретической механике

Геометрия масс в теоретической механике

Рис. 34

В этих уравнениях Геометрия масс в теоретической механике являются координатами точки конца вектора Геометрия масс в теоретической механике, проведенного из точки Геометрия масс в теоретической механике вдоль какой-либо главной оси инерции для этой точки.

Для частных производных из (27′) получаем:

Геометрия масс в теоретической механике

Подставляя их значения в (28′) и перенося все слагаемые в левую часть, после объединения и сокращения на общий множитель получим следующую систему уравнений для определения координат Геометрия масс в теоретической механике точки Геометрия масс в теоретической механике, находящейся на главной оси инерции:

Геометрия масс в теоретической механике

Так как (29) является однородной системой линейных уравнений, то отличные от нуля решения для координат Геометрия масс в теоретической механике получаются только при условии, что определитель этой системы равен нулю, т. е.

Геометрия масс в теоретической механике

Это кубическое уравнение для определения Геометрия масс в теоретической механике называется уравнением собственных значений тензора инерции.

В общем случае имеется три различных действительных корня кубического уравнения Геометрия масс в теоретической механике,  которые являются главными моментами инерции. Действительно, если ось Геометрия масс в теоретической механике совпадает с главной осью инерции, то для точки Геометрия масс в теоретической механике эллипсоида инерции, расположенной на этой оси, Геометрия масс в теоретической механике и Геометрия масс в теоретической механике. Первое уравнение (29) принимает вид

Геометрия масс в теоретической механике

Так как Геометрия масс в теоретической механике, то Геометрия масс в теоретической механике и Геометрия масс в теоретической механике, которое следует обозначить Геометрия масс в теоретической механике. Аналогично можно получить Геометрия масс в теоретической механике, если оси Геометрия масс в теоретической механике и Геометрия масс в теоретической механике — главные оси инерции.

Подставляя в (29) Геометрия масс в теоретической механике получим только два независимых уравнения для определения координат точки Геометрия масс в теоретической механике эллипсоида инерции, соответствующих главной оси инерции, для которой главный момент инерции есть Геометрия масс в теоретической механике. Третье уравнение системы будет следствием двух других уравнений, так как определитель этой системы равен нулю. Из (29) можно найти только две величины, например Геометрия масс в теоретической механике и Геометрия масс в теоретической механике. Они определят направление вектора вдоль главной оси инерции, момент инерции относительно которой есть Геометрия масс в теоретической механике. Модуль радиуса-вектора Геометрия масс в теоретической механике остается неопределенным. Аналогично определяются направления векторов Геометрия масс в теоретической механике и Геометрия масс в теоретической механике вдоль двух других главных осей инерции, для которых главные моменты инерции равны Геометрия масс в теоретической механике и . Можно доказать, что векторы Геометрия масс в теоретической механике, Геометрия масс в теоретической механикеГеометрия масс в теоретической механике, направленные вдоль главных осей инерции, взаимно перпендикулярны.

Таким образом, если известен тензор инерции для осей  Геометрия масс в теоретической механике, то можно определить как направление главных осей инерции, так и главные моменты инерции. Для главных осей инерции тензор инерции (25) принимает форму

Геометрия масс в теоретической механике

Выражение компонентов тензора инерции через главные моменты инерции

Определим компоненты тензора инерции в точке Геометрия масс в теоретической механике относительно осей координат Геометрия масс в теоретической механике, если в этой точке известны главные моменты инерции относительно главных осей инерции Геометрия масс в теоретической механике, т. е. Геометрия масс в теоретической механике. Предположим, что ориентация осей координат Геометрия масс в теоретической механике относительно главных осей инерции Геометрия масс в теоретической механике задана таблицей углов:

Геометрия масс в теоретической механике

Осевые моменты инерции относительно осей Геометрия масс в теоретической механике через главные моменты инерции определяются по формуле (24′). Принимая последовательно за ось Геометрия масс в теоретической механике оси координат Геометрия масс в теоретической механике, получим

Геометрия масс в теоретической механике

Для выражения центробежных моментов инерции через главные моменты инерции используем формулы преобразования координат точек тела при повороте осей координат вокруг точки Геометрия масс в теоретической механике (рис. 35). Эти формулы получим проецированием на оси Геометрия масс в теоретической механике радиуса-вектора Геометрия масс в теоретической механике точки Геометрия масс в теоретической механике, разложенного предварительно на составляющие, параллельные осям двух систем осей координат в точке Геометрия масс в теоретической механике. Имеем

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике — координаты точки Геометрия масс в теоретической механике относительно системы осей координат Геометрия масс в теоретической механике, а Геометрия масс в теоретической механике — относительно Геометрия масс в теоретической механике. Проецирование вектора на какую-либо ось прямоугольной системы координат эквивалентно скалярному умножению этого вектора на единичный вектор оси. Умножая обе части (32) последовательно на единичные векторы осей координат Геометрия масс в теоретической механике и учитывая таблицу углов для осей, получим

Геометрия масс в теоретической механике

Геометрия масс в теоретической механике

Рис. 35

Используя (33) для центробежного момента инерции Геометрия масс в теоретической механике, имеем

Геометрия масс в теоретической механике

так как центробежные моменты инерции относительно главных осей инерции равны нулю, т. е.

Геометрия масс в теоретической механике

Оси координат Геометрия масс в теоретической механике и Геометрия масс в теоретической механике взаимно перпендикулярны, поэтому косинусы их углов удовлетворяют условию

Геометрия масс в теоретической механике

или

Геометрия масс в теоретической механике

Используя это соотношение для исключения величины Геометрия масс в теоретической механике и добавляя в первом слагаемом (34) под знаком суммы Геометрия масс в теоретической механике, а во втором Геометрия масс в теоретической механике, после объединения слагаемых с одинаковыми произведениями косинусов получим

Геометрия масс в теоретической механике

где Геометрия масс в теоретической механике

— главные моменты инерции. Аналогично получаются выражения для Геометрия масс в теоретической механике и Геометрия масс в теоретической механике. Итак имеем

Геометрия масс в теоретической механике

Формулы (31) и (35) дают выражения всех компонентов тензора инерции для осей координат Геометрия масс в теоретической механике через главные моменты инерции, если известны углы этих осей с главными осями инерции. В приложениях встречаются частные случаи, когда одна из осей координат Геометрия масс в теоретической механике совпадает с главной осью инерции.

Если ось Геометрия масс в теоретической механике совпадает с главной осью инерции Геометрия масс в теоретической механике (рис. 36), то Геометрия масс в теоретической механике. Это же можно получить из (35). Необходимые для вычисления углы соответственно равны:

Геометрия масс в теоретической механике

Из (35) имеем

Геометрия масс в теоретической механике

В формуле (35′) с полюсом следует брать главный момент инерции с индексом той оси, на положительное направление которой указывает дуговая стрелка поворота осей Геометрия масс в теоретической механике на угол Геометрия масс в теоретической механике до совпадения с осями Геометрия масс в теоретической механике. В рассматриваемом случае поворот осей Геометрия масс в теоретической механике вокруг Геометрия масс в теоретической механике до совпадения с главными осями производится от оси Геометрия масс в теоретической механике к оси Геометрия масс в теоретической механике; следовательно, с плюсом следует взять главный момент инерции Геометрия масс в теоретической механике и с минусом — Геометрия масс в теоретической механике.

Геометрия масс в теоретической механике

Рис. 36    

Если оси расположены, как показано на рис. 37, то дуговая стрелка поворота осей Геометрия масс в теоретической механике до совпадения с главными осями инерции Геометрия масс в теоретической механике на угол Геометрия масс в теоретической механике направлена к отрицательному направлению оси Геометрия масс в теоретической механике. Поэтому в (35′) Геометрия масс в теоретической механике, следует взять со знаком минус, а Геометрия масс в теоретической механике знаком плюс, в чем нетрудно убедиться, используя (35) и таблицу углов. Имеем:

= 90°; р2 = а; Р3 = 90° + а;

Геометрия масс в теоретической механике

Геометрия масс в теоретической механике

Рис. 37

Аналогично при совпадении осей Геометрия масс в теоретической механике с Оу’ и повороте осей Oxz вокруг Геометрия масс в теоретической механике до совпадения с осями Геометрия масс в теоретической механике на угол Геометрия масс в теоретической механике от Геометрия масс в теоретической механике к Геометрия масс в теоретической механике в направлении против часовой стрелки имеем:

Геометрия масс в теоретической механике

При совпадении осей Геометрия масс в теоретической механике и Геометрия масс в теоретической механике и повороте осей вокруг Геометрия масс в теоретической механике на угол Геометрия масс в теоретической механике от Геометрия масс в теоретической механике к Геометрия масс в теоретической механике против часовой стрелки получим:

Геометрия масс в теоретической механике

  • Свойства внутренних сил системы 
  • Дифференциальное уравнение движения системы
  • Теоремы об изменении количества движения и о движении центра масс
  • Теорема об изменении кинетического момента
  • Прямолинейное движение точки
  • Криволинейное движение материальной точки
  • Движение несвободной материальной точки
  • Относительное движение материальной точки

Приложения двойного интеграла

Приведем некоторые примеры применения двойного интеграла.

Объем тела

Как уже показано (п. 53.2), объем цилиндрического тела находится по формуле

Приложения двойного интеграла

где Приложения двойного интеграла — уравнение поверхности, ограничивающей тело сверху.

Площадь плоской фигуры

Если положить в формуле (53.4) Приложения двойного интеграла, то цилиндрическое тело «превратится» в прямой цилиндр с высотой Приложения двойного интеграла. Объем такого цилиндра, как известно, численно равен площади Приложения двойного интеграла основания Приложения двойного интеграла. Получаем формулу для вычисления площади Приложения двойного интеграла области Приложения двойного интеграла:

Приложения двойного интеграла

или, в полярных координатах,

Приложения двойного интеграла

Масса плоской фигуры

Как уже показано (п. 53.2), масса плоской пластинки Приложения двойного интеграла с переменной плотностью Приложения двойного интеграла находится по формуле

Приложения двойного интеграла

Статические моменты и координаты центра тяжести плоской фигуры

Статические моменты фигуры Приложения двойного интеграла относительно осей Приложения двойного интеграла и Приложения двойного интеграла (см. п. 41.6) могут быть вычислены по формулам

Приложения двойного интеграла

а координаты центра масс фигуры — по формулам

Приложения двойного интеграла

Моменты инерции плоской фигуры

Моментом инерции материальной точки массы Приложения двойного интеграла относительно оси Приложения двойного интеграла называется произведение массы Приложения двойного интеграла на квадрат расстояния Приложения двойного интеграла точки до оси, т. е. Приложения двойного интеграла. Моменты инерции плоской фигуры относительно осей Приложения двойного интеграла и Приложения двойного интеграла могут быть вычислены по формулам:

Приложения двойного интеграла

Момент инерции фигуры относительно начала координат — по формуле Приложения двойного интеграла.

Замечание. Приведенными примерами не исчерпывается применение двойного интеграла. Далее мы встретим приложение двойного интеграла к вычислению площадей поверхностей фигур (п. 57.3).

Приложения двойного интеграла

Пример №53.3.

Найти объем тела, ограниченного поверхностями Приложения двойного интеграла и Приложения двойного интеграла.

Решение:

Данное тело ограничено двумя параболоидами (см. рис. 223). Решая систему

Приложения двойного интеграла

находим уравнение линии их пересечения: Приложения двойного интеграла.

Искомый объем равен разности объемов двух цилиндрических тел с одним основанием (круг Приложения двойного интеграла) и ограниченных сверху соответственно поверхностями Приложения двойного интеграла и Приложения двойного интеграла. Используя формулу (53.4), имеем

Приложения двойного интеграла

Переходя к полярным координатам, находим:

Приложения двойного интеграла

Приложения двойного интеграла

Пример №53.4.

Найти массу, статические моменты Приложения двойного интеграла и Приложения двойного интеграла и координаты центра тяжести фигуры, лежащей в первой четверти, ограниченной эллипсом Приложения двойного интеграла и координатными осями (см. рис. 224). Поверхностная плотность в каждой точке фигуры пропорциональна произведению координат точки.

Решение:

По формуле (53.6) находим массу пластинки. По условию, Приложения двойного интеграла, где Приложения двойного интеграла — коэффициент пропорциональности.

Приложения двойного интеграла

Находим статические моменты пластинки:

Приложения двойного интеграла

Находим координаты центра тяжести пластинки, используя формулы

Приложения двойного интеграла

На этой странице размещён полный курс лекций с примерами решения по всем разделам высшей математики:

  • Решение задач по высшей математике

Другие темы по высшей математике возможно вам они будут полезны:

Часто мы слышим выражения: «он инертный», «двигаться по инерции», «момент инерции». В переносном значении слово «инерция» может трактоваться как отсутствие инициативы и действий. Нас же интересует прямое значение.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Что такое инерция

Согласно определению инерция в физике – это способность тел сохранять состояние покоя или движения в отсутствие действия внешних сил.

Если с самим понятием инерции все понятно на интуитивном уровне, то момент инерции – отдельный вопрос. Согласитесь, сложно представить в уме, что это такое. В этой статье Вы научитесь решать базовые задачи на тему «Момент инерции».

Определение момента инерции

Из школьного курса известно, что масса – мера инертности тела. Если мы толкнем две тележки разной массы, то остановить сложнее будет ту, которая тяжелее. То есть чем больше масса, тем большее внешнее воздействие необходимо, чтобы изменить движение тела. Рассмотренное относится к поступательному движению, когда тележка из примера движется по прямой.

Масса - мера инертности тела

 

По аналогии с массой и поступательным движением момент инерции – это мера инертности тела при вращательном движении вокруг оси.

Момент инерции – скалярная физическая величина, мера инертности тела при вращении вокруг оси. Обозначается буквой J и в системе СИ измеряется в килограммах, умноженных на квадратный метр.

Как посчитать момент инерции? Есть общая формула, по которой в физике вычисляется момент инерции любого тела. Если тело разбить на бесконечно малые кусочки массой dm, то момент инерции будет равен сумме произведений этих элементарных масс на квадрат расстояния до оси вращения.

физика инерция формулы

Это общая формула для момента инерции в физике. Для материальной точки массы m, вращающейся вокруг оси на расстоянии r от нее, данная формула принимает вид:

определение момента инерции

Теорема Штейнера

От чего зависит момент инерции? От массы, положения оси вращения, формы и размеров тела.

Теорема Гюйгенса-Штейнера – очень важная теорема, которую часто используют при решении задач.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Теорема Гюйгенса-Штейнера гласит:

Момент инерции тела относительно произвольной оси равняется сумме момента инерции тела относительно оси, проходящей через центр масс параллельно произвольной оси и произведения массы тела на квадрат расстояния между осями.

момент инерции для чайников

Для тех, кто не хочет постоянно интегрировать при решении задач на нахождение момента инерции, приведем рисунок с указанием моментов инерции некоторых однородных тел, которые часто встречаются в задачах:

Формулы для момента инерции

 

Пример решения задачи на нахождение момента инерции

Рассмотрим два примера. Первая задача – на нахождение момента инерции. Вторая задача – на использование теоремы Гюйгенса-Штейнера.

Задача 1. Найти момент инерции однородного диска массы m и радиуса R. Ось вращения проходит через центр диска.

Решение:

Разобьем диск на бесконечно тонкие кольца, радиус которых меняется от 0 до R и рассмотрим одно такое кольцо. Пусть его радиус – r, а масса – dm. Тогда момент инерции кольца:

определение момента инерции тела

Массу кольца можно представить в виде:

инерция тела физика

Здесь dz – высота кольца. Подставим массу в формулу для момента инерции и проинтегрируем:

момент инерции формула физика

В итоге получилась формула для момента инерции абсолютного тонкого диска или цилиндра.

Задача 2. Пусть опять есть диск массы m и радиуса R. Теперь нужно найти момент инерции диска относительно оси, проходящей через середину одного из его радиусов.

Решение:

Момент инерции диска относительно оси, проходящей через центр масс, известен из предыдущей задачи. Применим теорему Штейнера и найдем:

Пример решения задачи на нахождение момента инерции

Кстати, в нашем блоге Вы можете найти и другие полезные материалы по физике и решению задач.

Надеемся, что Вы найдете в статье что-то полезное для себя. Если в процессе расчета тензора инерции возникают трудности, не забывайте о студенческом сервисе. Наши специалисты проконсультируют по любому вопросу и помогут решить задачу в считанные минуты.

Иван

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Содержание:

  1. Динамика механической системы
  2. Геометрия масс
  3. Механическая система. Центр масс механической системы
  4. Порядок решения задач на определение центра масс механической системы
  5. Примеры решения задач на тему: Определение центра масс механической системы
  6. Моменты инерции твердого тела относительно оси
  7. Моменты инерции некоторых однородных тел
  8. Примеры решения задач на тему: Моменты инерции твердого тела относительно оси
  9. Теорема о движении центра масс механической системы
  10. Закон сохранения движения центра масс
  11. Порядок решения задач на применение теоремы о движении центра масс
  12. Примеры решения задач на тему: Теорема о движении центра масс механической системы
  13. Теорема об изменении количества движения точки и механической системы
  14. Импульс силы
  15. Теорема об изменении количества движения точки и системы
  16. Закон сохранения количества движения системы
  17. Порядок решения задач на применение теоремы об изменении количества движения точки и механической системы
  18. Примеры решения задач на тему: Теорема об изменении количества движения точки и механической системы
  19. Теорема об изменении момента количества движения точки и механической системы
  20. Дифференциальное уравнение вращательного движения тела вокруг неподвижной оси
  21. Порядок решения задач на применение теоремы об изменении момента количества движения точки и механической системы
  22. Примеры решения задач на тему: Теорема об изменении момента количества движения точки и механической системы
  23. Теорема об изменении кинетической энергии механической системы
  24. Кинетическая энергия механической системы
  25. Определение кинетической энергии твердого тела в различных случаях его движения
  26. Порядок решения задач на использование теоремы об изменении кинетической энергии механической системы
  27. Примеры решения задач на тему: Теорема об изменении кинетической энергии механической системы

Динамика механической системы – изучает движение совокупности материальных точек и твердых тел, объединяемых общими законами.

На странице -> решение задач по теоретической механике собраны решения задач и заданий с решёнными примерами по всем темам теоретической механики.

Динамика механической системы

В предыдущей главе рассматривались задачи, связанные с движением материальной точки, которая находится под действием приложенных к ней сил. Однако часто приходится встречаться с такими случаями, когда движение одной точки невозможно рассматривать изолированно от движения других материальных точек. Это заставляет нас перейти к изучению движения совокупности материальных точек, или механических систем.

В механике под механической системой материальных точек или тел имеют в виду такую их совокупность, в которой положение или движение каждой точки (или тела) зависит от положения или движения всех других.

Совокупность тел, между которыми отсутствуют силы взаимодействия и движение которых никаким образом не связано друг с другом, механическую систему не создают. Механические системы бывают свободными и несвободными.

Система материальных точек, движение которых не ограничено никакими связями, а определяется только действующими на эти точки силами, называется системой свободных точек.

Система материальных точек, движение которых ограничивается наложенными на точки связями, называется системой несвободных точек.

Решение задач динамики механической системы базируется на теоремах динамики и некоторых принципах, которые будут рассмотрены в данной главе.

Геометрия масс

Геометрия точки масс, в просторечии известная как точки масс , является проблемой геометрии – метод решения , который применяет физический принцип центра масс к геометрическим задачам, включающим треугольники и пересекающиеся чевианы . Все задачи, которые могут быть решены с использованием геометрии материальных точек, также могут быть решены с использованием аналогичных треугольников, векторов или соотношений площадей, но многие студенты предпочитают использовать массовые точки.

Механическая система. Центр масс механической системы

В механике под механической системой подразумевают совокупность взаимодействующих между собой материальных точек или тел.

Частным случаем механической системы является абсолютно твердое тело.

Массой механической системы называется сумма масс всех точек, входящих в систему:

Динамика механической системы

где Динамика механической системы – масса материальной точки с номером Динамика механической системы,

Динамика механической системы – число всех точек системы.

Центром масс (центром инерции) механической системы называется точка Динамика механической системы (рис.5.1), радиус-вектор Динамика механической системы которой определяется по формуле:

Динамика механической системы

где Динамика механической системы – масса системы материальных точек;

Динамика механической системы – радиус-вектор точки с массой Динамика механической системы.

Декартовы координаты центра масс системы материальных точек определяются по зависимостям:

Динамика механической системы

Здесь Динамика механической системы – координаты Динамика механической системы-ой материальной точки.

Динамика механической системы

Для твердого тела центр масс совпадает с центром тяжести.

Порядок решения задач на определение центра масс механической системы

Решение задач, в которых необходимо определить положение центра масс и уравнение его траектории, рекомендуется проводить в следующей последовательности:

Выбрать систему координат.

Записать координаты центров тяжести каждой из масс системы, выразив их в виде функций времени:

Динамика механической системы

Определить координаты центра масс системы по формулам (5.1), при этом Динамика механической системы будут функциями времени, то есть, полученные выражения будут параметрическими уравнениями движения центра масс.

Для нахождения уравнений траектории центра масс надо с последних выражений (пункт 3) исключить время.

Примеры решения задач на тему: Определение центра масс механической системы

Задача № 1

Определить положение центра масс центробежного регулятора, изображенного на рис.5.2, если вес каждого из шаров Динамика механической системы и Динамика механической системы равен Динамика механической системы, вес муфты Динамика механической системы равен Динамика механической системы. Пули Динамика механической системы и Динамика механической системы  считать материальными точками. Массой стержней пренебречь.

Решение. Система координат, относительно которой необходимо определить положение центра масс, изображена на рис.5.2.

Для определения положения центра масс системы надо определить его координаты по формулам (5.1):

Динамика механической системы

где Динамика механической системы

Динамика механической системы – координаты центра масс пуль Динамика механической системыДинамика механической системы и муфты Динамика механической системы.

Следовательно,

Динамика механической системы

Находим координаты центров масс:

пули Динамика механической системыДинамика механической системы

пули Динамика механической системыДинамика механической системы

муфты Динамика механической системыДинамика механической системы

Тогда: 

Динамика механической системы

поскольку

Динамика механической системы

Динамика механической системы

Ответ: Динамика механической системы

Задача № 2

Найти уравнение движения центра масс шарнирного параллелограмма Динамика механической системы а также уравнение траектории его центра масс при вращении кривошипа Динамика механической системы с постоянной угловой скоростью Динамика механической системы. Звенья параллелограмма – однородные стержни (рис.5.3), и Динамика механической системы

Динамика механической системы

Решение. Начало системы координат свяжем с шарниром Динамика механической системы кривошипа Динамика механической системы. Ось Динамика механической системы направим справа по линии Динамика механической системы а ось Динамика механической системы – перпендикулярно линии Динамика механической системы.

Поскольку звенья 1,2,3 параллелограмма однородны, то центры масс их лежат посередине звеньев (точки Динамика механической системы).

Из размеров звеньев вытекает: Динамика механической системы

Определим координаты центров масс звеньев механизма как функции угла поворота Динамика механической системы (рис.5.3):

Динамика механической системы

Для определения координат центра масс шарнирного параллелограмма Динамика механической системы воспользуемся зависимостью (5.1):

Динамика механической системы

Динамика механической системы

Для определения уравнения траектории центра масс (точки Динамика механической системы) исключим параметр Динамика механической системы из уравнений (1) и (2). С этой целью выполним следующие преобразования:

Динамика механической системы

Сложим, соответственно, левые и правые части этих уравнений:

Динамика механической системы

Таким образом, траекторией центра масс шарнирного параллелограмма является окружность:

с радиусом, равным Динамика механической системы, с центром в точке Динамика механической системы с координатами Динамика механической системы

Ответ: Динамика механической системы Динамика механической системы

Задача № 3

Определить траекторию центра масс механизма эллипсографа (рис.5.4), который состоит из муфт Динамика механической системы и Динамика механической системы весом Динамика механической системы каждая, кривошипа Динамика механической системы весом Динамика механической системы и линейки Динамика механической системы весом Динамика механической системы, если Динамика механической системы

Динамика механической системы

Считать, что линейка и кривошип есть однородные стержни, а муфты – точечные массы.

Решение. Механизм состоит из 4 подвижных звеньев. Для удобства решения задачи пронумеруем звенья соответственно рис.5.4.

Система координат, относительно которой будет определяться траектория центра масс механизма показана на рисунке.

Сначала определим координаты центров масс всех звеньев механизма:

Динамика механической системы

Для определения координат центра масс механизма эллипсографа воспользуемся формулой (5.1):

Динамика механической системы

Следовательно, координаты центра масс эллипсографа имеют значения:

Динамика механической системы

Для нахождения уравнения траектории центра масс в явном виде необходимо из этих уравнений исключить угол Динамика механической системы. Решив оба уравнения относительно Динамика механической системы и Динамика механической системы, возводя их затем к квадрату и сложив, получим:

Динамика механической системы

Траекторией центра масс является окружность с центром в точке Динамика механической системы и радиусом Динамика механической системы, который равен:

Динамика механической системы

Ответ: Динамика механической системы

Задача № 4

Определить зависимость от угла поворота кривошипа Динамика механической системы координат центра масс кривошипно-ползунного механизма, что изображено на рис.5.5. Длина кривошипа Динамика механической системы, его вес Динамика механической системы, длина шатуна Динамика механической системы, его вес Динамика механической системы, вес ползуна Динамика механической системы.

Решение. Выберем систему координат Динамика механической системы как показано на рис.5.5. Рассмотрим механизм в произвольном положении, которое определяется углом Динамика механической системы (для любого положения Динамика механической системы, так как Динамика механической системы).

Применяя формулу (5.1), получим:

Динамика механической системы

где Динамика механической системы – координаты центров тяжести тел, составляющих систему,

Динамика механической системы – масса всей системы.

С рис.5.5 находим:

Динамика механической системы

Масса всей системы в данном случае равна:

Динамика механической системы

Подставляя в выражения (1) и (2) значения координат центров масс тел механической системы и величину массы системы Динамика механической системы, получим:

Динамика механической системы

Ответ: Динамика механической системы

Задача № 5

Определить уравнение траектории центра масс кулисного механизма (рис.5.6), если вес кривошипа Динамика механической системы равен Динамика механической системы, вес ползуна Динамика механической системы равен Динамика механической системы, а вес кулисы и штанги Динамика механической системы равен Динамика механической системы. Кривошип, который вращается с постоянной угловой скоростью Динамика механической системы, считать тонким однородным стержнем, а ползун Динамика механической системы – точечной массой. Центр тяжести кулисы и штанги расположен в точке Динамика механической системы, причем Динамика механической системы. При расчетах принять:

Динамика механической системы

Будем считать, что в начальный момент ползун Динамика механической системы занимал крайнее правое положение.

Решение. Выберем оси декартовых координат, как показано на рисунке, где положение кулисного механизма соответствует моменту времени Динамика механической системы. Так как кривошип вращается равномерно, то его угол поворота равен Динамика механической системы

Для определения положения центра масс системы Динамика механической системы необходимо найти его координаты Динамика механической системы и Динамика механической системы по формуле (5.1).

Поскольку механическая система состоит из трех тел – кривошипа Динамика механической системы, ползуна Динамика механической системы и кулисы со штангой Динамика механической системы, то:

Динамика механической системы

Индекс 1 соответствует кривошипу, индекс 2 – ползуну Динамика механической системы, индекс 3 – кулисе со штангой.

Динамика механической системы

Из рисунка видно:

Динамика механической системы

Подставим значения Динамика механической системы в формулы для определения Динамика механической системы и Динамика механической системы.

Динамика механической системы

Исключим время Динамика механической системы в уравнениях, которые определяют движение центра масс.

Для этого решим оба уравнения относительно Динамика механической системы и Динамика механической системы:

Динамика механической системы

Возведем эти уравнения к квадрату и добавим:

Динамика механической системы

Таким образом, траекторией центра масс кулисного механизма является эллипс с полуосями Динамика механической системы и Динамика механической системы

Центр эллипса лежит на оси Динамика механической системы и отдален от начала координат Динамика механической системы вправо на расстояние Динамика механической системы

Ответ: Динамика механической системы

Моменты инерции твердого тела относительно оси

Влияние собственных свойств тела на вращательное движение значительно сложнее, чем в поступательном движении.

Также как масса тела является мерой инертности тела при его поступательном движении, так и момент инерции тела относительно данной оси является мерой инертности тела при его вращательном движении.

Как мера инертности тела момент инерции входит во все формулы вращательного движения. Не зная момента инерции тела, не умея его определить, нельзя решать задачи, которые связаны с вращательным или сложным движением тела, частью которого является вращательное движение.

Момент инерции тела (системы) относительно оси, например Динамика механической системы, обозначим Динамика механической системы (индекс указывает на ось, относительно которой определяется момент инерции).

Моментом инерции тела относительно оси, например Динамика механической системы, называется скалярная величина, равная сумме произведений масс точек тела на квадраты их расстояний к оси:

Динамика механической системы

Если тело сплошное, то под Динамика механической системы необходимо понимать массу элементарной частицы тела Динамика механической системы, тогда момент инерции будет выражаться интегралом:

Динамика механической системы

где Динамика механической системы – расстояние доли Динамика механической системы от оси.

Этот интеграл берется по всей массе тела. Очевидно, что величина момента инерции зависит от размеров и формы тела , а также от закона распределения массы в теле.

Момент инерции измеряется в системе СИ – в Динамика механической системы, в технической системе – в Динамика механической системы.

Для тел правильной геометрической формы определение моментов инерции делается с помощью интегрального вычисления. Если тело имеет неправильную форму, то момент инерции его определяется либо приблизительно, путем разбития тела на несколько тел, которые имеют правильную геометрическую форму, либо экспериментально.

Для однородного тела, при плотности Динамика механической системы:

Динамика механической системы

где интеграл берется по всему объему тела.

Для однородной материальной поверхности:

Динамика механической системы

где Динамика механической системы – масса единицы плоскости поверхности и интеграл берется по всей плоскости поверхности.

Для однородной материальной линии:

Динамика механической системы

где Динамика механической системы – масса единицы длины линии. Интеграл берется по длине Динамика механической системы.

Для одной материальной точки, которая находится на расстоянии Динамика механической системы от оси, момент инерции равен:

Динамика механической системы

Иногда при определении момента инерции тела пользуются понятием радиуса инерции. Радиусом инерции тела относительно оси, например Динамика механической системы, называется линейная величина Динамика механической системы, определяемая равенством:

Динамика механической системы

где Динамика механической системы – масса тела.

Следовательно, радиус инерции определяет расстояние от оси Динамика механической системы к точке, в которой необходимо сосредоточить всю массу Динамика механической системы тела, чтобы момент инерции точки относительно этой оси равнялся моменту инерции тела.

Момент инерции системы относительно начала координат равен

Динамика механической системы

Моменты инерции относительно координатных осей (осевые моменты) выражаются зависимостями:

Динамика механической системы

Существует простая зависимость между моментами инерции тела относительно параллельных осей, одна из которых проходит через его центр масс (теорема Гюйгенса-Штейнера).

Момент инерции тела относительно любой оси равен моменту инерции тела относительно оси, проходящей через центр масс тела параллельно данной оси, плюс произведение массы тела на квадрат расстояния между осями:

Динамика механической системы

где Динамика механической системы – момент инерции тела относительно оси, которая проходит через центр масс и параллельна данной;

Динамика механической системы – момент инерции тела относительно данной оси;

Динамика механической системы – расстояние между осями.

Из выражения (5.4) вытекает, что наименьшим момент инерции тела будет относительно той оси, которая проходит через центр его масс.

Моменты инерции некоторых однородных тел

Форма тела. Схема тела. Момент инерции.
Тонкий прямолинейный стержень Динамика механической системы Динамика механической системы
-„- Динамика механической системы Динамика механической системы
Круглая пластинка малой толщины Динамика механической системы Динамика механической системы
Кольцо (материальная окружность) Динамика механической системы Динамика механической системы
Круглый цилиндр Динамика механической системы Динамика механической системы
Прямоугольный параллелепипед Динамика механической системы Динамика механической системы
Полый шар со стенками малой толщины Динамика механической системы Динамика механической системы
Шар  Динамика механической системы Динамика механической системы

Примеры решения задач на тему: Моменты инерции твердого тела относительно оси

Задача №1

Маятник, изображенный на рис. 5.7, состоит из тонкого однородного стержня длиной Динамика механической системы и массой Динамика механической системы и круглого однородного диска с радиусом Динамика механической системы и массой Динамика механической системы

Динамика механической системы

Определить момент инерции Динамика механической системы относительно оси его вращения Динамика механической системы (ось Динамика механической системы направлена перпендикулярно плоскости рисунка).

Решение. Маятник состоит из двух тел: стержня и диска, поэтому

Динамика механической системы

где Динамика механической системы и Динамика механической системы моменты инерции относительно оси Динамика механической системы стержня и диска, соответственно.

Момент инерции стержня равен (см. 5.5):

Динамика механической системы

Момент инерции диска найдем по формуле (5.4):

Динамика механической системы

где Динамика механической системы – момент инерции диска относительно оси, которая проходит параллельно оси Динамика механической системы через его центр масс, точку Динамика механической системы, а расстояние от центра масс к оси Динамика механической системыДинамика механической системы

Итак

Динамика механической системы

Пользуясь выражениями для моментов инерции стержня (2) и диска (3), найдем момент инерции маятника относительно оси Динамика механической системы:

Динамика механической системы

После подстановки в выражение (4) числовых данных, получим:

Динамика механической системы

Ответ: Динамика механической системы

Задача №2.

Определить момент инерции Динамика механической системы стального вала радиуса Динамика механической системы см и массой Динамика механической системы относительно его образующей. Вал считать однородным сплошным цилиндром (рис.5.8).

Динамика механической системы

Решение. Для определения момента инерции стального вала относительно оси Динамика механической системы, надо воспользоваться формой Гюйгенса-Штейнера

Динамика механической системы

где Динамика механической системы – момент инерции относительно оси Динамика механической системы, которая проходит через центр масс тела.,

Динамика механической системы – масса вала,

Динамика механической системы – расстояние между осями, равное радиусу вала.

Динамика механической системы

Тогда

Динамика механической системы

Ответ: Динамика механической системы

Задача № 3

Определить осевые моменты инерции Динамика механической системы и Динамика механической системы изображенной на рис.5.9 однородной прямоугольной пластинки весом Динамика механической системы.

Динамика механической системы

Решение. Определим момент инерции пластинки относительно оси Динамика механической системы. Для этого выделим на расстоянии Динамика механической системы полоску шириной Динамика механической системы.

Момент инерции этой тонкой полоски относительно оси Динамика механической системы равен:

Динамика механической системы

где Динамика механической системы – масса полоски.

Масса полоски равна:

Динамика механической системы

где Динамика механической системы – площадь полоски;

Динамика механической системы– масса единицы площади поверхности пластинки.

Тогда:

Динамика механической системы

а момент инерции всей пластинки будет равен сумме моментов инерции всех полосок, на которые можно разбить пластинку:

Динамика механической системы

При предельном переходе, то есть, когда Динамика механической системы

Динамика механической системы

Итак, 

Динамика механической системы

Вычислим массу пластинки:

Динамика механической системы

Таким образом

Динамика механической системы

Момент инерции пластинки относительно оси Динамика механической системы находим аналогичным путем и получим:

Динамика механической системы

Ответ: Динамика механической системы

Задача №4

Определить момент инерции относительно оси Динамика механической системы Динамика механической системы однородного прямоугольного параллелепипеда весом Динамика механической системы (рис.5.10).

Решение. Выделим элементарный параллелепипед со сторонами основания Динамика механической системы и высотой Динамика механической системы Расстояние элементарного параллелепипеда от осей Динамика механической системы и Динамика механической системы равно Динамика механической системы и Динамика механической системы соответственно.

Момент инерции элементарного параллелепипеда относительно оси Динамика механической системы равен:

Динамика механической системы

где: Динамика механической системы – масса элементарного параллелепипеда, равна:

Динамика механической системы

Динамика механической системы

Тогда, Динамика механической системы

а момент инерции всего параллелепипеда

Динамика механической системы

При предельном переходе, то есть при Динамика механической системы то сумма, которая стоит справа, переходит в двойной интеграл:

Динамика механической системы

Вычислим двойной интеграл:

Динамика механической системы

Масса параллелепипеда:

Динамика механической системы

Следовательно,

Динамика механической системы

Ответ: Динамика механической системы

Задача №5

Определить момент инерции относительно оси Динамика механической системы тонкой однородной параболической пластинки (рис.5.11) массой Динамика механической системы. Предельная прямая пластинки параллельна оси Динамика механической системы и удалена от нее на расстояние Динамика механической системы. Уравнение параболы, которая ограничивает пластинку, имеет вид Динамика механической системы

Динамика механической системы

Решение. Проведем на пластинке (рис.5.11) две прямые, параллельные оси Динамика механической системы и удаленные от нее на расстоянии Динамика механической системы и Динамика механической системы

Вычислим момент инерции относительно оси Динамика механической системы элементарной полоски, которая ограничена этими прямыми и параболическим контуром пластинки (заштрихована на рисунке):

Динамика механической системы

где Динамика механической системы – элементарная масса плоскости, которая равна:

Динамика механической системы

Здесь Динамика механической системы – плотность пластинки,

Динамика механической системы – площадь пластинки.

Итак,

Динамика механической системы

Из уравнения Динамика механической системы вытекает Динамика механической системы

Таким образом

Динамика механической системы

Момент инерции пластинки относительно оси Динамика механической системы равен:

Динамика механической системы

Масса пластинки Динамика механической системы

где площадь пластинки Динамика механической системы

Тогда 

Динамика механической системы

Следовательно,

Динамика механической системы

Ответ: Динамика механической системы

Задача №6

Определить для тонкого равнобедренного треугольника Динамика механической системы, основание которого равно Динамика механической системы, высота Динамика механической системы и масса Динамика механической системы (рис.5.12), его моменты инерции относительно основания и относительно высоты.

Динамика механической системы

Решение. С серединой Динамика механической системы основания равнобедренного треугольника свяжем начало системы координат Динамика механической системы; ось Динамика механической системы проведем по основанию Динамика механической системы, а ось Динамика механической системы – перпендикулярно  основанию.

Для определения момента инерции треугольника относительно основания (относительно оси Динамика механической системы) выделим на расстоянии Динамика механической системы элементарную полоску шириной Динамика механической системы.

Момент инерции этой полоски относительно оси Динамика механической системы составит:

Динамика механической системы

где Динамика механической системы, масса полоски длиной Динамика механической системы, равна:

Динамика механической системы

Тогда момент инерции элементарной полоски относительно основания будет равен:

Динамика механической системы

Найдем зависимость между координатой Динамика механической системы и длиной полоски Динамика механической системы. Из сходства треугольников Динамика механической системы и Динамика механической системы (рис.5.12) следует:

Динамика механической системыили Динамика механической системы

откуда

Динамика механической системы

Подставив (2) у (1’), получим:

Динамика механической системы

а момент инерции треугольника Динамика механической системы относительно основания определится как

Динамика механической системы

или

Динамика механической системы

В интеграле (3) границы координаты Динамика механической системы меняются от Динамика механической системы к Динамика механической системы.

Высчитаем интеграл (3):

Динамика механической системы

Выразим момент инерции Динамика механической системы через массу Динамика механической системы треугольника Динамика механической системы:

Динамика механической системы

Преобразуем выражение (4):

Динамика механической системы

или

Динамика механической системы

Перейдем к определению момента инерции треугольника Динамика механической системы относительно его высоты Динамика механической системы.

Поскольку у треугольника Динамика механической системы высота Динамика механической системы является осью симметрии, то достаточно определить момент инерции относительно этой оси для прямоугольного треугольника Динамика механической системы, тогда

Динамика механической системы

где Динамика механической системы – момент инерции треугольника Динамика механической системы;

Динамика механической системы – момент инерции треугольника Динамика механической системы.

Расчетная схема для определения момента инерции Динамика механической системы приведена на рис.5.13.

Динамика механической системы

Выделим элементарную полоску на расстоянии Динамика механической системы от оси Динамика механической системы, ширина полоски – Динамика механической системы, длина – Динамика механической системы

Определим момент инерции этой полоски относительно оси Динамика механической системы:

Динамика механической системы

где Динамика механической системы – масса элементарной полоски.

Определим зависимость между длиной полоски Динамика механической системы и координатой Динамика механической системы. Из сходства треугольников Динамика механической системы и Динамика механической системы получается:

Динамика механической системы или Динамика механической системы

откуда

Динамика механической системы

Подставив (6) у (5), получим:

Динамика механической системы

Момент инерции треугольника Динамика механической системы относительно оси Динамика механической системы (относительно высоты Динамика механической системы), равен:

Динамика механической системы

или

Динамика механической системы

Определим интеграл (7):

Динамика механической системы

Окончательно,

Динамика механической системы

Тогда, момент инерции треугольника Динамика механической системы относительно высоты Динамика механической системы будет равен:

Динамика механической системы

Ответ: Динамика механической системы

Задачи, которые рекомендуются для самостоятельной работы: 34.9, 34.12, 34.16 [2].

Теорема о движении центра масс механической системы

Силы, действующие на механическую систему, можно условно поделить на внешние и внутренние.

Силы, которые действуют на точки данной механической системы со стороны точек или тел, не входящих в эту систему, называются внешними.

Силы, действующие на точки механической системы со стороны точек данной системы, называются внутренними.

Внешние силы обозначаются верхним индексом Динамика механической системы, внутренние – Динамика механической системы: Динамика механической системы -внешняя сила, Динамика механической системы – внутренняя сила.

Внутренние силы обладают следующими свойствами:

а) геометрическая сумма (главный вектор) внутренних сил равна нулю:

Динамика механической системы

б) геометрическая сумма моментов (главный момент) всех внутренних сил относительно любого центра Динамика механической системы или оси равна нулю:

Динамика механической системы

Динамика механической системы

Теорема о движении центра масс механической системы формулируется следующим образом:

Произведение массы системы на ускорение ее центра масс равно геометрической сумме всех внешних сил, действующих на систему.

Динамика механической системы

где Динамика механической системы – масса системы;

Динамика механической системы – ускорение центра масс;

Динамика механической системы – сумма внешних сил, которые действуют на систему.

Из сравнения приведенной выше формулы со вторым законом динамики, который, как известно, записан для материальной точки:

Динамика механической системы

можно сделать следующий вывод:

Центр масс механической системы движется как материальная точка, в которой сосредоточено массу всей системы и к которой приложены те же внешние силы, действующие на систему.

Теорема о движении центра масс системы, если ее записать в проекциях на оси декартовой системы координат, имеет вид:

Динамика механической системы

где Динамика механической системы – координаты центра масс механической системы.

Из приведенных уравнений следует, что внутренние силы непосредственно не влияют на движение центра масс. Теорема позволяет исключить из рассмотрения все ранее неизвестные внутренние силы.

Задачи динамики поступательного движения твердого тела решаются с помощью теоремы о движении центра масс системы материальных точек.

Действительно, применив эту теорему, мы определим уравнение траектории, скорость и ускорение центра тяжести твердого тела. При поступательном движении твердого тела траектории всех его точек одинаковы, одинаковы и их скорости и ускорения.

Закон сохранения движения центра масс

Из теоремы о движении центра масс вытекает несколько следствий:

а) если геометрическая сумма всех внешних сил, действующих на систему, равна нулю, то центр масс механической системы находится в покое или движется равномерно и прямолинейно.

Пусть Динамика механической системы, тогда 

Динамика механической системы или Динамика механической системы, поэтому Динамика механической системы

Если изначально центр масс был в покое, то он и останется в покое. Если же начальная скорость не равна нулю, то центр масс движется прямолинейно и равномерно с этой скоростью;

б) если геометрическая сумма внешних сил, действующих на систему, не равна нулю, но сумма их проекций на какую-нибудь ось (например, ось Динамика механической системы) равна нулю, то центр масс системы вдоль этой оси или не движется, или движется равномерно.

Если Динамика механической системы, то:

Динамика механической системы или Динамика механической системы, поэтому Динамика механической системы

Если при этом равна нулю начальная скорость, то есть Динамика механической системы, то Динамика механической системы, то есть Динамика механической системы

Таким образом видим, что в этом случае координата центра масс Динамика механической системы механической системы во время ее движения остается неизменной.

При Динамика механической системы проекция центра масс на ось Динамика механической системы движется равномерно.

Все эти результаты выражают законы сохранения движения центра масс системы.

Порядок решения задач на применение теоремы о движении центра масс

Рекомендуется такая последовательность решения задач:

Изобразить на рисунке все внешние силы, действующие на систему;

Выбрать систему координат;

Записать теорему о движении центра масс в векторной форме;

Спроектировать это векторное уравнение на оси координат;

Высчитать суммы проекций всех внешних сил на оси координат и подставить их в проекции уравнения движения;

Решить полученные уравнения и определить искомые величины.

Примеры решения задач на тему: Теорема о движении центра масс механической системы

Задача № 1

Определить главный вектор внешних сил, действующих на колесо весом Динамика механической системы, которое скатывается без скольжения с наклонной плоскости, если его центр масс Динамика механической системы движется по закону Динамика механической системы (рис.6.1).

Динамика механической системы

Решение. Покажем внешние силы, которые действуют на колесо: силу тяжести Динамика механической системы и реакцию поверхности Динамика механической системы, которые проходят через центр масс колеса Динамика механической системы.

Запишем теорему о движении центра масс в векторной форме:

Динамика механической системы

Выбираем систему координат Динамика механической системы и спроектируем уравнение (1) на оси Динамика механической системы и Динамика механической системы:

Динамика механической системы

Поскольку Динамика механической системы. то Динамика механической системы и Динамика механической системы. То есть, главный вектор внешних сил является параллельным оси Динамика механической системы:

Динамика механической системы

Найдем проекцию ускорения центра масс на ось Динамика механической системы:

Динамика механической системы

Итак, 

Динамика механической системы

Ответ: Динамика механической системы

Задача №2

Колесо весом Динамика механической системы и радиусом Динамика механической системы катится со скольжением по прямолинейной горизонтальной рейке в результате действия постоянной силы Динамика механической системы, которая приложена к его центру тяжести Динамика механической системы (рис.6.2).

Динамика механической системы

Определить скорость центра масс колеса, если в начальный момент оно находилось в покое. Коэффициент трения скольжения равен Динамика механической системы.

Решение. На колесо действуют внешние силы: Динамика механической системы – сила тяжести колеса, Динамика механической системы – движущая сила, Динамика механической системы – нормальная реакция рейки, Динамика механической системы – сила трения скольжения, которая направлена вдоль рельса в сторону, противоположную силе Динамика механической системы.

Запишем теорему о движении центра масс колеса в векторной форме:

Динамика механической системы

где Динамика механической системы – ускорение центра масс колеса.

Спроектируем это уравнение на оси координат Динамика механической системы:

Динамика механической системы

Во время движения колеса Динамика механической системы Итак Динамика механической системы из второго уравнения (1) получаем:

Динамика механической системы

Поскольку при качении колеса со скольжением сила трения достигает своего максимального значения, то

Динамика механической системы

Подставим (3) в первое из уравнений (1) и получим:

Динамика механической системы

Поскольку 

Динамика механической системы

то

Динамика механической системы

Согласно начальным условиям при Динамика механической системы с тех пор находим, что произвольная постоянная Динамика механической системы

Итак, закон изменения скорости центра масс колеса Динамика механической системы имеет вид:

Динамика механической системы

Ответ: Динамика механической системы

Задача №3

На однородную призму Динамика механической системы, которая лежит на горизонтальной плоскости, положили однородную призму Динамика механической системы (рис.6.3,а), поперечные сечения призм – прямоугольные треугольники, вес призмы Динамика механической системы втрое больше веса призмы Динамика механической системы. Необходимые размеры показаны на рисунке.

Определить длину Динамика механической системы, на которую передвинется призма Динамика механической системы, когда призма Динамика механической системы, спускаясь по поверхности призмы Динамика механической системы, дойдет к горизонтальной плоскости. Предположить, что все поверхности, которые соприкасаются, идеально гладкие.

Решение. Рассмотрим движение механической системы, состоящей из 2-х призм Динамика механической системы и Динамика механической системы. Призма Динамика механической системы, спускаясь по призме Динамика механической системы справа, как будто выжимает ее, отодвигает налево (рис.6.3, б).

Для решения этой задачи применим теорему о движении центра масс.

На систему действуют внешние силы: тяжести Динамика механической системы призмы Динамика механической системы, тяжести Динамика механической системы призмы Динамика механической системы, нормальная реакция плоскости Динамика механической системы (рис.6.3). Внешняя сила трения призм по идеально гладкой поверхности равна нулю.

Таким образом, все внешние силы системы вертикальны. Внутренние силы системы (давление призмы Динамика механической системы на призму Динамика механической системы, реакция на это давление, а также силы трения между призмами Динамика механической системы и Динамика механической системы), нас не интересуют.

Введем систему координат Динамика механической системы, ось Динамика механической системы направим по горизонтали справа и запишем теорему о движении центра масс системы в проекции на ось Динамика механической системы:

Динамика механической системы

Поскольку внешние силы перпендикулярны оси Динамика механической системы, то

Динамика механической системы

Тогда

Динамика механической системы

где Динамика механической системы – постоянная интегрирования.

В начальный момент времени система находилась в состоянии покоя, то есть скорость центра масс Динамика механической системы Итак, Динамика механической системы

Из этого следует, что Динамика механической системы, то есть, абсцисса центра масс, независимо от перемещения призм, остается постоянной.

Динамика механической системы

Запишем выражение для определения координаты центра масс в начале движения:

Динамика механической системы

где Динамика механической системы – абсцисса центра масс призмы Динамика механической системы,

Динамика механической системы – абсцисса центра масс призмы Динамика механической системы.

Выражение для определения координаты центра масс системы, когда призма Динамика механической системы опускается по боковой грани призмы Динамика механической системы к горизонтальной плоскости:

Динамика механической системы

где Динамика механической системы – новое значение абсциссы центра масс призмы Динамика механической системы,

Динамика механической системы – новое значение абсциссы центра масс призмы Динамика механической системы.

Поскольку Динамика механической системы, то 

Динамика механической системы

или 

Динамика механической системы

Перепишем это уравнение следующим образом:

Динамика механической системы

Найдем перемещение центров масс призм Динамика механической системы и Динамика механической системы:

Динамика механической системы

Присутствие слагаемого (Динамика механической системы) в последнем уравнении учитывает перемещение призмы Динамика механической системы вместе с призмой Динамика механической системы слева на величину Динамика механической системы.

Подставим значение перемещений в уравнение (1):

Динамика механической системы.

Решим это уравнение относительно Динамика механической системы, имея в виду, что Динамика механической системы:

Динамика механической системы

Ответ: Динамика механической системы

Задача №4

Три груза (рис.6.4), весом Динамика механической системы соединенные невесомой нитью, которая не растягивается, и которая перекинута через неподвижные блоки Динамика механической системы и Динамика механической системы. Во время опускания груза 1 вниз груз 2 перемещается по верхнему основанию четырехугольной усеченной пирамиды Динамика механической системы весом Динамика механической системы справа, а груз 3 поднимается по боковой грани Динамика механической системы вверх. Пренебрегая трением между срезанной пирамидой Динамика механической системы и полом, определить перемещение Динамика механической системы усеченной пирамиды Динамика механической системы относительно пола, если груз Динамика механической системы опустится на Динамика механической системы

Решение. Изобразим все внешние силы, которые приложены к материальной системе, состоящей из пирамиды и трех грузов (рис.6.4). Внешними силами являются: Динамика механической системы – сила тяжести пирамиды; Динамика механической системы – силы тяжести грузов; Динамика механической системы – нормальная реакций

Динамика механической системы

горизонтальной плоскости. Направим ось Динамика механической системы по горизонтали справа и запишем теорему о движении центра масс системы материальных точек в проекции на эту ось:

Динамика механической системы

Поскольку все внешние силы перпендикулярны оси Динамика механической системы, то Динамика механической системы

Следовательно, Динамика механической системы

тогда

Динамика механической системы

В начальный момент времени система была в состоянии покоя, то есть Динамика механической системы, поэтому Динамика механической системы

Поскольку

Динамика механической системы

то

Динамика механической системы

Таким образом, абсцисса центра масс системы не зависит от перемещений грузов, входящих в систему, и остается неизменной относительно неподвижной системы координат Динамика механической системы.

Запишем выражение для определения Динамика механической системы для начального момента времени, когда грузы находились в состоянии покоя:

Динамика механической системы

где Динамика механической системы – абсциссы центров масс пирамиды Динамика механической системы и грузов 1,2 и 3.

Если груз 1 опустится на величину Динамика механической системы при неподвижной пирамиде, то координата Динамика механической системы при этом не изменится. Тогда груз 2 переместится вправо на величину Динамика механической системы и координата его центра масс будет равна Динамика механической системы. Груз 3 тоже подвинется по наклонной поверхности Динамика механической системы на величину Динамика механической системы, при этом по направлению оси Динамика механической системы его положение изменится на величину Динамика механической системы и координата центра масс будет Динамика механической системы. То есть, относительно пирамиды центр масс системы изменит свое положение, но не изменит его относительно неподвижной системы координат, поскольку должен выполняться закон сохранения движения центра масс. И тогда пирамида должна переместиться налево на некоторую величину Динамика механической системы.

Грузы 1,2 и 3 вместе с пирамидой также переместятся влево на расстояние Динамика механической системы, и новые координаты всех центров масс будут равны:

Динамика механической системы

Запишем выражение для определения положения абсциссы центра масс для нового положения системы:

Динамика механической системы

Поскольку Динамика механической системы то 

Динамика механической системы

После приведения подобных получим:

Динамика механической системы

или

Динамика механической системы

Окончательно

Динамика механической системы

После подстановки числовых величин, получим:

Динамика механической системы

Ответ: Динамика механической системы

Задача № 5

Электрический двигатель весом Динамика механической системы с горизонтальным валом без всяких креплений установлен на гладком горизонтальном фундаменте.

На валу электродвигателя (рис.6.5) под прямым углом закреплен одним концом однородный стержень Динамика механической системы длиной Динамика механической системы и весом Динамика механической системы, на второй конец стержня насажен точечный груз Динамика механической системы весом Динамика механической системы; угловая скорость вала равна Динамика механической системы.

Определить:

Закон горизонтального движения электродвигателя;

Угловую скорость вала электродвигателя, при которой электродвигатель будет «подскакивать» над фундаментом;

Наибольшее горизонтальное усилие Динамика механической системы, которое действует на болты, если ими закреплен корпус электродвигателя на фундаменте.

Решение. Будем рассматривать электромотор, стержень и груз как одну механическую систему. Внешними силами, которые действуют на эту систему, являются: сила тяжести электродвигателя Динамика механической системы, сила тяжести стержня Динамика механической системы, сила тяжести груза Динамика механической системы, а также реакции фундамента Динамика механической системы и Динамика механической системы. Все эти силы вертикальны. 

Динамика механической системы

Начало неподвижной системы координат возьмем в точке Динамика механической системы, соответствующей положению центра вала электродвигателя, когда стержень направлен вертикально вверх (рис.6.5, а).

Поскольку проекция на ось Динамика механической системы главного вектора действующих на систему внешних сил равна нулю, то дифференциальное уравнение движения центра масс системы вдоль оси Динамика механической системы имеет вид:

Динамика механической системы

где Динамика механической системы – масса системы.

В нашем случае Динамика механической системы или

Динамика механической системы

Тогда дифференциальное уравнение движения центра масс (1) приводится к виду:

Динамика механической системы

откуда Динамика механической системы

Предполагая, что в начальный момент скорость центра масс системы равна нулю, то есть, при пуске электродвигателя он был неподвижным, получим Динамика механической системы

Следовательно, Динамика механической системы, то есть, центр масс системы не перемещается вдоль оси Динамика механической системы.

Поскольку в начальный момент времени центр масс системы находится на оси Динамика механической системы (то есть, Динамика механической системы), то и в любой момент времени Динамика механической системы

При вращении стержня координаты центров масс электрического двигателя, стержня и груза Динамика механической системы будут варьироваться.

Предположим, что в некоторый момент времени Динамика механической системы координата центра масс мотора станет равной Динамика механической системы, тогда координаты центров масс стержня и груза Динамика механической системы будут равны Динамика механической системы и Динамика механической системы (рис.6.5,b).

Поскольку все время Динамика механической системы, то

Динамика механической системы

где Динамика механической системы На рисунке 6.5,b показан момент, когда координата Динамика механической системы отрицательна.

Тогда

Динамика механической системы

откуда 

Динамика механической системы

 и, следовательно:

Динамика механической системы

Таким образом, центр электродвигателя совершает гармонические колебания вдоль оси Динамика механической системы с амплитудой, равной:

Динамика механической системы

и периодом

Динамика механической системы

Определим угловую скорость вала, при которой электродвигатель будет «подскакивать» над фундаментом.

Для этого составим дифференциальное уравнение движения центра масс системы вдоль оси Динамика механической системы:

Динамика механической системы

или 

Динамика механической системы

где Динамика механической системы – суммарная реакция фундамента.

Значение Динамика механической системы найдем из выражения для координаты центра масс:

Динамика механической системы

поскольку

Динамика механической системы

Последнее уравнение перепишем в виде:

Динамика механической системы

Возьмем из обеих частей равенства вторую производную по времени

Динамика механической системы

Из уравнений (2) и (3) вытекает, что

Динамика механической системы

итак,

Динамика механической системы

Минимальное значение реакции фундамента будет при Динамика механической системы:

Динамика механической системы

Если Динамика механической системы, то это значит, что электромотор не прижимается к фундаменту. Итак, искомое значение угловой скорости, при которой электродвигатель начинает “подскакивать” над фундаментом, найдем из условия

Динамика механической системы

откуда

Динамика механической системы

В завершение определим наибольшее горизонтальное усилие Динамика механической системы, которое действует на болты, если ими будет закреплен корпус электродвигателя на фундаменте.

На рис.6.5 штрих-пунктирными линиями показаны оси болтов и горизонтальные реакции болтов Динамика механической системы и Динамика механической системы.

В этом случае дифференциальное уравнение движения центра масс системы вдоль оси Динамика механической системы будет:

Динамика механической системы

Значение Динамика механической системы найдем по формуле:

Динамика механической системы

или 

Динамика механической системы

Тогда

Динамика механической системы

При этом уравнение (4) принимает вид:

Динамика механической системы

Из последнего уравнения выходит:

Динамика механической системы

Таким образом, максимальное горизонтальное усилие, действующее на болты, будет при Динамика механической системы:

Динамика механической системы

Ответ: 

Динамика механической системы

Задачи, которые рекомендуются для самостоятельной работы: 35.1; 35.6; 35.10; 35.20 [2].

Теорема об изменении количества движения точки и механической системы

Теорема об изменении количества движения (импульса) системы — одна из общих теорем динамики, является следствием законов Ньютона. Связывает количество движения с импульсом внешних сил, действующих на тела, составляющие систему.

Импульс силы

Для характеристики действия силы за некоторый промежуток времени вводится понятие импульса силы.

Если сила Динамика механической системы – постоянная, то импульс силы Динамика механической системы равен

Динамика механической системы

Направление импульса силы Динамика механической системы совпадает с направлением Динамика механической системы.

Единица измерения импульса в системе СИ – Динамика механической системы, в системе МкГс – Динамика механической системы.

Если сила Динамика механической системы переменная, то импульс силы за конечный промежуток времени Динамика механической системы определяется как интеграл:

Динамика механической системы

Импульс силы – сложная физическая величина, которая одновременно учитывает влияние модуля, направления и времени действия силы на изменение состояния движения тела.

Модуль импульса силы можно определить через его проекции на оси координат:

Динамика механической системы

где Динамика механической системы – проекции силы;

Динамика механической системы – проекции импульса на оси координат.

Углы между вектором Динамика механической системы и осями координат определяются из следующих соотношений:

Динамика механической системы

Теорема об изменении количества движения точки и системы

Одной из мер движения точки является количество ее движения.

Количеством движения точки называется вектор Динамика механической системы, который равен произведению массы Динамика механической системы точки на ее скорость Динамика механической системы и направлен по вектору скорости:

Динамика механической системы.

Понятие количества движения было введено в механику Декартом и положено в основу механики Ньютоном.

Единица измерения количества движения в системе СИ – Динамика механической системы, в системе МкГс – Динамика механической системы.

Если спроектировать вектор количества движения на оси координат, то ее проекции определяются следующим образом:

Динамика механической системы

Теорема об изменении количества движения точки в дифференциальной форме имеет вид:

Динамика механической системы

Производная по времени от количества движения материальной точки равна геометрической сумме всех сил, действующих на эту точку.

Теорема об изменении количества движения точки в интегральной форме:

Динамика механической системы

Изменение количества движения точки за некоторый промежуток времени равно геометрической сумме импульсов всех сил, которые приложены к точке.

Векторному уравнению (7.1) соответствуют три уравнения в проекциях на оси координат:

Динамика механической системы

Большинство практических задач решается с использованием выражения (7.2).

Количеством движения механической системы называется векторная величина Динамика механической системы, равная геометрической сумме (главному вектору) количеств движения всех точек этой системы.

Динамика механической системы

Найти Динамика механической системы можно путем построения многоугольника количеств движения всех точек системы (рис.7.1).

Замыкающая сторона векторного многоугольника будет представлять собой вектор Динамика механической системы.

Величина Динамика механической системы может быть какой угодно, даже равняться нулю, когда многоугольник, построенный из векторов Динамика механической системы, оказывается замкнутым.

Динамика механической системы

Формулу (7.3) можно записать в виде:

Динамика механической системы

где Динамика механической системы – масса всей системы;

Динамика механической системы – скорость центра масс системы.

Из этой формулы следует, что количество движения системы равно нулю, когда скорость центра масс равна нулю. Например, если тело вращается вокруг неподвижной оси, которая проходит через его центр масс, то количество движения тела равно нулю.

В случае, когда колесо катится, вектор Динамика механической системы характеризует только поступательную часть плоского движения колеса.

Теорема об изменении количества движения системы в дифференциальной форме выразится формулой:

Динамика механической системы

где Динамика механической системы – главный вектор всех внешних сил, которые действуют на механическую систему.

Производная по времени от количества движения механической системы равна геометрической сумме всех действующих на точки системы внешних сил.

В проекциях на оси координат уравнение (7.5) соответствует уравнениям:

Динамика механической системы

В интегральной форме теорема об изменении количества движения системы имеет вид:

Динамика механической системы

где Динамика механической системы – количество движения системы в начальный момент времени.

Динамика механической системы – количество движения системы в конечный момент времени.

Изменение количества движения механической системы за некоторый промежуток времени равно геометрической сумме импульсов внешних сил, которые действуют на систему за тот же промежуток времени.

Векторному уравнению (7.7) соответствуют три уравнения в проекциях на оси координат:

Динамика механической системы

Практическая ценность теоремы заключается в том, что она позволяет исключить из рассматривания неизвестные внутренние силы.

Закон сохранения количества движения системы

Выводы из теоремы об изменении количества движения системы, которые еще имеют название законов сохранения количества движения:

1. Если главный вектор внешних сил, действующих на систему, равен нулю, то вектор количества движения системы не меняется:

если Динамика механической системы

то Динамика механической системы и Динамика механической системы

2. Если сумма проекций внешних сил на какую-либо ось, например Динамика механической системы, равна нулю, то проекция количества движения системы на эту ось сохраняется постоянной:

если Динамика механической системы

то Динамика механической системы и Динамика механической системы

Эти результаты выражают законы сохранения количества движения системы. Из них вытекает, что внутренние силы не могут изменить количество движения системы.

Порядок решения задач на применение теоремы об изменении количества движения точки и механической системы

Для материальной точки:

Изобразить на рисунке все силы, приложенные к материальной точке, то есть активные силы и реакции связей.

Выбрать систему координат.

Записать теорему об изменении количества движения точки в векторной форме.

Спроектировать это векторное уравнение на оси выбранной системы координат.

Решить полученные уравнения и определить искомые величины.

Для механической системы:

Изобразить на рисунке все внешние силы.

Выбрать систему координат.

Записать теорему об изменении количества движения системы в векторной форме.

Спроектировать это векторное уравнение на оси выбранной системы координат.

Решить полученные уравнения и определить искомые величины.

Примеры решения задач на тему: Теорема об изменении количества движения точки и механической системы

Задача № 1

Железнодорожный поезд движется по горизонтальному и прямолинейному участку пути (рис.7.2). Во время торможения до полной остановки развивается сила сопротивления, равная Динамика механической системы веса поезда. В момент начала торможения скорость Динамика механической системы поезда составляла 72 км/ч.

Динамика механической системы

Определить время Динамика механической системы и путь Динамика механической системы торможения.

Решение. Изобразим силы, действующие на поезд во время торможения: сила тяжести поезда Динамика механической системы, нормальная реакция пути Динамика механической системы, сила сопротивления Динамика механической системы, которая по величине равна Динамика механической системы

Выберем систему координат. Поскольку движение прямолинейное и горизонтальное, достаточно рассмотреть движение по направлению оси Динамика механической системы.

Запишем теорему об изменении количества движения поезда (рассматривая его как материальную точку) в интегральной форме:

Динамика механической системы

где Динамика механической системы – масса поезда,

Динамика механической системы – конечная и начальная скорость поезда,

Динамика механической системы – сумма импульсов сил Динамика механической системы, Динамика механической системыДинамика механической системы которые действуют на поезд во время торможения.

Спроектируем векторное уравнение (1) на ось Динамика механической системы:

Динамика механической системы

Проекции импульсов сил Динамика механической системы и Динамика механической системы на ось Динамика механической системы равны нулю, поскольку векторы Динамика механической системы и Динамика механической системы  перпендикулярны оси.

Сила сопротивления Динамика механической системы во время торможения по величине не изменяется, следовательно, ее импульс равен:

Динамика механической системы

Скорость в конце участка торможения равна нулю, то есть Динамика механической системы

Окончательно, уравнение импульсов (2) в проекции на ось Динамика механической системы приобретет вид:

Динамика механической системы

или 

Динамика механической системы

откуда

Динамика механической системы

С учетом числовых значений величин Динамика механической системы и Динамика механической системы имеем:

Динамика механической системы

Путь торможения определим из формулы для равнопеременного движения:

Динамика механической системы

В этом случае ускорение поезда определяется из формулы:

Динамика механической системы

то есть, 

Динамика механической системы

Тогда

Динамика механической системы

Ответ: Динамика механической системы

Задача № 2

По шероховатой наклонной плоскости, которая составляет с горизонтом угол Динамика механической системы, спускается тяжелое тело без начальной скорости.

Определить время Динамика механической системы, за которое тело пройдет путь длиной Динамика механической системы, если коэффициент трения Динамика механической системы и Динамика механической системы.

Решение. Во время движения на тело действуют сила тяжести тела Динамика механической системы, нормальная реакция поверхности Динамика механической системы и сила трения Динамика механической системы, которая направлена в сторону, противоположную движению(рис.7.3).

Динамика механической системы

Направим ось Динамика механической системы вдоль наклонной поверхности вниз и запишем теорему об изменении количества движения в векторной форме:

Динамика механической системы

Спроектируем ровность (1) на ось Динамика механической системы:

Динамика механической системы

Проекция импульса нормальной реакции Динамика механической системы на ось Динамика механической системы равна нулю, поскольку сила Динамика механической системы перпендикулярна Динамика механической системы.

Учитывая, что во время движения сила тяжести Динамика механической системы и сила трения Динамика механической системы не меняются , то

Динамика механической системы

Кроме того

Динамика механической системы

Итак, уравнение импульса (2) примет вид:

Динамика механической системы

Вычислим силу трения:

Динамика механической системы

Тогда уравнение (3) примет вид:

Динамика механической системы

или Динамика механической системы

откуда

Динамика механической системы

Поскольку

Динамика механической системы

то

Динамика механической системы

Используя полученную зависимость, сначала подсчитаем ускорение тела, а после этого – время движения.

Поскольку

Динамика механической системы

то

Динамика механической системы и Динамика механической системы

Из формулы Динамика механической системы, учитывая, что при Динамика механической системы получим Динамика механической системы

Из этой формулы находим время движения Динамика механической системы:

Динамика механической системы

Ответ: Динамика механической системы

Задача № 3

На полигоне пушка, которая наклонена под углом Динамика механической системы к горизонту, делает выстрел в мишень. Сила тяжести ствола пушки – Динамика механической системы Динамика механической системы Сила тяжести снаряда равна Динамика механической системы Скорость снаряда у дульного среза Динамика механической системы

Определить скорость Динамика механической системы свободного отката ствола пушки в момент вылета снаряда.

Решение. В задаче рассматривается движение материальной системы, состоящей из ствола и снаряда (рис.7.4).

Динамика механической системы

На систему действуют внешние силы: тяжести ствола Динамика механической системы и тяжести снаряда Динамика механической системы. Внутренние силы определяются давлением пороховых газов Динамика механической системы. Эти силы необходимо исключить из рассмотрения, согласно теореме о количестве движения механической системы.

Применим теорему об изменении количества движения системы:

Динамика механической системы

где Динамика механической системы – количество движения системы в конечный момент времени;

Динамика механической системы – количество движения системы в начальный момент времени;

Динамика механической системы – сумма импульсов всех внешних сил (Динамика механической системыДинамика механической системы).

Ось Динамика механической системы направим перпендикулярно векторам внешних сил Динамика механической системы и Динамика механической системы.

Спроектируем уравнение (1) на ось Динамика механической системы:

Динамика механической системы

Поскольку проекции сил Динамика механической системы и Динамика механической системы на ось Динамика механической системы равны нулю, то и проекции импульсов Динамика механической системы и Динамика механической системы также равны нулю. Итак:

Динамика механической системы или Динамика механической системы

Таким образом, проекция количества движения системы на ось Динамика механической системы в конечный момент времени равна проекции количества движения системы в начальный момент времени.

В начальный момент времени (до выстрела) снаряд и ствол были неподвижны, следовательно, их количества движения равнялись нулю и

Динамика механической системы

В момент вылета снаряда проекция количества движения системы на ось равна:

Динамика механической системы

или

Динамика механической системы

Поскольку

Динамика механической системы

то

Динамика механической системы

откуда

Динамика механической системы и Динамика механической системы

С учетом числовых значений:

Динамика механической системы

Знак минус показывает, что скорость ствола направлена в сторону, противоположную скорости снаряда.

Ответ: Динамика механической системы

Задача № 4

Буксирный пароход весом Динамика механической системы набрал скорость Динамика механической системы, после чего натянулся буксирный канат, и баржа весом Динамика механической системы двинулась вслед за пароходом.

Определить общую скорость парохода и баржи Динамика механической системы, считая, что движущая сила и сила сопротивления воды уравновешиваются, то есть, (Динамика механической системыДинамика механической системыдв = Динамика механической системысоп (Динамика механической системы).

Решение. Для определения скорости Динамика механической системы применим теорему об изменении количества движения системы.

На систему, которая состоит из парохода и баржи, действуют внешние силы: силы тяжести Динамика механической системы и Динамика механической системы, силы выталкивания Динамика механической системы и Динамика механической системы, которые приложены к баржи и буксиру, а также движущая сила Динамика механической системыдв и сила сопротивления воды Динамика механической системысоп (рис.7.5).

Динамика механической системы

Внутренняя сила – натяжение буксирного каната Динамика механической системы – неизвестна.

Ось Динамика механической системы направим горизонтально, вправо.

Запишем теорему об изменении количества движения данной системы в интегральной форме:

Динамика механической системы

где Динамика механической системы – количество движения системы баржа-буксир в тот момент времени, когда они начинают двигаться с одинаковой скоростью;

Динамика механической системы – количество движения этой системы в начальный момент времени;

Динамика механической системы – сумма импульсов всех внешних сил.

Спроектируем уравнение (1) на ось Динамика механической системы:

Динамика механической системы

Поскольку по условиям Динамика механической системыдв = Динамика механической системысоп, а направлены они в разные стороны, то

Динамика механической системы

Кроме того, проекции на ось Динамика механической системы сил тяжести парохода и баржи, а также выталкивающих сил Динамика механической системы и Динамика механической системы, равны нулю. Следовательно, проекции импульсов этих сил на ось Динамика механической системы тоже равны нулю. Таким образом уравнение проекций принимает вид:

Динамика механической системы или Динамика механической системы

Подсчитаем количество движения парохода и баржи в начальный момент времени, когда скорость парохода равна Динамика механической системы, а скорость баржи Динамика механической системы.

Динамика механической системы

Совместимое движение парохода и баржи происходит с одинаковой скоростью Динамика механической системы, поэтому количество движения системы в это время

Динамика механической системы

Поскольку

Динамика механической системы

то Динамика механической системы

Отсюда имеем

Динамика механической системы

Ответ: Динамика механической системы

Задача № 5

Механическая система состоит из грузов 1 и 2 массами Динамика механической системы и Динамика механической системы соответственно, а также прямоугольной вертикальной плиты 3 массой Динамика механической системы которая движется вдоль горизонтальных направляющих( рис.7.6). В момент времени Динамика механической системы, когда скорость плиты Динамика механической системы груз под действием внутренних сил начинают двигаться по желобам плиты. Груз 1 движется по дуге окружности с радиусом Динамика механической системы по закону Динамика механической системы, где Динамика механической системы выражено в радианах, Динамика механической системы – в секундах (ось, от которой ведется положительное направление отсчета угла Динамика механической системы показано на рисунке). Груз 2 движется от точки Динамика механической системы прямолинейно по закону Динамика механической системы, где Динамика механической системы выражено в метрах, Динамика механической системы – в секундах (на рисунке груз 2 изображен в положении положительного отсчета координаты Динамика механической системы), угол Динамика механической системы.

Определить зависимость Динамика механической системы, то есть, скорость движения плиты как функцию времени, считая грузы материальными точками и пренебрегая всеми силами сопротивления движения.

Решение. Рассмотрим механическую систему в произвольном положении (рис.7.6).

Изобразим все внешние силы, действующие на систему: силы тяжести Динамика механической системыДинамика механической системыДинамика механической системы и реакцию направляющей Динамика механической системы.

Проведем координатные оси Динамика механической системы так, чтобы ось Динамика механической системы проходила через точку Динамика механической системы, где находится центр масс плиты Динамика механической системы в начальный момент времени Динамика механической системы

Определим Динамика механической системы с помощью теоремы об изменении количества движения Динамика механической системы механической системы в проекции на ось Динамика механической системы.

Поскольку все внешние силы, действующие на систему, вертикальны, то Динамика механической системы и, согласно (7.10), имеем: 

Динамика механической системы или Динамика механической системы,                (1)

где Динамика механической системы – проекция количества движения системы в момент времени Динамика механической системы

Динамика механической системы– проекция количества движения системы в произвольный момент времени Динамика механической системы.

Определим количества движения Динамика механической системы и Динамика механической системы:

Динамика механической системы

где Динамика механической системы

Выразим координаты Динамика механической системы и Динамика механической системы через координату Динамика механической системы.

С рис.7.6 видно, что в произвольный момент времени абсцисса первого груза

Динамика механической системы

а абсцисса второго груза

Динамика механической системы

Тогда

Динамика механической системы

Динамика механической системы

Подставляя полученные выражения для Динамика механической системы и Динамика механической системы в (3), получим:

Динамика механической системы

Поскольку Динамика механической системы то 

Динамика механической системы

В соответствии с (1), выражения (2) и (4) равны, то есть:

Динамика механической системы

Отсюда окончательно получим: 

Динамика механической системы

Ответ: Динамика механической системы

Задачи, которые рекомендуются для самостоятельной работы: 28.3; 28.7; 36.9; 36.11; 36.16 [2].

Теорема об изменении момента количества движения точки и механической системы

Наряду с количеством движения, как векторной меры поступательного движения, для вращательного движения можно ввести момент количества движения.

Для материальной точки массой Динамика механической системы, которая имеет скорость Динамика механической системы, момент количества движения Динамика механической системы относительно любого центра Динамика механической системы определяется из выражения (рис.8.1):

Динамика механической системы

Динамика механической системы

Вектор момента количества движения прикладывается в точке Динамика механической системы, относительно которой он вычисляется. Если спроектировать обе части уравнения (8.1) на оси декартовой системы координат, получим моменты количества движения точки относительно осей координат:

Динамика механической системы

Кинетическим моментом Динамика механической системы или главным моментом количества движения механической системы относительно данного центра называется вектор, равный геометрической сумме моментов количеств движения всех материальных точек системы относительно этого же центра:

Динамика механической системы

Подобно тому, как количество движения системы является характеристикой поступательного движения, кинетический момент является характеристикой вращательного движения системы.

Кинетический момент твердого тела, которое вращается относительно оси Динамика механической системы с угловой скоростью Динамика механической системы, равной произведению угловой скорости тела на его момент инерции относительно оси вращения:

Динамика механической системы

Производная по времени от момента количества движения точки, взятого относительно любого неподвижного центра Динамика механической системы равна моменту силы, действующей на эту точку, относительно того же центра:

Динамика механической системы

Спроектировав это уравнение на оси координат, получим:

Динамика механической системы

Если рассматривать движение системы, на которую действуют внешние Динамика механической системы и внутренние силы Динамика механической системы, то производная по времени от кинетического момента механической системы относительно некоторого центра равна геометрической сумме моментов всех внешних сил относительно того же центра:

Динамика механической системы

Проектируя обе части уравнения на неподвижные оси Динамика механической системы и учитывая, что проекция вектора, который изображает момент силы относительно точки на ось, равна моменту силы относительно этой оси, получим:

Динамика механической системы

Теорема об изменении кинетического момента позволяет изучать вращательное движение твердого тела вокруг оси и точки, или вращательную часть движения тела в общем случае движения свободного твердого тела.

Практическая ценность теоремы заключается еще и в том, что она позволяет при изучении движения системы исключить из рассмотрения неизвестные внутренние силы.

Из теорем об изменении кинетического момента системы (8.7)-(8.8) вытекают важные выводы:

Если сумма моментов относительно центра Динамика механической системы всех внешних сил, действующих на систему, равна нулю, то кинетический момент системы Динамика механической системы относительно той же точки является постоянным по величине и направлению, то есть,

если Динамика механической системы, то Динамика механической системы и Динамика механической системы

Если сумма моментов всех внешних сил, действующих на систему, относительно некоторой оси, например Динамика механической системы, равна нулю, то проекция кинетического момента на эту же ось является постоянной по величине, то есть,

если Динамика механической системы. то Динамика механической системы и Динамика механической системы

Дифференциальное уравнение вращательного движения тела вокруг неподвижной оси

Кинетический момент тела относительно оси вращения по уравнению (8.4) , если ось Динамика механической системы является осью вращения тела, равен:

Динамика механической системы

Следовательно, 

Динамика механической системы

Сумма моментов внешних сил Динамика механической системы относительно оси вращения называется вращательным моментом и обозначается

Динамика механической системы

Таким образом, дифференциальное уравнение вращательного движения тела имеет вид:

Динамика механической системы

Из (8.9) следует, что произведение момента инерции тела относительно оси вращения на угловое ускорение тела равно вращательному моменту

Динамика механической системы

Это уравнение позволяет решать следующие задачи:

– если заданы уравнения вращения тела Динамика механической системы и его момент инерции Динамика механической системы, то можно определить вращательный момент:

Динамика механической системы

– если заданы внешние силы, приложенные к телу, начальные условия вращения Динамика механической системы и Динамика механической системы, момент инерции Динамика механической системы тела, то можно найти уравнение вращения тела Динамика механической системы:

Динамика механической системы

– определить момент инерции тела Динамика механической системы относительно оси вращения, если известны величины Динамика механической системы и Динамика механической системы:

Динамика механической системы

Из уравнения Динамика механической системы вытекают отдельные случаи:

1. Если Динамика механической системы, то Динамика механической системы, а если Динамика механической системы, то и Динамика механической системы. В этом случае тело вращается равномерно.

2. Если Динамика механической системы, то Динамика механической системы, а если Динамика механической системы то и Динамика механической системы. Итак, твердое тело вращается равнопеременно. 

Порядок решения задач на применение теоремы об изменении момента количества движения точки и механической системы

Задачи, которые относятся к этой теме, можно разделить на следующие четыре основных типа:

Вычисление кинетического момента.

Изучение движения конкретной точки механической системы, если эта точка участвует во вращательном движении системы.

Изучение вращательного движения твердого тела.

Изучение движения механической системы, в которую входят тела, совершающие как поступательные, так и вращательные движения.

Задачи первого типа могут быть решены с помощью общих формул (8.4), (8.5).

Порядок решения задач второго типа может быть следующим:

  • Выбрать систему координат.
  • Изобразить все внешние силы, приложенные к материальной точке; в случае произвольной точки к этим силам добавить реакции внешних связей.
  • Записать в скалярной форме выражение теоремы об изменении момента количества движения точки.
  • Высчитать сумму моментов сил, которые приложены к материальной точке.
  • Определить количество движения материальной точки и его момент относительно осей.
  • Подставить данные пунктов 4 и 5 в уравнения (8.6) теоремы об изменении момента количества движения материальной точки.
  • Решить, в соответствии с условием, прямую или обратную задачу динамики точки.

При решении задач третьего типа сохранять рекомендации первых двух пунктов, а далее делать следующим образом:

  • Записать дифференциальное уравнение вращательного движения тела вокруг неподвижной оси (8.9).
  • Динамика механической системы
  • Определить момент инерции твердого тела относительно неподвижной оси.
  • Подсчитать сумму моментов всех внешних сил относительно оси вращения.
  • Величины, полученные в п. п. 4 и 5, подставить в уравнение (8.9).
  • Записать начальные условия.
  • Решить уравнение п. 6 в зависимости от условия, как прямую или обратную задачу.

При решении задач четвертого типа необходимо предварительно расчленить заданную систему на отдельные твердые тела, и к каждому из них, в зависимости от характера движения, применить одну из теорем: об изменении количества движения – в случае поступательного движения тел расчлененной системы; об изменении кинетического момента – при наличии тел, которые совершают вращательные движения.

Примеры решения задач на тему: Теорема об изменении момента количества движения точки и механической системы

Задача №1

Однородный круглый диск весом Динамика механической системы и с радиусом Динамика механической системы катится без скольжения по горизонтальной плоскости, делая вокруг собственной оси 60 об/мин (рис.8.2).

Динамика механической системы

Определить главный момент количеств движения диска Динамика механической системы  относительно оси Динамика механической системы, которая проходит через центр диска перпендикулярно плоскости движения.

Решение. Главный момент количеств движения системы (кинетический момент) относительно оси вращения равен (8.6):

Динамика механической системы

где Динамика механической системы – момент инерции тела относительно оси вращения,

Динамика механической системы – угловая скорость вращения.

В данном случае кинетический момент относительно оси, проходящей через центр диска Динамика механической системы, равен:

Динамика механической системы

Динамика механической системы

Ответ: Динамика механической системы

Задача №2

Во время вращения барабана 1 весом Динамика механической системы и радиусом Динамика механической системы вокруг неподвижной оси Динамика механической системы на его боковую поверхность наматывается невесомая и нерастяжимая нить, что вызывает движение груза 2 весом Динамика механической системы, который скользит по неподвижной гладкой горизонтальной плоскости (рис.8.3).

Динамика механической системы

Определить главный момент количества движения (кинетический момент) системы относительно оси Динамика механической системы и выразить его как зависимость от угловой скорости. Барабан считать однородным круглым цилиндром. Ось Динамика механической системы направлена перпендикулярно рисунку.

Решение. В состав механической системы входят два твердых тела: барабан 1 и груз 2.

Следовательно, кинетический момент системы равен:

Динамика механической системы

где Динамика механической системы – кинетический момент барабана;

Динамика механической системы – кинетический момент груза относительно неподвижной оси Динамика механической системы.

Кинетический момент барабана равен (8.5):

Динамика механической системы

где

Динамика механической системы

тогда

Динамика механической системы

Главный момент количества движения груза, который движется поступательно, определяется как момент количества движения материальной точки, то есть:

Динамика механической системы

поскольку

Динамика механической системы

то

Динамика механической системы

Окончательно

Динамика механической системы

Ответ: Динамика механической системы

Задача №3

Шарик Динамика механической системы, который находится в сосуде с жидкостью и прикреплен к концу стержня Динамика механической системы длиной Динамика механической системы, приводится в вращение вокруг вертикальной оси Динамика механической системы с начальной угловой скоростью Динамика механической системы (рис.8.4, а). Сила сопротивления жидкости пропорциональна угловой скорости вращения Динамика механической системы: Динамика механической системы, где Динамика механической системы – масса шарика, Динамика механической системы – коэффициент пропорциональности.

Динамика механической системы

Определить, через какой промежуток времени Динамика механической системы угловая скорость вращения станет вдвое меньше начальной, а также число оборотов Динамика механической системы, которое сделает стержень с шариком за этот промежуток времени. Массу шарика считать сосредоточенной в ее центре, массой стержня пренебречь.

Решение. Ось Динамика механической системы направим вдоль оси вращения Динамика механической системы и покажем силы, действующие на вал с шариком: силу сопротивления Динамика механической системы, которая направлена в сторону, противоположную вращению (рис.8.4, б), силу тяжести шарика Динамика механической системы, реакции Динамика механической системы подшипника Динамика механической системы и Динамика механической системы подпятника Динамика механической системы.

Все силы указаны на рисунках, направления сил Динамика механической системы и Динамика механической системы изображены произвольно.

Запишем дифференциальное уравнение вращательного движения шарика относительно оси Динамика механической системы:

Динамика механической системы

где момент инерции шарика

Динамика механической системы

Поскольку момент силы тяжести Динамика механической системы относительно оси Динамика механической системы равен нулю ( Динамика механической системы параллельна оси Динамика механической системы), то вращательный момент Динамика механической системы равен моменту силы сопротивления Динамика механической системы относительно оси Динамика механической системы (как известно, момент силы сопротивления всегда отрицательный):

Динамика механической системы

Следовательно, дифференциальное уравнение вращательного движения имеет вид:

Динамика механической системы

или

Динамика механической системы

Разделим переменные и проинтегрируем:

Динамика механической системы

Произвольную постоянную Динамика механической системы определим по начальным условиям: при Динамика механической системы.

Динамика механической системы

Следовательно,

Динамика механической системы

Высчитаем, через какой промежуток времени Динамика механической системы угловая скорость вращения станет вдвое меньше начальной, то есть, Динамика механической системы.

Динамика механической системы

Откуда:

Динамика механической системы

Для определения числа оборотов, которые сделает стержень с шариком за промежуток времени Динамика механической системы, необходимо найти зависимость угла поворота Динамика механической системы от времени Динамика механической системы:

Динамика механической системы

Следовательно,

Динамика механической системы

Разделим переменные и проинтегрируем это дифференциальное уравнение:

Динамика механической системы

Произвольную постоянную Динамика механической системы определим по начальным условиям: при Динамика механической системы.

Динамика механической системы

Итак закон изменения угла поворота Динамика механической системы по времени имеет вид:

Динамика механической системы

или

Динамика механической системы

При Динамика механической системы, угол поворота Динамика механической системы равен

Динамика механической системы

Поскольку за 1 оборот шарик обернется на Динамика механической системы, то количество оборотов Динамика механической системы составит

Динамика механической системы

Ответ: Динамика механической системы

Задача №4

Для определения момента трения в цапфах, на вал насажен маховик весом Динамика механической системы, радиус инерции маховика Динамика механической системы Маховику придана угловая скорость, соответствующая Динамика механической системы об/мин. Без внешнего воздействия на него, он остановился через Динамика механической системы мин.

Определить момент трения Динамика механической системы, считая его постоянным.

Решение. Направим ось Динамика механической системы вдоль неподвижной оси вращения. Изобразим на рис.8.5 внешние нагрузки, действующие на вал и маховик: силу тяжести маховика Динамика механической системы, реакции опор Динамика механической системы и Динамика механической системы  и момент сил трения Динамика механической системы.

Запишем теорему об изменении кинетического момента относительно оси вращения:

Динамика механической системы

Поскольку мы рассматриваем вращение твердого тела, то 

Динамика механической системы

Найдем вращательный момент внешних сил относительно оси вращения Динамика механической системы, если учтем, что момент сил Динамика механической системы, Динамика механической системы и Динамика механической системы относительно оси Динамика механической системы равны нулю, поскольку эти силы пересекают ось. Следовательно, вращательный момент равен моменту сил трения и направлен в сторону, противоположную вращению маховика.

Таким образом

Динамика механической системы

Высчитаем величины, которые входят в это уравнение:

Динамика механической системы

где Динамика механической системы – угловая скорость маховика в момент остановки, Динамика механической системы,

Динамика механической системы – угловая скорость в начальный момент времени.

Поскольку Динамика механической системы то Динамика механической системы

С учетом значений Динамика механической системы и Динамика механической системы получим:

Динамика механической системы

Ответ: Динамика механической системы

Задача №5

Однородный цилиндр (рис.8.6) радиусом Динамика механической системы вращается вокруг своей геометрической оси Динамика механической системы угловой скоростью Динамика механической системы.

Динамика механической системы

Определить, как изменится угловая скорость Динамика механической системы цилиндра, если ось вращения перейдет в положение Динамика механической системы, которое совпадает с образующей цилиндра?

Решение. На цилиндр действует сила тяжести Динамика механической системы, которая направлена вертикально вниз.

Запишем теорему об изменении кинетического момента цилиндра:

Динамика механической системы

где Динамика механической системы – момент инерции цилиндра,

Динамика механической системы – сумма моментов внешних сил относительно оси вращения.

Поскольку сила Динамика механической системы параллельна оси вращения, то

Динамика механической системы и Динамика механической системы

Итак, Динамика механической системы, тогда

Динамика механической системы

где Динамика механической системы – момент инерции цилиндра относительно оси Динамика механической системы,

Динамика механической системы – момент инерции цилиндра относительно оси Динамика механической системы,

По теореме Гюйгенса-Штейнера

Динамика механической системы

где Динамика механической системы – масса цилиндра.

Из формулы (1) получим:

Динамика механической системы

Вычислим Динамика механической системыи Динамика механической системы:

Динамика механической системы

Следовательно,

Динамика механической системы

Угловая скорость уменьшилась в три раза, поскольку в три раза увеличился момент инерции.

Ответ: Динамика механической системы

Задача №6

Молотильный барабан начинает вращаться из состояния покоя (Динамика механической системы) под действием постоянного момента Динамика механической системы

Определить, пренебрегая трением, частоту вращения барабана после того, как он начнет вращаться и сделает Динамика механической системы оборотов (рис.8.7), зная, что момент инерции барабана относительно оси вращения Динамика механической системы

Динамика механической системы

Решение. Для определения угловой скорости барабана воспользуемся формулой:

Динамика механической системы

где Динамика механической системы – начальная угловая скорость вращения,

Динамика механической системы – конечная угловая скорость вращения,

Динамика механической системы – угол, на который поворачивается барабан.

Из (1) вытекает:

Динамика механической системы где Динамика механической системы

Следовательно,

Динамика механической системы

Таким образом, для определения угловой скорости необходимо знать угловое ускорение Динамика механической системы.

Для определения Динамика механической системы воспользуемся теоремой об изменении кинетического момента:

Динамика механической системы

где Динамика механической системы – сумма моментов всех внешних сил относительно оси вращения.

На барабан действуют следующие внешние нагрузки: Динамика механической системы – сила тяжести барабана; Динамика механической системы,
Динамика механической системы – реакции подшипников Динамика механической системы и Динамика механической системы; Динамика механической системы – вращательный момент.

С учетом действующих сил уравнение (2) будет иметь вид:

Динамика механической системы

При этом Динамика механической системы, поскольку силы Динамика механической системыДинамика механической системы и 
Динамика механической системы пересекают ось Динамика механической системы и моментов не образуют. Итак,

Динамика механической системы

Тогда,

Динамика механической системы

Ответ: Динамика механической системы

Задача №7

Груз весом Динамика механической системы подвешен на канате, который навитый на цилиндрический барабан, ось вращения которого горизонтальна (рис.8.8).

Динамика механической системы

Определить угловое ускорение барабана Динамика механической системы во время опускания груза Динамика механической системы, пренебрегая весом каната, сопротивлением воздуха, трением в подшипниках. Барабан считать однородным цилиндром весом Динамика механической системы и радиусом Динамика механической системы

Решение. Для определения углового ускорения Динамика механической системы барабана будем рассматривать движение системы, в которую включим следующие тела: барабан весом Динамика механической системы, груз весом Динамика механической системы и канат, натяжение которого заранее неизвестно.

Если применить теорему об изменении кинетического момента системы относительно оси, то натяжение каната, являющегося внутренней силой, в уравнение не войдет.

Относительно оси, которая проходит через точку Динамика механической системы, эта теорема имеет вид:

Динамика механической системы

На систему действуют следующие внешние силы: Динамика механической системы – вес груза, Динамика механической системы – вес барабана, Динамика механической системы – реакция опоры Динамика механической системы.

Силы Динамика механической системы и Динамика механической системы не создают моментов относительно оси Динамика механической системы, потому что они ее пересекают. Только сила Динамика механической системы создает момент относительно оси Динамика механической системы, который равен:

Динамика механической системы

Итак,

Динамика механической системы

Определим кинетический момент системы относительно оси вращения Динамика механической системы:

Динамика механической системы

где Динамика механической системы – кинетический момент барабана,

Динамика механической системы – кинетический момент груза.

Динамика механической системы

где Динамика механической системы – момент инерции барабана относительно оси вращения Динамика механической системы;

Динамика механической системы

поскольку Динамика механической системы

Тогда кинетический момент системы равен:

Динамика механической системы

Подставим полученные результаты в уравнение (1):

Динамика механической системы

Знак момента силы Динамика механической системы взят положительным, поскольку направление вращения барабана совпадает с направлением момента силы Динамика механической системы.

Решаем уравнение (2) и определяем угловое ускорение Динамика механической системы.

Выносим из под знака дифференциала в левой части уравнения (2) постоянные величины:

Динамика механической системы

или

Динамика механической системы

С учетом числовых значений угловое ускорение Динамика механической системы равно:

Динамика механической системы

Ответ: Динамика механической системы

Теорема об изменении кинетической энергии механической системы

Теорема о кинетической энергии системы — одна из общих теорем динамики, является следствием законов Ньютона. Связывает кинетическую энергию механической системы с работой сил, действующих на тела, составляющие систему.

Кинетическая энергия механической системы

Кинетической энергией Динамика механической системы материальной точки называется скалярная положительная величина, равная половине произведения массы точки на квадрат ее скорости:

Динамика механической системы

Кинетической энергией Динамика механической системы механической системы называется арифметическая сумма кинетических энергий всех точек механической системы:

Динамика механической системы

Кинетическая энергия системы не зависит от направлений скоростей точек.

Кинетическая энергия может равняться нулю, если скорости всех точек системы равны нулю.

Кинетическая энергия системы характеризует и поступательное, и вращательное движения системы. Поэтому теоремой об изменении кинетической энергии особенно часто пользуются при решении задач.

Единицей кинетической энергии в системе СИ является Джоуль (Дж).

Определение кинетической энергии твердого тела в различных случаях его движения

Поступательное движение твердого тела:

При поступательном движении твердого тела скорости всех его точек (в том числе скорость Динамика механической системы центра масс тела) в каждый момент времени равны между собой; то есть, для любой точки Динамика механической системы. Итак

Динамика механической системы

Кинетическая энергия твердого тела при поступательном движении равна половине произведения массы тела Динамика механической системы на квадрат скорости его центра масс.

Вращательное движение твердого тела:

Скорость любой точки твердого тела, которое вращается с угловой скоростью Динамика механической системы, равна

Динамика механической системы

где Динамика механической системы – расстояние от точки к оси вращения.

Тогда кинетическая энергия тела определяется согласно зависимости:

Динамика механической системы

Поскольку

Динамика механической системы

то

Динамика механической системы

Следовательно кинетическая энергия тела при вращательном движении равна половине произведения момента инерции тела относительно оси вращения на квадрат угловой скорости тела.

Плоскопараллельное движение твердого тела:

При плоскопараллельном движении скорости всех точек тела в каждый момент времени распределены так, будто тело вращается вокруг оси, которая перпендикулярна плоскости движения и которая проходит через мгновенный центр скоростей Динамика механической системы.

В этом случае кинетическую энергию тела можно определить по формуле:

Динамика механической системы

где Динамика механической системы – момент инерции тела относительно оси, которая проходит через мгновенный центр скоростей.

Поскольку (согласно теореме Штейнера-Гюйгенса)

Динамика механической системы

где Динамика механической системы – момент инерции относительно оси, которая проходит через центр масс тела и параллельна мгновенной оси вращения, то

Динамика механической системы

Поскольку Динамика механической системы, то окончательно

Динамика механической системы

Таким образом, 

в случае плоскопараллельного движения тела кинетическая энергия состоит из кинетических энергий поступательного движения вместе со скоростью центра масс и вращательного движения вокруг оси, которая проходит через центр масс перпендикулярно плоскости движения.

Теорема об изменении кинетической энергии механической системы:

Дифференциальная форма:

Дифференциал кинетической энергии механической системы равен сумме элементарных работ всех внешних и внутренних сил, действующих на систему:

Динамика механической системы

Производная по времени от кинетической энергии механической системы равна сумме мощностей всех внешних и внутренних сил, действующих на систему:

Динамика механической системы

Интегральная форма:

Изменение кинетической энергии механической системы при конечном перемещении ее из положения (1) в положение (2) равно сумме работ на этом перемещении всех внешних и внутренних сил, действующих на эту систему

Динамика механической системы

Если механическая система неизменна, то сумма работ внутренних сил равна нулю и теорема запишется так:

Динамика механической системы

Порядок решения задач на использование теоремы об изменении кинетической энергии механической системы

Решение задач с помощью теоремы об изменении кинетической энергии в интегральной форме рекомендуется проводить в следующей последовательности:

а) изобразить на рисунке все внешние силы системы;

б) высчитать сумму работ всех внешних сил на перемещении точек системы;

в) вычислить кинетическую энергию системы материальных точек в начальном и конечном ее состояниях;

г ) пользуясь результатами подсчетов по пунктам б) и в) записать теорему об изменении кинетической энергии механической системы и определить искомую величину.

Примеры решения задач на тему: Теорема об изменении кинетической энергии механической системы

Задача № 1

Механизм эллипсографа (рис.10.1) состоит из ползунов Динамика механической системы и Динамика механической системы весом Динамика механической системы каждый, кривошипа Динамика механической системы весом Динамика механической системы, и линейки Динамика механической системы весом Динамика механической системы. Кривошип Динамика механической системы вращается вокруг неподвижной оси Динамика механической системы, которая перпендикулярна плоскости чертежа с угловой скоростью Динамика механической системы.

Определить кинетическую энергию механизма эллипсографа, полагая, что линейка Динамика механической системы и кривошип Динамика механической системы – однородные тонкие стержни, а ползуны Динамика механической системы и Динамика механической системы – материальные точки, а также, что Динамика механической системы

Динамика механической системы

Решение. Заданная механическая система состоит из четырех тел: кривошипа 1 и линейки 2, ползунов 3 и 4.

Кинетическая энергия всей системы равна:

Динамика механической системы

где Динамика механической системы – кинетическая энергия кривошипа 1,

Динамика механической системы – кинетическая энергия линейки 2,

Динамика механической системы – кинетическая энергия ползунов 3 и 4.

Кривошип Динамика механической системы совершает вращательное движение вокруг неподвижной оси Динамика механической системы, которая перпендикулярна оси рисунка. В этом случае кинетическая энергия тела равна

Динамика механической системы

Тогда

Динамика механической системы

Линейка 2 движется плоскопараллельно. Ее кинетическая энергия равна

Динамика механической системы

где Динамика механической системы – скорость точки С, которая является центром масс линейки 2,

Динамика механической системы – угловая скорость линейки 2,

Динамика механической системы – момент инерции линейки относительно оси Динамика механической системы, которая проходит через центр масс линейки Динамика механической системы.

Для определения угловой скорости Динамика механической системы линейки 2 используем понятие мгновенного центра скоростей. Как известно, мгновенный центр скоростей находится на пересечении перпендикуляров к скоростям двух точек тела, движущихся плоскопараллельно. Тогда в нашем случае он будет расположен в точке Динамика механической системы, и скорость точки Динамика механической системы определится:

Динамика механической системы

С другой стороны, точка Динамика механической системы принадлежит звену 1, и ее скорость равна

Динамика механической системы

Тогда, учитывая, что Динамика механической системы получим:

Динамика механической системы

Момент инерции линейки относительно оси Динамика механической системы равен:

Динамика механической системы

С учетом полученных значений Динамика механической системы кинетическая энергия линейки 2 равна:

Динамика механической системы

Подсчитаем кинетическую энергию ползунов 3 и 4, которые двигаются поступательно:

Динамика механической системы.

Скорости точек Динамика механической системы можно определить, учитывая положение мгновенного центра скоростей линейки 2:

Динамика механической системы

Тогда

Динамика механической системы

Подставляя найденные выражения (2), (4), (5) в (1), получим:

Динамика механической системы

Ответ: Динамика механической системы

Задача № 2

На рисунке 10.2 изображен подъемный механизм лебедки. Груз Динамика механической системы весом Динамика механической системы поднимается с помощью невесомого и нерастяжимого троса, который переброшен через блок Динамика механической системыи намотан на барабан Динамика механической системы радиусом Динамика механической системы и весом Динамика механической системы. К барабану приложен вращательный момент, который пропорционален квадрату угла поворота Динамика механической системы барабану: 

Динамика механической системы

где Динамика механической системы – постоянный коэффициент.

Динамика механической системы

Определить скорость груза Динамика механической системы в момент, когда он поднимется на высоту Динамика механической системы. Массу барабана Динамика механической системы считать равномерно распределенной вдоль его обода. Блок Динамика механической системы – сплошной диск весом Динамика механической системы. В начальный момент система находилась в покое.

Решение. Изобразим на рисунке все внешние силы, действующие на барабан Динамика механической системы, блок Динамика механической системы и груз Динамика механической системы: силы тяжести Динамика механической системыДинамика механической системыДинамика механической системы; вращательный момент, а также реакции шарниров Динамика механической системы и Динамика механической системы. Внутренней силой является натяжение троса Динамика механической системы.

Запишем теорему об изменении кинетической энергии системы:

Динамика механической системы

где Динамика механической системы – кинетическая энергия системы в конечном положении;

Динамика механической системы – кинетическая энергия системы в исходном положении;

Динамика механической системы – сумма работ всех внешних сил на перемещении Динамика механической системы;

Динамика механической системы – сумма работ всех внутренних сил на перемещении Динамика механической системы.

Поскольку в начальный момент времени система находилась в состоянии покоя, то

Динамика механической системы

В связи с тем, что трос не растягивается и при движении системы находится в натянутом состоянии, сумма работ внутренних сил системы равна нулю, следовательно

Динамика механической системы

При поднятии груза Динамика механической системы на высоту Динамика механической системы сумма работ равна:

Динамика механической системы

Поскольку точки приложения сил Динамика механической системы и Динамика механической системы – неподвижны, то

Динамика механической системы

Работа силы Динамика механической системы равна:

Динамика механической системы

Работа вращательного момента в случае, когда он не меняется

Динамика механической системы

где Динамика механической системы – угол поворота тела под действием момента.

Поскольку в нашем случае вращательный момент меняется, то его работа определится следующим образом:

Динамика механической системы

Определим угол Динамика механической системы, на который вернулся барабан Динамика механической системы при подъеме груза Динамика механической системы на высоту Динамика механической системы:

Динамика механической системы

Следовательно,

Динамика механической системы

Таким образом,

Динамика механической системы

Перейдем к подсчету кинетической энергии системы в конечном положении:

Динамика механической системы

где Динамика механической системы – кинетическая энергия груза Динамика механической системы;

Динамика механической системы – кинетическая энергия диска Динамика механической системы;

Динамика механической системы – кинетическая энергия барабана Динамика механической системы.

Груз Динамика механической системы движется поступательно и его кинетическая энергия равна:

Динамика механической системы

Диск Динамика механической системы совершает вращательное движение, его кинетическая энергия определяется из выражения:

где Динамика механической системы – момент инерции диска относительно оси вращения;

Динамика механической системы – угловая скорость диска.

Поскольку диск Динамика механической системы– сплошной, то Динамика механической системы равен:

Динамика механической системы

где Динамика механической системы – радиус диска.

Поскольку линейная скорость обода диска равна скорости груза, угловая скорость вращения Динамика механической системы:

Динамика механической системы

Итак,

Динамика механической системы

Кинетическая энергия барабана Динамика механической системы, поскольку он совершает вращательное движение, равна:

Динамика механической системы

Поскольку масса барабана Динамика механической системы распределена по ободу, то:

Динамика механической системы

Угловую скорость барабана высчитаем из условия равенства линейных скоростей на ободах диска и барабана:

Динамика механической системы

Откуда

Динамика механической системы

Таким образом

Динамика механической системы

Кинетическая энергия системы в конечном положении равна

Динамика механической системы

Итак, теорема об изменении кинетической энергии системы имеет вид:

Динамика механической системы

Решая это уравнение относительно Динамика механической системы, находим скорость груза Динамика механической системы после того, как он пройдет путь Динамика механической системы:

Динамика механической системы

Ответ:  Динамика механической системы

Задача № 3

Груз Динамика механической системы (рис.10.3) весом Динамика механической системы, опускаясь вниз с помощью перекинутого через неподвижный блок Динамика механической системы невесомого и нерастяжимого троса, поднимает вверх груз Динамика механической системы весом Динамика механической системы, который закреплен к оси подвижного блока Динамика механической системы. Блоки Динамика механической системы и Динамика механической системы считать однородными сплошными дисками весом Динамика механической системы каждый.

Динамика механической системы

Определить скорость груза Динамика механической системы в момент, когда он опустится на высоту Динамика механической системы. Скольжением на ободах блоков и силами сопротивления пренебречь.

В начальный момент система находилась в состоянии покоя.

Решение. Изобразим внешние силы, которые действуют на систему: силы тяжести Динамика механической системы;  реакцию шарнира Динамика механической системы и реакцию в точке Динамика механической системы – Динамика механической системы. Внутренней силой является натяжение троса Динамика механической системы.

Запишем теорему об изменении кинетической энергии системы:

Динамика механической системы

В начальный момент времени система находилась в покое, следовательно, Динамика механической системы. Работа внутренней силы натяжения троса, равна нулю. Итак,

Динамика механической системы

Сумма работ внешних сил при перемещении системы в конечное положение составляет:

Динамика механической системы

Работа сил Динамика механической системы равна нулю, поскольку точки приложения сил 3 Динамика механической системы неподвижны.

Итак,

Динамика механической системы

Работа силы Динамика механической системы при опускании груза Динамика механической системы на высоту Динамика механической системы равна:

Динамика механической системы

Работу силы тяжести Динамика механической системы блока Динамика механической системы определим следующим образом. При опускании груза Динамика механической системы на высоту Динамика механической системы точка Динамика механической системы блока Динамика механической системы поднимается вверх на расстояние Динамика механической системы, которая равна Динамика механической системы, а центр блока Динамика механической системы на величину Динамика механической системы, так как точка Динамика механической системы – мгновенный центр скоростей блока Динамика механической системы.

Таким образом,

Динамика механической системы

Груз Динамика механической системы поднимается вверх так же на величину Динамика механической системы. Тогда работа силы тяжести груза Динамика механической системы будет равна:

Динамика механической системы

Итак, 

Динамика механической системы

Вычислим кинетическую энергию системы в конечном положении:

Динамика механической системы

Груз Динамика механической системы перемещается поступательно и его кинетическая энергия равна

Динамика механической системы

где Динамика механической системы – скорость груза Динамика механической системы в конце перемещения.

Блок Динамика механической системы осуществляет плоскопараллельное движение. В этом случае:

Динамика механической системы

Кинетическая энергия поступательного движения блока Динамика механической системы равна:

Динамика механической системы

Поскольку точка Динамика механической системы – мгновенный центр скоростей блока Динамика механической системы, а скорость точки Динамика механической системы равна скорости груза Динамика механической системы, то скорость вращения блока Динамика механической системы:

Динамика механической системы

Тогда

Динамика механической системы

Таким образом,

Динамика механической системы

Кинетическая энергия вращательного движения блока Динамика механической системы определяется из равенства:

Динамика механической системы

где Динамика механической системы – момент инерции блока Динамика механической системы относительно оси, которая проходит через центр масс Динамика механической системы. Блок Динамика механической системы – сплошной однородный диск, поэтому

Динамика механической системы

Тогда

Динамика механической системы

Таким образом, кинетическая энергия блока Динамика механической системы равна:

Динамика механической системы

Блок Динамика механической системы совершает вращательное движение и его кинетическая энергия:

Динамика механической системы

то есть

Динамика механической системы

Груз Динамика механической системы совершает поступательное движение со скоростью точки Динамика механической системы то есть со скоростью Динамика механической системы. Поэтому 

Динамика механической системы

Следовательно, кинетическая энергия системы Динамика механической системы в конечном положении:

Динамика механической системы

Таким образом, теорема об изменении кинетической энергии системы имеет вид:

Динамика механической системы

Находим скорость груза Динамика механической системы, решая это уравнение относительно Динамика механической системы:

Динамика механической системы

Ответ: Динамика механической системы

Задача № 4

Прямоугольная пластинка Динамика механической системы (рис.10.4) со сторонами Динамика механической системы и Динамика механической системы, и весом Динамика механической системы вращается вокруг вертикальной оси Динамика механической системы с начальной угловой скоростью Динамика механической системы. Каждый элемент пластинки несет при этом сопротивление воздуха, направление которого перпендикулярно плоскости пластинки, а величина пропорциональна площади элемента и квадрату его скорости. Коэффициент пропорциональности равен Динамика механической системы.

Динамика механической системы

Определить, сколько оборотов сделает пластинка к тому мгновению, когда ее угловая скорость станет вдвое меньше начальной?

Решение. Поскольку силы сопротивления, приложенные к пластинке, не постоянные, а зависят от скорости, то для решения задачи воспользуемся теоремой об изменении кинетической энергии системы в дифференциальной форме:

Динамика механической системы

Высчитаем дифференциал кинетической энергии пластинки. Поскольку пластинка вращается вокруг неподвижной оси, то ее кинетическая энергия равна:

Динамика механической системы

откуда:

Динамика механической системы

где Динамика механической системы – момент инерции пластинки относительно оси Динамика механической системы.

Перейдем к определению суммы элементарных работ внешних сил, которые действуют на пластинку. Это такие силы (рис.10.4):

– сила тяжести пластинки Динамика механической системы;

– реакции в опорах Динамика механической системы и Динамика механической системы: Динамика механической системы и Динамика механической системы;

– сила сопротивления воздуха Динамика механической системы.

Итак,

Динамика механической системы

где Динамика механической системы – элементарная работа силы тяжести пластинки;

Динамика механической системы – элементарные работы реакций подшипников;

Динамика механической системы – элементарная работа силы сопротивления Динамика механической системы.

Работы реакций Динамика механической системы и Динамика механической системы равны нулю, ибо точки их приложения неподвижны. Работа силы тяжести Динамика механической системы тоже равна нулю в связи с тем, что высота центра тяжести пластинки не меняется.

Таким образом,

Динамика механической системы

Для вычета работы сил сопротивления воспользуемся формулой для работы сил, которые приложены к вращающемуся твердому телу:

Динамика механической системы

где Динамика механической системы – сумма моментов всех приложенных к телу сил относительно оси вращения;

Динамика механической системы – элементарный угол поворота.

Чтобы определить Динамика механической системы, разобьем пластинку на элементарные прямоугольники со сторонами Динамика механической системы и Динамика механической системы. Тогда сила сопротивления, приложенная к элементарному прямоугольнику, будет равняться:

Динамика механической системы

и

Динамика механической системы

Следовательно,

Динамика механической системы

или

Динамика механической системы

и

Динамика механической системы.

Таким образом, уравнение (1) принимает вид:

Динамика механической системы

Разделим переменные и проинтегрируем:

Динамика механической системы

Момент инерции пластинки составляет:

Динамика механической системы

Тогда

Динамика механической системы

Откуда находим:

Динамика механической системы

Число оборотов Динамика механической системы составляет:

Динамика механической системы

Ответ: Динамика механической системы

Услуги по теоретической механике:

  1. Заказать теоретическую механику
  2. Помощь по теоретической механике
  3. Заказать контрольную работу по теоретической механике

Учебные лекции:

  1. Статика
  2. Система сходящихся сил
  3. Момент силы
  4. Пара сил
  5. Произвольная система сил
  6. Плоская произвольная система сил
  7. Трение
  8. Расчет ферм
  9. Расчет усилий в стержнях фермы
  10. Пространственная система сил
  11. Произвольная пространственная система сил
  12. Плоская система сходящихся сил
  13. Пространственная система сходящихся сил
  14. Равновесие тела под действием пространственной системы сил
  15. Естественный способ задания движения точки
  16. Центр параллельных сил
  17. Параллельные силы
  18. Система произвольно расположенных сил
  19. Сосредоточенные силы и распределенные нагрузки
  20. Кинематика
  21. Кинематика твердого тела
  22. Движения твердого тела
  23. Динамика материальной точки
  24. Динамика плоского движения твердого тела
  25. Динамика относительного движения материальной точки
  26. Динамика твердого тела
  27. Кинематика простейших движений твердого тела
  28. Общее уравнение динамики
  29. Работа и мощность силы
  30. Обратная задача динамики
  31. Поступательное и вращательное движение твердого тела
  32. Плоскопараллельное (плоское) движение твёрдого тела
  33. Сферическое движение твёрдого тела
  34. Движение свободного твердого тела
  35. Сложное движение твердого тела
  36. Сложное движение точки
  37. Плоское движение тела
  38. Статика твердого тела
  39. Равновесие составной конструкции
  40. Равновесие с учетом сил трения
  41. Центр масс
  42. Колебания материальной точки
  43. Относительное движение материальной точки
  44. Статические инварианты
  45. Дифференциальные уравнения движения точки под действием центральной силы и их анализ
  46. Динамика системы материальных точек
  47. Общие теоремы динамики
  48. Теорема об изменении кинетической энергии
  49. Теорема о конечном перемещении плоской фигуры
  50. Потенциальное силовое поле
  51. Метод кинетостатики
  52. Вращения твердого тела вокруг неподвижной точки

Чтобы определить массу вещества надо. Как найти массу в физике

Что это такое?

Прежде чем приводить формулы массы в физике, дадим ей определение. Этим термином называется физическая величина, которая пропорциональна количеству материи, заключенной в данном теле. Следует не путать ее с количеством вещества, которое выражается в молях. Масса в СИ вычисляется в килограммах. Другими ее единицами являются тонны и граммы.

Вам будет интересно:Слово «кворум». Значение и происхождение термина. Нюансы определения

Масса бывает двух важных видов:

Первый вид рассматриваемой физической величины характеризует инерционные свойства тела, то есть способность некоторой силы изменять скорость тела, а также кинетическую энергию, которой оно обладает.

Канал ДНЕВНИК ПРОГРАММИСТА

Жизнь программиста и интересные обзоры всего. Подпишись, чтобы не пропустить новые видео.

Гравитационная масса связана с интенсивностью притяжения между любыми телами. Она играет важную роль в космосе, поскольку благодаря притяжению между звездами и планетами существует наша галактика и наша Солнечная система. Однако гравитационная масса проявляет себя и в повседневной жизни в виде наличия у всех тел некоторого веса.

Энергия

Выше были приведены разные формулы, как найти массу в физике. Завершая статью, хотелось бы отметить связь массы и энергии. Это связь носит фундаментальный характер, который отражает пространственно-временные свойства нашей Вселенной. Соответствующая формула массы в физике, полученная Альбертом Эйнштейном, имеет вид:

Квадрат скорости света c является коэффициентом перевода между массой и энергией. Это выражение говорит о том, что обе величины, по сути, являются одной и той же характеристикой материи.

Записанное выражение было подтверждено экспериментально при изучении ядерных реакций и реакций элементарных частиц.

Формулы для инерции

В физике формула нахождения массы инерционной имеет следующий вид:

Здесь F — сила, которая на тело действует и вызывает появление у него ускорения a. Формула показывает, что чем больше будет действующая сила и чем меньше она сообщит ускорение телу, тем больше инерционная масса m.

Помимо записанного выражения, следует привести еще одну формулу нахождения массы в физике, которая связана с явлением инерции. Эта формула имеет вид:

Здесь p — количество движения (импульс), v — скорость тела. Чем большим количеством движения обладает тело и чем меньше его скорость, тем большую инерционную массу оно имеет.

Примеры решения задач

Задача 1

имеется алюминиевый брусок со сторонами 3, 5 и 7 сантиметров. Какова его масса?

Найдем объем бруска:

V = 3 * 5 * 7 = 105 см 3 ;

Табличное значение плотности алюминия: 2800 кг/м 3 или 2,8 г/см 3 ;

Вычислим массу бруска:

m = 105 * 2,8 = 294 г.

Задача 2

Задача по смежной теме.

сколько энергии потребуется для того, чтобы довести воду комнатной температуры (20 градусов Цельсия) из стакана (ёмкость 200 мл) до температуры кипения?

Формула для гравитации

Математическое описание явления гравитации стало возможным благодаря многочисленным наблюдениям за движением космических тел. Результаты всех этих наблюдений в XVII веке обобщил Исаак Ньютон в рамках закона всемирного тяготения. Согласно этому закону, два тела, которые имеют массы m1 и m2, друг к другу притягиваются с такой силой F:

F = G * m1 * m2 / r2

Где r — расстояние между телами, G — некоторая постоянная.

Если в данное выражение подставить значение массы нашей планеты и ее радиус, тогда мы получим следующую формулу массы в физике:

Здесь F — сила тяжести, g — ускорение, с которым тела падают на землю вблизи ее поверхности.

Как известно, наличие силы тяжести обуславливает то, что все тела имеют вес. Многие путают вес и массу, полагая, что это одна и та же величина. Обе величины действительно связаны через коэффициент g, однако вес — величина изменчивая (она зависит от ускорения, с которым движется система). Кроме того, вес измеряется в ньютонах, а масса в килограммах.

Весы, которыми человек пользуется в быту (механические, электронные), показывают массу тела, однако измеряют его вес. Перевод между этими величинами является лишь вопросом калибровки прибора.

Понятие массы и ее появление в физике


Смотреть галерею
Перед тем как рассмотреть вопрос о том, как найти массу через объем и плотность, следует понять, откуда взялась масса в физике, и что она определяет. Сам термин «масса» происходит от латинского слова massa – глыба, вещество, тело, которое, в свою очередь, берет свое начало от греческого слова μᾶζα, буквально означающего «тесто».

Масса — физическое понятие, которое указывает на количество содержащейся в теле материи. В Международной системе единиц измерения ее измеряют в килограммах. Появление в физике этого понятия связано с двумя важными законами:

  1. Закон всемирного тяготения.
  2. Второй закон Ньютона.

В соответствии с концепцией всемирного тяготения два тела притягиваются друг к другу с силой, которая пропорциональна произведению двух постоянных величин. Эти постоянные величины получили название гравитационных масс этих тел. То есть гравитационная масса тела — это свойство самой материи, благодаря которому все тела притягиваются друг к другу.

Что касается второго закона Ньютона, то следует вспомнить, что любое ускорение, вызванное действием некоторой внешней силы на данное тело, пропорционально некоторой константе, которая называется инертной массой. В этом законе инертная масса определяет меру «сложности» изменения скорости движения данного тела.

Плотность и объем

Как было отмечено, масса — это неотъемлемое свойство материи, поэтому ее можно вычислить с помощью других физических характеристик тел. Этими характеристиками являются объем и плотность.

Объем представляет собой некоторую часть пространства, которая ограничена поверхностью тела. Измеряется он в кубических единицах длины, например, в м3.

Плотность — это свойство вещества, которое отражает количество материи, помещенной в единице объема.

Формула массы вещества через объем и плотность записывается так:

Чем больше объем тела и чем выше его плотность, тем большей массой оно обладает. В связи с этим фактом полезно вспомнить знаменитую загадку про то, что имеет большую массу: 1 тонна пуха или 1 тонна железа. В отсутствии выталкивающей архимедовой силы массы обоих веществ равны. Пух имеет гораздо меньшую плотность, чем железо, однако разница в плотности компенсируется аналогичной разницей в объеме.

Плотность тела — зависимость массы и объема

Например, железный куб с ребром 10 см имеет массу 7,8 кг, алюминиевый куб тех же размеров имеет массу 2,7 кг, а масса такого же куба изо льда 0,9 кг. Величина, характеризующая массу, приходящуюся на единичный объём данного вещества, называется плотностью. Плотность равна частному от массы тела и его объёма, т.е.

ρ = m/V, где ρ (читается «ро») плотность тела, m — его масса, V объём.

В Международной системе единиц СИ плотность измеряется в килограммах на кубический метр (кг/м3); также часто используются внесистемные единицы, например, грамм на кубический сантиметр (г/см3). Очевидно, 1 кг/м3 = 0,001 г/см3. Заметим, что при нагревании веществ их плотность уменьшается или (реже) увеличивается, но это изменение так незначительно, что при расчётах им пренебрегают.

Сделаем оговорку, что плотность газов непостоянна; когда говорится о плотности какого-нибудь газа, обычно имеется ввиду его плотность при 0 градусов по Цельсию и нормальном атмосферном давлении (760 миллиметров ртутного столба).

Относительная

Понятие об относительной массе применяется в атомной физике и в химии. Поскольку массы атомов и молекул имеют очень маленькие значения (≈10-27 кг), то оперировать ими на практике при решении задач оказывается крайне неудобно. Поэтому сообществом ученых было решено использовать так называемую относительную массу, то есть рассматриваемая величина выражается в единицах массы по отношению к массе известного эталона. Этим эталоном стала 1/12 массы атома углерода, которая равна 1,66057*10-27 кг. Соответствующая относительная величина получила название атомной единицы (а. е. м.).

Формулу относительной массы M можно записать так:

M = ma / (1 / 12 * mC)

Где ma — масса атома в килограммах, mC — масса атома углерода в килограммах. Например, если в это выражение подставить значение массы атома кислорода, то его а. е. м. будет равна:

M = 26,5606 * 10-27 / (1,66057 * 10-27) = 15,9949.

Поскольку а. е. м. является относительной величиной, то она не имеет размерности.

Удобство применения этого термина на практике заключается не только в небольших и целых значениях этой единицы измерения. Дело в том, что значение а. е. м. совпадает по величине с молярной массой, выраженной в граммах. Последняя представляет собой массу одного моль вещества.

Масса сплошной детали

Главная > Вычисление масс > Масса сплошной детали

9.05.2013 // Владимир Трунов

Это странное название статьи объясняется только тем, что детали одной и той же формы могут быть как сплошными, так и полыми (т.е. следующая статья будет называться «Масса полой детали»).

Тут самое время вспомнить, что масса тела — это его объем , умноженный на плотность его материала (см. таблицы плотностей): Объем сплошной детали — это… ее объем и больше ничего.

Примечание. В приведенных ниже формулах все размеры измеряются в миллиметрах, а плотность — в граммах на кубический сантиметр. Буквой обозначено отношение длины окружности к ее диаметру, составляющее примерно 3,14.

Рассмотрим несколько простых форм (более сложные, как вы помните, можно составить путем сложения или вычитания простых).

Масса параллелепипеда (бруска)

Объем параллелепипеда: , где — длина, — ширина, — высота. Тогда масса:

Масса цилиндра

Объем цилиндра: , где — диаметр основания, — высота цилиндра. Тогда масса:

Масса шара

Объем шара: , где — диаметр шара. Тогда масса:

Масса сегмента шара

Объем сегмента шара: , где — диаметр основания сегмента, — высота сегмента. Тогда масса:

Масса конуса

Объем любого конуса: , где — площадь основания, — высота конуса. Для круглого конуса: , где — диаметр основания, — высота конуса. Масса круглого конуса:

Масса усеченного конуса

Поскольку невозможно объять необъятное, рассмотрим только круглый усеченный конус. Его объем — это разность объемов двух вложенных конусов: с основаниями и : , где , . После никому не интересных алгебраических преобразований получаем: , где — диаметр большего основания, — диаметр меньшего основания, — высота усеченного конуса. Отсюда масса:

Масса пирамиды

Объем любой пирамиды равен одной трети произведения площади ее основания на высоту (то же самое, что и для конусов (часто мы не замечаем, насколько мироздание к нам благосклонно)): , где — площадь основания, — высота пирамиды. Для пирамиды с прямоугольным основанием: , где — ширина, — длина, — высота пирамиды. Тогда масса пирамиды:

Масса усеченной пирамиды

Рассмотрим усеченную пирамиду с прямоугольным основанием. Ее объем — это разность объемов двух подобных пирамид с основаниями и : , где , . Исчеркав половину тетрадного листа, получаем: , где , — ширина и длина большего основания, , — ширина и длина меньшего основания, — высота пирамиды. И, оставив в покое остальную половину листа, исходя из одних соображений симметрии, мы можем написать еще одну формулу, которая отличается от предыдущей только заменой W на L и наоборот. В чем разница между длиной и шириной? Только в том, что мы их так назвали. Назовем наоборот и получим: . Тогда масса усеченной прямоугольной пирамиды:

Для пирамиды с квадратным основанием (, ) формула выглядит проще:

I. Механика

Тестирование онлайн

Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назвать равномерным, оно является равноускоренным.

Угловая скорость

Выберем на окружности точку 1. Построим радиус. За единицу времени точка переместится в пункт 2. При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.

Период и частота

Период вращения T – это время, за которое тело совершает один оборот.

Частота вращение – это количество оборотов за одну секунду.

Частота и период взаимосвязаны соотношением

Связь с угловой скоростью

Линейная скорость

Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной. Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.

Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено – это есть период T. Путь, который преодолевает точка – это есть длина окружности.

Центростремительное ускорение

При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.

Используя предыдущие формулы, можно вывести следующие соотношения

Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.

Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

Вращение Земли

Земля участвует в двух основных вращательных движениях: суточном (вокруг своей оси) и орбитальном (вокруг Солнца). Период вращения Земли вокруг Солнца составляет 1 год или 365 суток. Вокруг своей оси Земля вращается с запада на восток, период этого вращения составляет 1 сутки или 24 часа. Широтой называется угол между плоскостью экватора и направлением из центра Земли на точку ее поверхности.

Связь со вторым законом Ньютона

Согласно второму закону Ньютона причиной любого ускорения является сила. Если движущееся тело испытывает центростремительное ускорение, то природа сил, действием которых вызвано это ускорение, может быть различной. Например, если тело движется по окружности на привязанной к нему веревке, то действующей силой является сила упругости.

Если тело, лежащее на диске, вращается вместе с диском вокруг его оси, то такой силой является сила трения. Если сила прекратит свое действие, то далее тело будет двигаться по прямой

Как вывести формулу центростремительного ускорения

Рассмотрим перемещение точки на окружности из А в В. Линейная скорость равна vA и vB соответственно. Ускорение – изменение скорости за единицу времени. Найдем разницу векторов.

Разница векторов есть . Так как , получим

Движение по циклоиде*

В системе отсчета, связанной с колесом, точка равномерно вращается по окружности радиуса R со скоростью , которая изменяется только по направлению. Центростремительное ускорение точки направлено по радиусу к центру окружности.

Теперь перейдем в неподвижную систему, связанную с землей. Полное ускорение точки А останется прежним и по модулю, и по направлению, так как при переходе от одной инерциальной системы отсчета к другой ускорение не меняется. С точки зрения неподвижного наблюдателя траектория точки А — уже не окружность, а более сложная кривая (циклоида), вдоль которой точка движется неравномерно.

Мгновенная скорость определяется по формуле

Движение по окружности с постоянной по модулю скоростью

теория по физике 🧲 кинематика

Криволинейное движение — движение, траекторией которого является кривая линия. Вектор скорости тела, движущегося по кривой линии, направлен по касательной к траектории. Любой участок криволинейного движения можно представить в виде движения по дуге окружности или по участку ломаной.

Движение по окружности с постоянной по модулю скоростью — частный и самый простой случай криволинейного движения. Это движение с переменным ускорением, которое называется центростремительным.

Особенности движения по окружности с постоянной по модулю скоростью:

  1. Траектория движения тела есть окружность.
  2. Вектор скорости всегда направлен по касательной к окружности.
  3. Направление скорости постоянно меняется под действием центростремительного ускорения.
  4. Центростремительное ускорение направлено к центру окружности и не вызывает изменения модуля скорости.

Период, частота и количество оборотов

Пусть тело двигается по окружности беспрерывно. Когда оно сделает один оборот, пройдет некоторое время. Когда тело сделает еще один оборот, пройдет еще столько же времени. Это время не будет меняться, потому что тело движется с постоянной по модулю скоростью. Такое время называют периодом.

Период — время одного полного оборота. Обозначается буквой T. Единица измерения — секунды (с).

t — время, в течение которого тело совершило N оборотов

За один и тот же промежуток времени тело может проходить лишь часть окружности или совершать несколько единиц, десятков, сотен или более оборотов. Все зависит от длины окружности и модуля скорости.

Частота — количество оборотов, совершенных в единицу времени. Обозначается буквой ν («ню»). Единица измерения — Гц.

N — количество оборотов, совершенных телом за время t.

Период и частота — это обратные величины, определяемые формулами:

Количество оборотов выражается следующей формулой:

Пример №1. Шарик на нити вращается по окружности. За 10 секунд он совершил 20 оборотов. Найти период и частоту вращения шарика.

Линейная и угловая скорости

Линейная скорость

Линейная скорость — это отношение пройденного пути ко времени, в течение которого этот путь был пройден. Обозначается буквой v. Единица измерения — м/с.

l — длина траектории, вдоль которой двигалось тело за время t

Линейную скорость можно выразить через период. За один период тело делает один оборот, то есть проходить путь, равный длине окружности. Поэтому его скорость равна:

R — радиус окружности, по которой движется тело

Если линейную скорость можно выразить через период, то ее можно выразить и через частоту — величину, обратную периоду. Тогда формула примет вид:

Выразив частоту через количество оборотов и время, в течение которого тело совершало эти обороты, получим:

Угловая скорость

Угловая скорость — это отношение угла поворота тела ко времени, в течение которого тело совершало этот поворот. Обозначается буквой ω. Единица измерения — радиан в секунду (рад./с).

ϕ — угол поворота тела. t — время, в течение которого тело повернулось на угол ϕ

Радиан — угол, соответствующий дуге, длина которой равна ее радиусу. Полный угол равен 2π радиан.

За один полный оборот тело поворачивается на 2π радиан. Поэтому угловую скорость можно выразить через период:

Выражая угловую скорость через частоту, получим:

Выразив частоту через количество оборотов, формула угловой скорости примет вид:

Сравним две формулы:

Преобразуем формулу линейной скорости и получим:

Отсюда получаем взаимосвязь между линейной и угловой скоростями:

Полезные факты

  • У вращающихся прижатых друг к другу цилиндров линейные скорости точек их поверхности равны: v1 = v2.
  • У вращающихся шестерен линейные скорости точек их поверхности также равны: v1 = v2.
  • Все точки вращающегося твердого тела имеют одинаковые периоды, частоты и угловые скорости, но разные линейные скорости. T1 = T2, ν1 = ν2, ω1 = ω2. Но v1 ≠ v2.

Пример №2. Период обращения Земли вокруг Солнца равен одному году. Радиус орбиты Земли равен 150 млн. км. Чему примерно равна скорость движения Земли по орбите? Ответ округлить до целых.

В году 365 суток, в одних сутках 24 часа, в 1 часе 60 минут, в одной минуте 60 секунд. Перемножив все эти числа между собой, получим период в секундах.

За каждую секунду Земля проходит расстояние, равное примерно 30 км.

Центростремительное ускорение

Центростремительное ускорение — ускорение с постоянным модулем, но меняющимся направлением. Поэтому оно вызывает изменение направления вектора скорости, но не изменяет его модуль. Центростремительное ускорение обозначается как aц.с.. Единица измерения — метры на секунду в квадрате (м/с 2 ). Центростремительное ускорение можно выразить через линейную и угловую скорости, период, частоту и количество оборотов/время:

Пример №3. Рассчитать центростремительное ускорение льва, спящего на экваторе, в системе отсчета, две оси которой лежат в плоскости экватора и направлены на неподвижные звезды, а начало координат совпадает с центром Земли.

Спящий лев сделает один полный оборот тогда, когда Земля сделает один оборот вокруг своей оси. Земля делает это за время, равное 1 сутки. Поэтому период обращения равен 1 суткам. Количество секунд в сутках: 1 сутки = 24•60•60 секунд = 86400 секунд = 86,4∙10 3 секунд.

Радиус Земли равен 6400 км. В метрах это будет 6,4∙10 6 . Теперь у нас есть все, что нужно для вычисления центростремительного ускорения. Подставляем данные в формулу:

Алгоритм решения

  1. Записать исходные данные.
  2. Записать формулу для определения искомой величины.
  3. Подставить известные данные в формулу и произвести вычисления.

Решение

Записываем исходные данные:

  • Радиус окружности, по которой движется автомобиль: R = 100 м.
  • Скорость автомобиля во время движения по окружности: v = 20 м/с.

Формула, определяющая зависимость центростремительного ускорения от скорости движения тела:

Подставляем известные данные в формулу и вычисляем:

pазбирался: Алиса Никитина | обсудить разбор | оценить

Точка движется по окружности радиусом R с частотой обращения ν. Как нужно изменить частоту обращения, чтобы при увеличении радиуса окружности в 4 раза центростремительное ускорение точки осталось прежним?

а) увеличить в 2 раза б) уменьшить в 2 раза в) увеличить в 4 раза г) уменьшить в 4 раза

Алгоритм решения

  1. Записать исходные данные.
  2. Определить, что нужно найти.
  3. Записать формулу зависимости центростремительного ускорения от частоты.
  4. Преобразовать формулу зависимости центростремительного ускорения от частоты для каждого из случаев.
  5. Приравнять правые части формул и найти искомую величину.

Решение

Запишем исходные данные:

Центростремительное ускорение определяется формулой:

Запишем формулы центростремительного ускорения для 1 и 2 случаев соответственно:

Так как центростремительное ускорение в 1 и 2 случае одинаково, приравняем правые части уравнений:

Произведем сокращения и получим:

Это значит, чтобы центростремительное ускорение осталось неизменным после увеличения радиуса окружности в 4 раза, частота должна уменьшиться вдвое. Верный ответ: «б».

pазбирался: Алиса Никитина | обсудить разбор | оценить

[spoiler title=”источники:”]

http://fizmat.by/kursy/kinematika/okruzhnost

[/spoiler]

Добавить комментарий