Загрузить PDF
Загрузить PDF
В физике, сила натяжения — это сила, действующая на веревку, шнур, кабель или похожий объект или группу объектов. Все, что натянуто, подвешено, поддерживается или качается на веревке, шнуре, кабеле и так далее, является объектом силы натяжения. Подобно всем силам, натяжение может ускорять объекты или становиться причиной их деформации. Умение рассчитывать силу натяжения является важным навыком не только для студентов физического факультета, но и для инженеров, архитекторов; те, кто строит устойчивые дома, должны знать, выдержит ли определенная веревка или кабель силу натяжения от веса объекта так, чтобы они не проседали и не разрушались. Приступайте к чтению статьи, чтобы научиться рассчитывать силу натяжения в некоторых физических системах.
-
1
Определите силы на каждом из концов нити. Сила натяжения данной нити, веревки является результатом сил, натягивающих веревку с каждого конца. Напоминаем, сила = масса × ускорение. Предполагая, что веревка натянута туго, любое изменение ускорения или массы объекта, подвешенного на веревке, приведет к изменению силы натяжения в самой веревке. Не забывайте о постоянном ускорении силы тяжести — даже если система находится в покое, ее составляющие являются объектами действия силы тяжести. Мы можем предположить, что сила натяжения данной веревки это T = (m × g) + (m × a), где «g» — это ускорение силы тяжести любого из объектов, поддерживаемых веревкой, и «а» — это любое другое ускорение, действующее на объекты.
- Для решения множества физических задач, мы предполагаем идеальную веревку — другими словами, наша веревка тонкая, не обладает массой и не может растягиваться или рваться.
- Для примера, давайте рассмотрим систему, в которой груз подвешен к деревянной балке с помощью одной веревки (смотрите на изображение). Ни сам груз, ни веревка не двигаются — система находится в покое. Вследствие этого, нам известно, чтобы груз находился в равновесии, сила натяжения должна быть равна силе тяжести. Другими словами, Сила натяжения (Ft) = Сила тяжести (Fg) = m × g.
- Предположим, что груз имеет массу 10 кг, следовательно, сила натяжения равна 10 кг × 9,8 м/с2 = 98 Ньютонов.
-
2
Учитывайте ускорение. Сила тяжести — не единственная сила, что может влиять на силу натяжения веревки — такое же действие производит любая сила, приложенная к объекту на веревке с ускорением. Если, к примеру, подвешенный на веревке или кабеле объект ускоряется под действием силы, то сила ускорения (масса × ускорение) добавляется к силе натяжения, образованной весом этого объекта.
- Предположим, что в нашем примере на веревку подвешен груз 10 кг, и вместо того, чтобы быть прикрепленным к деревянной балке, его тянут вверх с ускорением 1 м/с2. В этом случае, нам необходимо учесть ускорение груза, также как и ускорение силы тяжести, следующим образом:
- Ft = Fg + m × a
- Ft = 98 + 10 кг × 1 м/с2
- Ft = 108 Ньютонов.
- Предположим, что в нашем примере на веревку подвешен груз 10 кг, и вместо того, чтобы быть прикрепленным к деревянной балке, его тянут вверх с ускорением 1 м/с2. В этом случае, нам необходимо учесть ускорение груза, также как и ускорение силы тяжести, следующим образом:
-
3
Учитывайте угловое ускорение. Объект на веревке, вращающийся вокруг точки, которая считается центром (как маятник), оказывает натяжение на веревку посредством центробежной силы. Центробежная сила — дополнительная сила натяжения, которую вызывает веревка, «толкая» ее внутрь так, чтобы груз продолжал двигаться по дуге, а не по прямой. Чем быстрее движется объект, тем больше центробежная сила. Центробежная сила (Fc) равна m × v2/r где «m»– это масса, «v» — это скорость, и «r» — радиус окружности, по которой движется груз.
- Так как направление и значение центробежной силы меняются в зависимости от того, как объект движется и меняет свою скорость, то полное натяжение веревки всегда параллельно веревке в центральной точке. Запомните, что сила притяжения постоянно действует на объект и тянет его вниз. Так что, если объект раскачивается вертикально, полное натяжение сильнее всего в нижней точке дуги (для маятника это называется точкой равновесия), когда объект достигает максимальной скорости, и слабее всего в верхней точке дуги, когда объект замедляется.
- Давайте предположим, что в нашем примере объект больше не ускоряется вверх, а раскачивается как маятник. Пусть наша веревка будет длиной 1,5 м, а наш груз движется со скоростью 2 м/с, при прохождении через нижнюю точку размаха. Если нам нужно рассчитать силу натяжения в нижней точке дуги, когда она наибольшая, то сначала надо выяснить равное ли давление силы тяжести испытывает груз в этой точке, как и при состоянии покоя — 98 Ньютонов. Чтобы найти дополнительную центробежную силу, нам необходимо решить следующее:
- Fc = m × v2/r
- Fc = 10 × 22/1.5
- Fc =10 × 2,67 = 26,7 Ньютонов.
- Таким образом, полное натяжение будет 98 + 26,7 = 124,7 Ньютона.
-
4
Учтите, что сила натяжения благодаря силе тяжести меняется по мере прохождения груза по дуге. Как было отмечено выше, направление и величина центробежной силы меняются по мере того, как качается объект. В любом случае, хотя сила тяжести и остается постоянной, результирующая сила натяжения в результате тяжести тоже меняется. Когда качающийся объект находится не в нижней точке дуги (точке равновесия), сила тяжести тянет его вниз, но сила натяжения тянет его вверх под углом. По этой причине сила натяжения должна противодействовать части силы тяжести, а не всей ее полноте.
- Разделение силы гравитации на два вектора сможет помочь вам визуально изобразить это состояние. В любой точке дуги вертикально раскачивающегося объекта, веревка составляет угол «θ» с линией, проходящей через точку равновесия и центр вращения. Как только маятник начинает раскачиваться, сила гравитации (m × g) разбивается на 2 вектора — mgsin(θ), действуя по касательной к дуге в направлении точки равновесия и mgcos(θ), действуя параллельно силе натяжения, но в противоположном направлении. Натяжение может только противостоять mgcos(θ) — силе, направленной против нее — не всей силе тяготения (исключая точку равновесия, где все силы одинаковы).
- Давайте предположим, что, когда маятник отклоняется на угол 15 градусов от вертикали, он движется со скоростью 1,5 м/с. Мы найдем силу натяжения следующими действиями:
- Отношение силы натяжения к силе тяготения (Tg) = 98cos(15) = 98(0,96) = 94,08 Ньютона
- Центробежная сила (Fc) = 10 × 1,52/1,5 = 10 × 1,5 = 15 Ньютонов
- Полное натяжение = Tg + Fc = 94,08 + 15 = 109,08 Ньютонов.
-
5
Рассчитайте трение. Любой объект, который тянется веревкой и испытывает силу «торможения» от трения другого объекта (или жидкости), передает это воздействие натяжению в веревке. Сила трения между двумя объектами рассчитывается также, как и в любой другой ситуации — по следующему уравнению: Сила трения (обычно пишется как Fr) = (mu)N, где mu — это коэффициент силы трения между объектами и N — обычная сила взаимодействия между объектами, или та сила, с которой они давят друг на друга. Отметим, что трение покоя — это трение, которое возникает в результате попытки привести объект, находящийся в покое, в движение — отличается от трения движения — трения, возникающего в результате попытки заставить движущийся объект продолжать движение.
- Давайте предположим, что наш груз в 10 кг больше не раскачивается, теперь его буксируют по горизонтальной плоскости с помощью веревки. Предположим, что коэффициент трения движения земли равен 0,5 и наш груз движется с постоянной скоростью, но нам нужно придать ему ускорение 1м/с2. Эта проблема представляет два важных изменения — первое, нам больше не нужно рассчитывать силу натяжения по отношению к силе тяжести, так как наша веревка не удерживает груз на весу. Второе, нам придется рассчитать натяжение, обусловленное трением, также как и вызванное ускорением массы груза. Нам нужно решить следующее:
- Обычная сила (N) = 10 кг & × 9,8 (ускорение силы тяжести) = 98 N
- Сила трения движения (Fr) = 0,5 × 98 N = 49 Ньютонов
- Сила ускорения (Fa) = 10 kg × 1 м/с2 = 10 Ньютонов
- Общее натяжение = Fr + Fa = 49 + 10 = 59 Ньютонов.
Реклама
- Давайте предположим, что наш груз в 10 кг больше не раскачивается, теперь его буксируют по горизонтальной плоскости с помощью веревки. Предположим, что коэффициент трения движения земли равен 0,5 и наш груз движется с постоянной скоростью, но нам нужно придать ему ускорение 1м/с2. Эта проблема представляет два важных изменения — первое, нам больше не нужно рассчитывать силу натяжения по отношению к силе тяжести, так как наша веревка не удерживает груз на весу. Второе, нам придется рассчитать натяжение, обусловленное трением, также как и вызванное ускорением массы груза. Нам нужно решить следующее:
-
1
Поднимите вертикальные параллельные грузы с помощью блока. Блоки — это простые механизмы, состоящие из подвесного диска, что позволяет менять направление силы натяжения веревки. В простой конфигурации блока, веревка или кабель идет от подвешенного груза вверх к блоку, затем вниз к другому грузу, создавая тем самым два участка веревки или кабеля. В любом случае натяжение в каждом из участков будет одинаковым, даже если оба конца будут натягиваться силами разных величин. Для системы двух масс, подвешенных вертикально в блоке, сила натяжения равна 2g(m1)(m2)/(m2+m1), где «g» — ускорение силы тяжести, «m1» — масса первого объекта, «m2»– масса второго объекта.
- Отметим следующее, физические задачи предполагают, что блоки идеальны — не имеют массы, трения, они не ломаются, не деформируются и не отделяются от веревки, которая их поддерживает.
- Давайте предположим, что у нас есть два вертикально подвешенных на параллельных концах веревки груза. У одного груза масса 10 кг, а у второго — 5 кг. В этом случае, нам необходимо рассчитать следующее:
- T = 2g(m1)(m2)/(m2+m1)
- T = 2(9,8)(10)(5)/(5 + 10)
- T = 19,6(50)/(15)
- T = 980/15
- T = 65,33 Ньютонов.
- Отметим, что, так как один груз тяжелее, все остальные элементы равны, эта система начнет ускоряться, следовательно, груз 10 кг будет двигаться вниз, заставляя второй груз идти вверх.
-
2
Подвесьте грузы, используя блоки с не параллельными вертикальными нитями. Блоки зачастую используются для того, чтобы направлять силу натяжения в направлении, отличном от направления вниз или вверх. Если, к примеру, груз подвешен вертикально к одному концу веревки, а другой конец держит груз в диагональной плоскости, то непараллельная система блоков принимает форму треугольника с углами в точках с первых грузом, вторым и самим блоком. В этом случае натяжение в веревке зависит как от силы тяжести, так и от составляющей силы натяжения, которая параллельна к диагональной части веревки.
- Давайте предположим, что у нас есть система с грузом в 10 кг (m1), подвешенным вертикально, соединенный с грузом в 5 кг(m2), расположенным на наклонной плоскости в 60 градусов (считается, что этот уклон не дает трения). Чтобы найти натяжение в веревке, самым легким путем будет сначала составить уравнения для сил, ускоряющих грузы. Далее действуем так:
- Подвешенный груз тяжелее, здесь нет трения, так что мы знаем, что он ускоряется вниз. Натяжение в веревке тянет вверх, так что он ускоряется по отношению к равнодействующей силе F = m1(g) – T, или 10(9,8) – T = 98 – T.
- Мы знаем, что груз на наклонной плоскости ускоряется вверх. Так как она не имеет трения, мы знаем, что натяжение тянет груз вверх по плоскости, а вниз его тянет только свой собственный вес. Составляющая силы, тянущей вниз по наклонной, вычисляется как mgsin(θ), так что в нашем случае мы можем заключить, что он ускоряется по отношению к равнодействующей силе F = T – m2(g)sin(60) = T – 5(9,8)(0,87) = T — 42,14.
- Если мы приравняем эти два уравнения, то получится 98 – T = T – 42,14. Находим Т и получаем 2T = 140,14, или T = 70,07 Ньютонов.
- Давайте предположим, что у нас есть система с грузом в 10 кг (m1), подвешенным вертикально, соединенный с грузом в 5 кг(m2), расположенным на наклонной плоскости в 60 градусов (считается, что этот уклон не дает трения). Чтобы найти натяжение в веревке, самым легким путем будет сначала составить уравнения для сил, ускоряющих грузы. Далее действуем так:
-
3
Используйте несколько нитей, чтобы подвесить объект. В заключение, давайте представим, что объект подвешен на «Y-образной» системе веревок — две веревки закреплены на потолке и встречаются в центральной точке, из которой идет третья веревка с грузом. Сила натяжения третьей веревки очевидна — простое натяжение в результате действия силы тяжести или m(g). Натяжения на двух остальных веревках различаются и должны составлять в сумме силу, равную силе тяжести вверх в вертикальном положении и равны нулю в обоих горизонтальных направлениях, если предположить, что система находится в состоянии покоя. Натяжение в веревке зависит от массы подвешенных грузов и от угла, на который отклоняется от потолка каждая из веревок.
- Давайте предположим, что в нашей Y-образной системе нижний груз имеет массу 10 кг и подвешен на двух веревках, угол одной из которых составляет с потолком 30 градусов, а угол второй — 60 градусов. Если нам нужно найти натяжение в каждой из веревок, нам понадобится рассчитать горизонтальную и вертикальную составляющие натяжения. Чтобы найти T1 (натяжение в той веревке, наклон которой 30 градусов) и T2 (натяжение в той веревке, наклон которой 60 градусов), нужно решить:
- Согласно законам тригонометрии, отношение между T = m(g) и T1 и T2 равно косинусу угла между каждой из веревок и потолком. Для T1, cos(30) = 0,87, как для T2, cos(60) = 0,5
- Умножьте натяжение в нижней веревке (T=mg) на косинус каждого угла, чтобы найти T1 и T2.
- T1 = 0,87 × m(g) = 0,87 × 10(9,8) = 85,26 Ньютонов.
- T2 =0,5 × m(g) = 0,5 × 10(9,8) = 49 Ньютонов.
Реклама
- Давайте предположим, что в нашей Y-образной системе нижний груз имеет массу 10 кг и подвешен на двух веревках, угол одной из которых составляет с потолком 30 градусов, а угол второй — 60 градусов. Если нам нужно найти натяжение в каждой из веревок, нам понадобится рассчитать горизонтальную и вертикальную составляющие натяжения. Чтобы найти T1 (натяжение в той веревке, наклон которой 30 градусов) и T2 (натяжение в той веревке, наклон которой 60 градусов), нужно решить:
Об этой статье
Эту страницу просматривали 287 435 раз.
Была ли эта статья полезной?
В статье обсуждаются несколько подходов и несколько примеров того, как рассчитать массу по силе и расстоянию.
Сэр Исаак Ньютон сформулировал многочисленные законы и теории которые дают нам различные подходы к вычислению массы тела с расстояния, пройденного под действием силы. Плюс кинематические уравнения движения и формула работы-энергии Помогите нам определить массу по силе и расстоянию.
Рассчитайте массу, используя закон всемирного тяготения Ньютона
Мы можем вычислить массу, используя закон всемирного тяготения Ньютона, следующим образом:
к вычислить массу через силу и расстояния, мы можем использовать законы тяготения Ньютона, которые гласят: «сила гравитации, действующая между двумя телами, прямо пропорциональна их массам и обратно пропорциональна квадрату расстояния между центрами масс».
Гравитация универсальна. Это означает, что все объекты во Вселенной притягиваются друг к другу гравитацией, и Закон всемирного тяготения Ньютона объясняет эту универсальность гравитации. По закону всемирного тяготения
Fg ∝м1m2/r2
Где, Fg = сила тяжести между двумя объектами
m1 масса объекта 1
m2 масса объекта 2
r – расстояние, разделяющее центры обоих объектов ..
(Кредит: Shutterstock)
Поскольку сила тяжести прямо пропорциональна массам обоих объектов, более крупные объекты будут притягивать друг друга с более значительной силой тяжести.
Переписывая формулу в терминах константы пропорциональности,
Fg=G*(м1m2/r2)………………(1)
Где, G есть универсальная гравитационная постоянная с постоянным значением 6.67 x 10-11 Nm2/ кг2.
В уравнении (1), как и постоянное значение G, у нас также есть постоянное значение массы объекта 2, которое является массой земли; как и в большинстве случаев, мы вычисляем силу тяжести любого объекта относительно земли. Следовательно, постоянное значение массы Земли равно m2 есть, 5.98 x 1024 кг.
Из уравнения (1),
Если мы определим расстояние d и силу тяжести на объекте Fg, мы можем вычислить его массу m1 используя закон всемирного тяготения Ньютона.
Сила тяжести между землей и мальчиком составляет 680 Н, когда он стоит на расстоянии 6.38 х 10.6м от центра Земли. Определите массу мальчика, стоящего на земле.
Данный:
Fg = 680 Н
г = 6.38 х 106 m
m2= 5.98 x 1024 kg
G = 6.67 х 10-11 Nm2/ кг2
Найти: m1 =?
Формула:
Fg=G*(м1m2/r2)
Решения:
Масса мальчика, стоящего на земле, рассчитывается по формуле закона всемирного тяготения:
Fg=G*(м1m2/r2)
Переставляем по м1,
m1=(43.384*108)/(39.904*1013)
m1 = 108.67 кг
Масса стоящего на земле мальчика 108.67 кг.
Расчет массы с использованием второго кинематического уравнения движения
Мы можем вычислить массу, используя второй закон движения Ньютона:
Чтобы вычислить массу объекта, мы можем использовать популярную формулу второго закона движения Ньютона, которая показывает связь между ускорением, силой и массой. Затем мы можем реализовать это во втором кинематическом уравнении движения, которое касается расстояния.
Второй закон движения объясняет, что объект ускоряется (а) с трудом, когда сила (F) применяется к объекту, имеющему массу m.
а=Ф/м………………… (2)
(Кредит: Shutterstock)
Второе кинематическое уравнение движения о расстоянии d есть;
d=ut+(1/2)в2…………………. (3)
Подставляя уравнение (3) в уравнение выше, получаем
d=ut+(Ft2/ 2м)
If мы определяем расстояние (d), пройденное объектом за время (t), когда на него действует сила (F), мы можем вычислить его массу, используя второе кинематическое уравнение движения.
Чистая сила 10 Н действует на объект, который преодолевает расстояние 40 м с начальной скоростью 1 м / с за 5 с. Рассчитайте массу объекта.
Данный:
F = 10 Н
d = 40 м
u = 1 м / с
t = 5 с
Найти: м =?
Формула:
d=ut+(1/2)в2
Решения:
Массу объекта можно рассчитать, используя второе кинематическое уравнение движения.
d=ut+(1/2)в2
Согласно второму закону Ньютона, a=F/m
Подставляя значение ‘a’ в уравнение кинематики, получаем
d=ut+(Ft2/ 2м)
Подставляя все значения,
Масса объекта 3.57 кг.
Расчет массы с использованием третьего кинематического уравнения движения
Мы можем рассчитать массу, используя третье кинематическое уравнение движения.
Чтобы вычислить массу объекта, мы можем реализовать формулу второго закона движения Ньютона в третьем кинематическом уравнении движения, которое касается скорости.
Третье кинематическое уравнение движения о скорости v есть,
v2=u2+2реклама………………….(4)
Реализуем второй закон движения Ньютона (2) в третье кинематическое уравнение движения (4),
v2=u2+(2fd/м)………….(5)
Предположим, мы определяем расстояние (d), которое проходит объект, когда его скорость v изменяется от начальной скорости u из-за силы F. В этом случае мы можем вычислить его массу, используя третье кинематическое уравнение движения.
Объект движется по прямой траектории в 5 м от исходного положения со скоростью 5 м / с, когда сила 50 Н приложена к тому же объекту в состоянии покоя. Рассчитайте массу объекта.
Данный:
d = 5м
v = 5 м / с
u = 0, поскольку объект изначально находится в состоянии покоя.
F = 50 Н
Найти: м =?
Формула:
v2=u2+2объявление
Решения:
Массу объекта можно рассчитать по третьему кинематическому уравнению движения,
v2=u2+2объявление
Подставляя значение ‘a’ в уравнение кинематики, получаем
v2=u2+(2fd/м)
Подставляя все значения,
Масса объекта 20 кг.
Рассчитайте массу с помощью формулы работы-энергии
Мы можем вычислить массу, используя следующую формулу работы-энергии:
Чтобы вычислить массу объекта, мы можем использовать формулу работы-энергии, которая показывает, что работа, выполняемая над объектом, равна его преобразованию кинетической энергии, когда он перемещается на определенное расстояние из-за приложенной силы.
(Кредит: Shutterstock)
Выполненная работа рассчитывается как побочный продукт приложенной силы и пройденного расстояния.
W = Fd ……………………. (6)
Проделанная работа – это преобразование кинетической энергии объекта. Следовательно, проделанная работа равна кинетической энергии,
W = KE
Вт=(1/2)мв2…………………. (7)
Подставляя значение W (6),
Fd==(1/2)мв2 …………… .. (8)
Если мы определим расстояние (d), которое проходит объект со скоростью v, когда к нему применяется сила (F), мы можем вычислить его массу, используя формулу работы-энергии.
Примечание: здесь мы считаем, что сила трения незначительна.
Коробка скользит примерно на 10 м по горизонтальной поверхности со скоростью 20 м / с, когда мы прикладываем силу толчка 50 Н. Рассчитайте массу ящика.
Данный:
d = 10 м
v = 20 м / с
F = 50 Н
Найти: m =?
Формула:
Вт=(1/2)мв2
Решения:
Массу ящика можно рассчитать по формуле работы-энергии:
Вт=(1/2)мв2
Подставляя стоимость проделанной работы W,
Fд=(1/2)мв2
Преобразуя уравнение для ‘m’,
m=2Fd/v2
Подставляя все значения,
Масса ящика 2.5 кг.
Сила натяжения нити — формулировка
Определение
Силой натяжения называют силу, приложенную к концам объекта и создающую внутри него упругую деформацию.
Длина тела, к которому приложена сила, обычно многократно больше, чем его толщина. Примерами таких объектов являются веревка, канат, трос, леска, проволока. Сила натяжения визуально проявляется в следующих примерах:
- создание строительного отвеса;
- установка растяжек для фиксации радиоантенн;
- поведение арматуры внутри напряженного бетона;
- устройство корабельного такелажа.
Как определить силу, формулы
Натяжение проявляется по-разному. Поэтому сила натяжения может рассчитываться определенным образом, в зависимости от окружающих условий.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
С неподвижно закрепленным верхним концом
Простейшим примером проявления силы натяжения является нить с закрепленным на ней грузом. Верхний конец такого подвеса фиксируется неподвижно. В этом случае сила натяжения будет соответствовать силе тяжести, которая действует на тело. Формула для расчета:
(F=F_{тяж}=m*g)
где m – это масса тела, а g представляет собой ускорение свободного падения.
Если нить под углом
В случае, когда груз расположен под определенным углом, характер силы натяжения несколько изменяется. Примером такой системы выступает маятник.
(F_n=m*g*cos(a))
где а равен углу отклонения.
Формула с учетом ускорения и массы
В ситуации, при которой на груз оказывается сила натяжения, приводящая его в движение вверх, следует использовать такую формулу для ее расчета:
(F=F_{тяж}+m*a)
Сила натяжения во вращающейся системе
Описание
Такое явление можно наблюдать, когда система из нити и тела вращается во время раскручивания подвеса вокруг своей оси с закрепленным на одном его конце объектом: центрифуга, маятник, качели. Сила натяжения, возникающая внутри подвеса, характеризуется центробежной силой и в условиях вращения в вертикальной плоскости циклически претерпевает изменения. То есть можно наблюдать зависимость силы от угла отклонения от вертикали:
- приближение к земле приводит к увеличению силы;
- во время удаления от земли сила слабеет.
Формула расчета
Рассчитать силу натяжения в условиях вращающейся системы можно так:
(F=frac{mtimes nu ^{2}}{r})
Обозначение, единица измерения
Существуют определенные стандарты для написания формулы силы натяжения. Как и другие физические силы, натяжение обозначается F. В качестве единицы измерения используют Ньютон (H)
(H=frac{kgtimes m}{c^{2}})
Примеры решения задач
Задание 1
На невесомую нерастяжимую нить действует сила натяжения Т=4400Н. Необходимо определить максимальное ускорение подъема груза, масса которого равна m=400 кг, подвешенного на этой нити. При этом нить должна сохранить целостность.
Решение
Представив все силы, оказывающие действие на тело, необходимо составить формулу второго закона Ньютона. Тело является материальной точкой, а силы приложены к центру его массы.
(bar{T}+mbar{g}=mbar{a})
(bar{T}) является силой натяжения нити.
Проекция уравнения будет иметь следующий вид:
(T – mg = ma)
Данное выражение позволяет рассчитать ускорение:
(a=frac{T-mg}{m})
Так как все величины, изложенные в задании, соответствуют единицам СИ, можно провести корректные вычисления
(a=frac{4400-4*9,8}{400})
Ответ: a = 1.2 (м/с^2)
Задание 2
На иллюстрации изображен шар, который обладает массой m=0.1 кг. Будучи зафиксирован на нити, шарик совершает движение по окружности в горизонтальной плоскости. Длина подвеса составляет l=5 м, а радиус окружности – R=3 м. Требуется вычислить модуль силы натяжения нити.
Решение
Необходимо воспользоваться вторым законом Ньютона и записать его для сил, которые действуют на шар. Центростремительное ускорение при его вращении по окружности будет записано следующим образом:
(bar{T}+mbar{g}=mbar{a})
Проекции данной формулы по осям определяются следующим образом:
X: (T sin α = ma = mω2R)
Y: (-mg + T cos α = 0)
Таким образом, из уравнения Y получаем расчет модуля силы натяжения нити:
(T=frac{mg}{cos alpha })
Анализ рисунка позволяет вывести следующее уравнение:
(sin alpha = frac{R}{l}rightarrow cos alpha = sqrt{1-left(frac{R}{l} right)^{2}})
Если cos α заменить уравнением для расчета модуля силы натяжения нити, то получим следующую формулу:
(T=frac{mg}{sqrt{1-left(frac{R}{l} right)^{2}}}= frac{mgl}{sqrt{l^{2}-R^{2}}})
Значения основных величин, выраженные в СИ, можно подставить в конечную формулу для расчета силы натяжения нити:
(T=frac{0,1*9,8*5}{sqrt{5^{2}-3^{2}}}=1,225left(H right))
Ответ: Т=1,225 H
Содержание:
- Определение и формула силы натяжения нити
- Единицы измерения силы натяжения нити
- Примеры решения задач
Определение и формула силы натяжения нити
Определение
Силу натяжения определяют как равнодействующую сил $(bar{R})$, приложенных к нити, равную ей по модулю,
но противоположно направленную. Устоявшегося символа (буквы), обозначающего силу натяжения нет. Ее
обозначают и просто $bar{F}$ и
$bar{T}$, и
$bar{N}$ . Математически определение для силы натяжения нити можно записать как:
$$bar{T}=-bar{R}(1)$$
где $bar{R}$ = векторная сумма всех сил, которые действуют на нить. Сила натяжения нити всегда направлена по нити (или подвесу).
Чаще всего в задачах и примерах рассматривают нить, массой которой можно пренебречь. Ее называют невесомой.
Еще одним важной характеристикой нити при расчете силы натяжения является ее растяжимость. Если исследуется невесомая и нерастяжимая
нить, то такая нить считается просто проводящей через себя силу. В том случае, когда необходимо учитывать растяжение нити, применяют
закон Гука, при этом:
$$T=F_{u p r}=k Delta l(2)$$
где k – коэффициент жесткости нити, $Delta l$ – удлинение нити при растяжении.
Единицы измерения силы натяжения нити
Основной единицей измерения силы натяжения нити (как и любой силы) в системе СИ является: [T]=Н
В СГС: [T]=дин
Примеры решения задач
Пример
Задание. Невесомая, нерастяжимая нить выдерживает силу натяжения T=4400Н. С каким максимальным ускорением
можно поднимать груз массой m=400 кг, который подвешивают на эту нить, чтобы она не разорвалась?
Решение. Изобразим на рис.1 все силы, действующие на груз, и запишем второй закон Ньютона.
Тело будем считать материальной точкой, все силы приложенными к центру масс тела.
$$bar{T}+m bar{g}=m bar{a}(1.1)$$
где $bar{T}$ – сила натяжения нити. Запишем проекцию уравнения (1.1) на ось Y:
$$T-m g=m a(1.2)$$
Из выражения (1.2) получим ускорение:
$$a=frac{T-m g}{m}$$
Все данные в задаче представлены в единицах системы СИ, проведем вычисления:
$$a=frac{4400-400 cdot 9,8}{400}=1,2 mathrm{~m} / mathrm{c}^{2}$$
Ответ. a=1,2м/с2
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Пример
Задание. Шарик, имеющий массу m=0,1 кг прикрепленный к нити (рис.2) движется по окружности,
расположенной в горизонтальной плоскости. Найдите модуль силы натяжения нити, если длина нити l=5 м, радиус окружности R=3м.
Решение. Запишем второй закон Ньютона для сил, приложенных к шарику, который вращается по окружности с
центростремительным ускорением:
$$bar{T}+m bar{g}=m bar{a}(2.1)$$
Найдем проекции данного уравнения на обозначенные на рис.2 оси X и Y:
$$
begin{array}{c}
X: quad T sin alpha=m a=m omega^{2} R(2.2) \
Y: quad-m g+T cos alpha=0
end{array}
$$
Из уравнения (2.3) получим формулу для модуля силы натяжения нити:
$$T=frac{m g}{cos alpha}(2.4)$$
Из рис.2 видно, что:
$$sin alpha=frac{R}{l} rightarrow cos alpha=sqrt{1-left(frac{R}{l}right)^{2}}$$
Подставим (2.5) вместо $cos alpha$ в выражение (2.4), получим:
$$T=frac{m g}{sqrt{1-left(frac{R}{l}right)^{2}}}=frac{m g l}{sqrt{l^{2}-R^{2}}}$$
Так как все данные в условиях задачи приведены в единицах системы СИ, проведем вычисления:
$$T=frac{0,1 cdot 9,8 cdot 5}{sqrt{5^{2}-3^{2}}}=1,225(H)$$
Ответ. T=1,225 Н
Читать дальше: Формула силы тяги.
Определение и формула силы натяжения нити
Силу натяжения определяют как равнодействующую сил , приложенных к нити, равную ей по модулю, но противоположно направленную. Устоявшегося символа (буквы), обозначающего силу натяжения нет. Ее обозначают и просто и , и . Математически определение для силы натяжения нити можно записать как:
где = векторная сумма всех сил, которые действуют на нить. Сила натяжения нити всегда направлена по нити (или подвесу).
Чаще всего в задачах и примерах рассматривают нить, массой которой можно пренебречь. Ее называют невесомой.
Еще одним важной характеристикой нити при расчете силы натяжения является ее растяжимость. Если исследуется невесомая и нерастяжимая нить, то такая нить считается просто проводящей через себя силу. В том случае, когда необходимо учитывать растяжение нити, применяют закон Гука, при этом:
где k – коэффициент жесткости нити, – удлинение нити при растяжении.
Единицы измерения силы натяжения нити
Основной единицей измерения силы натяжения нити (как и любой силы) в системе СИ является: [T]=Н
Примеры решения задач
Задание. Невесомая, нерастяжимая нить выдерживает силу натяжения T=4400Н. С каким максимальным ускорением можно поднимать груз массой m=400 кг, который подвешивают на эту нить, чтобы она не разорвалась?
Решение. Изобразим на рис.1 все силы, действующие на груз, и запишем второй закон Ньютона. Тело будем считать материальной точкой, все силы приложенными к центру масс тела.
где – сила натяжения нити. Запишем проекцию уравнения (1.1) на ось Y:
Из выражения (1.2) получим ускорение:
Все данные в задаче представлены в единицах системы СИ, проведем вычисления:
м/с 2
Ответ. a=1,2м/с 2
Задание. Шарик, имеющий массу m=0,1 кг прикрепленный к нити (рис.2) движется по окружности, расположенной в горизонтальной плоскости. Найдите модуль силы натяжения нити, если длина нити l=5 м, радиус окружности R=3м.
Решение. Запишем второй закон Ньютона для сил, приложенных к шарику, который вращается по окружности с центростремительным ускорением:
Найдем проекции данного уравнения на обозначенные на рис.2 оси X и Y:
Из уравнения (2.3) получим формулу для модуля силы натяжения нити:
Из рис.2 видно, что:
Подставим (2.5) вместо в выражение (2.4), получим:
Так как все данные в условиях задачи приведены в единицах системы СИ, проведем вычисления:
Сила натяжения нити равна сумме сил, действующих на резьбу, и напротив их в направлении.
Здесь сила растяжения нити является векторной суммой сил, действующих на нить.
Единицей измерения силы является Н (Ньютон).
Эта формула является следствием третьего закона Ньютона применительно к нити. Если некоторый вес подвешен на нитях, которые находятся в состоянии покоя, то модуль натяжения на резьбе будет равен весу этой нагрузки. Обычно в задачи входят невесомые нерастяжимые нити, которые просто тянут власть через себя, но есть задачи, когда нить растягивается под действием силы. Однако он ведет себя как весна, подчиняясь закону Гука:
Где k — жесткость резьбы, — удлинение нити.
Примеры решения проблем на тему «Натяжная сила нити»
Корпус весом 5 Н подвешен на невесомой растягивающей нити, жесткость которой . Найдите растягивающуюся нить.
Согласно условию, сила натяжения нити равна массе тела, что означает:
Протяженность нити метров.
Два стержня соединены невесомой растягивающей нитью. Сила F действует на первый стержень, приводя оба стержня в направлении, противоположном направлению от первого стержня ко второму. Силы трения, действующие на первый и второй бруски соответственно: и . Жесткость резьбы: k. Найдите удлинение нити.
Обратите внимание, что силы трения действуют на стержни в направлениях, противоположных направлению движения. Нам нужно найти значение сил, растягивающих нить, которая соединена с стержнями. Со стороны первого стержня сила действует на резьбу , поскольку направлена на сжатие нити, а F — при растяжении. Со стороны второго стержня действует сила F. Следовательно:
В любой механической системе присутствует ограниченный набор сил и взаимодействий.
Основные силы в механике:
1. Закон всемирного тяготения (рис. 1):
Рис. 1. Закон всемирного тяготения
Или в случае модуля силы:
- где
- — сила взаимодействия между телами, обладающими массу
- , — массы взаимодействующих тел
- — расстояние между центрами взаимодействующих тел.
Направление: по линии, соединяющей взаимодействующие тела.
Возникает: данная сила возникает при взаимодействии любых массовых частиц (рис. 1).
Используется: в задачах, в которых одно из тел (или оба) являются планетами и/или спутниками.
2. Сила тяжести в рамках Земли (рис. 2).
Рис. 2. Сила тяжести
Представим себе, что в законе всемирного тяготения (1) взаимодействуют Земля и тело вблизи поверхности Земли.
- — масса Земли
- — масса тела вблизи поверхности Земли
- — средний радиус Земли
Тогда . Т.к. масса Земли, средний радиус Земли и гравитационная постоянная — величины известные, то посчитаем:
м/ . Давайте назовём эту константу через м/ . Мы аналитически получили ускорение свободного падения.
Таким образом, сила гравитационного притяжения для тела на Земле мы можем представить как:
Направление: всегда к центру Земли.
Возникает: при взаимодействии любого тела вблизи поверхности Земли и самой Земли.
Используется: в задачах, в которых тело находится вблизи поверхности Земли.
Рис. 3. Сила нормальной реакции опоры
3. Сила нормальной реакции опоры. Данная сила возникает при взаимодействии тела с опорой (тело лежит или движется по опоре). Обычно обозначается . Направление данной силы — перпендикуляр к опоре (рис. 3).
Направление: всегда перпендикулярно опоре.
Возникает: при касании тела любой поверхности (стол, стена).
Используется: в задачах, в которых тело движется или покоится, взаимодействуя с опорой.
Рис. 4. Сила трения
4. Сила трения (рис. 4). Сила трения — сила, возникающая при движении (скольжении) одного тела относительно другого. Физически, данная сила возникает в связи с механическими «цепляниями» неоднородностей (шероховатостей) поверхностей одного тела за неоднородности другого. Данная сила всегда направлена против текущего движения (против скорости).
Для описания силы трения вводят коэффициент трения . Данный коэффициент описывает степень взаимодействия системы тело-подложка. Коэффициент имеет ограничения: . При сила трения отсутствует.
Также в задаче могут быть фразы «силы трения нет», «гладкая поверхность», «силами трения пренебречь». Всё это говорит об отсутствии силы трения.
Нахождению силы трения способствует соотношение:
Направление: против скорости.
Возникает: при скольжении тела относительно негладкой (шероховатой) поверхности.
Используется: в задачах, в которых тело движется (увлекается в движение) относительно поверхности (сама поверхность при этом негладкая).
Рис. 5. Сила натяжения нити
5. Сила натяжения нити. Сила натяжения нити — сила, действующая на тело со стороны привязанной к нему нити (рис. 5). Направлена всегда вдоль нити.
Направление: по линии нити.
Возникает: данная сила возникает при наличии в задаче нити.
Используется: в задачах, в которых присутствует нить (при этом за неё обычно тянут). В большинстве таких задач несколько тел связаны невесомой нерастяжимой нитью.
6. Сила растяжения/сжатия (закон Гука, сила упругости). Возникает в деформированном теле, стремится возвратить тело в изначальную форму. Направлена против деформации. Пусть тело под действием некой силы удлинилось на величину (рис. 6).
Рис. 6. Сила упругости
Тогда сила упругости, возникшая в теле:
- где
- — модуль Юнга (табличная величина, характеризующая материал тела)
- — площадь поперечного сечения тела
- — начальная длина тела.
Направление: против деформации тела.
Возникает: при деформации тела.
Используется: в задачах, где тело (пружина) деформирована. Часто деформация задаётся удлинением тела.
7. Силы, заданные задачей. В задаче может присутствовать ряд сил, которые будут описаны в тексте. Чаще всего это силы, вызывающие движение (сила тяги мотора) или тормозящие (силы сопротивления воздуха, воды).
Вывод: для огромного ряда задач на динамику, при использовании второго закона Ньютона, необходимо знать, какие силы действуют на выбранное тело. Анализируя приведенные силы, условия их возникновения и направление действия, можно легко решить поставленную задачу.