Как найти массу тела движущегося с ускорением

1. Вес тела, движущегося с ускорением

В § 12 мы доказали, что вес покоящегося тела равен действующей на это тело силе тяжести. Рассмотрим теперь вес тела, движущегося с ускорением. Это ускорение телу сообщает равнодействующая силы тяжести и силы, действующей со стороны опоры (или подвеса).

Поэтому, говоря далее об ускорении тела, мы должны понимать, что оно равно ускорению опоры (или подвеса).

Ускорение тела направлено вверх. Докажем, что в таком случае модуль веса тела

P = m(g + a),     (1)

где m – масса тела, a – модуль ускорения тела.

Пусть тело массой m лежит на опоре, движущейся с ускорением , направленным вверх (рис. 16.1, а).

Тело давит на опору своим весом , а опора действует на груз с силой нормальной реакции ). По третьему закону Ньютона

= –. (2)

Отсюда следует, что

P = N.     (3)

На тело действуют сила тяжести mg_vec и сила нормальной реакции (рис. 16.1, б). Их равнодействующая = + m вызывает ускорение тела .
Следовательно, согласно второму закону Ньютона

+ m = m.

Запишем эту формулу в проекциях на направленную вверх ось x:

N – mg = ma.

Отсюда

N = m(g + a)     (4)

Из формул (3) и (4) следует, что

P = m(g + a).

Доказательство завершено: мы получили формулу (1).

Обратите внимание: если ускорение тела направлено вверх, вес груза больше действующей на него силы тяжести.

Когда вес тела больше силы тяжести, говорят, что оно испытывает перегрузку. Здоровый человек без вреда выдерживает кратковременные трехкратные перегрузки, то есть увеличение веса в три раза.

Космонавтам при старте и посадке космического корабля приходится выдерживать многократные перегрузки. Чтобы это не нанесло ущерба здоровью космонавтов, их тренируют с помощью специального аппарата – центрифуги (см. § 8).

Ускорение направлено вниз. Будем считать,что ускорение тела не превышает по модулю ускорения свободного падения.

? 1. Докажите, что в этом случае

P = m(g – a).     (5)

Итак, если ускорение тела направлено вниз, то вес тела меньше действующей на него силы тяжести.

Из формулы (5) следует, что при a = g, то есть когда тело движется с ускорением свободного падения, вес тела равен нулю. Подробнее мы рассмотрим это в пункте «Невесомость».

Обратите внимание: в формулы (1) и (5) для веса тела, движущегося с ускорением, не входит скорость тела. Это означает, что вес тела не зависит от модуля и направления скорости тела.

Например, если ускорение тела в некоторый момент направлено вверх, то вес будет больше действующей на это тело силы тяжести независимо от того, куда направлена скорость тела: вверх, вниз, горизонтально или под углом к горизонту!

? 2. Через 2 с после начала движения с постоянным ускорением скорость лифта стала равной 6 м/с. В лифте на весах стоит пассажир массой 60 кг. Каковы во время разгона лифта показания весов (в кг), если лифт едет вверх? вниз?

? 3. Лифт, двигавшийся со скоростью 4 м/с, начал тормозить. Во время торможения с постоянным ускорением вес находящегося в лифте человека массой 50 кг был равен 400 Н.
а) Куда направлено ускорение лифта?
б) Чему равно ускорение лифта?
в) Куда ехал лифт до остановки – вверх или вниз?

? 4. Подвешенный на нити длиной 1 м груз массой 0,5 кг совершает колебания в вертикальной плоскости (рис. 16.2). В нижней точке скорость груза равна 2 м/с.
а) Как направлено в нижней точке ускорение груза?
б) Чему равно ускорение груза в нижней точке?
в) Чему равна сила натяжения нити в нижней точке?

? 5. Автомобиль массой 1 т едет по выпуклому мосту, имеющему форму дуги окружности радиусом 40 м. Какой должна быть скорость автомобиля в верхней точке моста, чтобы в этой точке:
а) вес автомобиля был равен 2 кН?
б) автомобиль не давил на мост?

? 6. К пружине жесткостью 400 Н/м подвешивают груз массой 200 г, в результате чего пружина растягивается. Какова кратность перегрузки для груза в момент, когда удлинение пружины равно 2 см?

2. Невесомость

В предыдущем пункте была получена формула для веса тела, находящегося на опоре, движущейся с ускорением а, направленным вниз:

P = m(g – a).

(Мы считаем, что модуль ускорения тела не превышает ускорения свободного падения.)

Из этой формулы следует, что, когда ускорение опоры приближается к ускорению свободного падения у, вес тела стремится к нулю.

При a = g тело совсем перестает давить на опору. В этот момент вес тела становится ровным нулю. Такое состояние называют невесомостью.

Итак, тело находится в состоянии невесомости, когда оно под действием силы тяжести движется с ускорением свободного падения . При этом оно не давит на опору и не растягивает подвес, поэтому их можно вообще убрать.

Однако находящееся в состоянии невесомости тело не обязательно должно падать вниз! Вспомним, что ускорение брошенного произвольным образом тела во время всего полета равно ускорению свободного падения (если можно пренебречь сопротивлением воздуха). Следовательно, брошенное тело находится в состоянии невесомости во время всего полета.

? 7. Шарик брошен вертикально вверх. В какие моменты он находится в состоянии невесомости: при подъеме, в верхней точке траектории или когда он падает вниз?

Чтобы испытать кратковременное состояние невесомости, достаточно просто подпрыгнуть (рис. 16.З).

Длительное состояние невесомости испытывают космонавты при выключенных двигателях космического корабля. При этом как корабль, так и космонавты находятся под действием только силы тяжести, то есть движутся с ускорением свободного падения.

Поставим опыт

Нальем воду в пластиковую бутылку с отверстием в дне. Вода будет вытекать из отверстия. Но если бросить бутылку (в любом направлении), то во время полета бутылки вода из нее не выливается! Дело в том, что бутылка н вода в ней находятся в невесомости: вода не давит на дно бутылки и поэтому не выливается.

? 8. Шарик скатывается по «мертвой петле» радиусом 20 см (рис. 16.4), не отрываясь от нее. Чему равна скорость шарика в верхней точке окружности, если в этой точке он находится в состоянии невесомости?

Подсказка. Если шарик находится в состоянии невесомости, центростремительное ускорение ему сообщает только сила тяжести.

Дополнительные вопросы и задания

9. К пружине жесткостью k подвешивают груз массой m и отпускают без толчка. Чему равен вес груза в тот момент когда:
а) пружина не деформирована?
б) удлинение пружины равно x?

10. На тележке укреплен штатив, на котором на нити подвешен груз (рис. 16.5). Какой угол α с вертикалью составляет нить, когда тележка движется с ускорением a = 5 м/с2?

Подсказка. Ускорение грузу сообщает равнодействующая силы тяжести m и силы натяжения нити .

С древних времен люди замечали, что всякий брошенный вверх предмет неминуемо падает вниз, на землю. Это явление в современной физике описывается в рамках классической механики с привлечением понятия гравитационного притяжения нашей планетой всех окружающих тел. С силой гравитации тесно связан вес тела. В данной статье рассмотрим эту физическую величину и приведем формулы веса.

Что такое вес тела?

Прежде чем приводить формулу веса в физике, рассмотрим определение самой величины. Весом называют силу, с которой тело воздействует на опору либо растягивает подвес, к которому оно прикреплено. В этом принципиальное отличие веса тела от массы. Последняя является физической характеристикой инерционных свойств объектов. Масса – это неотъемлемое свойство тел, вес же – это величина переменная, поскольку она зависит от характеристик гравитационного поля, в котором находится рассматриваемое тело.

Примером действия веса является ситуация, когда мы становимся на весы. Хотя последние откалиброваны таким образом, что они показывают массу в килограммах, в действительности же измеряется именно вес, с которым наше тело давит на весы.

Измерение веса тела

Другой пример – это взвешивание предметов с помощью ручных пружинных весов, которые называют кантером. Подвешенный к прибору предмет растягивает пружину до тех пор, пока сила ее упругости не уравновесит вес тела. Эти весы, как и предыдущие, откалиброваны на шкалу массы.

Формула веса тела в покое

В середине XVII века, наблюдая за поведением небесных тел (планет, естественных спутников, комет) и используя экспериментальные данные, Исаак Ньютон сформулировал закон всемирного тяготения. Благодаря этому закону появилась возможность численного расчета гравитационных сил, с которыми взаимодействуют тела в природе. Согласно этому закону, сила тяжести Ft на поверхности любой планеты может быть рассчитана по формуле:

Ft = m*g

Где m – масса тела, g – это линейное ускорение, которое планета сообщает всем телам, находящимся вблизи нее. Для Земли оно равно 9,81 м/с2. Сразу отметим, что величина g от массы не зависит, однако она зависит от расстояния до планеты, убывая, как его квадрат.

Когда любое тело массой m находится на поверхности, например стакан с водой стоит на столе, то на него действуют две силы:

  • тяжести Ft;
  • реакции опоры N.

Так как тело никуда не движется и покоится, то обе силы противоположны по направлению и равны по модулю, то есть:

  • Ft = N

Согласно определению веса, формула для него принимает вид:

P = N = Ft = m*g

Именно с силой Ft стакан с водой давит на стол.

Свободное падение и вес тела

Проведем следующий мысленный эксперимент: предположим, что в деревянный ящик поместили камень некоторой массы m, затем бросили этот ящик с высоты. Какой вес будет иметь камень в процессе свободного падения?

Для ответа на этот вопрос следует записать основное уравнение динамики. В данном случае оно имеет вид:

m*a = Ft – N

Здесь a – ускорение, с которым падает ящик и камень. В случае свободного падения, это ускорение равно величине g. Тогда получаем:

m*g = m*g – N =>

N = 0

То есть сила реакции опоры равна нулю. Этот вывод уравнения движения говорит о том, что камень во время свободного падения давить на дно ящика не будет, то есть его вес будет равным нулю. Такая ситуация наблюдается на космических станциях, на которых центробежная сила и сила тяжести уравновешивают друг друга.

Состояние невесомости

Для движения с произвольным ускорением вниз формула веса примет вид:

P = m*(a – g)

Решение задачи

Известно, что во время старта ракеты ее ускорение равно 40 м/с2. Необходимо определить вес космонавта, находящегося в ней, если его масса равна 70 кг.

Для начала запишем второй закон Ньютона для рассматриваемой задачи. Имеем:

m*a = N – m*g

Здесь сила тяжести направлена против ускорения, а реакция опоры – вдоль вектора ускорения. Из этого равенства получаем:

P = N = m*(g + a)

Старт ракеты

Подставляя данные, получаем, что вес космонавта во время старта ракеты будет равен 3486,7 Н. Если бы в процессе старта космонавт встал на весы, то они бы показали значение его массы 355,4 кг.

Масса, фундаментальное свойство каждого объекта, измеряет количество вещества, содержащегося в теле. В этом посте будет обсуждаться, как найти массу с помощью ускорения и силы, так как это важно при различных подходах и решаемых задачах.

Сэр Исаак Ньютон предложил ряд принципов и теорий, которые привели к разработке нескольких методов оценки массы объекта. Второй закон Ньютона – самый простой и наиболее широко используемый метод расчета массы, поскольку он включает расчет массы с использованием как силы, так и ускорения.

Давайте посмотрим, как второй закон Ньютона может помочь нам в определении массы любого объекта.

Как найти массу с ускорением и силой, используя Второй закон Ньютона:

Термины масса, сила и ускорение используются в повседневной жизни и связаны друг с другом. Сила — это физическое воздействие, вызывающее состояние движения изменяться, что означает, что оно либо ускоряется, либо замедляется. Масса – это тип сопротивления, который предотвращает изменение состояния объекта под действием силы. В результате объект сможет изменить свое состояние движения, как только сила преодолеет это сопротивление.

Наиболее общая форма Второго закона Ньютона гласит, что сила, действующая на тело или частицу, будет равна скорости изменения импульса тела или частицы. Таким образом, поместив это утверждение в формулу, его можно выразить как:

Где p – линейный импульс объекта. Он рассчитывается как произведение скорости и массы объекта. Таким образом, математически мы можем записать это как:

р = мв

Итак, если значение импульс заменяется силой уравнение, получаем:

Когда скорость объекта приближается к скорости света, масса объекта увеличивается; Тем не менее, это не так. Поскольку скорость оцениваемого объекта не очень велика, т.е. близка к скорости света, масса не изменяется. В результате со временем меняется только скорость, а масса остается постоянной.

Но дифференциация скорости во времени дает ускорение.

В результате сила может быть выражена через массу и ускорение, а ее математическое представление выглядит следующим образом:

F = ма

Как найти массу с ускорением и силой

Второй закон Ньютона представлен этим уравнением. Это можно использовать для расчета массы объекта, задав его уравнение. В результате массу объекта можно рассчитать следующим образом:

Ньютон, килограмм и м / с2 – единицы силы, массы и ускорения в системе СИ, соответственно, согласно Международной системе единиц.

Приведенное выше уравнение масс раскрывает два факта, которые перечислены ниже:

  • м ∝ F: – Эта пропорциональность показывает, что большая масса требует большей силы, тогда как меньшая масса требует меньшей силы.
  • м ∝ 1 / год: – Поскольку ускорение обратно пропорционально массе объекта, объект с большой массой будет испытывать меньшее ускорение, тогда как объект с низкой массой будет испытывать большее ускорение.

Из этого можно сделать вывод, что если масса объекта велика, для него потребуется большая внешняя сила, а поскольку масса, по сути, является сопротивлением, его ускорение будет законом, и наоборот.

Предположим, вы прилагаете силу и к игрушке, и к настоящей машине. Затем игрушечный автомобиль разгоняется без особых усилий. Однако настоящей машине для движения вперед требуется больше силы. Или, возможно, он вообще не двигается. Это связано с тем, что масса игрушечной машинки меньше, чем у реальной машины. В результате сила, необходимая для их ускорения, варьируется.

Давайте посмотрим на некоторые проблемы нахождения массы с помощью ускорения и силы.

Проблема: когда к объекту прилагается сила в 6.0 ньютонов, он ускоряется со скоростью 12.0 м / с2. Определите массу объекта.

Данный: 

Сила на объект F = 6 Н

Ускорение объекта a = 12 м / с2

Найти:

m =?

Решение:

Масса объекта:

∴ м = 2 кг

Таким образом, здесь, в данном случае, масса объекта составляет 2 кг.

Проблема: чтобы разогнать мяч со скоростью 4 м / с2, требуется сила 24 Н. Какой тогда была бы масса объекта?

Данный:

Ускорение мяча a = 4 м / с2

Сила, приложенная к шару F = 24 Н

Найти:

m =?

Решение:

Масса мяча:

∴ м = 6 кг

Таким образом, чтобы разогнаться со скоростью 4 м / с2, мячу весом 6 кг требуется сила 24 Н.

Часто задаваемые вопросы о поиске массы с помощью второго закона Ньютона:

В .: Приведите законы движения Ньютона.

Ответ: Формулировки всех трех законов движения Ньютона приведены ниже:

1-й закон: Состояние тела не изменяется до тех пор, пока на него не перестанет действовать ненулевая результирующая сила, что означает, что если оно неподвижно, оно останется таковым, а если оно движется, оно будет поддерживать свою скорость. Это часто называют законом инерции.

2-й закон: Скорость изменения импульса тела пропорциональна приложенной к нему силе. Или, другими словами, величина ускорения объекта пропорциональна приложенной к нему силе и обратно пропорциональна массе тела. Это можно записать в виде уравнения:

F = ma

3-й закон: Во время взаимодействия двух тел сила, действующая обоими, будет одинаковой по величине и в противоположном направлении. 

В: Когда ракета запускается со стартовой площадки, она не только набирает скорость, но и получает огромное ускорение во время стрельбы. Что является причиной этого?

Отв.: Когда ракета запускается, она ускоряется в результате выстрела.

Из-за топлива, используемого в ракетах, стрельба из них возможна. Топливо в ракете горит во время выстрела. В результате постоянной стрельбы масса теряется, а ускорение увеличивается, потому что масса и ускорение обратно пропорциональны.

В: Объясните, как каждый из законов Ньютона влияет на игру в перетягивание каната.

Отв .: Важность каждого закона Ньютона в перетягивании каната указана ниже:

  • Первый закон Ньютона: Пока не начнется тяга, то есть пока не будет приложена сила, веревка останется в том же положении.
  • Второй закон Ньютона: Силу каждой команды можно рассчитать с помощью второго закона Ньютона. Сила, с которой тянет каждая команда, определяется массой тела каждой команды и ускорением, с которым движется веревка.
  • Третий закон Ньютона: Одна команда с силой тянет веревку к себе, а другая тянет веревку от себя. Обе команды, по сути, идут в противоположных направлениях. В результате, пока одна из сторон не достигнет максимума, ни одна из команд не выиграет.

В. Опишите, что произойдет, если вы попытаетесь толкнуть кого-то, кто тяжелее вас. Что, если он тоже оттолкнет вас?

Ответ: Тело будет ускоряться только в том случае, если действующая на него результирующая сила больше нуля.

Поскольку человек, которого вы пытаетесь толкнуть, имеет большую массу, чем вы, ему потребуется больше силы для ускорения, чем вы можете предоставить. В результате человек останется неподвижным. Поскольку ваша масса меньше его, когда он толкает вас назад, вы ускоряетесь в направлении толчка.

Мы видели, как найти массу без ускорения в предыдущем посте, а в этом – как найти массу с ускорением и силой. Мы надеемся, что эти сообщения ответили на ваши вопросы.

Второй закон Ньютона это закон который был выведен в результате проведения опытов Ньютоном.

В результате чего были выведена новая формула второго закона ньютона а = F /m

Что такое второй закон Ньютона, масса и вес тела

Второй закон НьютонаОбобщая результаты опытов Галилея по падению тяжелых тел, астрономические законы Кеплера о движении планет, данные собственных исследований.

Ньютон сформулировал второй закон динамики, количественно связывающий изменение движения тела с силами, вызывающими это изменение.

Чтобы исследовать зависимость между силой и ускорением количественно, рассмотрим некоторые опыты.

Ускорение от величины силы

I. Рассмотрим, как зависит ускорение одного и того же тела от величины силы, действующей на это тело. Предположим, что к тележке прикреплен динамометр, по показаниям которого измеряют силу.

Измерив длину пройденного тележкой пути за какой-нибудь промежуток времени t, по формуле s = (at2) : 2 определим ускорение a.

Изменяя величину силы, проделаем опыт несколько раз. Результаты измерения покажут, что ускорение прямо пропорционально силе, действующей на тележку

a1 : a2 = F1 : F2

ИЛИ

а ~ F.

Отношение силы, действующей на тело, к ускорению есть величина постоянная, которую обозначим mЭто отношение назовем массой тела.

Зависимость ускорения от массы

II. Установим зависимость ускорения тела от его массы. Для этого будем действовать на тележку какой-нибудь постоянной силой, изменяя массу (помещая различные грузы на тележку).

Ускорения тележки будем определять так же, как и в первом опыте. Опыт покажет, что ускорение тележки обратно пропорционально массе, то есть

(a1/a2) = (m2/m1), или а ~ (1/m)

Обобщая результаты опытов, можно заметить, что ускорение, приобретаемое телом, прямо пропорционально силе, действующей на тело, и обратно пропорционально массе данного тела (второй закон ньютона формулировка).

Этот вывод называется вторым законом Ньютона. Математически этот закон можно записать так (формула второго закона ньютона):

а = F /m

где а — ускорение, m—масса тела, F — результирующая всех сил, приложенных к телу. В частном случае на тело может действовать и одна сила.

Результирующая сила равна векторной сумме всех сил, приложенных к телу;

= mа.

Следовательно, сила равна произведению массы на ускорение.

Второй закон динамики можно записать в иной более удобной форме. Учитывая, что ускорение

а = (υ2 — υ1) / (t2 — t1)

подставим это выражение в уравнение второго закона Ньютона. Получим

F = ma = (2 — 1) / (t2 — t1) = (∆(mυ))/t

Что такое импульс

Импульсом, или количеством движения, называется вектор, равный произведению массы тела на его скорость (тυ).

Тогда основной закон динамики можно сформулировать следующим образом: сила равна изменению импульса в единицу времени (второй закон ньютона в импульсной форме)

F(∆(mυ))/t

Это и есть наиболее общая формулировка второго закона Ньютона. Массу тела Ньютон определил как количество вещества, содержащегося в данной теле. Это определение несовершенно.

Из второго закона Ньютона вытекает следующее определение массы. Из равенства 

a1/a2m2/m1 

видно, что чем больше масса тела, тем меньше ускорение получает тело, то есть тем труднее изменить скорость этого тела и наоборот.

Следовательно, чем больше масса тела, тем в большей степени это тело способно сохранять скорость неизменной, то есть больше инертности. Тогда можно сказать, что масса есть мера инертности тела.

Эйнштейн доказал, что масса тела остается постоянной только при определенных условиях. В зависимости от скорости движения тела его масса изменяется по такому закону:

Масса тела

где m — масса тела, движущегося со скоростью υ; m0 — масса этого же тела, находящегося в покое; с = 3 • 108м/с скорость света в вакууме.

Проанализируем данное уравнение:

  1. Если υ«с, то величиной —, как очень малой, можно пренебречь и m = m0, то есть при скоростях движения, много меньших скорости света, масса тела не зависит от скорости движения;
  2. Если υ  с, то υ22 ≈ 1, тогда т = m0/0— отсюда вытекает, что m → ∞.

По мере увеличения скорости тела для его дальнейшего ускорения нужно будет прикладывать все увеличивающиеся силы.

Но бесконечно больших сил, которые потребовались бы для сообщения телу скорости, равной скорости света, в природе не существует.

Таким образом, заставить рассматриваемое тело двигаться со скоростью света принципиально невозможно.

Со скоростями, близкими к скорости света, современная физика встречается: так разгоняются, например, элементарные частицы в ускорителях.

Масса тела с ростом скорости

Масса тела с ростом скорости увеличивается, но количество вещества остается неизменным, возрастает инертность. Поэтому массу нельзя путать с количеством вещества.

Покажем связь между силой тяжести, массой тела и ускорением свободного падения. Любое тело, поднятое над Землей и ничем не поддерживаемое, падает снова на Землю.

Это происходит вследствие того, что между телом и Землей существует притяжение (этот вопрос более подробно рассмотрим позже). 

Сила, с которой тело притягивается к Земле, называется силой тяжести. Падение тел в безвоздушном пространстве под действием силы тяжести (при υ0 = 0) называется свободным падением. 

Отметим, что для тел, покоящихся в поле сил тяготения, сила тяжести равна весу тела Р.

Весом тела называется сила, с которой тело давит на горизонтальную подставку, неподвижную относительно Земли, или действует на подвес.

Если Р— сила тяжести, m — масса, g — ускорение силы тяжести (в данной точке Земли оно для всех тел одинаковой среднее его значение равно 9,8м2), то применяя второй закон динамики, получим

P = mg.

Выразим с помощью этой формулы веса двух различных тел. Тогда:

P1 = m1g и Р2 = m2g. Разделив почленно эти два равенства, будем иметь

P1/P2 = m1/m2

Следовательно, веса тел в данной точке земной поверхности прямо пропорциональны их массам.

Задачи на второй закон ньютона

1. Какая сила F действует на автомобиль массой кгm=1000 кг, если он движется с ускорением мсa=1 м/с2.

Дано:
m = 1000 кг
a = 1 м/с2

Найти: F — ?

Решение:

Запишем второй закон Ньютона :

= mа.

= 1000 кг • 1 м/с2 = 1000 Н

Ответ: 1000 Н.

2. На мяч действует сила F = 70Н, масса мяча m = 0,2 кг, найти его ускорение a.

Дано:

m = 0,2 кг,

F = 70Н

Найти:

a — ?

Решение:

Запишем второй закон Ньютона :

= mа.

Следовательно а = / m.

а = 70Н : 0,2 кг = 350 м/с.

Ответ: а = 350 м/с.


Статья на тему Второй закон Ньютона

Вес тела — это сила, с которой тело, вследствие притяжения к Земле, действует на опору или подвес.

Вес тела

P=N = mg

В отличие от силы тяжести, являющейся гравитационной силой, приложенной к телу, вес – это упругая сила, приложенная к опоре или подвесу (т.е. к связи).

Вес тела

Вес тела в различных условиях движения.

1) опора покоится или движется равномерно

N=mg – сила реакции опоры

P=N значит P=mg Вес тела равен действующей на тело силе тяжести.

2) опора движется с ускорением a вверх.

N–mg=ma – второй закон Ньютона

N=mg+ma

P=N=m·(g+a)

P>mg  Вес тела, движущегося с ускорением направленным вверх больше силы тяжести.

Увеличение веса тела, вызванное его ускоренным движением, называется перегрузкой.

3) опора движется с ускорением а вниз.

mg-N=ma – второй закон Ньютона

N=mg-ma

P=N=m·(g-a)

P<mg Вес тела, движущегося с ускорением вниз уменьшается.

Падение тел в вакууме без начальной скорости называется свободным падением. При свободном падении a=g из P=m·(g-a) следует, что P=0, т.е. вес отсутствует.

Если тела движутся только под действием силы тяжести, т.е. свободно падают, то они находятся в состоянии невесомости – состояние, при котором вес тела отсутствует (НО! масса у тела есть всегда).

Обозначения:

N – сила реакции опоры

P – вес тела

m – масса тела

g – ускорение свободного падения

a – ускорение, с которым движется тело

Добавить комментарий