Как найти массу тела когда известен вес

Лучший ответ

Маргоша

Мастер

(1973)


10 лет назад

разделить вес на 9,8 (или 10) Вес это Р=mg, а g=9,8 (округленно 10)

Остальные ответы

snigivas

Профи

(801)


10 лет назад

вес (Н) = масса (кг) х ускорение свободного падения (м/с2)

constanta

Профи

(872)


10 лет назад

наведите пример

вот я так понимаю

P-вес

Р=m*ж ж=9,8 м/с^2

m=….считайте

Валентин Беляев

Оракул

(71418)


10 лет назад

Вес разделить на ускорение свободного падения тела в данной местности.
Формула: P=mg,отсюда m=P/g.
Я ещё в детсаду проходил

Типичный Тохофаг

Ученик

(206)


10 лет назад

P – это вес. P=gm, значит m=P/g. g=9,8Н/кг – коэф-т ускорения свободного падения.
Вес измеряется в ньютонах, а масса – в киллограммах.

В прошлом посте мы обсуждали как найти массу с ускорением и силой. Итак, в этом посте мы обсудим его особый случай, а именно, как рассчитать массу по весу. Итак, давайте углубимся.

Сэр Исаак Ньютон установил множество принципов, которые упрощают вычисление массы объекта. Определение массы объекта по его весу – это частный случай Второго закона Ньютона, в котором объект испытывает силу из-за гравитационного притяжения Земли.

В повседневной жизни мы используем термины «вес» и «масса». Большинство людей считают, что масса равна весу. Но нет, они совершенно разные и имеют разное толкование. Количество вещества в объекте или частице измеряется его массой, которая является фундаментальным свойством любого объекта или частицы. В то время как вес объекта или тела – это просто сила, испытываемая материей тела из-за гравитации.

Давайте рассмотрим частный случай второго закона Ньютона, чтобы определить массу любого объекта по его весу.

Как рассчитать массу из веса с помощью Второго закона Ньютона:

Второй закон Ньютона устанавливает связь между массой тела, равнодействующая сила действующее на него, и ускорение, которое объект испытывает благодаря этой силе. Таким образом, согласно второму закону Ньютона, ускорение, которое будет испытывать объект из-за приложенной к нему силы, будет прямо пропорционально суммарной силе, действующей на него. Более того, она находится в обратной зависимости от массы объекта.

Подставляя эти утверждения в уравнение, мы можем записать его как:

а ∝ F

а ∝ 1 / м

Таким образом,

Или,

F = ма

Делая массовость предметом уравнения, его можно выразить как:

Однако мы хотим определить массу по весу. Посмотрим, как нам может помочь закон Ньютона.

Как было сказано ранее, вес — это сила тяжести, действующая на объект. Поскольку гравитационная сила является причиной ускорения объекта, ее называют гравитационное ускорение. Обозначается буквой g. В результате во втором законе Ньютона сила F заменяется весом W, а ускорение a заменяется ускорением свободного падения g. В результате закон Ньютона можно записать следующим образом:

W = мг

В результате масса объекта по весу определяется по формуле:

Как мы все знаем, масса объекта остается постоянной, пока его скорость не приближается к скорости света. Однако в случае с весом это не так. Это происходит из-за изменения величины ускорения свободного падения. Ускорение свободного падения Земли составляет 9.8 м / с.2. Однако его стоимость, как и вес объекта, меняется на поверхности Луны. Согласно приведенному выше уравнению, если объект или тело имеют большую массу, они будут много весить и медленно ускоряться. А если он будет иметь меньшую массу, он будет легче и быстрее разгоняться.

Ньютон, килограмм и м / с2 являются Единицы измерения веса в системе СИ (так как это также сила), массы и ускорения свободного падения соответственно.

Проблемы нахождения массы по весу:

Проблема: тело испытывает на Земле гравитационную силу 294 Н. Затем определите массу тела.

Данный:

Сила тяжести на теле (масса тела) W = 294 Н

Ускорение свободного падения g = 9.8 м / с2

Найти:

Масса тела m =?

Решение:

Масса тела

∴ м = 30 кг

На поверхности земли тело массой 30 кг испытывает силу тяжести 294 Н.

Проблема: гравитационная сила, действующая на тело на поверхности Луны, составляет 71.5 Н, а гравитационное ускорение на Луне составляет 1.625 м / с2. Какой тогда была бы масса тела?

Данный:

Гравитационная сила, действующая на тело (масса тела) W = 71.5 Н

Ускорение свободного падения на поверхности Луны g = 1.625 м / с2

Найти:

Масса тела m =?

Решение:

Масса тела

∴ м = 44 кг

Таким образом, если на поверхности Луны тело весит 71.5 кг, то его масса составляет 44 кг.

Часто задаваемые вопросы о массе и весе:

В. Различайте массу и вес.

Ответ: И масса, и вес – это научные и математические величины, используемые для описания объектов в космосе. Однако они не совпадают, и отличия заключаются в следующем:

Масса Вес
Количество вещества, содержащегося в теле, и есть его масса. Вес объекта или тела – это сила тяжести, действующая на материю тела.
Это скалярная величина, имеющая только значение. Это векторная величина, поскольку это, по сути, сила, имеющая направление и величину.
Его ценность не меняется, куда бы вы ни пошли. После появления гравитационное ускорение изменяется, это вызывает изменение веса объекта.
Балансировка используется для определения массы объекта. Пружинные весы используются для определения веса объекта.
Единица СИ: кг Единица СИ: Ньютон

В. Почему для измерения материи лучше использовать массу, а не вес?

Ответ: Масса и вес – две величины, которые используются для описания объекта в космосе.

Гравитационное притяжение или вес ощущается предметом из-за его массы. Масса любого тела или объекта не зависит от его местоположения. Так что его ценность остается прежней. Однако вес объекта изменяется при изменении его местоположения. Полет на самолете снижает ваш вес. Когда вы путешествуете на другую планету или в космос, все меняется еще больше. Таким образом, благодаря неизменным характеристикам, масса – лучший способ измерить материю, чем вес.

В. Как гравитационное ускорение Земли g может быть равно 9.8?

Ответ: Ускорение свободного падения можно рассчитать, используя универсальный закон всемирного тяготения.

Сила тяготения между двумя объектами, согласно универсальному закону тяготения, может быть определена как:

Но здесь G – гравитационная постоянная = 6.67 X 10.-11 Nm2/ кг

m1 = Me (масса Земли) = 5.98 X 1024 kg

m2 = m (масса объекта) 

R (радиус Земли, когда объект находится на поверхности земли) = 6.38 X 106 m

Таким образом, гравитационная сила, действующая на объект из-за земли, равна:

Но,

F = мг

Где, 

∴ g = 9.8 м / с2

В. Гравитация Луны ниже, чем у Земли. Как бы изменился ваш вес, если бы вы были на Луне по сравнению с Землей?

Ответ: На Земле и на Луне измерение веса объекта или тела дает разные результаты.

На поверхности Земли вес объекта определяется по формуле:

На поверхности Земли вес объекта определяется по формуле:

Таким образом, из приведенных выше уравнений мы можем написать:

Однако масса и радиус Земли в 100 раз и в 4 раза соответственно больше, чем у Луны, т. Е. Me = 100 млнm и Re = 4 рm.

Таким образом, 

∴ Втm = (1/6) Втe

В результате мы можем заключить, что если вы весите себя на Луне, это будет 1/6 вашего веса на Земле. Однако ваша масса на Луне и на Земле останется прежней.

Массу человека, если известен его вес, можно найти, используя формулу m=Pg, где g≈10Нкг. Масса человека равна 76010 = 76 кг.

Как определить массу тела по его весу?

Получится m = P/g. Подставьте известные значения: m = 549/9,8 = 56 кг. Вы решили задачу. Ответ: масса тела, которое весит 549 Н (на поверхности Земли) равна 56 кг, или m = 56 кг.

Как найти массу тела 7 класс?

Решение: Чтобы найти массу тела, нужно плотность умножить на объем: m = ρ · V. Подставим числовые значения величин: 930 кг/м3 · 0,003 м3 = 2,79 кг.

Как найти массу?

Масса тела выражается через плотность и объем следующей формулой: Масса тела — есть произведение плотности вещества из которого состоит тело на его объем. Здесь: … m — масса тела, (килограмм), ρ — плотность вещества, (кг/м³).

Чему равен вес тела при свободном падении?

Вес, сила, с которой тело, покоящееся в поле сил тяжести, действует на подвес или горизонтальную опору, препятствующую свободному падению тела. Численно В. тела Р равен действующей на него силе тяжести, то есть Р = mg, где m — масса тела, g — ускорение свободного падения (или ускорение силы тяжести).

Как найти массу тела в физике формула?

Масса тела зависит от его объема и плотности вещества, из которого состоит данное тело. — Как найти объем тела, если известна его масса и вещество, из которого состоит тело? Чтобы найти массу тела нежно его плотность умножить на объем. Чтобы найти объем тела, нужно его массу разделить на плотность.

Как узнать массу вещества в растворе?

Масса раствора определяется по формуле m (раствора)= m (масса растворенного вещества)/ w (массовая доля растворенного вещества). Или m = r (плотность раствора — г/см3) * V (объем раствора).

Как найти плотность в физике 7 класс формула?

Плотность равна отношению массы тела к его объёму. В физике плотность обозначают греческой буквой ρ (ро). плотность = масса объём ρ = m V , где m — масса, V — объём. Основной единицей плотности вещества является кг м 3 .

Как найти массу силу тяжести?

Формула силы тяжести Fт=m*g, где m-масса тела, g-ускорение свободного падения. Для тела массой m=400 г =0.4 кг сила тяжести составит Fт=0.4*10=4 Н. Формула силы тяжести: F=mg, где m- масса тела, g-Н/кг.

Что такое масса 7 класс?

Масса тела – это физическая величина, которая является мерой инертности тела. Чем больше масса тела, тем больше его инертность.

Какой прибор измеряет массу?

В Международной системе единиц (СИ) масса измеряется в килограммах. Единицей измерения массы в системе СГС является грамм (1⁄1000 килограмма).

Чему равна масса?

Масса – характеристика, которая определяет интенсивность воздействия на него гравитационного поля. Масса тела (m) равна его плотности (p) умноженной на объём (V). Единица измерения массы – килограмм (кг).

Как найти массу цилиндра?

V = π·r²·h

  1. через высоту цилиндра и радиус основания;
  2. через высоту цилиндра и площадь основания.

21.01.2020

Что такое сила тяжести и вес тела?

Сила тяжести — это сила, с которой Земля действует на тело, а вес — сила, с которой тело действует на опору. Это значит, что у них будут разные точки приложения: у силы тяжести к центру масс тела, а у веса — к опоре.

В чем измеряется вес тела в физике?

Вес — сила, с которой тело действует на опору (или подвес, или другой вид крепления), препятствующую падению, возникающая в поле сил тяжести. Единица измерения веса в Международной системе единиц (СИ) — ньютон, иногда используется единица СГС — дина.

Почему в состоянии невесомости вес космонавта равен нулю а сила тяжести нет?

На космонавта действует сила тяжести , где — ускорение свободного падения на высоте h. … То есть сила реакции опоры равна нулю, а значит, по третьему закону Ньютона равен нулю и вес космонавта.

Масса сплошной детали

Это странное название статьи объясняется только тем, что детали одной и той же формы могут быть как сплошными, так и полыми (т.е. следующая статья будет называться «Масса полой детали»).

Тут самое время вспомнить, что масса тела — это его объем V, умноженный на плотность его материала rho (см. таблицы плотностей):
m~=~V~*~rho
Объем сплошной детали — это… ее объем и больше ничего.

Примечание. В приведенных ниже формулах все размеры измеряются в миллиметрах, а плотность — в граммах на кубический сантиметр.
Буквой pi обозначено отношение длины окружности к ее диаметру, составляющее примерно 3,14.

Рассмотрим несколько простых форм (более сложные, как вы помните, можно составить путем сложения или вычитания простых).


1. Масса параллелепипеда (бруска)

ПараллелепипедОбъем параллелепипеда: V~=~W~*~H~*~L, где L — длина, W — ширина, H — высота.
Тогда масса:

m~=~{{W~*~H~*~L}/1000}~*~rho


2. Масса цилиндра

ЦилиндрОбъем цилиндра: V~=~pi~*~{D^2/4}~*~H, где D — диаметр основания, H — высота цилиндра.
Тогда масса:

m~=~{{pi~*~D^2~*~H}/4000}~*~rho


3. Масса шара

шарОбъем шара: V~=~pi~*~{D^3/6}, где D — диаметр шара.
Тогда масса:

m~=~{{pi~*~D^3}/6000}~*~rho


4. Масса сегмента шара

сегмент шараОбъем сегмента шара: V~=~{1/6}pi*H*(H^2+~{3/4}D^2), где D — диаметр основания сегмента, H — высота сегмента.
Тогда масса:

m~=~{{pi~*~H~*~(4H^2+~3D^2)}/24000}~*~rho


5. Масса конуса

КонусОбъем любого конуса: V~=~{1/3}S*H, где S — площадь основания, H — высота конуса.
Для круглого конуса: V~=~{1/12}pi*D^2*H, где D — диаметр основания, H — высота конуса.
Масса круглого конуса:

m~=~{{pi~*~D^2~*~H}/12000}~*~rho


6. Масса усеченного конуса

Усеченный конусПоскольку невозможно объять необъятное, рассмотрим только круглый усеченный конус. Его объем — это разность объемов двух вложенных конусов: с основаниями D1 и D2: V~=~{1/12}pi*(D1^2*H1~-~D2^2*H2), где H1~=~H*{D1/{D1-D2}}, H2~=~H*{D2/{D1-D2}}. После никому не интересных алгебраических преобразований получаем:
V~=~{1/12}pi*H*(D1^2+D1*D2+D2^2), где D1 — диаметр большего основания, D2 — диаметр меньшего основания, H — высота усеченного конуса.
Отсюда масса:

m~=~{{pi~*~H~*~(D1^2~+~D1*D2~+~D2^2)}/12000}~*~rho


7. Масса пирамиды

ПирамидаОбъем любой пирамиды равен одной трети произведения площади ее основания на высоту (то же самое, что и для конусов (часто мы не замечаем, насколько мироздание к нам благосклонно)): V~=~{1/3}S*H, где S — площадь основания, H — высота пирамиды.
Для пирамиды с прямоугольным основанием: V~=~{1/3}W*L*H, где W — ширина, L — длина, H — высота пирамиды.
Тогда масса пирамиды:

m~=~{{W~*~L~*~H}/3000}~*~rho


8. Масса усеченной пирамиды

Усеченная пирамидаРассмотрим усеченную пирамиду с прямоугольным основанием. Ее объем — это разность объемов двух подобных пирамид с основаниями W1*L1 и W2*L2: V~=~{1/3}W1*L1*H1~-~{1/3}W2*L2*H2, где H1~=~H*{W1/{W1-W2}}, H2~=~H*{W2/{W1-W2}}.
Исчеркав половину тетрадного листа, получаем: V~=~{1/3}H*~{{W1^2L1~-~W2^2L2}/{W1~-~W2}}, где W1, L1 — ширина и длина большего основания, W2, L2 — ширина и длина меньшего основания, H — высота пирамиды.
И, оставив в покое остальную половину листа, исходя из одних соображений симметрии, мы можем написать еще одну формулу, которая отличается от предыдущей только заменой W на L и наоборот. В чем разница между длиной и шириной? Только в том, что мы их так назвали. Назовем наоборот и получим: V~=~{1/3}H*~{{L1^2W1~-~L2^2W2}/{L1~-~L2}}.
Тогда масса усеченной прямоугольной пирамиды:

m~=~{{W1^2L1~-~W2^2L2}/{W1~-~W2}}~*~{H~*~rho}/3000

или

m~=~{{L1^2W1~-~L2^2W2}/{L1~-~L2}}~*~{H~*~rho}/3000

Для пирамиды с квадратным основанием (W1=L1=A1, W2=L2=A2) формула выглядит проще:

m~=~(A1^2~+~A1A2~+~A2^2)~*~{H~*~rho}/3000


Содержание:

  1. Масса
  2. Второй закон Ньютона
  3. Масса — мера инертности тела
  4. Система единиц измерения механических величин
  5. Примеры решения задач на второй закон Ньютона

Масса – это физическая величина, одна из основных характеристик материи, определяющая её инертные и гравитационные свойства, масса рассматривается как мера инертности тела по отношению к действующей на него силе и как источник поля тяготения равны (принцип эквивалентности), в международной системе единиц (си) обозначается в килограммах.

На странице -> решение задач по физике собраны решения задач и заданий с решёнными примерами по всем темам физики.

Масса

Всякое тело притягивается Землёй. Сила, с которой Земля притягивает тело, называется весом тела. С понятием веса тела тесно связано другое, более общее
понятие — масса тела.

Массой тела называется количество вещества, содержащегося в этом теле.

Масса литра воды в 1000 раз больше массы 1 см3 воды, масса бревна во много раз больше массы полена из такого же дерева. Словом, массы однородных тел тем больше, чем больше объёмы этих тел. При равенстве их объёмов равны и массы. Так, например, массы двух одинакового объёма кусков железа равны между собой. Если положить эти куски на чашки весов, то они окажутся в равновесии. Это даёт нам возможность измерять массы тел взвешиванием.

Масса в физике

Рис. 98. Измерение массы тела.

Массы двух тел равны, если эти тела одинаково притягиваются Землёй в одном и том же месте,
т. е. если они уравновешивают друг друга на чашках рычажных весов. При этом совершенно безразлично, из каких веществ состоят эти тела. Если массу одного из этих тел принять за единицу массы, то и масса другого тела, которое уравновешивается первым, будет также равна единице массы.

За единицу массы принята масса платинового цилиндра, хранящегося в Сере (близ Парижа). Эта масса называется килограммом. В отличие от единицы силы, обозначаемой кГ, единица массы сокращённо обозначается кг.

В физике за единицу массы принимают 0,001 кг. Эта единица называется граммом (сокращённое обозначение—г).

В практике эталоны масс изготовляют в виде гирь различной величины.

Чтобы измерить массу тела, надо положить на одну чашку весов это тело, а на другую—гири. При равновесии весов масса тела равна массе гир,,. На рисунке 98 показано, что масса тела равна 0,5 кг.

Второй закон Ньютона

Во втором законе Ньютона устанавливается связь между силой, действующей на тело, массой тела и ускорением, с которым движется это тело.

Масса в физике
Рис. 99. Прибор для установления зависимости ускорения от силы, действующей на тело.

Рассмотрим сначала, как зависит ускорение одного и того же тела от величины силы, действующей на тело. Проделаем следующий опыт (рис. 99). К тележке, которая может (с малым трением) двигаться по столу, прикреплён динамометр. К другому концу динамометра прикреплена нитка с грузом М, переброшенная через блок. По показаниям динамометра мы сможем определить силу, действующую на тележку. Пользуясь капельницей, отметим пути, пройденные тележкой при ускоренном движении за различные промежутки времени под действием постоянной силы. Измерения показывают, что пути эти пропорциональны квадратам времён. Таким образом, движение под действием постоянной силы есть равноускоренное движение.

Измерив длину пройденного тележкой пути за какой-нибудь промежуток времени t, по формуле Масса в физике определяем ускорение а.

Будем подвешивать к концам нити различные грузы, каждый раз измеряя динамометром силу и вычисляя соответствующее этой силе ускорение тележки.

Результаты таких измерений и вычислений отражены в таблице.

Масса в физике

Из таблицы видно, что с увеличением силы в 1,5 раза ускорение увеличивается тоже в 1,5 раза; если сила увеличивается в 2 раза, в 2 раза увеличивается и ускорение, и т. д., т. е. ускорение тележки прямо пропорционально силе, действующей на тележку.

Математически это можно записать в виде формулы:

Масса в физике

Чтобы установить, как зависит ускорение от массы тела, будем действовать на тележку какой-нибудь постоянной силой.

Нагружая тележку гирями, изменим массу движущихся тел.

Ускорение, получаемое тележкой, будем вычислять так же, как и в первом случае.

Результаты опытов снова занесём в таблицу.

Масса в физике

Данные таблицы показывают, что при неизменной силе увеличение массы тела в два раза приводит к уменьшению ускорения в два раза, и наоборот, при уменьшении массы в два раза ускорение увеличивается в два раза, т. е. ускорение тележки с грузами обратно пропорционально их общей массе. Математически этот вывод можно
выразить формулой:

Масса в физике

Итак, результаты опытов показывают, что ускорение, с которым движется тело, пропорционально действующей на тело силе и обратно пропорционально массе этого тела.

Кроме того, ускорение тела совпадает с этой силой по направлению.

Этот вывод, как показал Ньютон, имеет всеобщий характер; он носит название второго закона Ньютона.

Во втором законе Ньютона говорится о действии одной силы. Но практически на тело всегда действуют несколько сил. Нам уже известно, что в расчётных целях мы действие нескольких сил можем заменить действием одной силы — равнодействующей. Поэтому в случае, когда на тело действуют несколько сил, под силой, вызывающей ускорение тела, подразумевается их равнодействующая.

Второй закон Ньютона математически можно выразить в виде следующей формулы:

Масса в физике откуда Масса в физике

Величина силы равна произведению массы тела на ускорение.

Таким образом, второй закон Ньютона позволяет вычислить величину силы, если известна масса тела и ускорение, с которым оно движется.

В частности, на основании второго закона Ньютона вес тела Р можно выразить через массу этого тела т и ускорение свободного падения g:

Р = mg.

Из сопоставления формулы F=ma и P=mg видно, что

Масса в физике

т. е. ускорение движения тела под действием некоторой силы во столько же раз больше или меньше ускорения свободного падения, во сколько раз действующая сила больше или меньше веса тела.

При решении задач с помощью указанного выше отношения однородные величины должны быть выражены в одних и тех же единицах.

Пример. Санки с седоком весят 70 кГ и скатываются с горы с ускорением Масса в физике Определить силу, движущую санки.

Р=70 кГ;

g=Масса в физике
а =Масса в физике
F = ?

Из формулы Масса в физике определим F: 

Масса в физике

Масса — мера инертности тела

Первый закон Ньютона утверждает, что всякое тело обладает свойством инерции, иначе говоря, всякое тело инертно. Какова мера инертности тела? Обратимся к следующему примеру.

Пусть по горизонтальному пути с одинаковой скоростью движутся два вагона, один пустой, другой гружёный. Пусть на каждый из них одновременно начали действовать одинаковые силы, тормозящие их движение. Какой из этих вагонов будет дольше сохранять своё движение? Опыт показывает, что гружёный вагон будет двигаться дольше, следовательно, можно сказать, что он обладает и большей инертностью. Но масса гружёного вагона больше массы пустого; отсюда следует, что чем больше масса тела, тем более оно инертно.

Масса в физике
Рис. 100. Масса наковальни значительно больше массы молота.

Этот вывод непосредственно вытекает из второго закона Ньютона. Действительно, по второму закону Ньютона Масса в физике т. е. ускорение обратно пропорционально массе, а так как масса гружёного вагона больше массы пустого, то и ускорение его движения будет меньше (ускорение направлено против движения). Следовательно, гружёный вагон дольше будет сохранять своё движение.

Итак, масса тела является мерой его инертности. 

Из второго закона Ньютона Масса в физике следует,что любая сколь угодно малая сила может вызвать ускоренное движение тела.

Не противоречит ли этому то, что мы иногда, толкая тяжёлый предмет, не можем сдвинуть его с места? Нисколько не противоречит. Дело в том, что между предметом и полом существует трение, и нам, чтобы привести его в движение,надо преодолеть это трение, а для этого сила, с которой мы толкаем предмет, должна быть больше силы трения, что не всегда бывает.

Изменение скорости тела зависит от массы тела и от времени действия силы на тело. Это видно хорошо на следующем опыте.

Положим на одну чашку весов тяжёлую плиту и уравновесим её гирями или каким-нибудь другим грузом. Если резко ударить небольшим молоточком по плите, то равновесие весов не нарушится.

Если же положить на чашки весов тела с малой массой, то уже при самом незначительном ударе равновесие весов нарушится.

Чем больше масса тела, тем меньшее изменение скорости вызывает действующая на него сила. Это учитывается в технике.

Масса в физике
Рис. 101. Машина на массивном фундаменте.

Так, например, для уменьшения сотрясений от ударов делают массивными и прочно соединяют с землёй мостовые „быки“ и упоры; массивными делают наковальни: относительные размеры молота и наковальни видны на рисунке 100. По этой же причине станки и машины делают массивными и устанавливают их на массивные фундаменты. На рисунке 101 изображена машина, установленная на массивном основании.

Нам известен способ определения массы тела с помощью взвешивания тела на рычажных весах. Второй закон Ньютона даёт нам другой способ определения массы — как меры инертности тела по величине силы и ускорению:

Масса в физике

Опытом проверено, что оба эти способа определения массы тела (по весу и по инертности) дают совершенно одинаковые результаты.

Система единиц измерения механических величин

Чтобы применять формулы для числовых расчётов, необходимо установить, в каких единицах измеряются физические величины.

Физические законы связывают физические величины определёнными зависимостями. Поэтому если произвольно выбрать единицы для измерения некоторых величин, то единицы для измерения других величин получатся на основе соответствующих законов. Например, в формуле s = vt дана зависимость между тремя величинами. Если мы произвольно выберем единицы каких-нибудь двух величин, то единица третьей величины определится из этого уравнения. Условившись, например, измерять путь в метрах, а время в секундах, мы должны будем измерять скорость в Масса в физике

Зависимости, существующие между физическими величинами, дают возможность составить такую совокупность единиц, в которой для измерения механических величин достаточно выбрать произвольно три единицы: единицу длины, единицу массы, или силы, и единицу времени; такая совокупность единиц называется системой единиц.

Выбранные произвольно единицы системы называются основными единицами, а все другие — производными единицами.

В физике принята система единиц, в которой основными единицами являются: единица длины—1 см (сотая часть международного метра), единица массы— 1 г (тысячная часть международного килограмма) и единица времени—1 сек ( Масса в физике средних солнечных суток, измеряемая весьма точными часами, которые систематически проверяются астрономическими наблюдениями) (Солнечные сутки—промежуток времени между двумя следующими друг за другом полуднями. Так как продолжительность солнечных суток в разные времена года несколько различна, то в практику введены средние солнечные сутки, продолжительность которых равна средней длительности суток за год).

Эта система называется системой единиц CGS (по первым буквам слов—сантиметр, грамм, секунда).

Единица скорости в этой системе Масса в физике единица ускорения Масса в физике

Полагая в формуле F=ma второго закона Ньютона m = 1 г, получим единицу силы в системе CGS:

Масса в физике

За единицу силы в системе CGS принимается такая сила, под действием которой масса в 1 г движется с ускорением, равным Масса в физике Эта единица называется диной (сокращённо дн).
Масса в физике

В системе единиц, применяемой в настоящее время в СССР при электрических и магнитных измерениях, за основные единицы принимаются:

единица длины  — 1  м,

единица массы  — 1  кг,

единица времени  — 1 сек,

единица тока  — 1  ампер.

Сокращённо мы эту систему единиц будем называть MKSA (по первым буквам слов—метр, килограмм, секунда, ампер).

Единицей силы в системе MKSA будет такая сила, под действием которой масса в 1 кг движется с ускорением Масса в физике Эта единица называется ньютон (сокращённо н). Таким образом,

Масса в физике

Вычислим, сколько в одном ньютоне содержится дин.Масса в физике или Масса в физике 
В практике довольно широко распространена так называемая техническая система единиц. В этой системе основными единицами являются:

единица длины —1 м,

единица силы —1 кГ,

единица времени—1 сек.

Единица массы в этой системе единиц является производной и может быть определена из равенства Масса в физике т. е. единицей массы в технической системе единиц является масса, которая под действием силы в 1 кГ движется с ускорением Масса в физике

Сокращённое обозначение этой единицы—т. е. м. Таким образом,

Масса в физике
Между различными единицами массы и силы существуют следующие соотношения:

1 кГ есть сила, с которой Земля притягивает массу в 1 кг и сообщает ей ускорение Масса в физике Отсюда: Масса в физике или округлённо:

Масса в физике

Так как Масса в физике то 1 кГ = 9,8 н.
Масса в физике

Примеры решения задач на второй закон Ньютона

1.    Постоянная сила, равная 2 кГ, действует на тело, вес которого 19,6 кГ. С какой скоростью будет двигаться тело в горизонтальном направлении по прошествии 5 сек., если начальная скорость движения равна нулю?

Расчёты ведём в системе CGS.

Дано: F = 2 кГ=2*980000 дн = 1960000 дн;

m=19600 г; t = 5 сек. Найти Масса в физике

Под действием постоянной силы тело будет двигаться равноускоренно. Скорость этого тела определим по формуле:

Масса в физике

Время t дано по условиям задачи.

Ускорение найдем на основании второго закона: Масса в физике
Масса в физике
Ответ: Масса в физике
2.    Тело весом 98 кГ движется со скоростью, равной Масса в физике
Какую силу надо приложить, чтобы остановить это тело в течение 5 мин.? Расчёты провести в технической системе единиц.

Дано: Р = 98 кГ; Масса в физике t = 300 сек. Найти F.

Искомую силу найдём на основании второго закона:

F = mа.

Под действием этой силы тело будет двигаться равнозамедленно, отрицательное ускорение его а определим по формуле;

Масса в физике Так как Масса в физике то

Масса в физике и Масса в физике

По второму закону Ньютона Р = mg, откуда
 

Масса в физике

Ответ. Масса в физике

3. На тело, движущееся с начальной скоростью в Масса в физике подействовали силой в 10 Г в направлении движения, после чего тело прошло за 5 сек. путь в 200 м. Определить вес тела. Расчёты провести в системе CGS.

Вес тела в системе CGS, выражаемый в динах, найдётся на основании второго закона Ньютона: 

Масса в физике

Надо найти массу в граммах. Для этого воспользуемся тем F же вторым законом, Масса в физикеускорение а по условиям задачи вычислим по формуле:

Масса в физике

откуда

Масса в физике

Масса тела 

Масса в физике

Ответ. Масса в физике

При решении физических задач мы производим математические действия не только с числовыми значениями величин, но и над их наименованиями. Если предварительно все величины, указанные в задаче, выразить в единицах одной системы единиц и правильно применить соотношения, существующие между физическими величинами, то ответ всегда получится в единицах этой системы. Это позволяет нам не загромождать вычисления наименованиями единиц; достаточно указать наименование величины только в окончательном результате.

Пример. Тело массой 0,01 кг, двигаясь равноускоренно без начальной скорости, за 1 мин. прошло в горизонтальном направлении путь, равный 18 м. Определить силу, действующую на тело.

Дано: m = 0,01 кг; t = 1 мин.; s = 18 м. Найти F.

Выражаем все данные в задаче величины в единицах одной системы, например в системе CGS.

m = 10 г; t = 60 сек.; s = 1800 см.

По второму закону Ньютона F = ma.    (1)

Масса дана, ускорение а находим по формуле пути равноускоренного движения: Масса в физике откудаМасса в физике

Подставим значение а из равенства (2) в равенство (1), получим:

Масса в физике

Подставляя численные значения величин в равенство (3), определим величину силы F:

Масса в физике

Услуги по физике:

  1. Заказать физику
  2. Заказать контрольную работу по физике
  3. Помощь по физике

Лекции по физике:

  1. Физические величины и их измерение
  2. Основные законы механики
  3. Прямолинейное равномерное движение
  4. Прямолинейное равнопеременное движение
  5. Сила
  6. Взаимодействия тел
  7. Механическая энергия
  8. Импульс
  9. Вращение твердого тела
  10. Криволинейное движение тел
  11. Колебания
  12. Колебания и волны
  13. Механические колебания и волны
  14. Бегущая волна
  15. Стоячие волны
  16. Акустика
  17. Звук
  18. Звук и ультразвук
  19. Движение жидкости и газа
  20. Молекулярно-кинетическая теория
  21. Молекулярно-кинетическая теория строения вещества
  22. Молекулярно – кинетическая теория газообразного состояния вещества
  23. Теплота и работа
  24. Температура и теплота
  25. Термодинамические процессы
  26. Идеальный газ
  27. Уравнение состояния идеального газа
  28. Изменение внутренней энергии
  29. Переход вещества из жидкого состояния в газообразное и обратно
  30. Кипение, свойства паров, критическое состояние вещества
  31. Водяной пар в атмосфере
  32. Плавление и кристаллизация
  33. Тепловое расширение тел
  34. Энтропия
  35. Процессы перехода из одного агрегатного состояния в другое
  36. Тепловое расширение твердых и жидких тел
  37. Свойства газов
  38. Свойства жидкостей
  39. Свойства твёрдых тел
  40. Изменение агрегатного состояния вещества
  41. Тепловые двигатели
  42. Электрическое поле
  43. Постоянный ток
  44. Переменный ток
  45. Магнитное поле
  46. Электромагнитное поле
  47. Электромагнитное излучение
  48. Электрический заряд (Закон Кулона)
  49. Электрический ток в металлах
  50. Электрический ток в электролитах
  51. Электрический ток в газах и в вакууме
  52. Электрический ток в полупроводниках
  53. Электромагнитная индукция
  54. Работа, мощность и тепловое действие электрического тока
  55. Термоэлектрические явления
  56. Распространение электромагнитных волн
  57. Интерференционные явления
  58. Рассеяние
  59. Дифракция рентгеновских лучей на кристалле
  60. Двойное лучепреломление
  61. Магнитное поле и электромагнитная индукция
  62. Электромагнитные колебания и волны
  63. Природа света
  64. Распространение света
  65. Отражение и преломление света
  66. Оптические приборы и зрение
  67. Волновые свойства света
  68. Действия света
  69. Линзы и получение изображений с помощью линз
  70. Оптические приборы и глаз
  71. Фотометрия
  72. Излучение и спектры
  73. Квантовые свойства излучения
  74. Специальная теория относительности в физике
  75. Теория относительности
  76. Квантовая теория и природа поля
  77. Строение и свойства вещества
  78. Физика атомного ядра
  79. Строение атома

Добавить комментарий